The Automatic Inversion
of
Attribute Grammars
by

Daniel Yellin! and Evs-Maris M. Mueckstein?

CUCS-135-84

IComputer Science Department
Columbia University
New York, New York, 10027

2IBM T. J. Watson Research Center
Yorktown Heights, New York, 10598

revised version: October 1085

—

S

(54

Table of Contents

. Introduction
. A Brief Description Of Attribute Grammars

2.1. Attribute Grammars

2.2, An Attribute Grammar Example

2.3. Attribute Grammars and Context Conditions
. Inversion Of Attribute Grammars

3.1. Token Permuting Functions

3.2. Restricted Inverse Form

3.3. The Inversion Algorithm

3.4. Extending the Inversion Paradigm

3.5. Efficiency

. Using Attribute Grammar Inversion To Build An Interface For SQL

4.1. Non-invertible function constructs
4.2. Ambiguity

. Conclusion

-1 OO OB ot D

e e
o0 =~ v LW W —

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

- ~
Figure

1-1:
2-1:
2-2:
3-1:
3-2:
3-3:
3-4:
3-5:
4-1:
4-2:
4-3:
4-4:
4-5:
4-8:
4-7:

List of Figures
Inverse attribute grammars used for two-way translations
An attribute grammar example
A typical semantic tree for the example AG
The inversion of pg splits into two productions
The inverse AG generated from the example AG
A typical semantic tree for the inverse AG
A semantic function using a non- tokenm permuting function
The inverse productions
A SQL query and its English paraphrase
A pon-invertible function comstruct
Figure 4-2 changed to restricted inverse form
Another non-invertible function construct
Figure 4-4 changed to restricted inverse form
Two unique productions inverting to identical ones
Two productions collapsing into one

(o 7L -]

10

12
12
13
14
15
15
18
16
17
18

ABSTRACT

Over the last decade there has developed an acute awareness of the need to introduce
abstraction and mathematical rigor into the programming process. This increased formality
allows for the automatic manipulation of software, increasing productivity and, even more
importantly, the manageability of complex systems. Along these lines, attribute grammars
constitute a formal mechanism for specilying translations between languages; from a formal
description of the translation a translator can be automatically constructed. In this paper
we consider taking this process one step further: given an attribute grammar specifying the
translation from language L, to the language Ly, we address the question of whether the
inverse attribute grammar specifying the inverse translation f{rom Ly to Ly can be
automatically generated. We show how to solve this problem for a restricted subset of
attribute grammars. This inversion process allows for compatible two-way translators to be
generated from a single description. To show the practical feasibility of attribute grammar
inversion, we relate our experience in inverting an attribute grammar used as an interface
for a formal database accessing language, SQL. The attribute grammar is used to
paraphrase SQL database queries in English.

1. Introduction
This paper discusses a method to invert attribute grammars. Given an attribute grammar

(AG) defining a translation ‘T: Ly — Lo, we show how to automatically synthesize the
inverse attribute grammar specifying the inverse translation T1: Ly — L;- To do so we
impose restrictions on the the attribute grammars we consider.

Our research has been motivated by both theoretical interests and practical applications.
Theoretically, this paper adds to a theory of inversion. It demonstrates, for a particular
framework based on attribute grammars, how inversion of subprocesses (context-free
productions and semantic functions) leads to the inversion of the entire process (the AG). It
also shows that a strong duality between syntax and semantics exists in attribute grammars
and that this duality can be exploited for purposes of inversion. Along practical lines,
attribute grammar inversion promises to be a powerful tool for software development.
Because it can be accomplished automatically, it increases production efficiency and insures
the consistency of complex software.

Efficiency can be enhanced in systems where two-way translations are needed. In
particular, “if there is a need for an attribute grammar T: L; — Lo and its inverse T°1: Ly
— Lj, then by writing the attribute grammar T and automatically generating the inverse
attribute grammar T! only half of the labor need be performed. More importantly, T! s
guaranteed to be the actual inverse of T; T'l(T(s)) == s for all s in the domain of T. If
T1 were to be written manually and independently of T, it would be difficult to prove that
this property is preserved. Furthermore, if at some later date T is changed or updated, T!
can be automatically generated from the updated attribute grammar T. Hence consistency
between the two translators can be maintained.

Attribute grammar inversion can also be used to translate between high level programming
languages. For example, suppose that L, and Lp are programming languages and
Tyt Ly — I and Tg: Lg — [are attribute grammars describing the transiations from A
and B into an intermediate language I. If we can generate the inverse attribute grammar
T'IB then we can create the translation Tpp: Ly — Lp by forming the composition Tap
= T'IB o Ty (A method of composing AGs without using an intermediate representation
is discussed by Ganzinger in [8]). These ideas can be extended to a distributed system with
k processors linked together, each using its own command language. If programs need to be
shared between processors, we can define a canonical form and write invertible translators
from this canonical form into each command language. By automatically generating the
inverse translators we would be able to translate a program written for one processor into
the command language of some other processor. Furthermore, using this method one can
create n® translators (translating from any one of n languages into any other one) from only
n specifications, instead of n2. This is illustrated schematically in figure 1-1. Other
applications of inverting translation specifications are discussed in [23].

The organization of this paper is as follows: Section 2 contains a briel introduction to
attribute grammars and presents an example grammar which will be used throughout the

s

| lazg lang |
1 3 | 41

———— o——
Figure 1-1: Inverse attribute grammars used for two-way translations

paper. In section 3 we introduce a restricted form for attribute grammars and discuss the
inversion algorithm. In section 4 we relate our experience in inverting an actual attribute
grammar. Section 5 summarizes our results and suggests areas for future research.

2. A Brlef Description Of Attribute Grammars

In this section we provide a brief introduction to attribute grammars, present an example
attribute grammar used in the rest of the paper, and define a small extension to attribute
grammars, namely, contezt conditiona.

2.1. Attribute Grammars

Attribute grammars were first proposed by Knuth [15] as a way to specify the semantics
of context-free languages. The basis of an attribute grammar is a context-free grammar.
This describes the context-free language that is the domain of the translation, that is, those
strings on which the translation is defined. This context-free grammar is augmented with
attributes and semantic functions. Attributes are associated with the nonterminal symbols of
the grammar. We write “X.A” to denote attribute A of symbol X, and A(X) to denote the
set of attributes associated with X. Semantic functions are associated with productions; they
describe how the values of some attributes of the production are defined in terms of the
values of other attributes of the production.

The underlying context-free grammar of an attribute grammar describes a language. Any
string in this language has a parse tree associated with it by the grammar. The nodes of
this parse tree can be labelled with symbols of the grammar. Each interior node of this
tree, N, has two productions associated with it. The left-part production (LP) of N is the
production that applies at N deriving N’s children. The right-part production (RP) of the
node N is the production that applies at the parent of N deriving N and its siblings. Leaves
of the tree don’t have LP productions; the root doesn’t have an RP production.

A semantic tree is a parse tree in which each node contains fields that correspond to the
attributes of its labelling grammar symbol. Each of these fields is an attribute-instance. The

o

values of attribute-instances are specified by the semantic functions. For example, if a
production [p: Xy = X; ™ an] has a semantic function X5.A = {(X4.B, X,.C), then for
any instance of p in any semantic tree, the attribute-instance corresponding to Xq.A will be
defined by applying the function [to the attribute-instances corresponding to X,.B and
X,.C.

Since two different productions are associated with each attribute-instance, there could be
two semantic functions that independently specify its value, one from the LP production and
one from the RP production. If we assume that each attribute-instance is defined by only
one semantic function, either from the LP production or from the RP production, then we
must guard against an attribute-instance not being defined at all because the LP production
assumed that the RP productioh would define it and vice versa. These difficulties are
avoided in attribute grammars by adopting the convention that for every attribute, X.A,
either: (1) every instance of X.A is defined by a semantic function associated with its LP
production, or (2) every instance of X.A is defined by a semantic function associated with its
RP production. Attributes whose instances are all defined in their LP production are called
synthesized attributes; attributes whose instances are all defined in their RP production are
called inherited attributes. Every attribute is either inherited or synthesized. Inherited
attributes propagate information down the tree, towards the leaves, Synthesized attributes
propagate Jjnformation up the tree, toward the root. The inherited attributes of a non-
terminal X are denoted by IX), the synthesized attributes by §(X); A(X) = 1X) u AX).
The start symbol has no inherited attributes. From the point of view of an individual
production the above conditions require that the semantic functions of a production MUST
define EXACTLY all the inherited attributes of the right-part symbols and all synthesized
attributes of the left-part symbol. For a given a production [p: Xg 1= X; an], we
often refer to the attributes of p, A(p) = A(Xy) U...U A(an).

The result of the translation specified by an attribute grammar is realized as the values of
one or more (necessarily synthesized) attribute-instances of the root of the semantic tree. In
order to compute these values the other attribute-instances must be computed. In extreme
cases an attribute-instance can depend on itself; such a situation is called a circularity and
by definition such situations are forbidden from occuring in well-defined attribute grammars.
In general, it is an exponentially hard problem [9] to determine that an attribute grammar
is non-circular; i.e. that no semantic tree that can be generated by the attribute grammar
contains a circularly defined attribute-instance. Fortunately there are several interesting and
widely applicable sufficient conditions that can be checked in polynomial time [3, 10, 12, 14];
e.g., absolute noncircularity [14].

Many translator writing systems have been built using the attribute grammar formalism
(18, 19, 13, 4, 7. Such a system accepts an attribute grammar as input and generates a
compiler for the attribute grammar. Part of this task calls for generating an evaluator of
semantic trees; such an evaluator must evaluate each attribute-instance of the tree after all
attribute-instances that it depends on have already been evaluated. Many strategies for
efficient evaluation have been discussed in the literature [22] and include multi-pass [10] and

ordered [12] evaluation strategies.

2.2. An Attribute Grammar Example

Figure 2-1 gives an attribute grammar which translates simple English descriptions of
mathematical expressions into post-fix Polish notation. This grammar distinguishes between
expressions involving only integer values (in which case operators of the form +; and *; are
required) and those involving a decimal point value (in which case operators of the form +,
and *_ are required). So, for example, it will translate the English phrase ‘multiply 5.7 by 8’
into the post-fix Polish expression (5.7,8,".) and the phrase ‘add § to 9’ into (5,9,+;)"

In this AG there are 8 productions and each production has associated semantic functions.
In production p;, <Numl> and <Num2> denote separate occurrences of the same
symbol, <Num>; the numeric suffixes distinguish these different occurrences. S.trans is the
distinguished attribute of the root; at the end of attribute evaluation the tramslation resides
in this attribute.

Figure 2-2 shows a semantic tree corresponding to the input string ‘multiply 80 by 5.8’
Each node in this tree is labelled with its associated grammar symbol and has attribute-
instances corresponding to the attributes of that grammar symbol.

2.3. Attribute Grammars and Context Condlitions

In this paper we shall consider a small extension to attribute grammars. This extension
allows for the attachment of semantic conditions to productions as illustrated in productions
p, and py of figure 2-1. In general we allow a production p to have a contert condition of
the form:

<CONDITION: expr; AND exprg AND ... AND expry >

where each expr; is a boolean expression involving constants and attributes of p. A condition
of the above form attached to a production is to be interpreted as saying that the
production-instance is valid if and only if the condition evaluates to true. If the condition
evaluates to false then the production-instance is not valid and the input violates context
sensitivities of the attribute grammar. An attribute grammar system allowing conditions on
the productions would first parse the input, build a semantic tree, and evaluate the
attribute-instances of the tree as in a regular attribute grammar system. It would then
evaluate all conditions associated with production-instances of the tree. If all evaluate to
true it would return the translation given in the distinguished attribute of the root. If any
evaluate to false, however, the translation is defined to be ‘error’ as the imput violates
context sensitivities of the attribute grammar.l So, for instance, the sentence ‘multiply 80
to 5.8’ of our example attribute grammar would be parsed and a semantic tree built for it.
After evaluation of the attribute-instances in the tree it would be determined that a context-

I.If the underlying context-free grammar of the AG is ambiguous, then the translation of a
string is ‘error’ only if every parse for this string contains violated context conditions.

Contezt free symbols of the attribute grammar oand their attributes:

Context=free symbols synthesized attributes inherited attributes
S: trans

Op: { trans }} { tg e)
Num: trans, type } é
Integer: trans

Decimal _num: trans 0

digit: trans 3]

Productions of the attribute grammar and their semantic functions:
: S 2= Op Numl by Num2. < Condition: (Op.trans = ‘*’)
P1 p y or (Op.tl‘&ﬂs e’ ni,) >
S.trans = Concatenate(‘(’, Numl.trans, ‘,’, Num2.trans, *,’,
Op.trans, ‘)’);
Op.type = If (Numl.type == real) or (Num2.type = real)
then real else int;

pg: S = Op Numl to Num2. < Condition: (Op.trans = ‘+,’
or (Op.trans = ‘+y) >

A

S.trans = Concatenate(‘(’, Numl.trans, ‘,’, Num2.trans, *,’,
Op.trans, ‘)');

Op.type = If (Numl.type = real) or (Num2.type = real)
then real else int;

p3: Num := Integer.
Num.trans = Integer.trans;
Num.type = int;
p4: Num :z== Decimal _num.
Num.trans = Decimal_num.trans;
Num.type = real;
P5: Op = add.
Op.trans == If (Op.type = real) then ‘4’ else ‘+;’;
Pg: Op = multiply.

[] i 9,
¢ else %%

Op.trans = If (Op.type = real) then ‘*
p7: Integer 1= digits.
Integer.trans = digita.trans;
pg: Decimal _num == digitsl ‘.’ digits2.
Decimal _onum.trans = Concatenate(digitsl.trans, *.’, digita2.trans);

Figure 2-1: An attribute grammar example

sensitive condition of py is violated; an instance of that production is only valid if Op.trans

equals an additive operator (i.e., ‘+_’ or ‘+;') and in this case Op.trans equals *.- The idea

’

r

[$-3 ll

<Nusml>

typs | trane | | type trans I type | trans |

T -
¢Integer> N8 ¢Decimal _aum> I7
POy et ———————
| trans I | traas |

cdigits> I8 <digitst> [w9 cdigitad §10
R e $
| trans | | trazs | | traas

i ! : | :

nultiply
Figure 2-2: A typical semantic tree for the example AG

of context conditions for attribute grammars was first suggested in [20]. By putting further
restrictions on the allowable form of conditions, we can make them useful in parsing the
input ([11, 21]). In [5] it is shown how context conditions can be incorporated into the
regular semantic functions of the productions.

3. Inversion Of Attribute Grammars

In this section we give an algorithm to invert AGs. For example, given the AG above
describing the translation from English descriptions of mathematical expressions into post-fix
Polish notation, the inversion algorithm will produce a new inverse AG describing the
translation from post-fix Polish notation into English descriptions of mathematical
expressions. In order to perform the inversion, the AG must be in a restricted inverse form.
A formal definition of this restricted form is given in section 3.2. In essence, it restricts the
AG so that each nonterminal of the grammar has a special trans attribute, which must be
defined by a restricted functional form. For each interior node in a semantic tree, the trans
attribute at that node will compute the translation of the subtree beneath it. Although
other attributes of the AG influence the translation by passing context senmsitive information
around the semantic tree, it is the trans attribute which ultimately computes the translation.
In the next section we introduce the concept of token permuting functions, which will
subsequently be used in our definition of restricted inverse form.

3.1. Token Permuting Funetlons

A function f is a token permuting function over an alphabet A if and only if it is of the
form: f(Y;....Y,) = concatenate(ﬂo, 1181 Yi2:- YipAy), where each Yk (l <k <nn)is a
variable taking on values in 4, each g (1 < k < n) is a constant in A and each Yy of
the left hand side appears once and only once as some Y;, (1 < t < n) of the right hand
side.

The function f is called a token permuting function as it permutes the order of its

arguments and inserts constant tokens of A in between them. It is important to emphasize
that a token permuting function cannot delete apy of its arguments; each Yk must appear
as some Y;, and it cannot appear twice. For example, {(Y1, Y2) = concatenate(‘Hello’, Y1,
‘and’, Y2) is a token permuting fumction. If Y1 = ‘Bob’ and Y2 = ‘Shirley’ then this
function would yield the string ‘Hello Bob and Shirley’. However, the function g(Y) =
concatenate(Y, Y, ‘where are you’, Y,) is not a token permuting function as it duplicates the
value of the string Y several times in the output string.

3.2. Restrlicted Inverse Form

An attribute grammar, without any restrictions on its semantic functions, s
computationally equivalent to a Turing machine. As such, it is almost impossible to
formally manipulate, let alone invert. In this section we introduce restricted inverse form
attribute grammars, in which some semantic funct‘ions are required to be token permuting
ones. By definition, an attribute grammar T: £ - 4 s in restricted inverse form if it
obeys the following constraints:

1. Each nonterminal X has a distinguished synthesized attribute X.trans taking on
s
values in 4 . X.trans represents the translation of the substring which X derives.

2. For each production [p: X = g Xj a; Xg ... xnp "np] the semantic function
defining Xg.trans is of the form

Xgetrans = if gl(aftsl) then f(X;.trans, Xy.trans, ..., an.trans)
elsif go(attsy) then fz(:xl.trans, Xg.trans, ..., X.np.trans)

elsif g, 1(atts, ;) then.fu_l(xl.trans, Xgp.trans, ..., an.tranu)

else f (X;.trans, Xs.trans, ..., X.np.trans)
where each atts; C Ap) 1 € j < s1), each 8; (1 €] < s1)is a boolean
function, and each f; (1 < j < s) is a token permuting function as described
above. Note that the arguments to each f: token permuting function are exactly
the trans attributes of the production’s right-part nonterminals.

3. The value of the translation is specified to be the value of the trans attribute of
the root (S.trans).

In this definition there is no restrictions on the number of inherited or synthesized
attributes a nonterminal can have nor is there placed any restrictions on how they are
computed other than the trans attribute. Constraint 2, however, requires that each fj 1<
j < s) used to compute the trans attribute is a token permuting function.

Restricted inverse form attribute grammars (RIF grammars) can be viewed as restricted
AGs or as a generalized version of 3yntax-directed translation schema [8]. Like syntax-
directed translation schema, RIF grammars associate a special synthesized attribute (the
trans attribute), to each nonterminal. This attribute stores the translation of its subtree

and is defined by a token permuting function. However, a RIF grammar surpasses a
syntax-directed translation scheme in expressive power not only in that it associates context
conditions to productions, but in that it allows other attributes to be associated with
nonterminals. These “other” attributes influence the translation by determining which token
permuting function is chosen to evaluate the trans attribute (they serve as arguments to the
g boolean expressions). This allows RIF grammars to express context sensitive translations,
something syntax-directed translation schema cannot do. For example, it is easy to
construct a RIF grammar which accepts strings of the form ‘a.l b ko and translates them
to ‘OK a' bk it i = j = k, and to ‘NOT OK al b ok ' otherwise. This language
cannot be expressed by any syntax-directed translation schema, since the target language is
not context-free. In general, the translations describable by syntax-directed translation
schema are fairly restricted (see [1, 2]), whereas RIF grammars can, at least theoretically,
describe any translation describable by an attribute grammar. The theoretical power of RIF
grammars is discussed in {5).

3.3. The Inversion Algorithm

An attribute grammar in restricted inverse form displays a duality between syntax and
semantics, as can be seen by considering a semantic tree of such an AG. On one hand,
each node of the tree has an associated context-free lgbel, On the other hand, each node
can be considered labeled by its trans attribute. Inversion of the attribute grammar consists
of switching these labels. To make sure that this is possible, we had to restrict the nature
of the trans label; in restricted inverse form the trans attribute can only be defined by a
token permuting function. The inversion process then consists of switching the labels and
undoing the permutation specified by this function. This section formally defines the
inversion algorithm.

Let T: £ — A" be an attribute grammar in restricted inverse form. The inverse AG is
created modularly from T, production by production. Each production in T will give rise tb
one or more pro9uctxons of the inverse attribute grammar. A.s T translates stnngs of E
into strings of 4 , the inverse AG wxll translate strings of A into strings of . However,
it will only translate those strings of A" that are in the range of T.

Formally, let A T be the range of T; i.e., A T = = {8 € A and there exists a semantic
tree translating a € E to 8}. Then the attribute grammar T A’ T — L s generated
from T as follows:

1. For each token § of A, create a terminal § in T!.

2. For each nonterminal X in T, create a nonterminal XI in T (we call it XI and
pot X to avoid confusion. We will not be very strict about this usage, however,
when our meaning is clear. For example, when we refer to a semantic function f
of T as also being a semantic function of 'I"1 we mean the semantic function
which is obtained from f by substituting every occurrence of X.A in f by XI.A).

3. Let each nonterminal XI in Tl have the same set of attributes as X in T with

one additional attribute: Xl.trapsinv. The attribute transinv will play same the
role-in T'! as the attribute trans did in T; i.e., the tranainv attribute will take
on values in £* and represents the translation of the substring that XI derives.

-

4. For each production [p: Xy == eg X; a3 X5 .. an anp] in T with the
distinguished semantic function

Xqg-trans = if gy(attsy) then fy(X;.trans, Xy.trans, ..., an.trans)
elsif go(attsg) then fo(X;.trans, Xs.trans, ..., an.trans)

elsif g,_q(atts, ;) then.fs_l(Xl.trana, X,.trans, ..., an.trans)
else [(X .trans, Xo.trans, .., an.trans)

create s productions in 'I"l, one corresponding to each of the token permuting
functions f.. In particular, for each f;, 1 < j < 5, where f(‘(1 trans, ...,
‘(n .trans) = concatenate(fg, X;;.trans, 3,‘(12 trans e Xip trans -)create
an inverse production [pI'l XIg == By XIj; 2)8] wnb an
attached context condition <COND: (NOT glz(a.t) AND FNO’Ip 8o(attsy))
AND..AND (NOT j l(a.t,t,s,‘I 1)) AND g(at,t,s‘l Let this production have all
the semantic funct.lons that p has except that in place of the semantic function
defining Xo.trans as given above, it has the semantic function XI .trans =
f.(XI;.trans, .., Xlnp.trans). It also has one additional semantic function defining
i!o.transinv given by Xlgtransiov = concatenatc(ao, XIy.transinv, a,

Xly.transinv, ..., Xlnp.t.ransmv, “np)‘

5. The value of the translation is specified to be the value of the transinv attribute
of thé root (Sl.transinv).

The essence of the inversion algorithm lies in point 4. To make this point more concrete,
figure 3-1 shows the inversion of production pg of our example attribute grammar of figure
2-1. This production is split into two productions in the inverse attribute grammar.
Whereas the production pg of T specified that Op derived ‘multiply’ and had a translation
of either **." or ‘%, the inverse productions plg, and plg, specify that Opl derives either
(3 38] (s f (X 3] or ‘¥.’

p or ‘* and in either case has a translation of ‘multiply’. Opl’s derivation of **, 0

is specified to be valid only if certain context conditions are satisfied.

Figure 3-2 presents the inverse of the remaining productions of the attribute grammar of
figure 2-1. This specification would be produced automatically by the inversion algorithm.
Due to space considerations, the inverse of productions py and pg are not presented. Note
that productions pl; and ply, while having different semantics, have the same context-free
portion; the underlying context-free grammar of the inverse AG is ambiguous. In section
4.2 we show how to remove this ambiguity from the inverse specification.

°l addition, if p had an attached condition: <Condition: E>, then the condition E is
also attached to plj.

plg,: Opl u= *,. < Condition: Opl.type = real>

e 9,

OplLtrans = **.’;

Opl.transinv = ‘multiply’;
plgp: Opl u= *;. < Condition: NOT(Opl.type = real)>

OplLtrans = ‘*;%;

Opl.transinv = ‘multiply’;
Figure 3-1: The inversion of pg splits into two productions

If an attribute grammar is in restricted inverse form, then there exists a duality between
the context-free portion of the production (the syntax of the production) and the semantic
function defining the Xp.trans attribute (the semantics of the production). While the
context-free portion defines the strings Xy can legally derive, the semantic function
computing Xg.trans defines the translation of such strings. The inversion process exploits
this duality by switching the role of syntax and semantics.

All the attributes of a nonterminal in the original attribute grammar remain in the
corresponding nonterminal of the inverse AG. They will be defined properly as all the
semantic functions of a production remain in the inverse production as well. Even the trans
attribute remains in the inverse attribute grammar because it is no worse than any other
attribute; it may be directly or indirectly used in some condition gj(attsj) thereby influencing
the translation.

The inverse grammar will have context conditions attached to the productions (see section
2.3) even if the original attribute grammar did not have any attached conditions. These
conditions enforce context-sensitivities in the input. For example, according to the grammar
T, the inverse grammar T! should not accept ‘(80,5.8,%;)’ as well-formed input; T would not
translate any input string to (80,5.8,%). The context conditions placed on T! will
accomplish this. Without the conditions 80,5.8,%;)’ would be accepted and translated by
T! to either ‘Multiply 80 by 5.8’ or ‘Multiply 80 to 5.8'. The attached context conditions
can also be useful in parsing the input using the techniques of attriduted parsing [21, 11].

Using the inversion method outlined in this section, it can be shown that if there exists a
semantic tree in T translating s to m then there will exist a semantic tree in T!
translating m to s. However, if T is many-to-one (it translates two unique strings s; and so
into the same output m), then T! will specify two ways to parse m, one parse tree
producing the output s; and the other producing the output sy. Hence if T is many-to-one,
T! will not only be ambiguous, it will not be a function. We will return to the problem
of ambiguity in section 4.2. To demonstrate the relationship between trees in the original
attribute grammar and trees in the generated inverse attribute grammar, figure 3-3 gives a
semantic tree for the string (80, 5.8, ‘r)’, based on the inverse attribute grammar of figure
3-2. Compare this semantic tree to the semantic tree of figure 2-2.

10

I,: SI = NumlIl , NumlI2 , Opl) . <Condition: (Opl.trans = *‘*°’
Pl (' ’) or (é)p .trans = “i’5)>

Sl.trans = Concatenate(‘(’, NumIl.tram(;jp‘f', Num}2’.frana, 4

.trans, ‘)’);

Opltype = If (Numll.type = real) or (Numl2.type = real)
then real else int;

SILtransinv = Concatenate(Opl.transinv, Numll.transinv, ‘by’
Numi2.transinv);

plg: SI = (NumIl , NumI2 , Opl) . <Condition: Ofl.trana = ‘4’
or (Opl.trans = ‘+3'5 >

y Numli2.trans,’,’,
pf.tra.ns, Yy

(38}

SLtrans = Concatenate(‘(’, NumIl.tr'a.m(s5
Opl.type = If (Numll.type = real) or (Numl2.type = real)
then real else int;

SI.transinv = Concatenate(Opl.transinv, Numll.transinv, ‘to’,
NumlI2.transinv);

pI3: Numl ::== Integerl.

Numl.trans = Integerl.trans;
Numl.type = int;
Numl.transinv = IﬁtegerI.transinv;

pl4: Numl ::= Decimal_numl.

Numl.translation = Decimal_numl.translation;
Numl.type = real;
Numl.transinv = Decimal _numl.transinv;

Pl5,: Opl = +,. . < Condition: Opl.type = real>
Opltrans = ‘+.%; '
Opl.transiny = ‘add’;

plgp: Opl := +; . < Condition: NOT(OplL.type = real)>
OplLtrans = ‘4%

Opl.transiny == ‘add’;
Figure 3-2: The inverse AG generated from the example AG

3.4. Extendlng the Inversion Paradigm

In the last section we showed how any AG in restricted inverse form can be inverted.
However, it is not always apparent how to express translations in this restricted form; many
attribute grammars make use of constructs which violate these constraints. In section
4.1 we show how we were able to transform an attribute grammar which was not in

restricted inverse form into one which was. However, this may not always be possible.

this section we suggest another alternative: extending RIF grammars to express a wider

11

S n

trans | traasiav

<Tusltd> <HunlId> [11
| typs | traas | traasiav | | type | traas | traastav |
CIategerDd 18 <Decimal auaD> n
| trads | traastav | | traas | cn.uuvi
mumJ 1] Cdigitslld / ') ks{m 110 ’
[traas | traasiav | | trams | traasiav | | traas | traasiav | ‘
1 | . T
(80 .] . L . .)

Figure 3-3: A typical semantic tree for the inverse AG

variety of translations yet still retain invertibility.

In our current work, using RIF grammars to express translations between programming
languages, we have found that it often requires more than a simple token permuting
function to define the translation of a subtree. For example, consider the production of
figure 3-4. In this case the attribute if _stmt.trans is not defined by a token permuting
function, and hence the production is not invertible by the inversion algorithm of the last
section. In this example, genlLab is a function from the domain of integers to the domain of
labels, and genLab(i) == ‘Li’, where i is an integer and ‘Li’ is a string.

p: if_stmt ::=m [F expression THEN stmt.
if _stmt.trans == Concat[expression.trans,
‘FJP’, genLab(if_stmt.labaum),
stmt.trans,
N ‘LAB’, genLab(if_stmt.labnum)];

Figure 3-4: A semantic function using a non- token permuting function

The problem then is how the inversion algorithm can be expanded to deal with such
constructs. Intuitively, the syntax of the inverse production should have the following form:
[pl: if _stmt]l ;== expression] FIP X stmtl LAB X] where X represents a label. Assuming
that we provide the inversion algorithm with knowledge about the primitive types (domains)
employed by the semantic functions of the RIF grammar, there is no reason why it cannot
also deduce this syntax for the inverse production. In particular, to invert this production
the inversion algorithm would need to know

1. the syntax of a labdel and that

12

2. genLab is a function from integers to labels.

Using this information, it could invert the production p, producing the inverse productions
pl and pl’ given in figure 3-4. In this figure label is a nonterminal deriving a label. This
nonterminal has the distinguished attribute, label.value, which gives the string derived by this
nonterminal (e.g., if label derives ‘Li’, then the value of label.value is ‘Li"). The condition
attached to production pl enforces the relationship that the label derived from this
nonterminal (given in label.value) must equal genLab(if _stmtl.labnum), as required by the
original production p.

pl: if_stmtl ::= expression]l FJP labell stmtl LAB label2.

genLab if_stmtl.labnum; AND

< Condition: (labell.value S

abel2.value = genLab(if _stmtl.labnum

if _stmtl.transinv = Concat[IF’, expressionl.transinv, ‘THEN’, .
- stmtl.transinv];

pl: label :: = Li.

label.value = Conecat['L’, ‘I'];
Figure 3-5: The inverse productions

The technique illustrated by this example can be formalized and generalized, allowing RIF
grammars to express a greater variety of constructs that arise naturally in AGs. Yet, this
is only one out of several techniques that can be used to extend RIF grammars and the
inversion algorithm. Part of our current work is aimed at finding a general version of RIF
grammars and the inversion algorithm that will enable RIF grammars to express, without
too much difficulty, most translations that arise in practice.

3.5. Efficlency

Although the inverted attribute grammar T! generated by inversion algorithm is
guaranteed to be the inverse of the original attribute grammar T, it may be a very
inefficient version of it. We can ‘clean up' the attribute grammar T! by removing all
useless attributes- those which cannot possibly contribute to the tramslation. A prime
suspect as a useless attribute is the trans attribute; although it is essential in the original
attribute grammar T, it probably (but not necessarily) contains unneeded information in the
inverse attribute grammar TL. If we look at figure 3-2, we see that the attributes Sl.trans,
Numl.trans, Decimal _numl.trans and Integerl.trans are useless and can be removed but that
Opl.trzans does contribute to the translation and cannot be removed. This ‘cleaning up’ of
the attribute grammar can also be done automatically.

4. Using Attrlbute Grammar Inversion To Bulld An Interface For SQL

Attribute grammar technology is used in the PERFORM (Paraphrase and ERror message
for FORMal languages) system, developed at the IBM Thomas J. Watson Research Center
[17]. The PERFORM system is currently implemented to generate paraphrases and error

13

messages for a relational database querying language (SQL). It serves SQL users as a
feedback device to make sure their queries are semantically correct from their point of view
and from the system’s point of view. It is an aid for the novice user in learning SQL and
serves the occasional user as a documentation device for SQL queries. The paraphrases are
designed in one to one correspondence to SQL expressions, preserving the SQL structure yet
obeying natural language rules. The number of different natural language constructions
employed is relatively small (essentially the same number as there are SQL constructions),
and so is the basic vocabulary. Figure 4-1 gives an example of a SQL query and the
English paraphrase generated by the PERFORM system.

SELECT DIVISION, ID, LOCATION, NAME FROM STAFF
WHERE DIVISION = “EASTERN” AND JOB = “CLERK";

What is the division’, id number, city and last name for eﬁnlgloyees in
division “EASTERN"”, and with the job description ‘“CLERK".

Figure 4-1: A SQL query and its English paraphrase

With PERFORM, users are still expected to construct their queries in SQL. To make the
query construction itself easier for users, a guided natural language interface has been
designed. It displays template queries in natural language on the screen with windows for
the selection of specific items. The natural language constructs are based on the same
language as PERFORM, consistent with the lexicon and syntax. The interface frees users
from formal language requirements such as variable binding, or in the case of SQL, joining
of tables. To assure the correct translation of the natural language input back into SQL,
an ‘“inverse” attribute grammar is needed [18].

To examine the feasibility of attribute grammar inversion, we decided to take a subset of
the PERFORM attribute grammar (translating a subset of all SQL queries into an English
paraphrase) and to apply the techniques given above to invert this subset attribute
grammar. We performed this process by hand, but were faithful to the principles given
above. The inverted attribute grammar translates simple English queries (paraphrases) into
SQL queries and will become part of a larger system built around the PERFORM attribute
grammar.

The original PERFORM attribute grammar was written without any thought of inversion
and without any consideration to the principles of sections 3.2 and 3.3. For this reason we
encountered several difficulties when we attempted the inversion process. Some of these
difficulties were overcome by making small changes to the original attribute grammar.
Other problems proved more stubborn and forced us to develop richer techniques of
inversion to deal with specialized cases.

14

4.1. Non-invertlble function constructs

Our first job in inverting the PERFORM AG was to put it into restricted inverse form.
For most productions of the AG this was quite easy, requiring only small syntactic changes
to the function computing the trans attribute. Sometimes, however, the function computing
the trans attribute was semantically very different than a token permuting function and
stronger techniques were required. An example of this sort of production is given in figure
42.

p: EXPR = FIELD_NAME.

EXPR.trans = if (EXPR. &:ural == true)
then make plural(F LD _NAME.trans) else FIELD _NAME.trans;

q: FIELD _ NAME ::= location.
FIELD _NAME.trans == ‘city’;

Figure 4-2: A non-invertible function construct

In this example EXPR derives the nonterminal FIELD _NAME. FIELD _NAME in turn
can derive several terminal strings (SQL field names). EXPR.trans is set to the value of
FIELD _NAME.trans with one qualification: if it has been determined elsewhere that this
value, a noun which is the English equivalent of the SQL field name, is to be made plural,
then first a function make_ plural is called which finds the plural form of the noun. This
function is not a token permuting function and cannot be inverted according to the
paradigm of section 3.3. Conceptually, production p and productions of type q should invert
to a set of productions {pl pl Pa p2, .. } where p; is of the form [pi: EXPR :=
fname _singular;] and [pl EXPR :u= foame_plural], where fname_singular; and
foame _plural; are singular and plural terminal strings representing English field names.
Besides many technical difficulties in deriving such an inverse set of productions, to do so
would require an amount of semantic knowledge concerning the function make _plural which
is beyond the scope of our paradigm. Instead we chose to rewrite the attribute grammar as
in figure 4-3.

p: EXPR = FIELD__NAME.
FIELD _NAME.plural = EXPR.plural;
EXPR.trans = FIELD__NAME.trans;
q: FIELD_NAME ::= location.
FIELD _ NAME.trans == if FIELD_NAME.plural then ‘cities’ else ‘city’;

Figure 4-3: Figure 4-2 changed to restricted inverse form

By adding the attribute FIELD _NAME.plural we transmit the information as to whether
the noun should be plural or singular further down the tree to the point where the
translation for the field name is generated. We then explicitly choose either the plural or
singular form based upon this information. The rewritten attribute grammar is equivalent

15

to the initial one and it is in restricted inverse form. It is less efficient since we had to
make explicit the generation of different noun forms instead of performing this act in an
efficient semantic function. Yet perhaps for this very reason the attribute grammar also
becomes easier to read and understand.

In a similar fashion we rewrote the attribute grammar to accommodate another non-
invertible function construct given in 4-4.

r: PRED == EXPR; COMP_OP EXPR,.

PRED.trans = if {E.)'QP
then concatenate R,.trans, head(COMP _OP.trans), EXPR,.trans)
else concatenate(EXPR.trans, head(tail(COMP _OP.trans)), E)&Rz.trans);
s: COMP_OP u= <.

éaMP_OP.trana = {‘less than’, ‘is less then’};

Figure 4-4: Another non-invertible function construct

a }
-

: PRED = EXPR; COMP_OP EXPR,.

COMP _ OP.valuel = g(...);

PRED.trans = concatenate(EXPR|.trans, COMP _OP.trans, EXPRy.trans);
COMP_OP == <.

COMP _OP.trans = if COMP _ OP.valuel then ‘less than’
else ‘is less then’;

Figure 4-5: Figure 4-4 changed to restricted inverse form

In production s of this figure COMP _OP.trans was set equal to two possible values. The
correct one was chosen higher up in the tree (at production r) depending on information
available there. Once again the function defining PRED.trans is not in restricted inverse
form due to the functions ‘“head” (first element of list) and “tail” (all but the first element
of list). We got around this problem by introducing a new attribute COMP _ OP.valuel as
given in figure 4-5. With these changes the productions were in restricted inverse form and
the attribute grammar computed the same translation. Once again a little extra expense
was entailed (introduction of the additional attribute COMP _ OP.valuel) but the attribute
grammar became invertible, The attribute grammar also became cleaner in that we no
longer assign two possible translations to a single node passing these values up the tree until
there is enough information present to choose between them but we instead passed emough
information down the tree to correctly choose the proper value initially.

Although several other problems were encountered, the examples presented above should
suffice to give a flavour of the method of resolving these difficulties. In general we found
that with a little effort most non-invertible constructs could be rewritten into an invertible
format. Some of our solutions could be stated in more general terms and brought into the

18

paradigm of automatic inversion (such as the solution to the ‘‘head” and “‘tail” functions).
A practical system might also employ special techniques to invert non-invertible function
constructs which occur frequently in attribute grammars (such as the make _plural semantic
function). To do so, more data needs to be collected concerning typical attribute grammars
and the type of semantic functions they use.

4.2, Amblguity

One other problem which we encountered in our inversion of the PERFORM subset
deserves mention. In Figure 4-8, although p, and py are unique context-free productions,
pl, and ply are the same context-free productions but with different semantics. This is due
to the fact that the original grammar allows two pseudonyms (prodno and prodnum) to
express the same meaning (‘product number’). It results in an ambiguous grammar since we
do not know which production applies on the input ‘product number’. Fortunately this can
be resolved by collapsing the two productions into a single production pl,,. In this
production, FIELD _NAME derives the terminal ‘prodno’ and is assigned the translation
{‘prodno’, ‘product number’}, meaning that either translation is acceptable.

: FIELD _NAME ;== prodno.
3 FIELD _NAME. trans ‘product number’;

Pp: FIELD_NAME ::= prodnum.
FIELD "NAME.trans = ‘product number’;

pl,: FIELD NAMEI = product number.
FIELD _NAMEItransinv = ‘prodno’;

ply: FIELD NAMEI ::= product number.
FIELD _ NAMEIL transinv = ‘prodnum’;

plyp: FIELD NAME] = product number.
?‘ LD _ NAMEItransinv = {‘prodno’, ‘prodnum’};

Figure 4-8: Two unique productions inverting to identical ones

This technique of collapsing multiple productions into a single onme can be more involved
then demonstrated above if the semantic functions are more complicated or if there are
context conditions on the productions. For example, consider production pl; and ply of
figure 3-2. Here, once again, the context-free portion of the productions are the same but
the semantics are different. In this case, the productions also have different conditions
attached. Once again we can collapse these productions into a unique production, Plio,
given in figure 4-7. Notice how the conditions attached to the productions get introduced
into the semantic function defining Sl.transinv. Using this single production instead of the
two productions pl; and plg, the inverse RIF grammar no longer has an ambiguous
underlying context-free grammar.

In the cases given above we were able to solve the ambiguity of the inverse attribute
grammar by collapsing several productions into onme. Unfortunately, often the ambiguity is
spread out over several productions and can be hard to detect and remove. In general, if

17

plyg: SI :=(Numll , Numl2 ., OpI)
< Condition: (Opl.trans =))or (OpI trans == ‘*.’) or
Opl.trans = ‘+*") or (Opl.trans = -f-) >
SI.trans = Concatenate(‘(’, NumlIl.trans, *,’ NumI2 trans, °,°,
dpf trans, ‘)');

OpLtype = If (Numll.type = real) or (NumlI2.type = real)
then real else int;

SLtransinv = if (OplLtrans = ‘*.’) or (Opl.trans = **;’)
then Concatenate(Opl.transinv, Numll.transinv, ‘by’, Numl2.transinv)

else Concatenate(Opl.transinv, NumlIl.transinv, ‘to’, NumlI2.transinv);
Figure 4-7: Two productions collapsing into one

the original translation is many-to-one, the inverse grammar will be ome-to-many. This
means that, if in the original attribute grammar two unique inputs produce the same output
m, then in the inverse attribute grammar the input m will have two unique parse trees each
producing a different output. The problem is which one should be selected? We have not
yet been able to solve this problem to our satisfaction. One solution is to choose during
run-time one of the parse trees. This choice could be based on some notion of a “best”
translation or could be made arbitrarily. A better but much more difficult solution is to
statically detect and remove the ambiguity from the inverse grammar.

5. Coneclusion

This paper has introduced the technique of attribute grammar inversion. Given an
attribute grammar in restricted inverse form, describing a translation T: L1 — L‘Z' the
inversion algorithm presented in this paper will automatically synthesize the inverse attribute
grammar T L. L2 — Ll'

The inversion process is highly modular; each production of the original attribute grammar
gives rise to one or more productions in the inverse attribute grammar. Even if one
production is not in restricted inverse form and is not invertible, the rest of the productions
of the attribute grammar may still be invertible. And even within a non-invertible
production, the construct causing the problem can be easily identified. An interactive
inversion system could take advantage of this fact by automatically inverting as much of the
attribute grammar as it can and then prompting the user for help where it encounters non-
invertible constructs.

In this paper we also related our experience in inverting a subset of the PERFORM
attribute grammar. This experiment was very successful. It proved that automatic
inversion of attribute grammars is feasible and useful. It required surprisingly little effort;
we believe that manual generation of the inverse attribute grammar PERFORM! from
scratch would have required significantly more resources besides the fact that it would
probably not be the true inverse of PERFORM. Our experience with PERFORM also
indicates that even without a completely automated system for inversion, the principles of

18

section 3.3 provide useful guidelines on how to generate an inverse attribute grammar. Ig
the worse case, it will provide users with a rough draft of the inverse attribute grammar
which can then be further refined.

Our future research is aimed at building an automated system for translating between
programming languages, based upon the idea of AG inversion, as outlined in section 1. The
concepts introduced in this paper and the experience gained from our inversion of the
PERFORM AG makes us optimistic on the success of this task.

ACKNOWLEDGEMENT

We would like to thank Rodney Farrow for his untiring support in discussing all aspects
of attribute grammars with us. While his contributions are many, all errors are ours.

19

1]

(2]

(3]

(4]

[s)

(6]

7

(8]

(9]

10}

References

A. V. Aho and J. D. Ullman.
Syntax Directed Translations and the Pushdown Assembler.
Journal of Computer and System Sciences 3(1):37-58, February, 1969.

A. V. Abo and J. D. Ullman.
Properties of Syntax Directed Translations.
Journal of Computer and System Sciences 3(3):319-334, August, 1989.

G.V. Bochmann.

Semantic evaluation from left to right.
Communications of the ACM 19, 1978.
pPp. 95-62.

Rodney Farrow.

LINGUIST-88 Yet another translator writing system based on attribute grammars.

In Proceedings of the SIGPLAN 82 Symposium on Compiler Construction. ACM, June,
1982.

Rodney Farrow and Daniel Yellin.

Generating Bi-Directional Translators from RIF Grammaras.

Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, -August, 1985.

Harald Ganzinger and Robert Giegerich.

Attribute Coupled Grammars.

In Proceedings of the SIGPLAN '84 Symposium on Compiler Construction. ACM-SIGPLAN,
June, 1984.

Published as Volume 19, Number 8, of SIGPLAN Notices.

H. Ganzinger, R. Giegerich, U. Moncke and R. Wilhelm.
A Truly Generative Semantics-Directed Compiler Generator.
In Proceedings of the SIGPLAN Symposium on compiler construction. ACM, June, 1982,

E. Iroms.
A Syntax Directed Compiler for ALGOL-80.
CACM 4:51-55, 1961.

M. Jazayeri, W.F. Ogden, and W.C. Rounds.

The intrinsically exponential complexity of the circularity problem for attribute
grammars,

Communications of the ACM 18, 1975.

M. Jazayeri and K.G. Walter.
Alternating semantic evaluator.
In Proceedings of ACM 1975 Annual Conference. ACM, 1975.

20

[11]

[12]

[13]

[14]

[13]

(16}

[17]

(18]

[19]

[20]

Neil D. Jones and C. Michael Madsen.

Attribute-Influenced LR Parsing.

In Lecture Notea in Computer Science 94, pages 393-407. Springer-Verlag, Berlin-
Heidelberg-New York, 1980.

U. Kastens.
Ordered attribute grammars.
Acta Informatica 13:229-256, 1980.

Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.
GAG:A Practical Compiler Generator. _
In Lecture Notes in Computer Science 141, . Spring-Verlag, Berlin-Heidelberg-New York,

1982,

K. Kennedy and S. K. Warren.

Automatic generation of efficient evaluators for attribute grammars.

In Conference Record of the Third ACM symposium on Principles of Programming Languages.
ACM, 1976.

D. E. Knuth.

Semantics of context-free languages.
Mathematical Systerns Theory 2:127-145, 1968.
correction in volume 5, number 1.

B. Lorho.

Semantic attribute processing in the system DELTA.

In A. Ershov and C.H.A. Koster (editor), Methods of Algorithmic Language
Implementation. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

Eva-Maria M. Mueckstein.

Q-TRANS: Query Translation Into English.

In Proceedings of the Eight International Joint Conference on Artificial Intelligence, pages
8680-662. [JCAI-83, August, 1983.

Eva-Maria M. Mueckstein.
Controlled Natural Language Interfaces: The Best of Three Worlds.
In Proceedings of the ACM Computer Science Conference 1985. ACM, March, 1983,

Kari-Jouko Raiha, M. Saarinen, E. Soisalon-Soininen and M. Tienari.
The Compiler Writing System HLP (Helsinki Language Processor).
Technical Report A-1978-2, Dept. of Computer Science, Univ. of Helsinki, 1978.

David A. Watt and Ole Lehrmann Madsen.
Extended Attribute Grammars.
The Computer Journal 268(2):142-153, 1983.

[21] David A. Watt.
Rule splitting and attribute-directed parsing.
In Lecture Notes in Computer Science 94, pages 363 - 392. Springer-Verlag, Berlin-
Heidelberg-New York, 1980.

(22] Daniel M. Yellin.
A Survey of Tree-Walk Evaluation Strategies for Attribute Grammaras.
Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, September, 1984.

[23] Daniel M. Yellin.
Thesis Proposal: Restricted Inverse Form Grammars and Bi-Directional Translators.
Technical Report, Department of Computer Science, Columbia University, New York,

New York 10027, June, 1985.

[
to

