
The automatic generation of software test

data sets using adaptive search techniques

B.F. Jones/ H.-H. Sthamer/ X. Yang/ D.E. Eyres"

" Department of Computer Studies, * Department of

Electronics and Information Technology, University of

Glamorgan, Pontypridd, Mid Glamorgan, CF37 1DL, UK

Email: bfjones@glamorgan.ac.uk

Abstract

Test sets which cover all branches of a library of five procedures which solve
the triangle problem, have been produced automatically using genetic
algorithms. The tests are derived from both the structure of the software and its
formal specification in Z. In a wider context, more complex procedures such as
a binary search and a generic quicksort have also been tested automatically from
the structure of the software. The value of genetic algorithms lies in their ability
to handle input data which may be of a complex data structure, and to execute
branches whose predicate may be a complicated and unknown function of the
input data. A disadvantage of genetic algorithms may be the computational
effort required to reach a solution.

1. Introduction

Many approaches have been used to automate the generation of test sets for
software. Random testing has been investigated thoroughly by Duran and
Ntafos [8] and Hamlet and Taylor[9]. Deterministic heuristics have also been
used notably by Korel [10]. Unfortunately, none of these prototypes has been
widely adopted in testing because of the difficulty of automating the testing of
complex software. The purpose of this investigation is to assess the usefulness
of applying genetic algorithms [4] to the problem of automatic test generation.
Genetic algorithms are a search technique which is often successful when

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

436 Software Quality Management

deterministic heuristics fail. They may be applied to test generation in the sense
that deriving tests may be likened to searching the input domain for data which
will exercise a particular branch or path through the software, or a particular
aspect of functionality of the specification. We have investigated the derivation
of tests from both the structure of the software (white-box testing) and from the
formal Z specification (black-box or functional testing).

2. The Z specification of a triangle system

Z is a model-based, formal specification language which was developed at the
Oxford Programming Research group in the 1980s in collaboration with IBM
UK (Spivey [1], Wordsworth [2], McMorran and Nicholls [3]). It is based on
set theory and uses mathematical schemas interspersed with English statements
to describe the properties of a software system precisely and unambiguously.

As a simple example of deriving tests from a Z specification, we describe a
triangle system which determines whether three integer values form a valid
triangle, which may be isosceles, equilateral or right-angled. First, the given
sets which are manipulated by the system are defined, along with global
variables and constraints on their values:

[INPUT] is the set of three integer values.
[MESSAGE] :: = Invalid I Equilateral I Isosceles I Scalene I Rightangle

The state space of the system is described in a schema which is split into two
sections; it may be written horizontally, or (more usually) vertically. We adopt
the vertical notation. The upper section is a collection of variables which
define the state of the system, and the lower section describes state invariants.

TriangleO

X^ V^ 7? * 7I A . ,y . ,£ . . Lt

I
I x? >0 A x? < 200
| y? >0 A y? < 200

I z?>0 A z?<200
j x? + y? > z?
I y? + z? > x?

I z? + x? > y?

The state space schema declares three input variables x?, y?, and z? belonging
to the set of integers, Z, and invariant relationships such as that each input must
be strictly positive and less than a defined maximum value.

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 437

Further schemas describe operations belonging to the system; some operations
may seek to change the system state whereas others may only query the state
leaving it unchanged. We define four which define operations to determine
whether the triangles are scalene

ScalTri or equilateral

E TriangleO

reply! : MESSAGE

EquiTri

E TriangleO

reply! : MESSAGE

I reply! = Scalene

or isosceles

IsosTri or right angled

E TriangleO
reply! : MESSAGE

x? = y?

y? = z?
reply! = Equilateral

RightTri

E TriangleO
reply! : MESSAGE

I (x? =y? Ay?* z?) v
|(y?=z? AZ?*x?)v

|(z?=x?A x?*y?)

I reply! = Isosceles

(x? * x? + y? * y? = z? * z?) v
(y? * y? + z? * z? = x? * x?) v

(z? * z? + x? * x? = y? * y?)
reply! = Rightangle

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

438 Software Quality Management

Schemas may also define inherent or representation errors, such as

NumError

x?, y?, z? : INPUT

reply! : MESSAGE

v x?>200 v x?<=0) v

I (y?2Z v y?>200 v y?<=0) v
I (z?£Z v z?>200 v z?<=0)

I reply! = Invalid

I

and
TriangleError

I x?, y?, z? : INPUT
I reply! : MESSAGE

I (x?+ y? <= z?) v
I (y? + z? <= x?) v
| (z? + x? <= y?)
I reply! = Invalid

3. The application of Genetic Algorithms to test generation

Genetic Algorithms (GAs) were described by Holland [4], and they have been
used with much success to solve non-linear optimisation problems by searching
the solution space for the best data [6]. We have applied GAs to generating test
sets (Sthamer, Jones and Eyres [5]) by searching the input domain for test data
which ensure that each branch of the code is exercised.

The input parameters to a problem are represented typically by a binary code.
This is straightforward for the input data to a computer program where the
machine memory image can be used. For example, in our triangle problem,
there are three integer inputs, x?, y?, z?, and each will be represented by 32 bits
on a DEC Alpha processor. The three combined inputs are thus represented by
a string of 96 bits. Normally the GAs work on a square array of bits, so that 96
random guesses are made for the input data x?, y?, z?. The input domain is thus
sampled at random for possible solutions; here, the meaning of the term solution

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 439

must be clarified. In the context of structural testing, the aim may be to
exercise a branch
if A = Bthen....
where A and B are functions of x?, y? and z?. A critical part of using GAs is to
specify a fitness function which is a measure of how close a guessed test set is
to the goal. The goal in this case is to find a combination of x?, y? and z? which
ensure that the values of A and B are equal. A convenient way of establishing a
fitness for this case is to use the reciprocal of the Hamming distance between
the binary patterns corresponding to A and B. The fitness is established for
each of the 96 combinations of x?, y?, and z?. One of the strengths of this
approach is that A and B may be complex functions of x?, y?, and z?, but this
does not increase the complexity of the method since the fitness only depends
on the actual values of A and B at this point in the program.

The GAs then go through a process of mixing bit patterns from two guesses
which may have been chosen because they have a high fitness. An arbitrary
point along the bit string is chosen at random, and the tails of the two guesses
are exchanged, thus producing two offspring. This process is known as
crossover. In addition, there is a small probability that a bit will be mutated ie
flipped from one binary state to the other. The fitnesses of the offspring are
calculated. The next generation of guesses is chosen from the original
population and the offspring. One strategy is to allow the fittest to survive (cf
Darwinian evolution), though allowing some guesses with a poor fitness to join
the new generation prevents stagnation at a sub-optimal solution.

GAs have been applied to generating tests for a wide variety of programs by
attempting to exercise every branch in the code (structural testing [5]). In this
case the selections in the code form the basis for the fitness function. The code
is instrumented with calls to procedures which record the passage of control
through each branch and calculate the fitness at that point.

Each node in control the flow tree is exercised in turn, and the fitness of the
population of guesses increases in a saw tooth like pattern where the peaks
correspond to a successful execution of the branch under investigation, and the
troughs to the start of the search for a test to satisfy the next node.

Formal specifications have been used to define the use or changes in the state
space of the system (functional and state-based testing). In this case, the
predicates in the Z specification form the basis of the fitness function.

4. Results of structural testing

The Z specification described above has been implemented in Ada83; there are
five procedures which
1. check that the three sides of the triangle are positive (TriangleO schema),

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

440 Software Quality Management

2. check for a scalene triangle (ScalTri schema),
3. check for an isosceles triangle (IsosTri schema),
4. check for an equilateral triangle (EquiTri schema),
5. check for a right-angled triangle (RightTri schema).
The control flow tree for the combination of these five procedures contains a
total of 26 branches to be executed. When the input range of x?, y? and z? are

restricted to be between ±100, complete branch coverage is obtained in all test
runs, and demands a total of 18,800 tests. As a bench mark, this may be
compared with pure random testing for which complete branch coverage is
frequently not achieved, and at least 163,300 tests are needed. Most of the
predicates are linear combinations of x?, y? and z? and are satisfied relatively
easily. There are three non-linear tests for a right-angled triangle

There are only 104 combinations of inputs out of a possible 8 million which
satisfy this predicate, and consequently have a small probability of occurring at
random. Additionally, there are successive predicates which check that x?=y?
and y?=z? which are equally difficult to satisfy. It is these circumstances which
give GAs the advantage over random testing, and over the effort required to
derive inputs manually to satisfy complex predicates, though the latter
predicates can be satisfied simply by deterministic heuristics (Holmes, Jones
and Eyres [7]).

The real power of GAs is evident when predicates which are complex functions
of many input parameters need to be tested and when the input parameters are
combination of data structures rather than primitive data types. GAs have been
used to cover the structures of a wide range of procedures including a
remainder calculation which has four while loops, a binary search procedure
and a generic sort which several nested loops and which has been tested with
arrays of records whose fields are characters and integers (Sthamer, Jones and
Eyres [5]). In all of these cases, full branch coverage is achieved. In
procedures containing iterations, the number of iterations is controlled to be
zero, one, two or any pre-defined number. This seems to be a good strategy,
based intuitively on proof by induction, i.e. if valid outputs are achieved for
zero, one and two iterations then there is confidence that the iteration has been
coded correctly.

The experiments with GAs indicate that the most successful strategy uses a
uniform crossover strategy which exchanges each pair of bits in the two parent
bit strings with a probability of 0.5, rather than picking a single point in the
string and exchanging the tails. The fitness function is based on the Hamming
distance of the guessed solution from the goal; although the Hamming distance
does not give much improved results over a simple reciprocal function for

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 441

numerically based predicates, the Hamming distance can be applied to the range
of data structures involved in branch decisions.

5. Results of tests based on Z specifications

Our work on deriving tests from Z specifications is less advanced than our work
on structural testing. So far we have concentrated on the triangle system which
was specified earlier.

The Z specification language uses many symbols which cannot be input directly
into a computer, and when a Z specification is entered for analysis by the
automated testing system, the mappings shown in Table 1 are used. The Z
symbols are taken from the Z User Manual prepared by the IBM Hursley
Laboratories [3].

Name Input String Z Symbol
integers &Int Z

quotient &div 4-

&leq <=
comparison &neq #

&geq >=
and (conjunction) &and A
or (disjunction) &or v

Table 1: Mapping from Z symbols to input strings for parsing

The triangle problem may be rewritten as
Triangle ::= (TriangleO A EquiTri) v (TriangleO A IsosTri) v (TriangleO A
ScalTri) v (TriangleO A RightTri) v NumError v TriangleError

The test strategy which has been adopted for Z specifications is first to derive
tests which exercise the response of the software to invalid code. The state
space schema TriangleO defines three input variables x?, y? and z? as integers
lying in the range

0< x? <=200 0< y? <=200 0< z? <=200
For these input parameters, character and real types would be invalid. Also,
entry of zero, two and four input parameters would also be invalid.

The functional information to be tested lies in the Z specification. The second
part of the schema comprises a sequence of predicates which are either
conjoined or disjoined; the absence of either operator is an implied conjunction.
The disjunction of predicates defines different routes through the tree of
functionality. For example,

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

442 Software Quality Management

I (Predicate 1 v

| Predicate 2)

Predicate 3

defines two routes of functionality ie 1 and 3, or alternatively 2 and 3. All the
routes through the triangle problem as defined by combinations of the schemas
ScalTri, EquiTri, IsosTri and RightTri are exercised by deriving tests for them.
Furthermore, the GAs derive tests which come close to the boundary of each
functionality.

The whole system results in 13 test cases; the first seven relate to providing
invalid inputs:
case 1 Invalid { }
case 2 Invalid { 5045}
cajf J 7wwzW / 47 22 J4 4/
case 4 Invalid { a e Q)
caw? J 7»W;W f 0.2 0.79 0.7.%

6 /MvaW / 207 207 207;
7 7wW;W f 0 0 O/

Cases 8 and 9 simply provide valid input sets at the extremes of the allowed
range:
cajf 2 VaW/ 200 200200/
case 9 Valid fill}

The remaining cases generate valid data according to TriangleO, and check the
remaining schemas:
case 10 Valid { 33 31 29} ScalTri average generations needed 1
case 11 Valid { 12 12 3} IsosTri average generations needed 1
case 12 Valid { 24 24 24} EquiTri average generations needed 7
case 10 Valid f 21 20 29} RightTri average generations needed 8

In general fewer tests were needed than for the structural testing because only
the state space schema was conjoined with the function schema, whereas the
structural test always dealt with the complete software subsystem of 5
procedures. However, covering the functionality would not necessarily cover
the entire structure of the software, and this issue will be the subject of future
investigations.

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 443

6. Discussion

Functional testing is valuable because it checks the functionality which may
have been omitted from the code. Its omission cannot be recognised by
structural testing. It is also able to check for exceptional cases when these have
been recognised as a possibility and incorporated into the schemas. When these
exceptions rely on the system raising pre-defined exceptions, there are no
branch predicates in the code to alert the structural test that it should be
checked. Calculations where the maximum permitted integer is exceeded come
into this category. Explicit specifications define the structures of the software,
and therefore generate similar tests to structural testing. Implicit specifications
are quite different, and may present more problems for the functional test to
cover the software.

Structural testing is valuable because the actual code is checked in its entirety
for correctness. A functional test may fail to exercise code which should not be
there, and its presence may cause problems during operation. A combination of
functional and structural tests seems to be the safest approach.

GAs are valuable for deriving tests with complex data structures, and solving
complex functions of several inputs. They can also guide tests to the sub
domain boundary where errors in the code are more likely to be revealed.
However, they may need much computational effort, though this does depend
on the nature of the software under test. GAs have been used successfully in
deriving test from both the structure and formal specification of software, and
they merit further investigation particularly in respect of functional testing.

Future work will include the investigation of formal specifications for non-
numerical problems, and of the use of simulated annealing to complement the
use of GAs.

7. Conclusions

GAs have been used successfully to derive tests with complex data structures,
and to execute branches where the predicates are complex functions of the
inputs. GAs can also guide tests to the sub domain boundary where errors are
more likely to be revealed. One drawback is the computational effort which
may be required to derive tests to cover a large program.

The value of applying GAs to structural testing has been established by covering
all branches in a variety of procedures. Similar success has been achieved in
deriving tests from a formal Z specification for a triangle classifier. More work
is needed to confirm their usefulness to derive tests from formal Z specifications
in a wider context.

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

444 Software Quality Management

References

1. Spivey, J M, The Z Notation: a Reference manual, 2nd edition, Prentice Hall,
1992.

2 Wordsworth, J B, Software Development with Z: a practical approach to
Formal methods in Software Engineering, Addison-Wesley, 1992.

3 McMorran, M A, Nicholls, J E, Z User Manual, IBM UK Hursley Park
Laboratories Technical Report TR 12.274, 1989.

4 Holland, J, Adaptation in natural and artificial systems, University of
Michigan Press, 1975.

5 Sthamer, H-H, Jones, B F, Eyres, D E, Generating test data for Ada generic
procedures using genetic algorithms, Proc of Adaptive Computing in
Engineering Design and Control, ISBN 0 905227 33 6,University of Plymouth,
1994

6 Liepins, G E, Hilliard, U R, Genetic Algorithms: Foundations and
applications, Annals of Mathematics and Artificial Intelligence, 21, 31-57,
1989.

7 Holmes, S T, Jones, B F, Eyres, D E, An improved strategy for the automatic
generation of test data, Proc of Software Quality Management '93, 565-77,
1993.

8 Duran J W, Ntafos S C, An evaluation of random testing, IEEE Trans on
Software Engineering, 10(4),438-44, 1984.

9 Hamlet, D, Taylor, R, Partition testing does not inspire confidence, IEEE
Trans on Software Engineering, 16(12), 1402-11, 1990

10 Korel, B, Automated software test data generation, IEEE Trans on Software
Engineering, 16(8), 870-9, 1990

 Transactions on Information and Communications Technologies vol 11, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

