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Abstract

We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical
alert broker designed to provide a rapid and self-consistent classification of large etendue telescope alert streams,
such as that provided by the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean-led broker run by an interdisciplinary team of
astronomers and engineers working to become intermediaries between survey and follow-up facilities. ALeRCE
uses a pipeline that includes the real-time ingestion, aggregation, cross-matching, machine-learning (ML)

classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp-based classifier, designed
for rapid classification, and a light curve–based classifier, which uses the multiband flux evolution to achieve a
more refined classification. We describe in detail our pipeline, data products, tools, and services, which are made
public for the community (see https://alerce.science). Since we began operating our real-time ML classification of
the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We
describe our results to date, including the real-time processing of 1.5× 108 alerts, the stamp classification of
3.4× 107 objects, the light-curve classification of 1.1× 106 objects, the report of 6162 supernova candidates, and
different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead in going from a
single stream of alerts such as ZTF to a multistream ecosystem dominated by LSST.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Variable stars (1761); Active galactic nuclei (16);
Astroinformatics (78); Surveys (1671); Classification (1907); Astrostatistics (1882); Convolutional neural
networks (1938); Random Forests (1935); Cloud computing (1970); Distributed computing (1971); Small solar
system bodies (1469)

1. Introduction

The exponential growth of the light-collecting area of telescopes
and the number of pixels of digital detectors has resulted in a new
generation of survey telescopes that are revolutionizing the way we
study the time domain in astronomy (Tyson 2019). New surveys
that systematically scan the optical/near-infrared sky with deep,
wide, and fast-cadence observations (e.g., Catalina Real-Time
Transient Survey, CRTS, Drake et al. 2009; Palomar Transient

Factory, PTF, Law et al. 2009; Optical Gravitational Lensing
Experiment, OGLE, Udalski et al. 2015; Dark Energy Survey, the
Dark Energy Survey Collaboration 2005; SkyMapper, Keller et al.
2007; Kepler, Koch et al. 2010; Vista Variables in the Via Lactea
Survey, VVV, Minniti et al. 2010; Korea Microlensing Telescope
Network, KMTNet, Kim et al. 2016; Hyper Suprime-Cam Subaru
Strategic Program, HSC-SSP, Aihara et al. 2018; Asteroid
Terrestrial-impact Last Alert System, ATLAS, Tonry et al. 2018;
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Zwicky Transient Facility, ZTF, Bellm et al. 2019; Deeper, Wider,
Faster, Andreoni et al. 2020) are uncovering large populations of
time-varying astrophysical phenomena, including new populations
of dim, rare, and/or short-lived events (e.g., Kasliwal et al. 2012;
Drout et al. 2014).

As the construction of the Vera C. Rubin Observatory and its
Legacy Survey of Space and Time (LSST; LSST Science
Collaboration et al. 2009) is advancing, a convergence with
surveys in other regions of the electromagnetic spectrum (e.g.,
Square Kilometre Array, SKA, Dewdney et al. 2009; Wide-
field Infrared Survey Explorer, WISE, Wright et al. 2010;
eROSITA, Merloni et al. 2012; Fermi Gamma-ray Space
Telescope, Atwood et al. 2009; Cerenkov Telescope Array,
CTA, Actis et al. 2011), high-energy particles (e.g., CTA;
IceCube Neutrino Observatory, Aartsen et al. 2017), and
gravitational waves (Laser Interferometer Gravitational-Wave
Observatory, Abramovici et al. 1992; Advanced Virgo,
Acernese et al. 2015) is opening a new era of multimessenger
astronomy (Abbott et al. 2017; IceCube Collaboration et al.
2018).

The fundamental quantity that defines a survey telescope is
the product of mirror area and field of view (FOV), known as
etendue, which is a simple proxy for the volume in space that
can be monitored by different telescopes for the same exposure
time and a given intrinsic luminosity object. We show the
FOV, collecting area, and number of pixels of a selection of
large etendue survey telescopes in Figure 1.

The detectors in these large etendue telescopes produce data
at increasingly faster rates. Millions of events, i.e., objects that
are seen to change their brightness or position in the sky, are
being detected and reported in the form of continuous
astronomical alert streams (Patterson et al. 2019). These
streams create an opportunity for a new generation of follow-
up telescopes to characterize large numbers of astronomical
events in a coordinated fashion.
A new time-domain ecosystem is being built accordingly,

where telescopes specialize as either survey or follow-up
telescopes, but also new digital information components are
developed to connect them seamlessly. The aggregation,
annotation, and classification of alerts in a rapid and consistent
fashion is done by astronomical alert brokers, such as the
Automatic Learning for the Rapid Classification of Events
(ALeRCE; this work); Alert Management, Photometry and
Evaluation of Lightcurves (Nordin et al. 2019); Arizona-
NOAO Temporal Analysis and Response to Events System
(Narayan et al. 2018); Fink (Möller et al. 2021); LASAIR
(Smith et al. 2019); and Make Alerts Really Simple.22 Different
brokers typically specialize in different science cases. Their
main role is to provide a fast and consistent classification of the
alert stream using all of the available data but also enable
filtering of the stream for different scientific communities.
The fast classification of events is critical for the study of either
short-lived phenomena or the early phases of evolution of

Figure 1. The FOV vs. light-collecting area for a selection of ground- and space-based survey telescopes currently operational or planned. The product of the two is
called etendue and is indicated by the relative sizes. Note that if a survey contains several identical telescopes, we consider the sum of their etendues. The color of the
circles indicates the number of pixels in the main camera of the instrument, following the color coding on the right. Constant etendue loci are shown as gray dashed
lines, with the specific etendue value shown for each line. See Table 4 for telescope names and references.

22 https://Mars.lco.global/
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longer-lived processes, enabling follow-up observations to
occur fast enough for some physical properties to be inferred
(e.g., Gal-Yam et al. 2014). They will also contribute to the
detection of new astrophysical phenomena in the form of
outliers/anomalies (e.g., Nun et al. 2016) and will help reveal
new subpopulations among known families of events (e.g.,
Baron & Poznanski 2017).

An interoperable and agile ecosystem is needed, with all of
the relevant parts able to interact automatically to perform
coordinated observations but also capable of adapting quickly
to new science cases, instruments, or digital technologies. In
this new scenario, follow-up telescopes will listen and react to
Target and Observation Managers (TOMs; e.g., Street et al.
2018). TOMs will listen to alert broker classified streams, and
brokers will listen to survey telescope alert streams. When
follow-up observations are performed and their results become
available, TOMs will be able to modify their follow-up
strategy, brokers will be able to improve their classification,
and survey telescopes will be able to change their surveying
strategies, providing a feedback mechanism for the entire time-
domain ecosystem to continuously improve.

1.1. Alert Broker Challenges

Astronomical alert brokers are a new kind of tool in the
interface between astronomy and data science. They face new
challenges, including infrastructure, machine-learning (ML),
and community integration. This makes them important
laboratories for testing new ideas in data science going even
beyond astronomy.

In terms of infrastructure, the biggest challenge for
astronomical brokers is to ingest, annotate, and classify, in a
scalable fashion, the large astronomical alert streams coming
from large etendue telescopes such as ZTF or LSST. For
example, we have typically received between 105 and 106 alerts
night–1 from the public ZTF stream, associated with 5.1× 107

objects as of 2021 February. For comparison, LSST is expected
to produce about 107 alerts night–1 and contain more than 109

different objects, which requires a distributed type of database
and processing. Additionally, there will be a diversity of survey
streaming alerts that must be cross-matched and classified in
real time (e.g., ZTF, ATLAS, LSST). Thus, the challenge is to
ingest data streams from a diversity of telescopes in a scalable
fashion and classify them using their combined information to
enable a rapid reaction by follow-up telescopes and a self-
consistent analysis.

In terms of ML development, the challenges are diverse.
What is an appropriate and relevant taxonomy for the
astronomical community? How should we balance classifica-
tion purity and efficiency? How can we develop ML classifiers
and bring them into production in a reasonable timescale? How
should we include cross-matched information in these
classifiers? How can we train models using data that may be
highly unbalanced and not fully representative of the unlabeled
data? For example, training a classifier with spectroscopically
labeled data will tend to be biased toward the bright end of the
magnitude distribution. How can we train in a semisupervised
fashion to take advantage of the unlabeled data? How can we
train using data from a different telescope with a different set of
filters/cadences (i.e., transfer learning and domain adaptation)?
How can we train models using synthetic or augmented data?
How can we detect outliers in a stream of data? All of these are
technically challenging problems that need to be developed,

validated with the community, and then brought quickly into
production.
Integration with the time-domain ecosystem and its commu-

nity of users is another important challenge. First, brokers must
be connected with other brokers, follow-up infrastructure, and
data exploration tools. For this to happen, application
programming interfaces (APIs) must be developed, simple
interfaces that allow users to interact with different databases
using virtual observatory or de facto standards. Second, in
order to produce relevant data products and tools, frequent
interaction with the community is needed to provide feedback
and inject new ideas that can help improve the entire
ecosystem. This includes interaction with small to large
projects that interoperate with the community of survey
telescopes, brokers, TOMs, and follow-up telescopes. A
diversity of brokers must be encouraged, avoiding a winner-
take-all solution and fostering an environment where new,
creative solutions rise faster into production.

1.2. The ALeRCE Broker

The ALeRCE broker is a Chilean-led project that aims to
become a community broker for LSST and other large etendue
survey telescopes. The project is run by an interdisciplinary
team composed of astronomers, computer scientists, and
engineers, including faculty, postdoctoral fellows, and students.
The broker’s concept was first announced in 2017 as the natural
continuation of the High cadence Transient Survey (HiTS), in
which we used the Dark Energy Camera on the 4 m Blanco
telescope to discover supernovae (SNe) in real time by
combining tools from high-performance computing and ML
(Förster et al. 2016). In 2018, a team of scientists was
consolidated, the key requirements were defined, the first
version of the front end was developed, a memorandum of
understanding was signed with the ZTF project, and the initial
funding was secured. In early 2019, a dedicated team of
engineers was hired to start building the tools needed to ingest
the public ZTF alert stream in preparation for LSST.
ALeRCE started to systematically classify the ZTF stream

using ML with astrophysically motivated taxonomies based on
their light curves (Sánchez-Sáez et al. 2021) in March 2019 and
image stamps (Carrasco-Davis et al. 2020) in July 2019. These
classifiers are designed to balance the need for a fast and simple
classification with a subsequent but more complex classifica-
tion. ALeRCE has reported 6162 SN candidates to the
Transient Name Server23 (TNS), of which 883 have been
spectroscopically classified. It has classified 1.1× 106 objects
into a taxonomy that has expanded into 15 classes, including
transient, periodic, and stochastic variable sources, and with
continuously improving precision and purity. All of ALeRCE’s
data products can be accessed freely via several dashboards,
APIs, or a direct database connection.
ALeRCE has adopted Agile work methodologies,24 which

have been adapted to academic environments by several
groups.25 Adopting this methodology has important implica-
tions for the broker, which becomes a continuously evolving
product with regular data and code releases. All of the major
components become dynamic: the classification taxonomy, as

23 https://wis-tns.weizmann.ac.il/
24 https://agilemanifesto.org/
25 https://www.agilealliance.org/resources/experience-reports/reinventing-
research-agile-in-the-academic-laboratory/
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the available data sources grow and the product owners identify
new scientific questions; the ML classification models, as new
training sets and ideas are brought from development into
production; and the tools and products, in order to adapt to the
changing requirements of the community of users. This means
that special attention needs to be given to version control of the
broker pipeline, tools, and data products. This is done via
the use of GitHub repositories to track code changes and the
Semantic Versioning26 naming convention for our pipeline and
associated data releases.

The outline of this paper is as follows. In Section 2, we
introduce the science goals of the ALeRCE broker, including a
discussion of the broker taxonomy. In Section 3, we describe
the ML classifiers used by our broker. In Section 4, we present
the pipeline structure and its associated infrastructure. In
Section 5, we discuss our main data products, services, and
tools. In Section 6, we present some of the main results.
Finally, in Section 7, we draw some conclusions and discuss
future directions.

2. Science Goals

Our primary science goals are the study of three broad
categories of objects: transients, variable stars, and active
galactic nuclei (AGNs). We also provide solar system object
classifications as a secondary science goal.

2.1. Transients

Two important questions that can be answered via the study of
transients are: (1) what is the nature of explosive phenomena, and
(2) what can they teach us about the dynamics of the universe.
Rapid classification is key to answering these questions, since it
can facilitate dedicated follow-up observations, either rapid or
slow, spectroscopic or photometric. Rapid follow-up is critical to
understanding short-lived transients and the progenitors of stellar
explosions in general, since it probes the outermost, unprocessed
layers of exploding stars and the possible interaction with the
circumstellar medium (e.g., Yaron et al. 2017; Förster et al. 2018).
Early spectroscopy can be used to measure the composition and
velocity structure of their ejecta. Late-time follow-up, either
photometric or spectroscopic, probes the nature of the progenitor
and explosion mechanism by constraining the composition and
velocity structure of the innermost layers of the star (e.g., Fang
et al. 2019). Having large samples of classified transient events
cross-matched with multiband/messenger or contextual informa-
tion will help characterize the parameter space and provide clues
to new, unrecognized populations of events. Furthermore, the
ability to cross-match different streams in real time, e.g., the LIGO
and LSST streams, will offer possibilities that can lead to new,
unexpected discoveries. These larger and better calibrated samples
with well-understood systematics can be used for cosmological
distance and/or event rate estimations. Finally, rapid follow-up of
gravitational microlensing events can allow the detection of
planets with masses and separations resembling those in our solar
system (e.g., Bennett & Rhie 1996; Gould et al. 2010), while
microlensing events with timescales of the order of years can
provide clues about the nature of black holes (BHs) and dark
matter (e.g., Green 2016). Moreover, microlensing may allow
spectroscopic follow-up of sources that might otherwise have
been too faint for spectroscopy (e.g., Bensby et al. 2020).

2.2. Variable Stars

Some of the important questions that can be answered via the
study of variable stars are: (1) what is the nature of these
systems and the physical mechanisms of variability, and (2)
what can they teach us about the structure and formation of our
own galaxy, its satellites, and other galaxies in the Local Group
(e.g., Catelan & Smith 2015, and references therein). There are
various reasons to obtain a uniform and rapid classification of
variable stars. Rapid follow-up of stars entering/leaving the
instability strip or changing their pulsation modes could
provide new insights into the physics of stellar pulsation
(e.g., Clement & Goranskij 1999; Buchler & Kolláth 2002;
Soszyński et al. 2014). Detection and follow-up of eclipses in
pulsating stars can help provide direct stellar mass measure-
ments (e.g., Pietrzyński et al. 2010, 2012). The detection of
eruptive events and the spectroscopic follow-up immediately
after the beginning of the eruption can provide new insights
into the physics of young stellar objects (Contreras Peña et al.
2017; Connelley & Reipurth 2018). Finally, larger and more
distant samples of consistently classified variable stars (e.g.,
Gaia Collaboration et al. 2019a) will be key to understanding
the tridimensional structure and formation history of our
galaxy, along with that of its neighbors, ranging from the
ultrafaint dwarfs to the Magellanic Clouds (e.g., Dékány et al.
2019; Jacyszyn-Dobrzeniecka et al. 2020a, 2020b; Vivas et al.
2020).

2.3. Active Galactic Nuclei

Some of the most exciting questions that can be answered from
the study of AGN are: (1) what drives the growth of BHs
(Alexander & Hickox 2012), (2) what are the physical
mechanisms behind AGN variability (Ross et al. 2018;
Sánchez-Sáez et al. 2018), (3) are there intermediate-mass BHs
(IMBHs; Mezcua 2017; Greene et al. 2020) with masses between
stellar and supermassive BHs (SMBHs), (4) what is the structure
and size of AGNs (Lawrence 2016), and (5) what can tidal
disruption events (TDEs; Arcavi et al. 2014) teach us about BH
properties. Rapid classification could help identify and follow up
on optical changing-look AGNs, a population that may unlock
numerous clues to BH accretion physics (LaMassa et al. 2015;
Graham et al. 2020). Selecting large samples of targets based on
their multiband variability for reverberation mapping studies can
enable better physical constraints on the BH surrounding medium
and distance (Peterson et al. 2004). Fast-cadence data can help
assemble large samples of IMBH candidates (Martínez-Palomera
et al. 2020), which are known to vary on shorter timescales. The
early detection of TDEs can provide independent constraints on
the BH properties that drive these phenomena (Komossa 2015).
All of the above can be done while simultaneously cross-matching
the LSST stream with future surveys that will provide critical
additional information, such as eROSITA (Merloni et al. 2012),
SKA precursors, IceCube (Abbasi et al. 2009), etc. Finally,
exploring larger samples of AGNs that are dimmer and redder can
lead to the discovery of new populations of events and a better
understanding of the AGN phenomena.

3. ML Classification

3.1. Classification Taxonomy

An important component of an automatic classifier is the
taxonomy used for classification, which defines the classes into26 https://semver.org/
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which the alert stream will be classified. Choosing a good
taxonomy is about achieving a balance between a reasonably
accurate classifier, which depends on finding good training sets
and the intrinsic separability of the classes, and meeting the
demands of different communities of users. More complex
taxonomies can be useful for a larger set of communities, but
the addition of subclasses can lead to potentially less accurate
classification models. The best compromise between the
accuracy of the classifier and the complexity of the taxonomy
is difficult to define; therefore, in order to guide our choice of
taxonomy, we performed a survey of the taxonomies used in
other studies that carried out ML classification of variable
astronomical objects.

3.1.1. Light-curve Classifier Taxonomy

First, we consider those works that use only light curves in
their analysis. We divide them into those that include both
persistent variable and transient sources (Table 1), those that
include only persistent variable objects (Tables 5 and 6), and
those that include only transient objects (Table 7). We
examined four publications that include both transient and
persistent variable objects in their taxonomy, 22 publications
that include only persistent variable objects, and eight
publications that include only transient objects. There were
19 different sources of observational data, mostly for persistent
variable sources (Table 8), and five sources of synthetic data
(Table 9).

A large diversity of taxonomies was found, with fewer classes
in general being used in the last 5 yr with respect to older works.
This may be due to the appearance of more exploratory efforts in
recent years, which look for variations from more traditional
classification methods while using fewer classes for simplicity.
We found more classes of persistent variable objects of stellar
origin, probably because of the relative abundance of curated
light-curve training sets for these classes. The synthetic data
sources were applied mostly for transient data, probably because
of the relative difficulty in finding large numbers of observed
transients. A brief description of the classes is included in the
Appendix. The pulsating star variable classes included in the
previous publications are shown in Tables 10 and 11, other stellar
variable sources in Table 12, SMBH-related sources in Table 13,
and transients in Table 14.

In general, there are certain families of objects that seem to
be included consistently among most classifiers but whose
decomposition into subclasses varies greatly. Taking this into
account, we have decided to develop a hierarchical classifier

that groups families of classes and will gradually be refined as
the amount and quality of the data grow (Sánchez-Sáez et al.
2021). The first level of the classifier considers transient,
periodic, and stochastic variable phenomena. In the second
level, the transient branch divides into (class name abbrevia-
tions in parentheses) the Type Ia SN (SN Ia), Type Ib and Ic
SN (SN Ibc), Type II and IIn SN (SN II), and superluminous
SN (SLSN) classes. The periodic branch divides into the
eclipsing binary (E), δ Scuti (DSCT), RR Lyrae (RRL),
Cepheid (Ceph), long-period variables (LPVs, including Miras
and semiregular and irregular variables), and other (periodic–
other) classes. The periodic–other class corresponds to periodic
objects that are not members of the E, DSCT, RRL, Ceph, or
LPV classes. The stochastic branch divides into host-
dominated AGNs, core-dominated AGNs, quasi-stellar objects
(QSOs), blazars, cataclysmic variables and novae (CV/nova),
and young stellar objects (YSOs).
ALeRCE’s current classification taxonomy is shown in

Figure 2. This figure draws inspiration from the variability
diagram of Eyer & Mowlavi (2008), most recently updated in
Gaia Collaboration et al. (2019b) but significantly simplified
and with a more observationally based hierarchy, more
resolution in the transient classes, and less resolution in the
stellar variability classes. The reason for having more
resolution in the transient classes is that in many cases, the
reaction time for the photometric or spectroscopic follow-up of
these classes needs to be fast, e.g., to get spectroscopic
confirmation or characterize a short-lived phase of evolution,
while for the persistent variability classes, it is not as common
to require fast follow-up. Thus, our main goal is to provide a
first filter for the expert communities to explore further and
classify into more complex taxonomies in more branches of the
classification tree.

3.1.2. Stamp Classifier Taxonomy

In addition to the classifiers that work solely on light curves,
there are classifiers that use the pixel information contained on
the variable object detection images. Alerts are generated from
a difference image that results from aligning, scaling,
convolving, and subtracting the reference image from the
science image. We have listed the ML classification studies that
use the object “image stamps” in Table 2 for the classification
of images into either real or bogus (e.g., Bloom et al. 2012) but
also as members of more astrophysically motivated classes.
The latter efforts are relevant for the taxonomy of our stamp-
based classifier, a classification model that uses as input the

Table 1

Light Curve–based ML Classifiers that Include Both Transient and Persistent Variable Objects

Reference Data Source Data Type No. of Classes Classes

Sánchez-Sáez et al. (2021) ZTF Observed 15 SN Ia, SN Ibc, SN II, SLSN,
(See Section 3.3) AGN, QSO, blazar, CV/nova, YSO,

DSCT, RRL, Ceph, LPV, E,
periodic–other

Boone (2019) PLAsTiCC Simulated 14 AGN, RRL, E, Mira, M dwarf, ML,
TDE, kN, SN Ia, SN Ia-91bg,
SN Iax, SN Ibc, SN II, SLSN-I

Martínez-Palomera et al. (2018) HiTS Observed 8 NV, QSO, CV, SN, DSCT, E, ROT, RRL
Narayan et al. (2018) OGLE, OSC Observed 7 SN, BPer, RRL, LPV, Ceph, DSCT, DPV
D’Isanto et al. (2016) CRTS Observed 6 CV, SN, blazar, AGN, M dwarf, RRL

Note. Note that Sánchez-Sáez et al. (2021) is an accompanying publication where we describe the ALeRCE light-curve classifier in more detail.
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first set of science, template, and difference images associated
with a new object in the alert stream27 and is used as the first
classification step in ALeRCE. Although the complexity of the
taxonomy associated with this classifier is less refined, this
early classification is critical to enable the triggering of fast
photometric and spectroscopic follow-up and characterization
of extragalactic transient sources. In the case of our stamp-
based classifier (Carrasco-Davis et al. 2020), we have used the
classes SN, AGN, variable star (VS), asteroid, and bogus,
trying to mimic how astronomers have historically looked for
transients and variables. The SNe tend to be near extended
sources; AGNs are either relatively isolated pointlike sources or
at the center of extended sources, depending on luminosity;
variable stars are pointlike sources that are frequently near
other pointlike sources and present in both the science and

reference images; asteroids are present only in the science
image, not in the reference image; and bogus sources are not
shaped like the point-spread function (PSF) of the image.
Finally, we found one publication that uses time series of

image stamps (Carrasco-Davis et al. 2019) following an
approach that combines time series and image stamps using a
convolutional recurrent neural network classifier. They use
seven classes: nonvariable, galaxy, asteroid, SN, RRL, Ceph,
and E. This type of work could become more important in the
future because it combines spatial and temporal information, as
well as simulated and real data.

3.2. Training Sets

In order to compile training sets, we use only sources observed
by ZTF whose labels have been cross-matched from different
catalogs available in the literature or compiled by our collabora-
tion. For each catalog, we define a function that maps the

Figure 2. Hierarchical taxonomy used by the ALeRCE broker for classifying light curves (v1.0.0). This classifier uses four models: one that separates transient,
stochastic, and periodic objects; another that separates transients into SNe Ia, SNe Ib/c, SNe II, and SLSNe; another that separates stochastic objects into blazars,
QSOs, AGNs, and YSOs; and another that classifies periodic stars into LPVs, Ceph, RRL, DSCT, E, or periodic–other.

Table 2

Single Image Stamp ML Classifiers

Reference Data Source No. of Classes Classes

Carrasco-Davis et al. (2020) (Section 3.4) ZTF 5 SN, AGN, VS, asteroid, bogus
Duev et al. (2019) ZTF 2 Real, bogus
Wright et al. (2017) PanSTARRS1 3 Real, asteroid, bogus
Cabrera-Vives et al. (2017) HiTS 2 Real, bogus
Kimura et al. (2017) HSC-SSP 2 SN Ia, other
du Buisson et al. (2015) SDSS 2 Real, bogus
Carrasco et al. (2015) RCS-2 2 Stars, QSOs
Bloom et al. (2012) PTF 5 Bogus, suspect, unclear, maybe, realish
Bailey et al. (2007) PTF 2 Real, bogus

Note. Empirical data are used in all cases. Note that Carrasco-Davis et al. (2020) is an accompanying work where we describe the ALeRCE stamp classifier in more
detail.

27 Note that the same object can have many associated alerts.
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catalog’s taxonomy into our own taxonomy, allowing us to
aggregate labels from different catalogs into a unified taxonomy.
Then, we assign a priority order that defines which labels to use in
case of disagreement between catalogs. These priorities are based
on discussions with community experts, a critical analysis of the
methods that were used to classify objects (e.g., manual versus
automatic), and an analysis of which catalogs tend to disagree
more with other catalogs from a visual exploration of catalog label
matrices (similar to confusion matrices but with rows and columns
as the classes in each catalog, potentially with different
taxonomies).

The catalogs we use to extract labels are, in order of priority,

1. the cataclysmic variables catalog, compiled by Abril et al.
(2020), including Ritter & Kolb (2003);

2. ROMABZCAT, the multifrequency catalog of blazars
from Massaro et al. (2015);

3. the catalog of type I AGNs from Oh et al. (2015);
4. the Million Quasars Catalogue from Flesch (2019);
5. the spectroscopically classified SNe in the TNS;28

6. the objects classified as YSOs in Simbad (Wenger et al.
2000);

7. the CRTS catalog of northern periodic sources (Drake
et al. 2014);

8. the CRTS catalog of southern periodic sources (Drake
et al. 2017);

9. the LINEAR catalog of periodic variables (Palaversa
et al. 2013);

10. the Gaia Data Release 2 (DR2) catalog of variable stars
(Mowlavi et al. 2018); and

11. the All-Sky Automated Survey for Supernova (ASAS-
SN) catalog of variable stars (Jayasinghe et al. 2019).

3.3. The Light-curve Classifier

This classifier computes classification probabilities for
objects with �6 detections in g or r. We represent individual
light curves as a vector of features compiled from the literature
and new features developed by the ALeRCE collaboration as
described in Sánchez-Sáez et al. (2021). One of the most
relevant new features comes from an irregularly sampled
autoregressive model (IAR) introduced in Eyheramendy et al.
(2018), which is able to estimate autocorrelation in irregularly
sampled time series in a statistically robust way. The
classification is done in a hierarchical fashion using a balanced
random forest classifier,29 which, in our tests, achieved better
accuracies than recurrent neural networks. As described before,
a given object will be first classified as either periodic,
stochastic, or transient and subsequently refined into 15
different classes as described in Section 3.1. The confusion
matrix associated with this classifier can be seen in Figure 3,
described in Sánchez-Sáez et al. (2021).

3.4. The Stamp Classifier

Inspection of ZTF image stamps suggests that it should be
possible to classify alerts based on the first detection set of
stamps (see Section 3.1.2). Therefore, we designed and trained
a stamp classifier based on a convolutional neural network with
the main motivation of finding SN candidates, using as input

the information contained in the first alert, including the
science, reference, and difference stamp set, as well as other
metadata, such as spatial location and data quality metrics.
The stamp classifier (Carrasco-Davis et al. 2020) is able to

discriminate among five classes, SNe, AGNs, variable stars,
asteroids, and bogus alerts, achieving 90% accuracy on a
balanced test set and a recall of 81% among spectroscopically
confirmed SNe from TNS. To improve the model interpret-
ability, we added a regularization term that maximizes the
entropy of the predicted probability for each class, enhancing
the different certainties for each prediction. This model is
currently running on ZTF alerts, and its results are publicly
available in the ALeRCE SN Hunter at https://snhunter.alerce.
online (see Section 5.2.1). The confusion matrix associated
with this classifier can be seen in Figure 4, reproduced from
Carrasco-Davis et al. (2020).

3.5. Metrics and Selection of Classification Model

In order to evaluate the classifiers that will go from initial
model training into production, we use a combination of
metrics and tests that take into account the labeled and
unlabeled data. We have found this to be relevant when using a
labeled training set known to be nonrepresentative of the
unlabeled data. First, we compute the test set classification
balanced (averaged per class) accuracy (ratio between correct
and total labels) and F1 score (the harmonic mean between
precision and recall) to take into account the accuracy,
precision, and recall of the classifier while considering the
class imbalance, which is very important when using observa-
tional data as training sets. Second, we look at the confusion
matrix to search for signs of overrepresentation of certain
classes that may not be evident in the balanced accuracy. Third,
for the light-curve classifier, we look for classification biases
with certain relevant variables, e.g., looking for a relatively
constant recall versus apparent magnitude relation for indivi-
dual classes when no significant bias exists. Fourth, we
compare the expected and inferred spatial and class distribu-
tions of the unlabeled data to discard models using astro-
physical knowledge. For example, if the classification model
were correct, one would expect the spatial distribution of the
different classes to follow known patterns, such as that most
Galactic classes should be concentrated around the Galactic
plane, extragalactic classes should be homogeneously distrib-
uted outside the Galactic plane due to extinction and source
confusion, and asteroids should be distributed around the
ecliptic. Additionally, we would expect the distribution of class
labels in the unlabeled set to follow known population ratios;
for example, we expect SNe Ia to be more abundant than SNe
Ibc. Therefore, the final choice of a classification model is
made considering all of these metrics and tests before the
model is brought into production, i.e., applying the model
using the available infrastructure with our latest pipeline for
nightly operations.

3.6. Stamp and Light-curve Classifier Comparison

As a consistency check between the two aforementioned
classifiers, we compare the distribution of classes of the stamp
classifier among those objects classified by the light-curve
classifier. In Figure 5, we show a matrix of stamp and light-
curve classifier classes, normalized along the light-curve classifier
classes. We can see that there is overall agreement between the two

28 https://wis-tns.weizmann.ac.il/
29 Using the imblearn library.
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classifiers, which highlights the complementarity between our two
classifiers and emphasizes the value of using the image stamps for
early classifications, as shown in Carrasco-Davis et al. (2019).

3.7. Outlier/Novelty Detection

Outlier/novelty detection refers to the automatic identifica-
tion of abnormal or unexpected phenomena embedded in data
(Faria et al. 2016). We are developing outlier detection
methods experimentally to focus on two problems: the
discrimination of outlier clusters of time series or image
stamps, i.e., cohesive and representative sets of examples
associated with interesting phenomena that are not character-
ized in the current training database, and the detection of
unexpected events occurring within a particular time series. To
solve the first problem, we are developing online one-class/
semisupervised outlier detection methods (Schölkopf et al.
2001; Chapelle et al. 2009; Reyes & Estévez 2020) to find
similarities between objects and automatically detect outlier
phenomena. We are addressing this problem from three
different perspectives: using autoencoders, generative adver-
sarial networks, and one-class neural networks. To find
unexpected events within time series, we are using robust
online nonlinear filters (Liu et al. 2011; Huentelemu et al.
2016). Traditional methods, such as Kalman and kernel filters,
are being extended to incorporate measurement uncertainties,
the heteroscedasticity of the noise, and the use of state space
formulations where states are unevenly separated in time.
For both problems, active-learning techniques (Zhu et al. 2003)

are being explored to select sets of the most uncertain objects and/

Figure 3. Confusion matrix obtained with the balanced hierarchical random forest light-curve classifier model in Sánchez-Sáez et al. (2021).

Figure 4. Confusion matrix obtained with the stamp classifier model in
Carrasco-Davis et al. (2020).
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or events to be shown to human experts. We are aiming to use
information theoretical feature selection (Estévez et al. 2009) and
feature extraction methods to reduce dimensionality and generate
visualizations that can be presented to the experts.

4. ALeRCE Pipeline and Infrastructure

ALeRCE is currently processing the alert stream provided by
the ZTF survey, but we expect to ingest other alert streams in the
future, such as those provided by ATLAS, HATPi,30 and LSST
(see Figure 1). The ZTF pipeline and alert distribution system are
described in Masci et al. (2019) and Patterson et al. (2019). Alert
packets contain image difference stamps and other metadata, whose
detailed description can be found at https://zwickytransientfacility.
github.io/ztf-avro-alert/schema.html. The ALeRCE system ingests
these alerts and processes them through a pipeline that is
divided into a combination of sequential and parallel steps, shown
schematically in Figure 6 and described below.

4.1. Ingestion and Kafka Topics

The ZTF alerts are sent as Avro packets,31 a data
serialization format that contains associated image stamps,
metadata, and information related to previous detections as
described in https://zwickytransientfacility.github.io/ztf-avro-
alert/schema.html. We use Apache Kafka,32 a framework for
working with streaming data, to receive the ZTF alert stream
and communicate information between the different steps of
our pipeline as independent Kafka topics. We use an Apache
Zookeeper cluster with a replication factor of 3, following
recommended practices, and three independent machines of
Kafka consumers that are responsible for reading data from the
alert queue. We have set up a Kafka cluster in Amazon Web
Services (AWS) to manage different topics associated with
different steps in the pipeline. Assigning different topics for
each step in the pipeline has the advantage of allowing
for alerts to be grouped in different batch sizes optimized for
performance. For example, querying the database for several
objects simultaneously can be faster than doing it sequentially
for a list of objects depending on the type of query, or, in the
case of cross-matching, it may be more efficient to group alerts

by their spatial location if the external catalog is stored
hierarchically, e.g., a tessellation of the sky. Another advantage
is that we can configure each topic independently for
performance, e.g., using different numbers of Kafka partitions
per topic.
We have tested different configurations of Kafka producers

to mimic an LSST-like stream of data, and we have found that
a cluster of three Kafka consumers with 12 partitions each
is capable of ingesting all of the different topics at a rate of
119.7MB s–1, that is, about three times faster than the average
alert production rate expected for LSST.

4.2. Database and Avro Repository

As alerts arrive, we store the original Avro files in AWS
Simple Storage Service (S3) buckets for future analysis and
extract a selection (in order to limit the size of the database) of
the fields contained in these packets to be added directly to a
database using a PostgreSQL database engine. As the data are
processed and object alerts aggregated, we add different
statistics to different tables. The main tables in our database
are as follows.

Figure 5. Fraction of objects predicted to belong to a given stamp classifier class (rows), normalized among the objects predicted to belong to a given light-curve
classifier class (columns). We considered a sample of 186,794 unlabeled objects that were classified with the stamp (Carrasco-Davis et al. 2020) and light-curve
(Sánchez-Sáez et al. 2021) classifiers.

Figure 6. ALeRCE pipeline structure from ZTF alert ingestion to the ALeRCE
streaming of the processed alert. Alerts ingested from the public ZTF stream
are first sent to four parallel Kafka topics: an Avro backup service in AWS S3,
the stamp classifier for early SN detections, a cross-match step to gather
information from public catalogs, and a light curve (LC) correction step. The
LC correction step is followed by an LC features computation step and LC
classifier and outlier detection steps, which are only applied to objects with six
or more detections. Note that the ML classification steps can also be fed with
information from the cross-match step. The tables of our database are modified
inside the pipeline steps for subsequent access via APIs.

30 https://hatpi.org/science/
31 https://avro.apache.org
32 https://kafka.apache.org
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1. The object table, which contains basic filter and time-
aggregated statistics, such as location, number of observa-
tions, and times of first and last detection.

2. The magstats table, which contains time-aggregated
statistics separated by filter, such as the average magnitude
or initial magnitude change rate.

3. The detection table, which contains the object light
curves, including their difference and corrected magni-
tudes and associated errors separated by filter (see
Section 4.4).

4. The non_detection table, which contains the limiting
magnitudes of previous nondetections separated by filter.

5. The feature table, which contains the object light-
curve statistics and other features used for ML classifica-
tion that are stored as json files in our database.

6. The xmatch table, which contains the object cross-
matches and associated cross-match catalogs.

7. The probability table, which contains the object
classification probabilities, including those from the stamp
and light-curve classifiers and different versions of these
classifiers.

8. The taxonomy table, which contains details about the
different taxonomies used in our stamp and light-curve
classifiers, which can evolve with time.

A webpage containing an updated description of the different
tables can be found at https://alerce.science. As the volume of
alerts grows for different projects, we expect to migrate some
of the previous tables to NoSQL database engines such as
Cassandra or MongoDB. After ingestion, the alerts undergo the
processing steps described next.

4.3. Stamp Classification

When an alert from a previously unreported object arrives,
its first available image stamps are used to classify it as either
SN, AGN, variable star, asteroid, or bogus, as explained in
Section 3.4. Note that if the first detection from an object did
not pass the ZTF real/bogus test but a subsequent detection
did, the first available image stamp will not be from the former.
This stamp classification is done within 1 s of the alert being
received and is automatically available in our database and the
SN Hunter tool (see Section 5.2.1), if the candidate is
consistent with being an SN. The details of the stamp classifier
are described in a parallel publication (Carrasco-Davis et al.
2020).

4.4. Light-curve Correction

As explained before, ZTF alerts are produced when a science
image contains a significant change with respect to a reference
image after aligning, scaling, convolving, and subtracting the
reference image from the science image. Flux differences with
respect to the reference image are reported as difference
magnitudes, and an associated flag (isdiffpos) is included
to indicate whether the difference is positive or negative. In the
case of ZTF, a reference image is defined by a unique reference
field identifier (rfid). If the source was present in the reference
image, it is possible to recover its actual apparent magnitude
from the difference and reference magnitudes. We do this
correction when the nearest cataloged object is closer than 1 4
(distnr< 1.4), providing a flag to indicate whether we think
the object is extended based on PanSTARRS and ZTF shape
parameters. The actual apparent magnitude, mcorr, and associated

errors, δmcorr, in the case of a pointlike source that was present in
the reference are the following:
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where mref is the magnitude of the object in the reference
image, mdiff is the magnitude associated with the absolute flux
difference between the science and reference images, sgn is the
sign of the difference (isdiffpos), δmref is the error
associated with the reference magnitude, and δmdiff is the error
associated with the difference magnitude. Note that we provide
both the original and corrected photometry. For the corrected
photometry, we include errors values with and without the term
inside square brackets in Equation (2) that originates from the
correlation between the reference and difference fluxes (see
derivation in Appendix).
It is important to note that if the difference flux is equal to

the reference flux and the sign of the difference is negative,
both the corrected magnitude and associated errors will
diverge, which is a limitation of using a logarithmic scale for
difference fluxes. This should normally not occur, since an alert
is triggered only when there is a significant difference with
respect to the reference. However, if the reference image
contains a transient source, the difference flux can eventually
become exactly minus the reference flux, and the corrected flux
is zero, which will lead to divergences depending on the noise.
We treat these cases by assigning values of 100 to the corrected
magnitudes and their associated errors.
We discuss in detail the derivation of these formulae, how

to include the effect of a change in the reference image, and
how we treat extended sources in the reference image in
Appendix.

4.5. Cross-match

A cross-match step runs with the stamp classifier and light-
curve correction, querying external catalogs in order to extract
additional information about the objects of interest. The ZTF alert
packets already contain the nearest solar system, PanSTARRS,
and Gaia cataloged sources. In addition to this information, we
query WISE and SDSS in order to obtain infrared and
spectroscopic information, if available, which can be critical to
better constraining some of the classes included in our taxonomy.
Additional catalogs will be included as they prove relevant. These
queries are done using the CDS cross-match API,33 which can
handle sufficiently large streams if alerts are grouped in batches
around the same region of the sky before querying.

4.6. Feature Computation

With the corrected light curves, we can compute light-curve
characteristics or features based on both the detections and
nondetections of a given object, as well as available cross-
matches. Advanced light-curve features are only triggered for
objects with �6 detections in g or r. The features computed are
a significantly extended version of the FATS library (Nun et al.
2017), called Turbo FATS, that is optimized for computation

33 http://cdsxmatch.u-strasbg.fr/xmatch/doc/
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speed and adds several new features. A description of these
features, which are contained in the feature table of our
database, can be found in Sánchez-Sáez et al. (2021).

4.7. Light-curve Classification

Objects having computed features are then processed by the
light-curve classifier described in Section 3.3. The results of
this classifier are obtained within a few tens of seconds from
ingestion for 95% of the objects. For a larger stream, this could
be maintained by scaling the infrastructure given the
embarrassingly parallel nature (i.e., no need of communication
between parallel tasks) of the light-curve correction, feature
computation, and light-curve classification tasks between
different alerts. The current model used for the light-curve
classifier is a hierarchical balanced random forest, as described
in Sánchez-Sáez et al. (2021).

After the light-curve classification step, we perform an
outlier detection step, which, as of 2021 February, is being
actively developed experimentally (see Section 3.7).

4.8. Database Integrity Tests

After the nightly ingestion and processing of the alerts, we
perform a series of database integrity tests during the day. This
consists of reanalyzing the Kafka topic associated with the last
night of observations to check that no alerts were lost during
the processing due to unexpected errors. If any alerts were
missed during the night, we add them to a specially created

Kafka topic that is then processed by our pipeline until no
missing alerts exist.

5. Data Products and Services

The ALeRCE broker provides several data products and
services that are constantly growing as we identify new
requirements from our community of users. New requirements
are defined by user stories, informal descriptions of desired
features from the perspective of an end user, that are translated
into different data products and services by astronomers on our
team following an Agile methodology. In this section, we list
the most important data products and services provided by
ALeRCE as of 2021 February, which are summarized in
Table 3.

5.1. Data Products

The ALeRCE data products can be divided into several
categories: the tables of a database, a repository of Avro files, a
repository of Jupyter notebooks, an output stream of annotated
and classified alerts, a GitHub repository with our open-source
code, a Grafana dashboard to monitor the status of the pipeline,
our main website, documentation websites, and tutorial videos
for new users. We provide a brief description of each of them in
what follows.

5.1.1. Database

The tables in our database integrate the information about
individual objects. A description of the database can be found

Table 3

Summary of ALeRCE Data Products and Services as of 2021 February

Type Name Address

Database ALeRCE DB PostgreSQL repository db.alerce.online

GitHub repositories ALeRCE open-source repositories http://github.com/alercebroker

Jupyter notebooks Science use-case notebooks http://github.com/alercebroker/usecases
Jupyter notebooks TNS upload notebooks http://github.com/alercebroker/TNS_upload

Output stream ALeRCE output Kafka stream Please contact us.

Website ALeRCE main website http://alerce.science/
Website ALeRCE workshops website http://workshops.alerce.online/

Dashboard ALeRCE Grafana pipeline dashboarda http://grafana.alerce.online/

Documentation ALeRCE API documentation http://alerceapi.readthedocs.io/en/latest/
Documentation ALeRCE client documentation http://alerce.readthedocs.io/en/latest/
Documentation ALeRCE tutorial videos https://bit.ly/2NHDagc

Web interface ALeRCE explorer http://alerce.online
Web interface SN Hunter http://snhunter.alerce.online
Web interface Cross-match interface http://xmatch.alerce.online
Web interface ALeRCE reporter http://reporter.alerce.online/
Web interface TOM Toolkit plug-in http://tom.alerce.online/

API ZTF DB access http://ztf.alerce.online
API Avro/stamp service http://avro.alerce.online
API ZTF cross-match service http://xmatch-api.alerce.online
API catsHTM cross-match service http://catshtm.alerce.online
API TNS cross-match service http://tns.alerce.online
API Finding chart generator http://findingchart.alerce.online

Note.
a Request access.
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in Section 4.2. The tables from our database are open for direct
exploration in read-only mode, as shown in some of our
use-case Jupyter notebooks (https://github.com/alercebroker/
usecases), although we recommend accessing them using our
different APIs for simple queries (see Section 5.2.2). A detailed
description of the tables and schema used in our database can
be found in https://bit.ly/3oxhpzb.

5.1.2. Avro Repository

Apart from the previous tables, a copy of the original Avro
files contained in the ZTF stream are stored in AWS S3. These
Avro files can be accessed using our Avro/stamp API.

5.1.3. GitHub Repositories

All of our open-source code can be found in the GitHub
repository, https://github.com/alercebroker. In the course of
developing this project and as of 2021 February, we have
created 151 repositories, 42 of which have been made public
for our community of users. These repositories can be forked or
modified for external use. The pipeline steps are contained in
these repositories, and new version numbers are defined when
dockerized versions of the steps are created.

5.1.4. Use-case Jupyter Notebooks

We have compiled a list of example Jupyter notebooks that
show how to use our API or directly access our database
focused around different science cases, such as SN, variable
star, AGN, and asteroid studies. They can be found at https://
github.com/alercebroker/usecases.

Apart from these notebooks, we have created a special
notebook and associated GitHub repository for the inspection
and submission of SN candidates to TNS (https://github.com/
alercebroker/TNS_upload). In this notebook, users can interact
with Hierarchical Progressive Surveys (HiPS; Fernique et al.
2015) PanSTARRS images to easily select the candidate host
galaxies using ipyaladin, NED, Simbad, and SDSS DR15. This
repository includes a tutorial explaining all of the steps required
to upload candidates to TNS, including tutorial videos to guide
users in the process.

5.1.5. Output Stream

A real-time output stream is provided to report database
changes as new alerts arrive and are processed by our pipeline,
including an update on the classification probabilities and basic
statistics. Users can connect to this stream using Apache Kafka
upon request.

5.1.6. Grafana Dashboard

A Grafana dashboard is available to monitor the ALeRCE
pipeline and associated database and infrastructure (http://
grafana.alerce.online). This dashboard shows the status of the
Apache Kafka servers and relevant metrics about the number of
alerts being processed, the PostgreSQL database and associated
servers, and the front-end servers. Access to this dashboard can
be given upon request.

5.1.7. Main Website, Documentation, and Tutorial Videos

ALeRCE’s main website, which summarizes all of our data
products and services, can be accessed at http://alerce.science.

Documentation for our API services and client (see
Section 5.2.1) and a series of detailed tutorial videos for our
community of users can be found at https://bit.ly/2YoEKbU.
A special website for workshops organized or coorganized by
ALeRCE is also available, with links to presentations and
Jupyter notebooks that can be run using Google Colab for
easier adoption.

5.2. Services

Apart from the previous data products, several services are
provided to facilitate the exploration of the ZTF stream and
associated objects. They are divided into web interfaces, which
are websites that allow the simple exploration of the alert
stream, and APIs, which power the previous web interfaces and
allow for the flexible integration of ALeRCE into the time-
domain ecosystem.

5.2.1. Web Interfaces

ALeRCE Explorer (http://alerce.online). The ALeRCE
explorer is the main tool to explore the astronomical objects
recovered from the ZTF alert stream. Its landing page consists
of two main sections: the Search and Results sections (see
Figure 7). The Search section is where users can filter objects
by selecting their unique identifier or different combinations of
classifier, class, class probability, number of detections, and
sky coordinates. The Results section is where the results of the
filtered objects are shown, sorted by classification probability

Figure 7. ALeRCE explorer web interface (http://alerce.online) initial Search
and Results view. The Search panel allows users to directly filter by object
identifier (A1); inferred type using either the stamp or light-curve classification
models (A2), a given class (A3), and a minimum classification probability
(A4); minimum and maximum number of detections (A5); and minimum (A6)
and/or maximum (A7) discovery date in Modified Julian Dates or calendar
dates or by location in the sky using a cone search defined by an R.A. (A8),
decl. (A9), and search radius (A10). The Search button (A11) submits queries,
and the Clear button (A12) clears the search options. The Results panel shows
the results of the previous query. First, it shows the total number of results
(B1), which are displayed in a paginated format. Users can select which
columns to display (B2). The columns shown in this figure are the object
identifier (B3), number of detections (B4), time of first (B5) and last (B6)
detection, and coordinates (B7). Other columns displayed by default (not
shown in this image) are whether the object has cross-matches and the stamp
and light-curve classifier classes and probabilities. Clicking on an object links
to the Object view (Figure 8).
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or other variables. Clicking on an individual object will take the
user to the object view page (see Figure 8).

The object view page is divided into two tabs, the General
Information and Cross Matches tabs, with different panels each
(see Figure 8). In the General Information tab, users can see
some basic statistics about the object, generate a finding chart,
query different catalogs at the position of the object (the NASA
Extragalactic Database (NED), Simbad, TNS, PanSTARRS, or
SDSS), or quickly see basic TNS information about the object.
The user can see the object’s light curve, including detections
and nondetections, with the capability of plotting the raw
difference light curve, a corrected apparent magnitude (which
includes the contribution of the reference image), or a folded
version of the corrected apparent magnitude using the best-
fitting period. The light-curve information can be downloaded
as comma-separated values (CSVs), and every point in the light
curve can be hovered over to see more information or clicked
on to show its associated image stamp. HiPS images and

catalogs around the position of the object are shown using
Aladin (Bonnarel et al. 2000), with superimposed NED and
Simbad clickable objects. The science, reference, and differ-
ence image stamps associated with any point in the light curve
can be shown in the stamps section, where the stamps can be
explored by selecting different dates or hovering over them,
seen in full screen, or downloaded as fits files. The full Avro
packet information can also be explored. The classification
probabilities are shown in the stamp and light-curve classifier
tabs, where a radar plot is used to show the class probabilities
assigned by the light curve– or stamp-based classifiers, if
available. Finally, in the Cross Matches tab, users can see all of
the cross-matches contained in the catsHTM set of catalogs for
a given separation, which can be selected manually with a
sliding bar (see Figure 9).
The ALeRCE explorer is where most of our web develop-

ment has been focused, including new tools, as requested by
our community of users, but also new sources of data that in the

Figure 8. ALeRCE explorer web interface (http://alerce.online) object view as of 2021 February. At the top left, users can switch between the General Information
(i; this figure) or Cross Matches (ii) object views, and at the top right, between different objects (iii or the arrow keys) if directed from the results table of a previous
query or to go back to the Search and Results view (iv or the escape key). The General Information view contains six different panels that we demarcate with colored
text. At the top left, the object information panel shows the object’s unique identifier (A1), most likely class (A2), coordinates (A3) in different formats (A7), number
of detections and nondetections (A4), and first and last detection times (A5) in calendar or Modified Julian Dates (A6). It also contains links to the finding chart
generator tool (A8), NED (A9), Simbad (A10), TNS (A11), PanSTARRS (A12), and the SDSS DR15 navigation tool (A13). The latest type, name, and redshift
associated with the object in the TNS are also shown (A14). At the top middle, the light-curve explorer panel displays the latest light curve of the object, including
both detections and nondetection upper limits in both bands (B1), which can be turned on/off individually (B2). The light curve can be zoomed in and out (B3), and
users can hover over individual points (B4) to see the exact date, magnitude, and alert identifier (B5) or click to display its associated stamps and full alert information
in the stamp explorer panel. The light curve and associated data can be downloaded (B6), and users can select whether to show the difference magnitude (B7); the
apparent magnitude (B8), i.e., corrected by the flux in the reference image; or the period-folded apparent magnitude (B9), assuming that the light curve is periodic and
using a periodogram to compute the most likely period. At the top right, the Aladin explorer panel shows an interactive Aladin window (C1) with a PanSTARRS
image at the location of the candidate (C2), in this case, a confirmed SN near its likely host galaxy (C3). An overlaid catalog of objects can be clicked on to view more
information (C4), such as the host redshift (C5). At the bottom left, the light-curve statistics panel shows different statistics (D1) computed over the g (D2) and r (D3)
bands of the apparent magnitude light curve. In the bottom middle, the classification probabilities panel shows the classification probabilities according to our light-
curve (E1) or stamp (E2) classifiers, when available. A radar plot of the class probabilities for the taxonomy used in the classification model (E3) is shown. Hovering
over the radar plot displays the numerical values of the probabilities (E4). At the bottom right, the stamp explorer panel shows the science (F1), reference (F2), and
difference (F3) image stamps associated with any point in the light curve, which can be downloaded for further analysis (F4) or displayed in full-screen mode (F5).
Users can switch between the previous or next stamps in time (F6) or select any particular date (F7) of the light curve that is contained in the public ZTF stream. Users
can select between displaying crosshairs (F8) or simultaneously hovering and zooming (F9) over the stamps. They can also see the full alert information in the
associated alert packet (F10). Note that those points in the light curve that do not pass the ZTF’s real/bogus test will not have stamps available for display, since they
do not trigger an alert in the public stream.
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future will allow for the multistream exploration of astro-
physical objects. We are developing a modular data exploration
library that will be gradually expanded to include new sources
of streaming data.34 This library is used for a new version of
the ALeRCE explorer that was being tested as of 2021
February, which is connected to a new database and can be
previewed in http://stage.alerce.online.

SN Hunter (https://snhunter.alerce.online). The SN Hunter
platform allows users to visualize and explore the best and most
recent SN candidates (see Figure 10). These candidates are
obtained using the convolutional neural network that powers
the ALeRCE stamp classifier and can be seen in the SN Hunter
just seconds after being received from ZTF. Users can see the
spatial distribution of the candidates in celestial coordinates and
in comparison to the Milky Way plane or the ecliptic, as well as
a table that shows them sorted by classification probability,
discovery date, or number of observations. Selecting a
candidate displays an Aladin HiPS image at the location of
the object, as well as the science, reference, and difference
images contained in the Avro file. The candidates’s unique
identifier, coordinates, and first observation properties and the
properties of the closest PanSTARRS object are also shown, as
well as links to the ALeRCE explorer for the same object or for
NED, TNS, and Simbad sources around the position of the
object. Users can also see the full alert information contained in
the original Avro file of the alert by clicking the Full Alert
Information button.

A key feature of the SN Hunter is the ability to receive
feedback from users who have logged in. If a candidate appears
to be bogus, users can label the candidate as such to further
enhance the training set. Moreover, if the candidate appears to
be an SN or extragalactic transient, the user can label it as a

possible SN to be sent to the ALeRCE reporter tool (see
below). The list of possible SNe can then be explored by the
team with our reporter tool, which can then be used to submit
targets to the TOMs for follow-up. We regularly compute user
labeling metrics in order to provide feedback or identify
potentially malicious labeling, and we can use more than one
label per object in order to prevent accidental labeling.
Reporter (https://reporter.alerce.online). The ALeRCE

reporter tool is a platform that serves to manage user feedback
in general (see Figure 11). As of 2021 February, it served three
purposes: to manage the feedback provided by the SN Hunter
interface, to connect with the TOM Toolkit interface, and to
manage internal data classification challenges. The user
feedback provided via the SN Hunter consists of bogus alert
labels for alerts that appear to be bogus and possible SN alert
labels for alerts or groups of alerts that appear to be originated
by extragalactic transients. The connection of SN candidates
with the TOM Toolkit interface is also done from the reporter
tool, sending users to the TOM Toolkit interface after clicking
on a reported candidate. Finally, the reporter tool can be used to
create data challenges, manage associated user entries, produce
metrics and confusion matrices, and show leader boards as in
Kaggle. The data challenges are key for the collaboration’s
periodic hackathons, where we set different classification
challenges that motivate the ML team to develop new ideas
and tools.
TOM Toolkit Plug-in (https://tom.alerce.online). This plat-

form is used to manage and submit candidates to the TOM
Toolkit (https://lco.global/tomtoolkit/). Users that have
access rights to the ALeRCE reporter can connect with the
TOM Toolkit via this interface, allowing them to submit
observational requests with detailed instrumental specifications
to the queue of different observatories.
Cross-match Service (http://xmatch.alerce.online). ALeRCE

provides a cross-match service that allows users to submit an
arbitrary CSV file with objects and coordinates of their favorite
targets (see Figure 12). After a file is uploaded, the user is
asked to select the names of the identifier, R.A., and decl.
columns. After this is done, the closest objects in ZTF are
returned, adding several columns from the ALeRCE object
table to the submitted objects. A paginated table is shown for
exploration, and the output can be downloaded as a CSV file.

5.2.2. APIs

All of the interactions between the web interfaces and the
database or the Avro/stamp repository are done via APIs.
These APIs serve most of ALeRCE’s data exploration tools
following the principle of maximizing the modularization of
our different services. They are also the key elements that will
allow ALeRCE to integrate seamlessly with the astronomical
time-domain ecosystem. These APIs are documented on the
ALeRCE API Documentation website: https://alerceapi.
readthedocs.io/en/latest/. Note that as of 2021 February, a
new API was being tested that is better documented, easier to
use, and connected to an entirely redesigned database (preview
at http://dev.api.alerce.online/). Here we describe the services
available as of 2021 February.
ZTF Database Access Service (http://ztf.alerce.online). This

service allows users to query the ALeRCE database tables
without needing any authentication. This API includes services
to query objects filtered by unique object identifier, number of
detections, class, class probabilities, coordinates, or detection

Figure 9. Object cross-matches view of the ALeRCE explorer as of 2021
February. Labels i, ii, iii, and iv are the same as in Figure 8. This panel allows
users to find the closest cross-matching sources in the catsHTM data set, given
a maximum cross-matching distance (A1) defined via a sliding bar (A2) or
directly via its numeric value (A3). The closest cross-matches among different
catalogs (A4) are shown with their associated distances (A5), allowing for an
expanded view of the columns available in each catalog (A6). For more
information, see the catsHTM (A7) reference (Soumagnac & Ofek 2018).

34 https://vue-components.alerce.online/
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times. Users can also get the associated SQL command for a
given query, all detections for a given object, all nondetections
for a given object, the classification probabilities for a given
object, or the features used as input for the ML classifiers for a
given object. The documentation can be found at https://
alerceapi.readthedocs.io/en/latest/ztf_db.html. This service is
used in the ALeRCE explorer and the SN Hunter (see
Section 5.2.1).

Avro/Stamps Service (http://avro.alerce.online). This service
allows users to access the alert Avro files and their associated
stamps. The input is the unique object identifier and the unique
stamp identifier. Users can get the Avro file, a specific field
from an Avro file, or the science, reference, and difference
image stamps contained in an Avro file. The documentation can
be found at https://alerceapi.readthedocs.io/en/latest/avro.
html. This service is used in the ALeRCE explorer and the SN
Hunter (see Section 5.2.1).

ZTF Cross-match Service (http://xmatch-api.alerce.online).
This service allows users to submit an arbitrary catalog and get
the nearest ZTF sources and their separation and properties. It
is used in the cross-match interface (see Section 5.2.1).

catsHTM Cross-match Service (http://catshtm.alerce.online).
This service allows users to do cone searches to a given location
using the catsHTM catalogs (Soumagnac & Ofek 2018). This
includes cone searches returning all objects closer than a given
distance from all or a specific catalog or only the closest object
from all or a given catalog. This service is used in the ALeRCE
explorer Cross Matches view (see Section 5.2.1). The documenta-
tion, also indicating a list of all available catalogs, can be found at
https://alerceapi.readthedocs.io/en/latest/catshtm.html.
TNS Cross-match Service (http://tns.alerce.online). This service

allows users to query TNS information about an object centered
around a given position in the sky. It queries the TNS API and
returns the TNS name, type, and redshift, and it is used by the
ALeRCE explorer General Information tab (see Section 5.2.1).
Finding Chart Service (http://findingchart.alerce.online). This

service provides a finding chart associated with a given object’s
unique identifier. It returns a PDF file with a PanSTARRS
reference image indicating the location of the candidate, as well as
the science, reference, and difference image stamps. An example
finding chart can be seen in Figure 13. This service is used in the
ALeRCE explorer (see Section 5.2.1).

Figure 10. The SN Hunter web interface (http://snhunter.alerce.online) as of 2021 February, which allows users to find the highest stamp classification probability
and most recent SN candidates in the ZTF alert stream in real time. This tool is divided into five panels and used by our collaboration to select candidates for
submission to TNS. Starting at the bottom right, the top candidates panel shows a list of the top 10–1000 (default 100; A1) SN candidates in terms of their stamp
classifier SN probabilities within the last 1–7 days (default 24 hr; A2). This list can be refreshed at any moment (A3). The results are shown in a paginated table sorted
by either object identifier (A4), discovery date (A5), score or stamp classifier SN probability (A6), or number of detections (A7). Each candidate can be clicked on for
exploration, opening up the top panels. At the bottom left, the celestial map panel shows the spatial distribution of all of the candidates in the top candidates panel,
with a circle size proportional to their score (B1) and centered around the currently selected candidate (B2). Also shown are the position of the ecliptic (B3) and Milky
Way plane, where the white contour levels crudely denote the density distribution of Galactic stars (B4). At the top left, the alert information panel shows the
information about the currently selected candidate, including its object identifier (C1); coordinates (C2); band (C3); magnitude and time (C4) at first detection; and
information about the closest PanSTARRS source, including its identifier (C5), distance (C6), and star galaxy score (C7, varying between zero and 1 between galaxies
and stars). Links to the ALeRCE explorer object view (C8), NED (C9), TNS (C10), and Simbad (C11) are provided. All additional information contained in the alert is
also available for exploration (C12). At the middle top, the Aladin explorer panel provides an interactive Aladin window (D1) centered around the selected candidate
(D2), where a host galaxy may be seen in PanSTARRS DR1 gri color images (D3). Note that although there is a clear host galaxy associated with this candidate, its
closest source is a star (D4), which explains the star galaxy score displayed in C7. Finally, at the top right, the stamps and user feedback panel is where the science
(E1), reference (E2), and difference (E3) ZTF image stamps are displayed for the currently selected candidate. If users are logged in using a Google account (i), they
can label candidates as possible SNe (E4) or report them as bogus (E5) in order to improve the stamp classifier training set.
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Python API Client. We provide a Python client for easier access
to the previous API services. It can be installed via pip and is
documented at https://alerce.readthedocs.io/en/latest/. You can
find examples of how to use the client in the use-case notebooks.

6. Results

The ALeRCE broker has processed 1.5× 108 alerts from the
public ZTF stream at a rate of about 5× 107 yr–1, which
corresponds to about 1.4× 105 night–1, or about five alerts s–1,

on average. This is ∼80 times less than the expected alert rate
of LSST of about 107 night–1. However, the ZTF public stream
alert production rate is not constant, with some nights
producing a few million alerts, which we have been able to
ingest without significant wait-time increases. In Figures 14
and 15, we show the distribution of execution (CPU + input/
output) and elapsed (including queue times and previous steps)
times at the different steps of our pipeline for a typical ZTF
night, including the distribution of ZTF streaming times (time
between observation and ingestion) for comparison. With our

Figure 11. The ALeRCE reporter web interface (http://reporter.alerce.online) is used to manage user input in the ALeRCE ecosystem. Here we show two types of
inputs: the reporter tool, which manages input labels from the SN hunter, either bogus (A) or possible SN (B), which in the latter case become candidates to be sent to
the TOM; and the challenger tool, which we use to manage data classification challenges or hackathons. In the TOM list of possible SNe, users can select a given
period of time of recently reported candidates (B1), which returns a given number of candidates (B2). Users can explore the object identifiers (B3), number of
independent reports for the given candidate (B4), source of the label (B5), date of first (B6) and last (B7) reports, and possible actions (B8). Among the possible
actions, users can explore who has reported a candidate (B9), create a target for observations in the TOM Toolkit (B10), edit the observational properties of an already-
created TOM candidate (B11), or remove the target from the TOM Toolkit (B12). The full list can be downloaded as a CSV file (B13).

Figure 12. Cross-match service interface (https://xmatch.alerce.online). Users can input arbitrary catalogs as CSV files to be cross-matched to the ZTF database. The
procedure consists of selecting an input catalog CSV file (A) and then indicating the columns in the file that will be used as the identifier (B1), R.A. (B2), and decl.
(B3), as well as the maximum radius used to search for the closest cross-matching source (B4). The information provided allows for the partial exploration of the input
file (B5) by a given number of rows (B6) in paginated form (B7). After submitting the catalog (B8), users can visually explore and download the cross-matched
catalog (C).
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current infrastructure, we can process ZTF alerts in real time,
with classification delays being dominated by the ZTF
streaming times. The latest version of the ALeRCE pipeline
has been tested at rates of about 400 alerts s–1, which is more
than the expected rate of LSST.

As of 2021 February, we had 5.1× 107 objects, 1.5× 108

detections, and 1.7× 109 nondetections in our database. There are
1.1× 106 objects classified by the light-curve classifier and
3.4× 107 objects classified by the stamp classifier, which started

being applied to new alerts in 2019 August. For a distribution of
the ML inferred classes in these samples, see our accompanying
papers (Carrasco-Davis et al. 2020; Sánchez-Sáez et al. 2021).
The associated confusion matrices can be seen in Figure 3 and 4,
and a comparison between the two classifiers can be seen in
Figure 5. Note that our classifiers are continuously improving and
that the choice of model is not based solely on a balanced
accuracy score but also on a study of the relative frequency and
spatial distribution of classes in the unlabeled set, which we have
found to be an important verification when the training set is not
representative of the unlabeled set.
An important tool to connect ALeRCE with the SN community

of users is the SN Hunter. We have used it to report 6162
previously unreported astrophysical transient candidates to TNS,
883 of which have been classified spectroscopically (with less
than 1% contamination among those classified spectroscopically;
see Figure 16). Among these, we have found 128 SN candidates
rising faster than 0.4 mag day–1 and 19 faster than 1.0 mag day–1

at discovery (see Figure 17). In the process, we have visually
inspected 56,685 candidates, saving in our database 35,201 bogus
candidates since 2019 October and 21,484 transient candidates
since 2020 January, when we added the bogus and possible SN
buttons to the SN Hunter, respectively. The bogus examples have
been used to increase the size and diversity of our training set and
resulted in significant improvements to the stamp classifier.
We are slowly building an international community of users.

In order to facilitate the adoption of our tools by the
community, we do not require users to create accounts to
access our system, which makes it difficult to precisely estimate
the number of ALeRCE users. However, we can use Google
Analytics35 to quantify our online community of users. Since
2019 July, when Google Analytics was added to the ALeRCE
Explorer and SN Hunter tools, we have had 5066/1217 users

Figure 13. Section of the finding chart generated automatically for object
ZTF20aaelulu, or SN 2020oi, a Type Ic SN that occurred in the nearby galaxy
M100. The finding chart shows a PanSTARRS DR1 image (A1) centered
around this object (A2, A3), indicating the direction of the north and east axes
(A4), the coordinates (A5), and the pixel scale and field size (A6). It also shows
the ZTF science (A7), reference (A8), and difference image stamps (A9).
Additional information, such as the coordinates in a different format,
magnitude statistics, or time of first and last detection, are also included. Note
that this SN was reported to TNS by ALeRCE after being classified as a
possible SN with just a single detection using the SN Hunter tool (see
Figure 10).

Figure 14. Cumulative distribution function of ALeRCE pipeline step average
execution times, or the average time needed for an alert to be processed in a
given step in batches, including only CPU and input/output times. In this
figure, we consider an incoming alert rate of about 25 s−1

(we expect about 5
and 350 s−1 for ZTF and LSST, on average, respectively).

Figure 15. Same as Figure 14 but showing the cumulative distribution function
of ZTF streaming times in comparison to the cumulative distribution function
of ALeRCE pipeline elapsed times. The ZTF streaming times correspond to the
difference between the reported observation time and the alert ingestion time,
obtained empirically in a typical night of operations. The ALeRCE pipeline
step elapsed time stands for the time needed for an alert to move from ingestion
to the completion of a given step, including queue times. The difference
between execution and average execution times is due mostly to the fact that
some steps work with batches of alerts, increasing the efficiency, but also the
queue times per alert. Note that in this experiment, we perform cross-matches
after the stamp classifier.

35 https://analytics.google.com
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(unique combinations of device and browser, as per the Google
definition) and 23,672/6218 sessions in the AleRCE Explorer/
SN Hunter. This does not include the use of APIs or direct
connections to our database. Our users are currently distributed
in 66 countries (see Figure 18), with the top ones being the U.S.

(25.4%), Chile (21.9%), Spain (9.9%), China (8.2%), Japan
(8.0%), and the U.K. (4.7%). We are continuously listening to
our users via tutorial workshops to include new features and
create new use-case Jupyter notebooks for different science
cases. We encourage users to create additional use-case
notebooks and contribute to our open-source repository
(https://github.com/alercebroker/usecases).

7. Discussion and Conclusions

The ALeRCE broker is a new-generation astronomical alert
broker processing alerts in real time from ZTF and preparing to
become a community broker for LSST. We are an inter-
disciplinary, interinstitutional, and international team led from
Chile using Agile methodologies to develop new digital
components for the astronomical time-domain ecosystem in
the era of large etendue telescopes.
In this paper, we have reported the motivation, challenges,

methodologies, and first results of the ALeRCE broker. The
main motivation for ALeRCE is to provide a rapid classifica-
tion of events to enable fast follow-up and characterization, but
it is also intended to provide a systematic classification of all
variable objects for a self-consistent analysis of large volumes
of events in the observable universe. Our primary scientific
drivers are the study of transients, variable stars, and AGNs,
but we also provide solar system object classifications for
further analysis.
We describe the infrastructure, processing steps, data

products, tools, and services that work in real time. We ingest,
aggregate, and cross-match the alert stream and apply two ML-
based classifiers to the data (see Section 3). First, a stamp
classifier is applied to all alerts associated with previously
unreported objects using the first image stamps as input and a
simple taxonomy. Second, a light-curve classifier with a more
complex taxonomy is applied to all objects with �6 detections
in g or r. We are also experimentally applying outlier detection
methods to the data, which we hope to make public in real time
after significant testing is done. To our knowledge, ALeRCE
was the first public broker to provide real-time classification of
the ZTF alert stream into an astrophysically motivated
taxonomy based on the alert image stamps or their light curves.
Regarding the processing of the data, our processing times

per alert are of the order of tens of seconds, significantly
smaller than the current ZTF streaming times (see Section 6).
Moreover, we have run experiments at ingestion rates similar to
those expected for LSST.

Figure 17. Detection magnitude vs. magnitude rise rate at time of detection for
the SN candidates reported to TNS by ALeRCE based on their first alert image
stamps. The color indicates the peak magnitude of the candidate. We only show
candidates detected rising faster than 0.4 mag day–1, a sample that includes 128
SN candidates. We individually label 19 candidates that rose faster than 1 mag
day–1 at detection. Of these candidates, ZTF 20abybeex, ZTF 20ablygyy, ZTF
20abccixp, ZTF 20aapycrh, ZTF 20aapjiwl, and ZTF19 abueupg are SNe II;
ZTF 20aatzhhl and ZTF 20abwzqzo are SNe IIb; ZTF 19abvdgqo is an SN Ib;
ZTF 20aaelulu is an SN Ic (shown in the inset plot); ZTF 20acucbek, ZTF
20acgbkji, ZTF 20abqmtsh, and ZTF 19abkrbjt are SNe Ia; ZTF 19achznks and
ZTF 20acgrjqm appear to be flaring AGNs; ZTF 20aafdhqm is a transient that
coincided with a previous SN candidate (PS1-13dgc); and ZTF 19aadnhaw and
ZTF 20abpgnos are probably novae based on their light curves.

Figure 18. Geographic distribution of users of the ALeRCE Explorer
according to Google Analytics. The number of users is estimated by counting
the unique combinations of devices and browsers accessing our website. In
total, there are 5066 estimated users coming from 66 different countries
accessing the ALeRCE Explorer.

Figure 16. Sample of spectroscopically classified transients first reported by
ALeRCE to TNS from 6162 SN candidates submitted based on their first alert.
Out of 883 candidates observed spectroscopically, 865 were classified as SNe,
five as TDEs, two as unclear, four as galaxies (with one having an SN-like light
curve), five as variable stars, one as an AGN, and one as other. Of the 865
confirmed SNe, 629 are SNe Ia, 171 are SNe II, 60 are SNe IIb/Ib/Ic, two are
SLSNe, and three are classified as just SNe. The two unclear cases, both of
which had SN-like light curves, are AT 2019yzs (ZTF 19adcbnty), which could
be an SN, TDE, or AGN, and AT 2020bdh (ZTF 20aaivtof), which has a very
noisy spectrum.
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Our database contains object-, detection-, and nondetection-
based families of tables with increasing numbers of rows that
are indexed for fast query speeds. All relevant tables are public
with read-only access, although we recommend accessing them
via our different APIs that power all of our web-based services
and Python client. We provide extensive documentation for our
different data products and services, which can be found in our
main website, http://alerce.science. All of our data products,
documentation, tools, and services are summarized in Table 3.

Apart from providing a classified stream of data upon
request, our two most important web services are the ALeRCE
Explorer (https://alerce.online) and the SN Hunter (https://
snhunter.alerce.online), which are publicly available and
described in detail in Section 5.2.1. The ALeRCE Explorer is
the main tool to explore the objects contained in the ZTF public
stream, allowing for simple queries and providing a user-
friendly visualization of their light curves, cross-matches,
image stamps, and classification probabilities. The SN Hunter
tool is targeted for the transient community to enable a rapid
reaction, allowing users to quickly explore and provide
feedback on the latest SN candidates contained in the stream.
We use this tool to submit new SN candidates to the TNS at an
average rate of about nine night–1, with 6162 reported
candidates since 2019 August. We also use this tool to select
candidates for follow-up via the TOM Toolkit.

An important goal of ALeRCE is to provide a good user
experience, which should allow for a smooth transition into a
time-domain ecosystem dominated by large alert streams and
automated components where astronomers and data scientists
are not replaced but instead aided by ML tools to achieve new
discoveries. Thus, we are developing different modular
components for the visualization of the alert stream data,
optimized for usability after testing with our community of
users in regular tutorials and hackathons. The use of Agile
methodologies with a fully dedicated interdisciplinary team of
engineers and astronomers has been critical to develop
ALeRCE at the speed required by the community. Collabora-
tion remains essential among brokers to bring a more diverse
set of ideas into our community and add resilience to the time-
domain ecosystem in the era of large etendue telescopes.

One of the biggest challenges ahead for ALeRCE is the ability
to scale to significantly larger streams, from ∼1.4× 105 to >107

alerts night–1, and with significantly more objects generating alerts,
from a few 107 to >109 objects. For this, we will migrate some of
our tables from an SQL centralized database engine to a NoSQL
distributed database engine (e.g., Cassandra, MongoDB). We are
running different tests to determine the efficiency and cost of the
different available solutions in collaboration with other brokers
(Fink). We have performed experiments at rates larger than
expected for LSST for the messaging system (4000 messages s–1),
processing steps (400 messages s–1), database insertions (1.8×
105 messages s–1), and database spatial queries (104 messages s–1).
Another important challenge is to determine what fraction of our
storage and computing services should be located in the cloud
(e.g., AWS, where we currently operate some of our services)
versus on-premise infrastructure. It seems likely that the answer
will be a hybrid solution, with cloud and on-premise infrastructure
optimized for a better user experience while minimizing the
operational costs.

Achieving more complex taxonomies in an era of multi-
stream, multimessenger astronomy is another important

challenge ahead. In fact, the large number of events expected,
combined with the addition of heterogeneous streams spanning
different depths, cadences, wavelengths, and messengers, will
likely unveil new populations that would not have been
possible to identify otherwise. Encompassing the full diversity
of variable classes in the universe with a fixed taxonomy is
unfeasible; thus, our taxonomy will continue to grow and
evolve with time. Eventually, a combination of domain
knowledge, via supervised training, and unsupervised, more
data-driven taxonomies will become necessary. Training and
classifying with missing data, as most streams of data will be
sparse in comparison to that of LSST, will also become
important.
Regarding the challenges of ML classification, we are trying

different strategies. We are introducing new features, e.g., a
complex number extension to the IAR model that allows for
positive as well as negative autocorrelation (Elorrieta et al.
2019) further expanded to bivariate or higher-dimensional time
series and includes different covariance structures. From these
models, we expect to extract useful features for classification,
as well as be able to do prediction, interpolation, and
forecasting on time series. We are also testing methods to
combine real, augmented, and simulated data; new ways to
combine and expand our stamp and light-curve classifiers; or
different recurrent neural networks applied to the light curve
(e.g., Muthukrishna et al. 2019) and image stamp series (e.g.,
Carrasco-Davis et al. 2019); or different outlier detection
methods.
Finally, we note that, given the continuously evolving nature

of ALeRCE, this paper provides a snapshot of the current status
of ALeRCE as of 2021 February. We are constantly listening to
our community of users in an effort to introduce new data
products, tools, and services. Some of the services under
development include custom-made filters for the alert stream
via extension of the SN Hunter, watch lists, batch processing
tools, and a simple tool to perform complex queries in our
database. Our preferred way of communication is through
issues in our GitHub repositories (https://www.github.com/
alercebroker), but users can also contact us directly via https://
alerce.science.
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maintains some of our infrastructure. This work has been
possible thanks to the use of AWS-U.Chile-NLHPC credits.
This work was funded in part by project CORFO 10CEII-9157
Inria Chile. Powered@NLHPC: This research was partially
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Software: Aladin (Bonnarel et al. 2000), Apache ECharts,36

Apache Kafka,37 Apache Spark (Zaharia et al. 2016), ASTROIDE
(Brahem et al. 2018), Astropy (Astropy Collaboration et al. 2013),
catsHTM (Soumagnac & Ofek 2018), Dask (Rocklin 2015), FATS
(Nun et al. 2017), Grafana,38 Imbalanced-learn (Lemait̂re et al.
2017), ipyladin (Boch & Desroziers 2020), Jupyter (Kluyver et al.
2016), Keras (Gulli et al. 2017), Matplotlib (Hunter 2007), NED
(Steer et al. 2017), P4J (Huijse et al. 2018), Pandas (McKinney
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scikit-learn (Pedregosa et al. 2011), Simbad-CDS (Wenger
et al. 2000), Tensorflow (Abadi et al. 2016), Vue,40 Vuetify,41

PostgreSQL,42 XGBoost.43

Appendix A
Light-curve Correction Derivation

A.1. Light-curve Fluxes

An alert is originated when a significant flux is detected at
some location of a difference image between a science and a
reference image. In the ZTF alert stream, the difference and
reference fluxes are reported for every alert. The science flux is
not reported, but it can be recovered from the difference and
reference images. The difference flux is reported by its absolute
magnitude, mdiff, and sign, sgn, and the reference flux is
reported by the PSF photometry magnitude, mref, of the closest
source in the reference with associated errors, distance, and
shape parameters. This leads to three types of cases: (1) the
closest source in the reference coincides with the location of the
alert, and it is unresolved; (2) the closest source in the reference
coincides with the location of the difference image alert, but it
is resolved; and (3) the closest source does not coincide with
the position of the difference alert. In case (1), the science flux
can be recovered exactly; in case (2), it can be recovered plus a
constant that depends on how much contamination from an
extended source occurs in the reference; and in case (3), one
needs to assume that the science flux is equal to the difference
flux. These cases are typically represented by variable stars (1),
AGNs (2), or transients (3). Since it is not possible to know
a priori which correction should be applied to each object, e.g.,
it is difficult to distinguish an AGN from a nuclear transient
until the flux evolution can be observed, we report both the
corrected photometry, which is useful for variable stars and
AGNs, and the uncorrected photometry, which is useful for
transients.

If the reference source is resolved, its reported flux contains
two components: a variable/compact component, which is
normally the object of study, and a static/extended component,
which is difficult to separate using only the ZTF photometry.
Because of the convolution done during the image difference
process, the extended component should not contribute to the
difference flux. Then, we note the following relations:

= +f f f , A1ref ref
ext

ref
var ( )

= +f f f , A2sci sci
ext

sci
var ( )

= -f f fsgn , A3diff sci
var

ref
var ( )

where fref is the reference flux, fsci is the science flux, sgn is the
sign, fdiff is the absolute value of the difference flux, fref

ext is the
contribution from the extended component in the reference
image, f

ref
var is the contribution of the variable component in the

reference image, f
sci
ext is the contribution from the extended

component in the science image, and f
sci
var is the contribution of

the variable component in the science image. Note that the
contribution of the extended component can vary between the
reference and science images due to seeing effects, which can
create an artificial source of variability. The scientifically
relevant component for variability studies is the flux of the
compact component, but it is difficult to separate it from the
extended component. The second-best alternative is to recover
the flux of the compact component plus a constant contribution
from the extended component. For this, we can define an
effective science flux, fsciˆ ,

º +f f f , A4sci ref
ext

sci
varˆ ( )

= +f fsgn , A5ref diff ( )

which considers the same contribution of the extended
component at all times. If the reference image changes, we
can introduce a new effective science flux, fref, 0ˆ , that considers
the contribution from the extended component from the first
reference image used to generate alerts,

= +f f f , A6sci, 0 ref, 0
ext

sci
varˆ ( )

= + -f f f , A7sci ref, 0
ext

ref
extˆ ( ) ( )

where f
ref, 0
ext is the (unknown) contribution from the extended

component from the first reference image. Note that the
expected value from the second term is zero.

A.2. Light-curve Variances

The computation of the errors of the science flux must take
into account the relation between the difference and reference
fluxes, which are correlated. We can estimate the variance of
the effective science flux,  fsci[ ˆ ], starting from Equation (A5)
and using Equations (A1) and (A3):

= + f f fsign A8sci ref diff[ ˆ ] [ ] ( )

= + + f f f f2 Cov , sign A9ref diff ref diff[ ] [ ] [ ] ( )

= + + + - f f f f f f2 Cov ,

A10

ref diff ref
ext

ref
var

sci
var

ref
var[ ] [ ] [ ]

( )

= + -  f f f2 . A11ref diff ref
var[ ] [ ] [ ] ( )

36 https://echarts.apache.org
37 https://kafka.apache.org/
38 https://grafana.com/
39 https://prometheus.io/
40 https://vuejs.org/
41 https://vuetifyjs.com/
42 https://www.postgresql.org/
43 https://xgboost.readthedocs.io/
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Note that the variance due to sky emission is contained in the
first two terms of Equation (A16). One can also include
additional terms in Equation (A10) to reflect the contribution of
the sky, but because these terms are not correlated, they have
no additional contribution in the covariance. We can expand
Equation (A11) to get the following:

= + -   f f f f2 A12sci ref diff ref
var[ ˆ ] [ ] [ ] [ ] ( )

= + + -  f f f f2 A13
ref
ext

ref
var

diff ref
var[ ] [ ] [ ] ( )

= + +

+ -

 
 
f f f f

f f

2 Cov ,

2 A14

ref
ext

ref
var

ref
ext

ref
var

diff ref
var

[ ] [ ] [ ]

[ ] [ ] ( )

= + + -   f f f f2 A15
ref
ext

ref
var

diff ref
var[ ] [ ] [ ] [ ] ( )

= - +  f f f , A16diff ref
var

ref
ext[ ] [ ] [ ] ( )

and, in the case of a change in the reference image, using
Equations (A7), (A16), and (A4):

= + - f f f f A17sci, 0 sci ref, 0
ext

ref
ext[ ˆ ] [ ˆ ( )] ( )

= + + -  f f f f f2 Cov , A18sci ref, 0
ext

ref
ext

sci ref
ext[ ˆ ] [ ] [ ] [ ˆ ] ( )

= - + + +

- +

    f f f f f

f f f2 Cov ,

A19

diff ref
var

ref
ext

ref, 0
ext

ref
ext

ref
ext

sci
var

ref
ext

[ ] [ ] [ ] [ ] [ ]

[ ]

( )

= - +  f f f . A20diff ref
var

ref, 0
ext[ ] [ ] [ ] ( )

To summarize, we show Equations (A5), (A7), (A16), and
(A20):

= +

= + -

= - +

= - +

   
   

f f f

f f f f

f f f f

f f f f

sgn

.

sci ref diff

sci, 0 sci ref, 0
ext

ref
ext

sci diff ref
var

ref
ext

sci, 0 diff ref
var

ref, 0
ext

ˆ

ˆ ˆ ( )

[ ˆ ] [ ] [ ] [ ]

[ ˆ ] [ ] [ ] [ ]

A problem with these formulae is that neither the variable nor
the extended components are known. However, they led us to
consider the following cases.

1. The contribution from the extended component is
negligible in all reference images:

=f 0
ref
ext



= = +f f f fsgn , A21sci, 0 sci ref diff
ˆ ˆ ( )

= = -   f f f f . A22sci, 0 sci diff ref[ ˆ ] [ ˆ ] [ ] [ ] ( )

2. The contribution from the extended component is similar
in all reference images, and its contribution is similar to
that from the variable component:

= =f f f f&
ref,0
ext

ref
ext

ref
var

ref
ext



= = +f f f fsgn , A23sci, 0 sci ref diff
ˆ ˆ ( )

= =  f f f . A24sci, 0 sci diff[ ˆ ] [ ˆ ] [ ] ( )

3. The contribution from the extended component is similar
in all reference images, and its contribution is dominant

over the variable component:

= =f f f& 0
ref,0
ext

ref
ext

ref
var



= = +f f f fsgn , A25sci, 0 sci ref diff
ˆ ˆ ( )

= = +   f f f f . A26scisci, 0 diff ref[ ˆ ] [ ˆ ] [ ] [ ] ( )

A visual inspection of variable starlight curves confirms that
Equation (A22) is a better approximation in the case where there is
no contribution from an extended component. In the case of
AGNs, we have found that Equation (A24) appears to be a better
reflection of the measurement errors, which is consistent with
having a similar contribution from the extended and variable
components. In the case of transients, the extended component
dominates the flux in the reference, but for these cases, the
scientifically relevant flux is the difference flux and its error. For
this reason, we report the difference flux with its error, as well as
the effective science flux with the errors (after a conversion of the
fluxes to magnitudes) from Equations (A22) and (A24) for every
object where it is possible to correct the photometry, letting the
users decide which flux and error to use for their particular science.

A.3. Light-curve Magnitudes

The corrected photometry magnitude results from adding/
subtracting the fluxes from the reference and difference in the
same unit system and then converting to magnitudes. We can
compute fsci

ˆ by transforming the reference and difference
magnitudes using the zero-points of the science image,

= + =

+

-

-

f f fsgn 10

sgn 10 , A27

sci ref diff

m

m

ZPsci ref
2.5

ZPsci diff
2.5

ˆ

( )

where ZPsci is the zero-point of the science image. This implies
that the effective science magnitude, msciˆ , will be

=- +

=- + +

=- +- -

- -

m f2.5 log ZP

2.5 log 10 sgn 10 ZP

2.5 log 10 sgn 10 . A28
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Finally, we show the reported errors for Equations (A22) and
(A24),

d
d d

=
-
+

- -

- -
m

m m10 10

10 sgn 10
, A29

m m

m msci

0.8
diff
2 0.8

ref
2 0.5

0.4 0.4

diff ref

ref diff

ˆ
( )

( )

to be used when there is no significant contribution from an
extended component, or

d
d

=
+

-

- -
m

m10

10 sgn 10
, A30

m

m msci

0.4
diff

0.4 0.4

diff

ref diff

ˆ ( )

to be used when there is a contribution from an extended
component assumed to be similar to the variable component.
Table 4 provides the list of telescopes that were used in

preparing Figure 1, along with their names and a relevant
accompanying reference.
Tables 5, 6, and 7 refer to a number of studies in which light

curves were used to perform ML-based classification of
variable and transient sources. Tables 5 and 6 both refer to
studies in which only persistent variable star classes were used;
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Table 4

Selection of Telescopes Shown in Figure 1

Short Name Long Name Reference

ASAS-SN All-Sky Automated Survey for Supernova Kochanek et al. (2017)
ATLAS Asteroid Terrestrial-impact Last Alert System Tonry et al. (2018)
BlackGEM BlackGEM https://astro.ru.nl/blackgem/

Blanco-DECam Víctor Blanco telescope—Dark Energy Camera Flaugher et al. (2015)
Clay-MegaCam Clay Telescope—Megacam McLeod et al. (2015)
CFHT-MegaCam Canada–France–Hawaii Telescope—Megacam Boulade et al. (2003)
CRTS Catalina Real-Time Transient Survey (CSS, MLS, SSS) Drake et al. (2009)
Euclid Euclid Mission Laureijs et al. (2011)
Evryscope Evryscope—South Law et al. (2015)
Gaia Gaia mission Gaia Collaboration et al. (2018)
HATPI HATPI https://hatpi.org/science/
Kepler Kepler mission Borucki et al. (2010)
KMTNet Korea Microlensing Transient Network Kim et al. (2016)
KISO Kiso Observatory Morokuma et al. (2014)
LS-QUEST La Silla 40″ ESO Schmidt telescope—QUEST camera Vivas et al. (2004)
LSST Vera C. Rubin Observatory Legacy Survey of Space and Time LSST Science Collaboration et al. (2009)
PanSTARRS Panoramic Survey Telescope and Rapid Response Response System Kaiser et al. (2002)
PTF Palomar Transient Factory Law et al. (2009)
SDSS Sloan Digital Sky Survey York et al. (2000)
Subaru-HSC Subaru telescope—Hyper Suprime-Cam Aihara et al. (2018)
SkyMapper SkyMapper Southern Sky Survey Keller et al. (2007)
TESS Transiting Exoplanet Survey Satellite Ricker et al. (2015)
VISTA Visible and Infrared Survey Telescope for Astronomy Dalton et al. (2006)
VST-OmegaCam VLT Survey Telescope—OmegaCam Cappellarao (2005)
WFIRST Wide Field Infrared Survey Telescope Spergel et al. (2015)

(aka Nancy Grace Roman Space Telescope)
ZTF Zwicky Transient Facility Bellm et al. (2019)

Table 5

Light Curve–based ML Classifiers that Include Only Persistent Variable Classes (More than Two Classes) between 2017 and 2019

Reference Data Source No. of Classes Classes

Rimoldini et al. (2019) Gaia DR2 18 E, CV, RSCvn, BLAP,
Mira+SR, DSCT+SXPh, RRL(ab, c, d, Ad),
CephCl, ACEP, CephII,
Low amp.:DSCT+GDOR, ELL, OSARG, FL+ROT, other

Tsang & Schultz (2019) ASAS-SN 8 DSCT, RRL(ab, cd), Ceph, E, ROT,
Mira, SR

Jayasinghe et al. (2019) ASAS-SN 10 Ceph, DSCT, E(EW, EA|EB, EB), RRL(ab,c),
M, SR, Irregular

Hosenie et al. (2019) CSDR2 12 RRL(ab, c, d), Blazhko, E(C+SD, D),
ROT, LPV, DSCT, Ceph(II, A)

Johnston et al. (2020) UCR 3 RRL, Ceph, E
LINEAR 5 RRL(ab, c), DSCT, E(C, SD)

Aguirre et al. (2019) OGLE+VVV 9 Ceph(F, 01), RRL(ab, c),
+CoRoT E(C, SD+D), Mira, SR, OSARG

Castro et al. (2018) MACHO 8 NV, QSO, BeS, Ceph, RRL, E, ML, LPV
OGLE 6 Ceph, CephII, RRL, E, DSCT, LPV

Naul et al. (2018) ASAS 5 RRLab, Ceph, SR, BPer, WUMa
LINEAR 5 DSCT, RRL(ab, c), BPer, WUMa
MACHO 8 Ceph(F, O1), LPVW, RRL(ab, c, e, GB)

Valenzuela & Pichara (2018) OGLE 8 Ceph(CL, II, A), RRL, LPV, DPV, DSCT, E
MACHO 11 RRL(ab, c, e, GB), Ceph(F, O1),

LPVW(A, B, C, D), E
Mahabal et al. (2017) CSDR2 7 E(C, SD), RRL(ab, c, d), RSCVn, LPV
Benavente et al. (2017) EROS, 5 Ceph, E, QSO, RRL, LPV

MACHO, HiTS
Zinn et al. (2017) OGLE 8 Mira, QSO, SR, OSARG, Ceph(F, O1),

RRL(ab+d, c+e)

Note. Class abbreviations are defined in Tables 10–14.
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the former refers to papers published between 2017 and 2019,
whereas the latter includes studies that appeared in print before
2017. Table 7, in turn, refers to those studies in which only
transient sources were considered. These three tables have the
same structure, with the reference given in the first column, an
acronym for the source of the data given in the second column

(with keys provided in Tables 8 and 9 for empirical and
synthetic data, respectively), the number of classes considered
shown in the third column, and the fourth column displaying
acronyms representing the actual classes that were considered
in each case. These acronyms, along with the classes that they
are intended to represent, are laid out in Tables 10–14.

Table 6

Light Curve–based ML Classifiers that Include Only Persistent Variable Objects (More than Two Classes) before 2017

Reference Data Source No. of Classes Classes

Kim & Bailer-Jones (2016) MACHO, 19 DSCT, RRL(ab, c, d, e),
LINEAR, ASAS Ceph(F, O1, other, II), E(C, SD, D),

LPV(MAGBC, MAGBO, OSARGAGB,
OSARGRGB, SRAGBC, SRAGBO), NV

Mackenzie et al. (2016) OGLE 6 Ceph(CL, II), RRL, E, DSCT, LPV
MACHO 8 NV, QSO, BeS, Ceph, RRL, E, ML, LPV

Pichara et al. (2016) MACHO 8 BeS, Ceph, E, LPV, ML, NV, QSO, RRL
EROS 11 E, RRL, Ceph(F, O1, DM, II),

LPV(OSARGRGBO, SRAGBO,
SRAGBC, MAGBC, MAGBO)

Nun et al. (2016) MACHO 8 NV, QSO, BeS, Ceph, RRL, E, ML, LPV
Bass & Borne (2016) Kepler 14 ACT, BCep, Ceph, DSCT, E, ELL, GDor, ROT,

RRL(ab, c), RVTau, SPB, SR, MISC/NV
Faraway et al. (2016)
Kügler et al. (2015) OGLE 3 Ceph, E, RRL

ASAS 7 Mira, RRLab, E(C, D, SD), DSCT, CephF
Kim et al. (2014) EROS-2 26 DSCT, RRL(ab, c, d, e), Ceph(F, O1, other), CephII

E(C, SD, D, SD+D, other), BeS, QSO, NV
LPV(MAGB(C, O), OSARGAGB(C, O),
OSARGRGB(C, O), SRAGB(C, O))

Pichara & Protopapas (2013) SAGE, 2MASS, 7 NV, QSO, BeS, Ceph, RRL, E, LPV
UBVI, MACHO

Richards et al. (2012) ASAS 28 DSCT, SXPh, RRL(ab, c, d), Ceph(CL, MM, II),
Mira, SR, LPVW(A, B), RVTau, BCep, RSG,
BPer, BLyr, WUMa, ChemPec, ELL, RSCvn,
HAeBe, CTTau, WLTTau, RCB, LBV, BeS

Debosscher et al. (2009) CoRoT 29 sdBV, DSCT, LBoo, SXPh, roAp, GDor,
RR(ab, c, d), Ceph(CL, DM, II), RVTau,
Mira, SR, PVSG, BCep, SPB, E,
ChemPec, ELL, FUOri, HAeBe, TTau,
LBV, WR, XB, BeS, LAPV

Debosscher et al. (2007) OGLE 35 DAV, DBV, sdBV, GWVir,
DSCT, LBoo, SXPh, roAp, GDor,
RRL(ab, c, d), Ceph(Cl, DM, II),
PVSG, Mira, SR, RVTau, BCep, SPB,
E(C, SD, D), ChemPec, ELL,
FUOri, HAeBe, TTau, LBV,
SLR, WR, XB, CV, BeS

Note. Class abbreviations are defined in Tables 10–14.

Table 7

Light Curve–based ML Classifiers that Include Only Transient Objects

Reference Data Source No. of Classes Classes

Villar et al. (2019) PS1-MDS 5 SN Ia, SN Ibc, SN II, SN IIn, SLSN
Muthukrishna et al. (2019) PLAsTiCC 12 TDE, CART, ILOT, PISN, kN, .Ia,

SN Ia, SN Iax, SN Ia-91bg, SN Ibc, SN II
Möller & de Boissière (2020) SNANA 2 SN Ia, other
Brunel et al. (2019) SNANA, SPCC 2 SN Ia, other
Revsbech et al. (2018) SPCC 3 SN Ia, SN II, SN Ibc
Charnock & Moss (2017) SPCC 3 SN Ia, SN II, SN Ibc
Lochner et al. (2016) SPCC 3 SN Ia, SN II, SN Ibc
Karpenka et al. (2013) SPCC 2 SN Ia, other

Note. Class abbreviations are defined in Table 14.
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Table 8

Observational Data Sources Used for ML Classification

Abbreviation Long Name Reference

ZTF Zwicky Transient Facility Bellm et al. (2019)
HSC-SSP Hyper Suprime-Cam Subaru Strategic Program Aihara et al. (2018)
UCR University of California Riverside Dau et al. (2018)

Time Series Classification Archive
OSC Open Supernova Catalog Guillochon et al. (2017)
ASAS-SN All-Sky Automated Survey for Supernovae Kochanek et al. (2017)
CSDR2 Catalina Surveys Data Release 2 Drake et al. (2017)
HiTS High cadence Transient Survey Förster et al. (2016)
PS1-MDS PanSTARRS-1 Medium Deep Survey Huber et al. (2011)
LINEAR Lincoln Near-Earth Asteroid Research Survey Sesar et al. (2011)
UBVI UBVI photometry of six open cluster candidates Piatti et al. (2011)
VVV Vista Variables in the Via Lactea Minniti et al. (2010)
OGLE Optical Gravitational Lensing Experiment Udalski et al. (2008)
2MASS Two Micron All Sky Survey Skrutskie et al. (2006)
SAGE Spitzer Survey of the Large Magellanic Cloud: Meixner et al. (2006)

Surveying the Agents of a Galaxy’s Evolution
CoRoT Convection, Rotation, and planetary Transits Baglin et al. (2006)
SDSS Sloan Digital Sky Survey York et al. (2000)
MACHO Massive Compact Halo Objects survey Alcock et al. (2000)
EROS Expérience pour la Recherche d’Objets Sombres Palanque-Delabrouille et al. (1998)
ASAS All Sky Automated Survey Pojmanski (1997)

Table 9

Synthetic Data Sources Used for ML Classification

Abbreviation Long Name/Description Reference

PLAsTiCC Photometric LSST Astronomical Kessler et al. (2019)
Time-Series Classification Challenge

SNANA SuperNova ANAlysis software Kessler et al. (2009)
SPCC Supernova Photometric Classification Challenge Kessler et al. (2010)

Type II SN confined wind acceleration model Moriya et al. (2019)
Type Ia SN spectral templates Hsiao et al. (2007)

Table 10

Pulsating Variable Star Classes (Excluding Red Giants and Supergiants) Found in the ML Literature (See Text for Further Details)

Type Class Abbrev. Brief Description

Lower MS DSCT δ Scutis. Low-order p-mode pulsators. Both radial and nonradial modes can be present. Periods typically shorter than
0.42 day. Pop. I.

LBoo λ Böotis. A-type MS dwarf with low metallicities. Part of the DSCT class.
SXPh SX Phoenicis. Pop. II counterparts of the DSCT. Typically found in globular clusters and dSph galaxies. Includes

pulsating blue straggler stars.
roAp Rapidly oscillating Ap stars. High-order, nonradial p-mode pulsators. Amplitudes typically do not exceed 0.012 mag

in V.
GDor γ Doradus. High-order, nonradial g-mode pulsators. Periods between 0.3 and 3 days, amplitudes less than 0.1 mag

in V.

Upper MS BCep β Cepheids. Nonradial p-mode pulsators. Periods between 0.1 and 0.6 day, amplitudes in V between 0.01 and
0.32 mag.

SPB Slowly pulsating blue stars, aka 53 Per stars. Nonradial g-mode pulsators. Periods between 0.4–6 days, amplitudes in
V less than 0.03 mag.

RR Lyrae RRL(ab, c, d, Ad, e, GB) RR Lyrae. Pulsating horizontal-branch stars with periods of order 0.5 day. Subtypes: ab (fundamental mode), c (first
overtone), d (double mode), Ad (anomalous double mode), e (second overtone). Also classified by location
(Galactic bulge, GB).

Blazhko RRL with long-period modulations (Blazhko effect).

Cepheids Ceph(CL, F, O1, DM, MM,
other)

δ Cepheids, aka classical (CL) or type I Cepheids. Pulsating G–K giant and supergiant stars. Often found pulsating in
the fundamental (F), first (OI), or second overtone; double (DM) or multimode (MM) pulsation also common.

ACEP Anomalous Cepheids, aka BL Boo stars. Evolved counterparts of the SX Phe stars. Commonly found in
dSph galaxies.

CephII
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Table 11

Same as Table 10 but for Pulsating Red Giants and Supergiants

Type Class Abbrev. Brief Description

Red giants LPV Long-period variable. Pulsating cool giant or supergiant stars. Often subdivided into Miras, SRs, Irregulars, and OSARGs.
Mira Mira variables. LPV red giants with very red colors and large amplitudes (by definition, exceeding 2.5 mag in V ). Can be

C- or O-rich, depending on evolutionary history.
SR Semiregular variables. Similar to the Miras but with smaller amplitudes (by definition, not exceeding 2.5 mag in V ). Often

subdivided into SRa (persistent periodicity), SRb (poorly defined periodicity), SRc (red supergiant SRs), and SRd
(orange/yellow supergiant SRs).

OSARG OGLE small-amplitude red giant. Less evolved/luminous counterpart of the Miras and SRs, with smaller amplitudes and
frequently multiple pulsation modes present.

LPVW(A, B, C, D) LPVs classified according to the sequence that they follow in a so-called Wood diagram (Wood et al. 1999).
LPV(MAGB[C, O]) C- or O-rich Mira-type LPVs on the asymptotic giant branch (AGB)

LPV(OSARGAGB) OSARG-type LPVs on the AGB
LPV(OSARGRGB[O]) Normal or O-rich OSARG-type LPVs on the red giant branch
LPV(SRAGB[C, O]) C- or O-rich SR-type LPVs on the AGB

Supergiants RSG Red supergiant stars with irregular or semiregular light curves (Lc and SRc, respectively, as per the GCVS). According to
Chatys et al. (2019), periodicities may include two groups related to pulsations (P ∼ 300–1000 days) and LSPs
(P ∼ 1000–8000 days).

LSP LPV red giants with long secondary periods.
PVSG Periodic variable supergiant star.

Table 10

(Continued)

Type Class Abbrev. Brief Description

Type II Cepheids. Low-mass Pop. II stars, often subdivided into BL Her, W Vir, and RV Tau subclasses with
increasing periods.

RVTau Type II Cepheids with periods in excess of 30 days. Light curves are well behaved and show double minima at the
short-period end but become increasingly irregular with increasing period.

Subdwarf sdBV Pulsating subdwarf B stars, aka V361 Hya, EC 14026, sdBVp, or sdBVr stars; p-mode pulsators in which both radial
and nonradial modes can be present. Periods between 60 and 570 s, amplitudes in V less than 65 mmag.

Compact GW Vir Pulsating pre-WD stars, aka pulsating PG 1159 stars. Includes both pulsating O-type WD stars and so-called planetary
nebulae nucleus variables.

DAV Pulsating A-type WD stars, aka ZZ Ceti variables. Nonradial g-mode pulsators with H-dominated atmospheres.
DBV Pulsating B-type WD stars, aka V777 Her stars. Nonradial g-mode pulsators with He-dominated atmospheres.

Table 12

Stellar Variability Classes, Other than the Pulsating Ones, in the ML Literature (See Text for Further Details)

Var. Type Class Brief Description

Nonvariable NV Nonvariable star
Eclipsing E(C, SD, D) Eclipsing binary, classified according to its physical status as contact (C), semidetached (SD), or detached (D)

BPer, BLyr, WUMa Eclipsing binary, phenomenologically classified according to its light-curve shape into β Per (Algol, EA), β Lyr (EB), and
W UMa (EW).

Rotational ROT Rotational variable. Rotating stars with nonuniform surface (starspots).
ChemPec Chemically peculiar rotational variable star.
ELL Close binary systems with ellipsoidal components (not eclipsing).
RSCVn RS Canum Venaticorum variable. Binary systems in which the primary star is typically a giant, characterized by semiperiodic

light curves due to active chromospheres and the presence of starspots.

Chromosph. ACT Stars presenting surface activity due to active coronae and chromospheres.
M dwarf M dwarf flaring star; flares are caused by magnetic field reconnection events.

[C, WL]TTau Classic (C) or weak-lined (WL) T Tauri stars. Low-mass YSOs undergoing accretion from their surrounding disks.
Depending on the Hα emission strength, they are subdivided into C (strong emission) and WL (weak emission). Possible
evolutionary link with EX Lupi (EXor) and FU Ori (FUor) stars, according to the mass accretion rate.

YSO HAeBe Herbig Ae/Be star. Higher-mass counterparts of the T Tauri stars. When large, irregular dust obscuration events are present,
they may also be classified as UX Ori (UXor) stars.

FUOri FU Orionis stars. Pre-MS stars undergoing abrupt mass accretion episodes.
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In the case of Tables 10 and 11, the pulsating variable star
classes are shown. Table 10 includes pulsating stars in the
upper and lower main sequence, Cepheids, RR Lyrae, blue
subdwarfs, and compact (WD) pulsators. Table 11, in turn,
includes red giant and supergiant pulsators.

Table 12 presents a number of additional stellar variability
classes, including eclipsing, eruptive, cataclysmic, and rota-
tional variables. Additional classes that are shown in this table

include microlensing events, R CrB stars, Be stars, and X-ray
binaries, among others.
Primarily extragalactic variable sources are shown in

Tables 13 and 14. In the case of Table 13, the variability is
typically related to the presence of SMBHs, as in the case of
AGNs and QSOs. Table 14, in turn, primarily includes a variety
of SN classes, although a few transient events of non-SN
origin, such as TDEs and kilonovae, are also included.

Table 13

Extragalactic BH-related Variability Classes as Found in the ML Literature (See Text for Further Details)

Abbreviation Description

AGN Active galactic nuclei. Central accreting SMBH (>105 Me) where the host galaxy dominates the total light. Variability likely due to accretion- disk
instabilities.

QSO Quasi-stellar object. Central accreting SMBH that dominates over the host galaxy in the total light. Variability likely due to accretion disk
instabilities.

Blazar Central accreting SMBH with a relativistic jet directed toward the observer. Variability due to synchrotron and inverse Compton relativistic beaming.
This category does not distinguish between blazars, BL Lacs, and optical violent variables, which peak in different wave bands.

Table 12

(Continued)

Var. Type Class Brief Description

Outburst LBV Luminous blue variable (aka S Doradus) star. Hot, luminous stars near or above the Eddington limit undergoing vigorous
mass loss and outbursts, followed by quiescent states.

CV/nova Cataclysmic variable star (including classical novae). Mass-transferring binary system in which an MS star transfers mass
onto a WD via Roche lobe overflow. In the case of classical novae, thermonuclear explosions take place at the surface of
the mass-accreting WD, followed by a quiescent state.

Lensing ML Microlensing event. Star whose brightness is magnified due to a gravitational lensing event.

Other RCB R Coronae Borealis stars. F- or G-type self-eclipsing supergiant stars that undergo dramatic dimming events brought about by
mass-loss episodes followed by dust condensation.

DPV Double periodic variable. Binary system with variability due to eclipses or ellipsoidal modulations on timescales of order a
few days, accompanied by a long cycle lasting about 33 times the orbital period.

BeS Be stars. Nonsupergiant B star rotating close to breakup speed and presenting decretion disks, accompanied by variable
Balmer emission.

LAPV Low-amplitude periodic variable. Defined in Debosscher et al. (2009), including low-amplitude Cepheids and also rotational
variable stars with regular light curves.

WR Wolf–Rayet star. Evolved, massive stars that have lost their H envelopes and show signatures of strong stellar winds.
XB X-ray binary. CV-like systems in which the accreting star is typically not a WD but rather a neutron star or BH and which thus

emit their energy mostly in the form of X-rays.

Table 14

Transient Classes as Found in the ML Literature (See Text for Further Details)

Abbreviation Description

SN Ia Type Ia SNe. Thermonuclear explosion of a CO white dwarf.
SN Ia-91bg Underluminous SNe Ia. SN 1991bg-like.
SN Iax Type Iax SNe. Deflagration-dominated SNe Ia.
.Ia “.Ia” SNe. He shell detonation explosion.
SN Ibc Type Ib or Ic SNe. Core collapse (CC) of envelope-stripped massive star.
SN II Type II SNe. CC of red supergiant star.
SN IIn Type IIn SNe. SN explosion in dense circumstellar medium.
TDE Tidal disruption event. Stellar disruption due to BH proximity.
CART Calcium-rich transient.
ILOT Intermediate-luminosity optical transient.
PISN Pair instability SNe. CC and thermonuclear explosion due to e−/e+ pair production.
SLSN Superluminous SNe. Class of explosions about 10 times brighter than standard SNe.
kN Kilonova. Neutron star merger optical counterpart.
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We emphasize that the classes and associated taxonomies
that are implied by Tables 5–14 do not reflect our own choices
but rather are simply a summary of what has been used in the
ML literature to date. In particular, the reader should be aware
that the list of classes as given suffers from several short-
comings, such as being incomplete, containing redundant
entries, and including classes that may not be sufficiently well
defined. Still, our best effort to interpret what the different
authors have intended to express in each case is reflected in
these tables, with definitions given following, among others,
the General Catalog of Variable Stars (GCVS; Kholopov et al.
1998), the Variable Star Index (Watson et al. 2006), and the
broad overview of stellar variability classes presented in
Catelan & Smith (2015). In the future, as the ALeRCE project
matures, we will work toward producing and refining our own
taxonomy, which we will perfect along the way as we enter the
LSST era.
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