
The Automatic Inversion

of

Attribute Grammars

by

Daniel Yellin1 &lid En-Maria M. Muecutein2

CUCS-135-84

lComputer Science Dep&rtment
Columbia Uni-rersity

New York, New York, lOOZT

ZJBM T. J. Wat.aon Researcb Center
Yorktown Heighta, New York, 105gg

reyised Yersion: October 1 ggs

Table of Contents

1. Introduction
2. A Brief Description Of Attribute Grammars

2.1. Attribute Grammars
2.2. An Attribute Grammar Example
2.3. Attribute Grammars and Context Conditions

3. Inversion Of Attribute Grammars
3.1. Token Permuting Functions
3.2. Restricted Inverse Form
3.3. The Inversion Algorithm
3.4. Extending the Inversion Paradigm
3.5. Efficiency

4. Using Attribute Grammar Inversion To Build An Interface For SQL
4.1. Non-invertible function constructs
4.2. Ambiguity

5. Conclusion

1
2
2
4

4
6
6
7
8

11
13
13
15
17
18

LIst of Figures

Figure 1-1: Inverse attribute grammars used for two-way translations 2
Figure 2-1: An attribute grammar example 5
Figure 2-2: A typical semantic tree for the example AG 6
Figure 3-1: The inversion of P6 splits into two production~ 10
Figure 3-2: The inverse AG generated from the example AG 11
Figure 3-3: A typical semantic tree for the inverse AG 12
Figure 3-4: A semantic function using a non- token permuting Jundion 12
Figure 3-5: The inverse productions 13
Figure 1: A SQL query and its English paraphrase 14
Figure "'2: A non-invertible function construct 15
Figure "'3: Figure 4-2 changed to restricted inverse form 15
Figure 4: Another non-invertible function construct 16
Figure ",5: Figure 4-4 changed to restricted inverse form 16
Figure 6: Two unique productions inverting to identical ones 17
Figure "'7: Two productions collapsing into one 18

11

ABSTRACT

Over the last decade there has developed an acute awarene~s oC the need to introduce

abstraction and mathematical rigor into the programming process. This increased formality

allows for the automatic manipulation of software, increasing productivity and, even more

importantly, the manageability of complex systems. Along the~e lines, attribute grammars

constitute a formal mechanism (or specifying translations between languages; from a Cormal
description oC the translation a translator can be automatically constructed. In this paper

we consider taking this process one step further: given an attribute grammar specifying the

translation from language Ll to the language L2, we address the question o(whether the
inverse attribute grammar specifying the inverse translation (rom L2 to Ll can be
automatically generated. We show how to solve this problem for a restricted subset of
attribute grammars. This inversion process allows for compatible two-way translators to be

generated from a single description. To show the practical feasibility of attribute grammar

inversion, we relate our experience in inverting an

for a formal database accessing language, SQL.

paraphrase SQL database queries in English.

attribute grammar used as an interface

The attribute grammar is used to

1. lntroduetlon
This paper discusses a method to invert attribute grammars. Given an attribute grammar

(AG) defining a translationT: Ll - L2, we show how to automatically synthesize the
inverse a.ttribute grammar specifying the inverse translation 1""1: L2 - L1· To do so we

impose restrictions on the the attribute grammars we consider.

Our research has been motivated by both theoretical interest3 and practical applications.

Theoretically, this paper adds to a theory of inversion. It demonstrates, for a particular

framework based on attribute gramma.rs, how inversion of subprocesses (context-free

productions and semantic (unctions) leads to the inversion o(the entire process (the AG). It

also shows that a strong duality between syntax and semantics exists in attribute gramm:us

and that this duality can be exploited for purposes of inversion. Along practical lines,

attribute grammar inversion promises to be a powerful tool for software development.

Secause it can be accomplished automatically, it increases production efficiency and insures

the consistency of complex software.

Efficiency can be enhanced in systems where two-wa.y translations are needed. In

particular, ,if there is a need for an attribute grammar T: Ll - L2 a.nd its inverse 11: L2
_ L

1
, then by writing the attribute grammar T and automatically generating the inverse

attribute grammar 11 only half of the labor need be performed. More importantly, 11 is

guaranteed to be the actual inverse of T; r 1(T(s)) =- s for all s in the domain of T. If
rl were to be written manually and independently of T, it would be difficult to prove that

this property is preserved. Furthermore, ir at some later date T is changed or updated, 11
can be automatically generated from the updated a.ttribute grammar T. Hence c0118i8tency

between the two translators can be maintained.

Attribute grammar inversion can also be used to translate between high level programmtng

languages. For example, suppose that LA and LS are programming languages and

T:\: LA - I and TS: LS - I are attribute grammars describing the translations from A
and S into an intermediate language I. If we can generate the inverse attribute grammar

lIS then we can create the translation TAB: LA - LS by forming the composition TAB

= TIS 0 T A' (A method of composing AGs without using an intermediate representation
is discussed by Ganzinger in 16]). These ideas can be extended to a distributed system with

k processors linked together, each using its own command language. If programs need to be

shared between proce~ors, we can define & canonical form and write invertible transb.tor3
from this canonical (orm into each command language. Sy automatically generating the

inverse translators we would be able to translate a program written for one processor into

the command language o(some other processor. Furthermore, using this method one can
create n2 translators (translating from anyone of n languages into any other one) from only

n specifications, instead of n2. This is illustrated schematically in figure 1-1. Other

applications of inverting translation specificacions are discussed in [23J.

The organization of this paper is as follows: Section 2 contains a brief introduction to
a.ttribute grammar3 a.nd present3 an example gra.mmar which will be used throughout the

1

• •

roo

Figure 1-1: Inverse attribute grammars used for two-way translations

paper. In section 3 we introduce a restricted form for attribute grammars and discuss the
inversion algorithm. In section 4 we relate our experience in inverting an actual attribute
grammar. Section 5 summarizes our results and suggests area3 lor future research.

!. A Brier D~rlptlon or Attribute Gramman

In this section we provide a brief introduction to attribute grammars, present an example
attribute grammar used in the rest of the paper, and define a small extension to attribute
grammars, namely, context condition".

:.1. Attribute Grammars

Attribute grammars were first proposed by Knuth [15] a3 a way to specify the semantics
of context-free languages. The bMis of an attribute grammar is a. context-free grammar.

This describes the context-free language that is the domain of the translation, that is, those

strings on which the translation is defined. This context-free grammar is augmented with

attribute.! and "emantic function". Attributes are Msociated with the nonterminal symbols of

the grammar. We write "X.A" to denote attribute A of symbol X, and J!(X) to denote the

set of attributes Msociated with X. Semantic functions are Msociated with productions; they

describe how the values of some attributes of the production are defined in terms of the
values of other attributes of the production.

The underlying context-free grammar of a.n attribute grammar describes a language. Any
string in this language ha3 a parse tree Msociated with it by the grammar. The nodes of

this parse tree can be labelled with symbols of the grammar. Each interior node of this

tree, N, has two productions 8.5SOciated with it. The left-part production (LP) of N is the

production that applies at N deriving N's children. The right-part production (RP) of the
node N is the production that applies at the parent of N deriving N and its siblings. Leaves
of the tree don't have LP productions; the root doesn't have an RP production.

A "eT71antic tree is a parse tree in which each node contains fields that correspond to the
attributes of its labelling grammar symbol. Each of these fields is an attribute-in"tance. The

2

values of attribute-instances are specified by the semantic functions. For example, if a

production [p: Xo ::= Xl ... ~pl has a semantic function Xo·A = f(X2·B, X4.C), then for
any instance of p in any semantic tree, the attribute-instance corresponding to Xc.A will be
defined by applying the function (to the attribute-instances corresponding to X2.B and

X4·C.

Since two different productions are associated with each attribute-instance, there could be
two semantic functions that independently specify its value, one (rom the LP production and
one from the RP production. If we assume that each attribute-instance is defined by only

one semantic function. either from the LP production or from the RP production. then we

must guard against an attribute-instance not being defined at all because the LP production

assumed that the RP production would define it and vice versa. These difficulties are

avoided in attribute grammars by adopting the convention that for every attribute, X.A.

either: (1) every instance of X.A is defined by a semantic function associated with its LP
production, or (2) every instance of X.A is defined by a semantic function a.ssociated with its

RP production. Attributes whose instances are all defined in their LP production are called

"ynthe8ized attributes; attributes whose instances are all defined in their RP production are

called inherited attributes. Every attribute is either inherited or synthesized. Inherited

attributes propagate information down the tree, towards the leaves. Synthesized attributes

propagate jnformation up the tree, toward the root. The inherited attributes of a non­

terminal X are denoted by 1(X), the synthesized attributes by S(X); A(X) = 1(X) u s(X).

The start symbol has no inherited attributes. From the point of view of an individual

production the above conditions require that the semantic functions of a production MUST

define EXACTLY all the inherited attributes of the right-part symbols and all synthesized

attributes of the left-part symbol. For a given a production [p: Xc ::= Xl ... ~pJ, we

often refer to the attribute8 0/ p, A(p) = A(Xo) U ... u A(~p).

The result of the translation specified by an attribute grammar is realized as the values of

one or more (necessarily synthesized) attribute-instances of the root of the semantic tree. In

order to compute these values the other a.ttribute-insta.nces must be computed. In extreme

cases an attribute-instance can depend on itself; such a situation is called a circularity and

by definition such situations are forbidden from occuring in well-defined attribute grammars.

In general, it is an exponentially hard problem [91 to determine that an attribute grammar
is non-circular; i.e. that no semantic tree that can be generated by the attribute grammar

contains a circularly defined attribute-instance. Fortunately there are several interesting and

widely applicable sufficient conditions that can be checked in polynomial time [3. 10, 12. 141;
e.g., absolute noncircularity [141.

Many translator writing systerru have been built uSing the attribute grammar iormalism

[16, 19. 13, 4, 71. Such a system accepts an attribute grammar as input and generates a

compiler for the attribute grammar. Part of this task call.~ for generating an evaluator of

semantic trees; such an evaluator must evaluate each attribute-instance or the tree after all
attribute-instances that it depends on have already been evaluated. Many strategies for

eificient evaluation have been discussed in the literature [221 and include multi-pass [101 and

3

ordered [121 evaluation strategies.

%.%. An Attribute Grammar Example

Figure' 2-1 gives an attribute grammar which translates simple English descriptions of
mathematical expressions into post-fix Polish notation. This grammar distinguishes between
expressions involving only integer values (in which case operators of the form +. and *. are

1 1
required) and those involving a decimal point value (in which case operators of the form + r
and .. r are required). So, for example, it will translate the English phrase 'multiply 5.7 by 8'
into the post-fix Polish expression '(5.7,8,· r)' and the phrase 'add 5 to 9' into '(5,9'+i)'.

In this AG there are 8 productions and each production has associated semantic functions.

In production PI' <Numl> and <Num2> denote separate occurrences of the same
symbol, <Num>; the numeric suffixes distinguish these different occurrences. S.trans is the

distinguished attribute of the root; at the end of attribute evaluation the translation resides

in this attribute.

Figure 2-2 shows a semantic tree corresponding to the input string 'multiply 80 by 5.8'.

Each node in this tree is labelled with its associated grammar symbol and has attribute­
instances corresponding to the attributes of that gra.mmar symbol.

%.3. Attribute Gramman and Context ConditloD5

In this paper we shall consider a small extension to attribute grammars. This extension

allows for the attachment of semantic conditions to productions as illustrated in productions

PI and P2 of figure 2-1. In general we allow a production p to have a context condition of

the form:

<CONDITION: exprl AND expr2 AND ... AND exprk>

where each expri is a boolean expression involving constants and attributes of p. A condition
of the above form attached to a production is to be interpreted as saYIng that the
production-instance is valid if and only if the condition evaluates to true. If the condition
evaluates to false then the production-instance is not valid and the input violates context

sensitivities of the attribute grammar. An attribute grammar system allowing conditions on

the productions would first parse the input, build a semantic tree, and evaluate the

attribute-instances of the tree as in a regular attribute grammar system. It would then

evaluate all conditions associated with production-instances of the tree. If all evaluate to

true it would return the translation given in the distinguished attribute of the root. If any
evaluate to false, however, the translation is defined to be 'error' as the input violates
context sensitivities of the attribute grammar. 1 So, for instance, the sentence 'multiply 80

to 5.8' of our example attribute grammar would be parsed and a semantic tree built for it.
After evaluation of the attribute-instances in the tree it would be determined that a context-

llf the underlying context-free grammar of the AG is ambiguous, then the translation of a.
string is 'error' only if ~ parse for this string contains violated context conditions.

4

Conte:t Jree 8ymbol8 0/ the attribute grammar and their attribute,,:

Contex-t=rree symbols

S:
Op:
Num:
Inte,ser:
DeCImal num:
digit:

synthesized &ttributes

{ trans }

l.
tr&DS }
tr&DS, type }
tr&ns }

L tr&nll }
{ traDS 1

inherited attributes

Production8 of the attribute grammar and their 8emantic Junction,,:

PI: S ::== Op Numl by Num2. <Condition: (Op.trans == '. r')
or (Op.trans = '·i') >

S.trans == Concatenate('(', Numl.tranll, ',', Num2.trans, ',',
Op.tranll, ')');

Op.type == If (Num1.type =- rea.l) or (Num2.type I:I:::S real)
then real else in t;

P2: S ::= Op Numl to Num2. <Condition: (Op.trans = '+r')
or (Op.trans = '+j') >

S.trans == Concatenate('(', Numl.trans, ',', Num2.trans, ',',
Op.tranll, ")');

Op.type = If (Num1.type = re&l) or (Num2.type = real)
then real eIBe int;

P3: Num ::= Integer.

Num.tranll = Integer.trans;

Num.type = jnt;

P4: Num '::= Decimal num.

Num.trans = Decimal_num.trans;

Num.type = real;

pS: Op ::= add.

Op.tr&ns :=z If (Op.type real) then '+r' else '+j';

P6: Op ::== multiply.

Op.trans == If (Op.type - re&l) then

P1: Integer ::== digita.

Integer.trans I:I:::S digita.trans;

,. ,
r else ,. '. i '

PS: Decimal_num ::::::s digital '.' digita2.

Decimal_ num.traDS -- CODcatenate(digita1.traDs, '.', digita2.traDs);

Figure 2-1: All attribute grammar example

sensitive condition of P2 is violated; an instance of that production is only valid if Op.trans

equals an additive operator (i.e., '+r' or '+i') and in this C3.Se Op.trans equals • r. The idea

5

<S) 11

COp) 16 ..
I t.nt t.rua tn' trua

I •
<lllttler) IS <D.c1a~ au> 17

tru. trua

r
<diCit..) I. <d1(1t.U 110
I

I trua trua trua

I I
nlt1ply SO ~ 6 B

Figure 2-2: A typical semantic tree for the example AG

of context conditions for attribute grammars was first suggested in [20J. By putting further

restrictions on the allowable form of conditions, we can make them useful in parsing the

input ([11, 21]). In [5J it is shown how context conditions can be incorporated into the
regular sema.ntic functions of the productions.

3. Inversion or Attribute Grammars

In this section we give an algorithm to invert AGs. For example, given the AG above

describing the translation from English descriptions of mathematical expressions into post-fix

Polish notation, the inversion algorithm will produce a new inIJer8e AG describing the

translation from post-fix Polish notation into English descriptions of mathematical

expressions. In order to perform the inversion, the AG must be in a re3tricted inIJer8e form.

A formal definition of this restricted form is given in section 3.2. In essence, it restricts the

AG so tha.t each nonterminal of the grammar has a special tran! attribute, which must be

defined by a restricted functional form. For each interior node in a semantic tree, the trans

attribute at that node will compute the translation of the subtree beneath it. Although

other attributes of the AG influence the translation by passing context sensitive information

around the semantic tree, it is the tran! attribute which ultimately computes the translation.

In the next section we introduce the concept of token permuting functions, which will

subsequently be used in our definition of restricted inverse form.

3.1. Token Permuting Funetlons
A function (is a token permuting function over an alphabet .d if and only if it is of the

form: f(Y1, ... ,Yn) = concaten~te(POIYil,Pl'Yi21"'IYinIPn)' where each Yk (! $ k $ n) is a
variable taking on values in .d I each Pk (1 $ k $ n) is a constant in .d I and each Y k of
the left hand side appears once and only once as some Yit (1 $ t $ n) of the right hand

side.

The function f IS called a token permuting function as it permutes the order of its

6

a.rguments a.nd inserts constant tokens of .::l in between them. It is important to emphasize

that a token permuting function cannot delete any of its arguments; each Y k must appear

as some Y
it

and it cannot appear twice. For example, f(Yl, Y2) = concatenate('Hello', Yl,
'and', Y2) is a token permuting function. If Yl = 'Bob' and Y2 = 'Shirley' then this
function--would yield the string 'Hello Bob and Shirley'. However, the function g(Y) =­
concatenate(Y, Y, 'where are you', Y,) is not a token permuting function as it duplicates the

value o{ the string Y several times in the output string.

3.:. Restricted Invel'5e Form
An attribute grammar, without any restrictions on its semantic functions, IS

computationally equivalent to a Turing machine. As such, it is almost impossible to

formally manipulate, let alone invert. In this section we introduce re6tricted inver3e form

attribute grammars, in which some semantic functions are required to be token permuting
• •

ones. By definition, an attribute grammar T: E -.::l is in re3tricted inveru form if it

obeys the following constraints:

1. Each nonterminal X has a distinguished synthesized attribute X.trans taking on
values in .:1*. X.trans represents the translation of the substring which X derives.

2. For each production [p: Xo ::= aO Xl al Xz ... ~p anpl the semantic function
defining Xo.trans is of the form

Xo.tranll = if gl(atts1) then (1(X1.trans, X 2.trans, ••• , ~p.tran8)

elsi(g2(atts2) then (2(Xl.trans, ~.trans, .•. , ~p.trans)

.
elsi(~l(attll&-l) then (s-1(X1.tranll, ~.tranll, ••• , Xnp.tranll)

else (s(Xt.tranll, ~.tranll, ••• , x,.p.trans)

where each attsj ~ A(p) (1 ~ j ~ $01), each gj (1 ~ j ~ s-l) is a boolean
function, and each {j (1 ~ j ~ s) is a token permuting function as described
above. Note that the arguments to each fj token permuting function are exactly
the tran3 attributes of the production's right-part nonterminals.

3. The value o{ the translation is specified to be the value of the tran3 attribute of
the root (S.trans).

In this definition there IS no restrictions on the number of inherited or synthesized

attributes a nonterminal can have nor is there placed any restrictions on how they are

computed other than the trans attribute. Constraint 2, however, requires that each {j (1 ~

j ~ s) used to compute the trans attribute is a token permuting function.

Restricted inverse form attribute grammars (RIF grammars) can be viewed as restricted

AGs or as a generalized version of syntax-directed translation schema [81. Like synta.x­

directed translation schema, RIF grammars associate a special synthesized attribute (the
trans attribute), to each nonterminal. This attribute stores the translation of its subtree

7

and is defined by a token permuting function. However, a RIF grammar surpasses a

syntax-directed translation scheme in expressive power not only in that it associates context

conditio~~ to productions, but in that it allows other attributes to be associated with

nonterminals. These "other" attributes influence the translation by determining which token

permuting function is chosen to evaluate the trans attribute (they serve as arguments to the

gj boolean expressions). This allows RIF grammars to express context sensitive translations,
something syntax-directed translation schema cannot do. For example, it is easy to
construct a RIF grammar which accepts strings of the form 'ai ~ ck, and translates them
to 'OK ai bj ck, if i = j = k, and to 'NOT OK ai ~ ck, otherwise. This language

cannot be expressed by any syntax-directed translation schema, since the target language is

not context-free. In general, the translations describable by syntax-directed translation
schema. are fairly restricted (see [1, 2]), whereas RIF grammars can, at least theoretically,

describe any translation describable by an attribute grammar. The theoretical power of RIF

grammars is discussed in [5J.

3.3. The Inversion Algorithm

An attribute grammar in restricted Inverse form displays a duality between syntax and

semantics, as can be seen by considering a semantic tree of such an AG. On one hand,

each node of the tree has an associated context-free label. On the other hand, each node

can be considered labeled by its trans attribute. Inversion of the attribute grammar consists

of switching these labels. To make sure that this is possible, we had to restrict the nature

of the trans label; in restricted inverse form the trans attribute can only be defined by a.

token permuting function. The inversion process then consists of switching the labels and

undoing the permutation specified by this function. This section formally defines the

inverSIon algorithm.

• • Let T: E a be an attribute grammar in restricted inverse form. The inverse AG is

created modularly from T, production by production. Each production in T will give rise to
•

one or more productions of the inverse attribute grammar. As T translates strings of E
• *.

into strings of a , the inverse AG will translate strings of a into strings of E . However,
• it will only translate those strings of a that are in the range of T.

• Formally, let a T

tree translating a E

from T as follows:

• •
be. the range of T; i.e., a T = {p E a and tfere exis.ts a semantic

E to ,8}. Then the attribute grammar 11: a T - E is generated

1. For each token 6 of a, create a. terminal 6 in 11.

2. For each nonterminal X in T, create a nonterminal XI in 11 (we call it XI a.nd
not X to avoid confusion. We will not be very strict about this usage, however,
when our meaning is clear. For example, when we refer to a semantic function f
of T as also being a semantic function o(1 1, we mean the semantic (unction r'
which is obtained from (by substituting every occurrence of X.A in (by XI.A).

3. Let each nonterminal XI in 11 have the same set of attributes as X in T with

8

one additional attribute: Xltransinv. The attribute tran"inv will play same the
rot.- in T'1 as the attribute tran" did in T; i.e., the tran"inv attribute will take
on values in E* and represents the translation of the substring that XI derives.

4. For each production [p: Xo :::= aO Xl al X2 ... ~p anpl in T with the
distinguished semantic function

Xo.trans = ir gl (attsl) then rl(Xl.trans, ~.trans, ••• , Xnp·trans)

elsir g2(atta2) then r2(Xl.trans, ~.trans, ••• , Xnp.trans)

elsir ~l(attaa-l) then' ra-l(Xl,trans, x..!.trans, ••• , ~p.trans)

else rs(Xl.trans, ~.trans, ... , Xnp.trans)

create s productions in T'I, one corresponding to each of the token permuting

functions fj. In particular, for ea.ch fj' 1 ~ j ~ s, where fj(XI·trans, ... ,
~ .trans) = concatenate(.80' XiI.trans, .81' Xi2·trans, ... , Xi~~·trans, .8np) create
an Pinverse production [plr XIO ::= .80 XIi! .81 XIi2 ... XIin .8n J with an
attached context condition <COND: (NOT g~(attsl)) Al"lD (Not g2(atts2»
AND ... AND (NOT gj_l{attsj_l)) AND gj(attsj»' Let this production have all
the semantic functions that p has except that in place of the semantic function
defining Xo.trans as given above, it has the semantic function XIO.trans =

{·(XI1.trans, ... , XInp.trans). It also has one additional semantic function defining
;SO.transinv given by XIO.transinv = concatenate{ aO' XI!.transinv, aI'

XI2·transinv, ... , XInp·transinv, a np)'

5. The value of the translation is specified to be the value of the tra""inv attribute

of the root (SI.transinv).

The essence of the inversion algorithm lies in point 4. To make this point more concrete,

figure 3-1 shows the inve~ion of production Pe of our example a.ttribute grammar of figure

2-1. This production is "plit into two productions in the inverse attribute grammar.
Whereas the production Pe of T specified that Op derived 'multiplY' and had a translation

of either '*1" or '*i' the inve~e productions plea and pleb specify that Opl derives either

,* 1" or '*i' and in either case has a translation of 'multiply'. Opl's derivation of '* r' or '·i'
is specified to be valid only if certain context conditions are satisfied.

Figure 3-2 presents the inverse of the remaining productions of the attribute grammar of

figure 2-1. This specification would be produced automatically by the inversion a.lgorithm.

Due to space considerations, the inverse of productions P7 and Pg are not presented. Note

that productions pIl and pl2' while having difrerent semantics, have the same context-free
portion; the underlying context-free gramma.r of the inve~e AG is ambiguous. In !!ection
4.2 we show how to remove this ambiguity from the inverse specification.

t)

"In addition, if p ha.d an attached condition: <Condition: E>, then the condition E IS
also attached to pI..

J

9

pI • a-pI •• - • Ba· •• - r· <Condition: OpI.type - real>

OpI.tran8 = ,. r';

OpI.traD8inv = 'multiply';

<Condition: NOT(OpI.type - real»

OpI.trans = '·i';

OpI.tran8inv = 'multiply';

Figure 3-1: The inversion of P6 splits into two productions

If an attribute grammar is in restricted inverse form, then there exists a duality between
the context-free portion of the production (the syntax of the production) and the semantic

function defining the Xo.trans attribute (the semantics of the production). While the

context-free portion defines the strings Xo can legally derive, the semantic function

computing Xo.trans defines the translation of such strings. The inversion process exploits
this duality by switching the role of syntax and semantics.

All the attributes of a nonterminal in the original attribute grammar remain to the

corresponding nonterminal of the inverse AG. They will be defined properly as all the

semantic functions of a production remain in the inverse production as well. Even the trans

attribute remains in the inverse attribute grammar because it is no worse than any other

attribute; it may be directly or indirectly used in some condition gj(attsj) thereby influencing
the transla~ion.

The inverse grammar will have context conditions attached to the productions (see section

2.3) even if the original attribute grammar did not have any attached conditions. These

conditions enforce context-sensitivities in the input. For example, according to the grammar

T, the inverse grammar 11 should not accept '(80,5.8, *i)' as well-formed input; T would not

translate any input string to '(80,5.8, *y. The context conditions placed on 11 will

accomplish this. Without the conditions '(80,5.8, *i)' would be accepted and translated by

11 to either 'Multiply 80 by 5.8' or 'Multiply 80 to 5.8'. The attached context conditions

can also be useful in parsing the input using the techniques of attributed par!ing [21, llJ.

Using the inversion method outlined in this section, it can be shown that if there exists a
semantic tree in T translating s to m then there will exist a semantic tree in 11

translating m to s. However, if T is many-to-one (it translates two unique strings sl and s2

into the same output m), then 11 will specify two ways to pa.rse m, one pa.r3e tree

producing the output 51 and the other producing the output 52' Hence if T is many-to-one,

11 will not only be ambiguous, it will not be a function. We will return to the problem

of ambiguity in section 4.2. To demonstrate the relationship between trees in the original

attribute grammar and trees in the generated inverse attribute grammar, figure 3-3 gives a

semantic tree for the string '(80, 5.8, * r)" based on the inverse attribute grammar of figure

3-2. Compare this semantic tree to the semantic tree of figure 2-2.

10

pll: 51 ::= (Numll, Numl2 , OpI) • < Condition: (Opl.trans = '.,.Ji:')
or (OpI.trans = '·i J >

51. trans = Concatenate('(" NumIl.tranl!! 'i', NumI2.trans, ',',
up .trans, ')');

OpI.type = Ir (NumIl.ty{>e = real) or (NumI2.type = real)
then real else lOt;

51.~ransinv = Concatenate(OpI.transinv, Numll.transinv, 'by'!
Num 2.transinv};

p12: 51 ::= (NumIl, NumI2 , Opl). <Condition: (OpI.trans = '+"Ii')
or (OpI.trans = '+i J >

51.trans = Concatenate('(', NumIl.tranl!! 'f', NumI2.trans,',',
up .trans, ')');

OpI.type = Ir (Numll.ty{>e = real) or (NumI2.type = real)
then real else lOt;

5I.transinv = Concatenate(OpI.transinv, NumI1.transinv, 'to',
NumI2.transinv);

pI3: NumI ::~ IntegerI.

NumI.trans = IntegerI.trans;

NumI.type = int;

NumI.transinv = IntegerI.transinv;

pI4: NumI ::= Decimal_numI.

NumI.translation = Decimal_numI.translation;

Numl.type :::::2 real;

NumI.transinv = Decimal_ numI.transinv;

pISa: Opl ::= +r' < Condition: OpI.type = real>

Opl.trans = '+ '. r '

OpI.transinv = 'add';

<Condition: NOT(OpI.type - real»

Opl.trans = '+j';

OpI.transinv = 'add';
Figure 3-2: The mverse AG generated from the example AG

3.4. ExtendIng the Invenion ParadIgm

In the last section we showed how any AG in rl!8tricted inVI!T81! form can be inverted.
However, it i5 not alwaY5 apparent how to expre~ tran5lation5 in thi5 re5tricted form; many
attribute gramma.rs make use of constrt:cts which violate these constraints. In section
4.1 we show how we were able to transform an attribute grammar which w~ not in
restricted inverse form into one which was. However, this may not alwaY5 be possible. In
this section we suggest another alternative: extending RIF gramma.rs to express a wider

11

t.n. I

<IatlK1rI)
I

I trw I

Ie
tr ... ln I

•
n

tr&al I tru.lay I

I •
10

<SI> 11

(111812)

I tn. I

• <D.ciul_auI)I ~
, . I

I trLll I tr ... l~Y I

(eliCit. H)

t.r&al I trauuY I tr&al
I · ~--~I--------~
5 •

Figure 3-3: A typical semantic tree for the Inverse AG

variety of translations yet still retain invertibility.

12

t.nuin I

• r

In our current work, using RIF grammar.! to expre~ translations between programming

languages, we have found that it often requires more than a simple token permuting
function to define the translation of a subtree. For example, consider the production of

figure 3-4. In this C3.5e the attribute if_stmt.trans is not defined by a token permuting
function, a.nd hence the production is not invertible by the inversion algorithm of the l3.5t
section. In this example, genLab is a function from the domain of integ~6 to the domain of
label.!, a.nd genLab(i) =- 'Li', where i is an integer and 'Li' is a string.

p: ir_Btmt ::- IF expression THEN stmt.

ir _lItmt.tranl =- Concat[expreuion.trans,

'F JP', geoLab(ir _Itmt.laboum),

Itmt.tranl,

'LAB', genLab(ir _Itmt.labnum)];

Fisure 3-4: A semantic function using a non- token permuting function

The problem then is how the inversion algorithm can be expanded to deal with such
constructs. Intuitively, the synt&X 01 the inverse production should have the following form:
[PI: if _ stmd ::- expre~ionI F JP X stmtI LAB X] where X represents a label. Assuming

that we provide the inversion algorithm with knowledge a.bout the primitive types (domains)
employed by the semantic functions of the RIF grammar, there is no rea.son why it cannot
also deduce this synt&x for the inverse production. In particular, to invert this production

the inversion algorithm would need to know

1. the syntax of a. label and that

12

2. genLab is a function from integers to label.,.

Using this information, it could invert the production p, producing the inverse productions
pI and pI' given in figure 3-4. In this figure label is a nonterminal deriving a. label. This

nonterminal has the distinguished attribute, label.value, which gives the string derived by this

nonterminal (e.g., if label derives 'Li', then the value of label.value is 'Li'). The condition

attached to production pI enforces the relationship that the label derived from this
nonterminal (given In label.value) must equal genLab(if _stmtl.labnum), as required by the

original production p.

pI: ir ~-81mtl ::= expresaionI F JP labell stmtI LAB label2.

<Condition: Oabel1.value = genLabor _stmtI.labnum} AND
(1abe12.value = genLab(ir _stmtI.labnumJ>

ir _stmtl.transinv =

pI': label :: = Li.

Concat['IF', expresaionI.transinv , 'THEN',
stmtl.trao8inv];

label.value = Concat['L', Ii'];
Figure 3-5: The inverse productions

The technique illustrated by this example can be formalized and generalized, allowing RIF

grammars to express a greater variety of constructs that arise naturally in AGs. Yet, this

is only one out of several techniques tha.t can be used to extend RIF grammars and the
inversion algorithm. Part of our current work is aimed at finding a general version of RIF

grammars and the inversion algorithm that will enable RIF gra.mmars to express, without

too much difficulty, most translations that arise in practice.

3.5. Emclenc),

Although the inverted attribute grammar i 1 generated by inversion algorithm is

guaranteed to be the inverse of the original attribute grammar T, it may be a. very

inefficient version of it. We can 'clean up' the attribute grammar i 1 by removing all

u.,ele.,8 attributes- those which cannot possibly contribute to the translation. A prime

suspect as. a useless attribute is the trans a.ttribute; although it is essential in the original

attribute grammar T, it probably (but not necessarily) contains unneeded information in the

inverse attribute grammar rl. If we look at figure 3-2, we see that the attributes Sl.trans,

NumI.trans, Decimal_numl.trans and Integerl.trans are useless and can be removed but that

Opl.trans does contribute to the translation a.nd cannot be removed. This 'cleaning up' of

the attribute grammar can also be done automatically.

~. U!lng Attrlbuu Grammal' inversIon To Build An Interraee For SQL

Attribute grammar technology is used in the PERFORM (Paraphrase and ERror message
for FOR~fal languages) system, developed at the IBM Thom3.S J. Watson Research Center

[171. The PERFORM system is currently implemented to generate paraphrases and error

13

messages for a relational database querying language (SQL). It serves SQL users as a
feedback device to make sure their queries are semantically correct from their point of view
and from the system's point of view. It is an aid for the novice user in learning SQL and
serves the occasional user as a documenta.tion device for SQL queries. The paraphrases are
designed in one to one correspondence to SQL expressions, preserving the SQL structure yet
obeying natural language rules. The number of different natural language constructions
employed is relatively small (essentially the same number a,., there are SQL constructions),
and so is the basic vocabulary. Figure 4-1 gives an example of a SQL query and the
English paraphrase generated by the PERFORM system.

SELECT DMSION, IDZ LOCATION, NAME FROM STAFF
WHERE DMSION = 'EASTERN" AND JOB = "CLERK";

What is the division, id number, city and lut name ror e.!'!.ployees in
division "EASTERN', and with the job description "CLERK".

Figure 4-1: A SQL query and its English paraphrase

With PERFORM, users are still expected to construct their queries in SQL. To make the
query construction itself easier for users, a guided natural language interface has been
designed. It displays template queries in natural language on the screen with windows for
the selection of specific items. The natural language constructs are based on the same
language as PERFORM, consistent with the lexicon and syntax. The interface frees users
from formal language requirements such as variable binding, or in the case of SQL, joining
of tables. To assure the correct translation of the natural language input back into SQL,

an "inverse" attribute grammar is needed [181.

To examine the feasibility of attribute grammar inversion, we decided to take a subset of
the PERFORM attribute grammar (translating a subset of all SQL queries into an English
paraphrase) and to apply the techniques given above to invert this subset attribute
grammar. We performed this process by hand, but were faithful to the principles given
above. The inverted attribute grammar translates simple English queries (paraphrases) into
SQL queries and will become part of a larger system built around the PERFORM attribute
grammar.

The original PERFORM attribute gramma.r was written without any thought of inversion
and without any consideration to the principles of sections 3.2 a.nd 3.3. For this reason we
encountered several difficulties when we attempted the inversion process. Some of these
difficulties were overcome by making small changes to the origina.l attribute grammar.
Other problems proved more stubborn and forced us to develop richer techniques of
inversion to deal with specialized cases.

14

4.1. Non-Invertible functIon constructs

Our first job in inverting the PERFORM AG was to put it into restricted inverse form.

For most productions of the AG this was quite easy, requiring only small syntactic changes

to the function computing the trans attribute. Sometimes, however, the function computing

the trans attribute was semantically very different than a token permuting function and

stronger techniques were required. An example of this sort of production is given in figure

4-2.

p: EXPR ::= FIELD NAME.

EXPR.trans = if (EXPR • .Q!ural = true)
then make_plural(FIELD _NAME.trans) else FIELD _NAME.tr&ns;

q: FIELD NAME ::= location.

FIELD _NAME.trans = 'city';

Figure 4-2: A non-invertible function construct

In this example EXPR derives the nonterminal FIELD NAME. FIELD NAME in turn

can derive several terminal strings (SQL field names). EXPR.trans is set to the value of

FIELD _ N~\fE.trans with one qualification: if it has been determined elsewhere that this

value, a noun which is the English equivalent of the SqL field name, is to be made plural,

then first a function make _ plural is called which finds the plural form of the noun. This

function is not a token permuting function and cannot be inverted according to the

paradigm of section 3.3. Conceptually, production p and productions of type q should invert

to a set of productions {Pl,P{P2'P2', ... } where Pi is of the form [Pi: EXPR ::=

fname_singulard and [pi': EXPR ::= fname_plurali], where fname_singulari and

fname _ plurali are singular and plural terminal strings representing English field names.

Besides many technical difficulties in deriving such an inverse set of productions, to do so

would require an amount of semantic knowledge concerning the function make _ plural which

is beyond the scope of our paradigm. Instead we chose to rewrite the attribute grammar as

in figure 4-3.

p: EXPR ::= FIELD NAME.

FIELD _NAME.plural ... EXPR.plural;

EXPR.trans = FIELD _NAME.trans;

q: FIELD NAME ::= location. ,-

FIELD NAME.trans = if FIELD _NAME.plural then 'cities' else 'city';

Figure 4-3: Figure 4-2 changed to restricted inverse form

By adding the attribute FIELD _ NAME.plural we transmit the information a.s to whether

the noun should be plural or singular further down the tree to the point where the

trans13tion for the field name is generated. We then explicitly choose either the plural or

singular form ba.sed upon this information. The rewritten attribute grammar is equivalent

15

\..

to the initial one and it is in restricted Inverse form. It is less efficient since we had to

make explicit the generation of different noun forms instead of performing this act in an

efficient semantic function. Yet perhaps for thi5 very reason the attribute grammar also
becomes easier to read and understand.

In a similar fashion we rewrote the attribute grammar to accommodate another non­
invertible function construct given in 4-4.

r: PRED ::= EXPRI COMP _OP EXPR2•

PRED.trans = if ~(•••)
then concatenate EXPR1.trans, head(COMP OP.trans), EXPl!2:..trans)
else concatenate(XPR1.trans, head(tail(COMP _OP.trans», EXPR2.trans);

8: COMP OP ::= <.
COMP OP.trans = {'less than', 'is less then'};

Figure 4-4: Another non-invertible function construct

r: PRED ::= EXPRI COMP _ OP EXPR2.

COMP OP.valuel = g(•••);

PRED.trans = concatenate(EXPR1.trans, COMP _OP.trans, EXPR2.trans);

8: COMP OP ::= <.
COMP OP.trans = if COMP OP.valuel then 'less than'

else 'is less then';

Figure 4-5: Figure 4-4 changed to restricted inverse form

In production s of this figure COMP _ OP.trans was set equal to two possible values. The

correct one Wa5 chosen higher up in the tree (at production r) depending on information

availa.ble there. Once again the function defining PRED.trans is not in restricted inverse

form due to the functions "head" (first element of list) and "tail" (all but the first element

of list). We got around thi5 problem by introducing a new a.ttribute COMP _ OP.valuel as

given in figure 4-5. With these changes the productions were in restricted inverse form and

the attribute grammar computed the same translation. Once again a little extra expense

was entailed (introduction of the additional attribute COMP _ OP.valuel) but the attribute

grammar became invertible. The attribute grammar also became cleaner in that we no

longer assign two possible translations to a 5ingle node passing these values up the tree until

there is enough information present to choose between them but we instead passed enough

information down the tree to correctly choose the proper value initially.

Although several other problems were encountered, the examples presented above should

suffice to give a flavour of the method of resolving these difficulties. In general we found

that with a little effort most non-invertible construct5 could be rewritten into an invertible

format. Some of our solutions could be stated in more general terms and brought into the

16

paradigm of automatic inversion (such as the solution to the "head" and "tail" Cunctions).

A practical system might also employ special techniques to invert non-invertible Cunction

constructs which occur frequently in attribute grammars (such as the make _ plural semantic

function). To do so, more data needs to be collected concerning typical attribute grammars

and the type of semantic (unctions they use.

4.:. Ambiguity

One other problem which we encountered in our inversion of the PERFORM subset

deserves mention. In Figure 4-8, although Pa and Pb are unique context-Cree productions.

pIa and pIb are the same context-free productions but with different semantics. This is due

to the fact that the original "grammar allows two pseudonyms (prodno and prodnum) to

express the same meaning ('product number'). It results in an ambiguous grammar since we

do not know which production applies on the input 'product number'. Fortunately this can

be reso-'.'~.ed by collap.,ing the two productions into a single production p1ab. In this

production, FIELD _ NA1iE derives the terminal 'prod no' and is assigned the translation

{'prodno', 'product number'}, meaning that either translation is acceptable.

Pal FIELD NAME ::= prodno.
FIELD _""N.AME.trans = 'product number';

Pb: FIELD NAME ::= prodnum.
FIELD _""N.AME.trans = 'product number';

pIa: FIELD NAMEI ::= product number.
FIELD _"NAMEI.transinv = 'prodno';

pIb: FIELD NAMEI ::= product number.
FIELD _N'AMEI.transinv = 'prodnum';

pIah.= FIELD N.AMEI ::= product number.
F'IELD_~I.transinv = {'prodno', 'prodnum'};

Figure "6: Two unique productions inverting to identical ones

This technique of collapsing multiple productions into a single one can be more involved

then demonstrated above if the semantic Cunctions are more complicated or if there are

context conditions on the productions. For example, consider production pIland pI2 of

figure 3-2. Here, once again, the context-free portion oC the productions are the same but

the semantics are different. In this case, the productions also have different conditions

attached. Once again we can collapse these productions into a unique production, p112'

given in figure 4-1. Notice how the conditions attached to the productions get introduced

into the semantic function defining Sl.transinv. Using this single production instead of the

two prodlli:tions pIt a.nd pI2, the inverse RIF gramm3.r no longer has an ambiguous

underlying context-free grammar.

In the C3Ses given above we were able to solve the ambiguity of the inverse attribute

grammar by collapsing several productions into one. Unfortunately, oCten the ambiguity IS

spread out over several productions and can be hard to detect a.nd remove. In general. iC

17

pi : 51 ::= (Numll, Numl2 Opl).
12< Condition: (Opl.trans = ,. r\l or (Opl.trans = '·i') or

(Opl.trans = '-f r ') or (OpI.trans = 'Ti') >
51.trans = Concatenate('(', NumIl.tran'!.t 'f', NumI2.trans,

up .trans, ')');

, , , ,

Opl.type = Ir (Numll.type = real) or (NumI2.type = real)
then real else ant;

51.transinv = it (Opl.trans = ,. r') or (OpI.trans = '·i')

then Concatenate(OpI.transinv, Numll.transinv, 'by', NumI2.transinv}

else Concatenate(Opl.transinv, NumIl.transinv, 'to', NumI2.transinv);
Figure 4-1: Two productions collapsing into one

the original translation is many-to-one, the inverse grammar will be one-to-many. This
means that, if in the original attribute grammar two unique inputs produce the same output
m, then in the inverse attribute grammar the input m will have two unique parse trees each

produci.~[a different output. The problem is which one should be selected? We have not
yet been able to solve this problem to our satisfaction. One solution is to choose during

run-time one of the parse trees. This choice could be based on some notion of a "best"
translation or could be made arbitrarily. A better but much more difficult solution is to
statically detect and remove the ambiguity from the inverse grammar.

s. Conelu!lon
This paper has introduced the technique of attribute grammar inversion. Given an

attribute grammar in restricted inverse form, describing a translation T: Ll - L2, the
inversion algorithm presented in this paper will automatically synthesize the inverse attribute

grammar 11: L2 - Ll .

The inversion process is highly modular; each production of the original attribute grammar

gives rise to one or more productions in the inverse attribute grammar. Even if one
production is not in restricted inverse form and is not invertible, the rest of the productions
of the attribute grammar may still be invertible. And even within a non-invertible
production, the construct causing the problem can be easily identified. An interactive
inversion system could take advantage of this fact by automatically inverting as much of the
attribute grammar as it can and then prompting the user for help where it encounters non­
invertible constructs.

In this paper we also related our experience in inverting a subset of the PERFORM

attribute gra.mmar. This experiment was very successful. It proved that automatic
inversion of attribute grammars is feasible and useful. It required surprisingly little effort;
we believe' tha.t manual generation of the inverse attribute grammar PERFORM- 1 from
scratch would have required significantly more resources besides the fact that it would
proba.bly not be the true inverse of PERFORM. Our experience with PERFORM also
indicates that even without a completely automated system for inversion, the principles of

18

section 3.3 provide useful guidelines on how to generate an Inverse attribute grammar. In

the worse case, it will provide users with a rough draft of the inverse attribute grammar
which can then be further refined.

Our (uture research is aimed at building an automated system for translating between
programming languages, based upon the idea o(AG inversion, as outlined in section 1. The

concepts introduced in this paper and the experience gained (rom our inversion of the
PERFORM AG makes us optimistic on the SUccess of this task.

ACKNOWLEDGEAfENI'

We would like to thank Rodney Farrow ror his untIring support in discussing all aspects
of attribute gramm~ with us. 'While his contributions are many, all errors are ours.

19

Rererene~

[I] A. V. Aho and J. D. Ullman.
Syntax Directed Translations and the Pushdown Assembler.
Journal 0/ Computer and Sy~tem Science~ 3(1):31-58, February, 1989.

[2] A. V. Aho and J. D. Ullman.
Properties of Syntax Directed Translations.
Journal 0/ Computer and S1I8tem Scimce8 3(3):319-334, August, 1989.

[3] G.V. Bachmann.
Semantic evaluation from left to right.
Communication8 0/ the ACM 19, 1978.
pp. 55-82.

[4] Rodney Farrow.
LINGUIST-S8 Yet another translator writing system based on attribute grammars.
In Proceeding8 0/ the SIGPLAN Sf! Symp08ium on Compiler Con8truction. ACM, June,

19S2.

[5] Rodney Farrow and Daniel Yellin.
Generating Bi-Directional Tran8lator8 from RIF Grammar8.

Technical Report, Department of Computer Science, Columbia University, New York,
New York lOO21,August, 19S5.

[8] Harald Ganzinger and Robert Giegerich.
Attribute Coupled Grammars.
In Proceeding8 0/ the SIGPLAN 'S-I Symp08ium on Compiler Con~truction. ACM-SIGPLAN,

June, 1984.
Published as Volume 19, Number 8, of SIGPLAN Notice8.

[71 H. Ganzinger, R. Giegerich, U. Moncke and R. Wilhelm.
A Truly Generative Semantics-Directed Compiler Generator.
In Proceeding8 0/ the SIGPLAN Symp08ium on compiler con8truction. ACM, June, 1982.

lSI E. Irons.
A Syntax Directed Compiler for ALGOL-50.
CACM 4:51-55, 1981.

[9] M. Jazayeri, W.F. Ogden, and W.C. Rounds.
The intrinsically exponential complexity of the circularity problem for attribute

gramma.~.

Communication8 0/ the ACM IS, 1975.

[10] M. Jazayeri and K.G. Walter.
AI te mating seman tic evaluator.
In Proceeding~ 0/ ACM 1{}75 Annual Conference. ACM, 1915.

20

[11] Neil D. Jones and C. Micha.el Madsen.
Attribute-Influenced LR Parsing.
In Lecture Note4 in Computer Science 9-1, pages 393-407. Springer-Verlag, Berlin­

Heidelberg-New York, 1980.

[12] U. Kastens.
Ordered attribute grammars.
Acta InJormatica 13:229-256, 1980.

[13J Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.
GAG:A Practical Compiler Generator.
In Lecture Notea in Computer Science 1-11,. Spring-Verlag, Berlin-Heidelberg-New York,

1982.

[14] K. Kennedy and S. K. Warren.
Automatic generation of efficient eva.luators for attribute grammar.!.
In ConJerence Record oj the Third ACAf 8!1Tr1p08ium on Principle3 oj Programming lAnguage3.

ACM, 1976.

[15] D. E. Knuth.
Semantics of context-free la.nguages.
Alathematical SY8tem3Thecry 2:127-145, 1968.
correction in volume 5, number 1.

[16] B. Lorho.
Semantic attribute processing in the system DELTA.
In A. Ershov and C.H.A. Koster (editor), Method3 oj Algorithmic lAnguage

Implementation. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[17J Eva-Maria M. Mueckstein.
q-TRANS: Query Translation Into English.
In P.-oceedinga oj the Eight International Joint ConJerence on ArliJicialIntelligence, pages

660-662. IJCAI-83, August, 1983.

[lSJ Eva-Maria M. Mueckstein.
Controlled Natural Language Interraces: The Best of Three Worlds.
In Proceedinga oj the ACM Computer Science Conference 1985. ACM, March, 19S5.

[19J Kari-Jouko Raiha, M. Saarinen, E. Soisalon-Soininen and M. Tienari.
The Compiler Writing SY8tem HLP (Hel8inki Language Proce380rj.

Technical Report. A-1978-2, Dept. of Computer Science, Univ. of Helsinki, 1978.

[20] David A. Watt and Ole Lehrmann ~hdsen.
Extended Attribute Grammars.
The Computer Journal 25(2):142-153, 1983.

21

[21] David A. Watt.
Rule splitting and attribute-directed parsmg.
In Lecture Note3 in Computer Science g4, pages 363 - 392. Springer-Verlag, Berlin­

Heidelberg-New York, 1980.

[22J Daniel M. Yellin.
A Survey of Tree-Walk Evaluation Strategiu for Attribute Grammar!.

Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, September, 1984.

[23} Daniel M. Yellin.
The!i! Propo!al: Rutricted Inver!e Form Grammar! and Bi-Directional Tran!lator!.

Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, June, 1985.

