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Abstract. In this paper it is shown that if G is a finite non-

Abelian metacyclic £-group, py^t, then the order of G divides the

order of the automorphism group of G.

It is well known that if G is a finite noncyclic Abelian p-group of

order greater than p2, then the order \G\ of G divides the order of the

automorphism group A(G) of G. This result has recently been ex-

tended to other classes of finite ^-groups [l], [6]. We recall that a

group G is said to be metacyclic if G possesses a cyclic normal subgroup

K such that G/K is also cyclic. The purpose of this paper is to show

that | G\ divides | ^4(G)| if G is a finite noncyclic metacyclic p-group

of order greater than p2, p9^2.

The following notation is used: G is a finite p-group where p is a

prime; class G denotes the nilpotency class of G; Gn is the wth ele-

ment in the descending central series of G; Z(G) denotes the center of

G (or Z, if no ambiguity is possible); 77:SG means 77 is a subgroup of

G, [G:77] denotes the index of 77 in G and 77<G means that 77 is

normal in G. If x, yEG, then |x| denotes the order of x, (x, y)

= x~1y~1xy and (x, y) is the subgroup generated by x and y; more

generally, if 5 is a subset of G, then (5) is the subgroup generated

by S; P(G) = (xo:xEG) and Qm(G) = (xEG: \x\ ^pm). 1(G) denotes

the group of inner automorphisms of G; I is the identity subgroup of

A iG); if S g A (G), C(S) is the centralizer of 5 in A (G) and NiS) is the

normalizer of 5 in ^4(G).

Before proving the main theorem of the paper, we will establish a

number of preliminary results.

Lemma 1. 7,e/ m and n be positive integers. If p7L2, then

(i)   il+pm)p° = l mod pn+m and

(ii)  il+pm)p'l~i = il+pn+m-1) mod pn+m.

Proof, (i) Since l+pm = l mod pm, (1+£"•)"''= lp" mod pn+m [4,

Lemma 3.2 (iv)].

(ii) Part (ii) is proved by induction on n. The straightforward but
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computational induction proof also uses [4, Lemma 3.2 (iv)], the

binomial theorem and the fact that pj^2.    □

Lemma 2. Lei K<\G and let a EG be such that G/K — (aK) is cyclic

of order pn. If e9£apmE^n(Z), then the mapping 6(a, K, apm) defined by

a'kd(a, K, apm)=aiipm+1)k, where 0^j<p" and kEK, is an auto-

morphism of G of order \ a\ /pm which fixes K elementwise.

Proof. Let d(a, K, a»m) =6. If g, hEG, then g=a*ki and h = a*k2,

where O^ji, j2<pn and ku k2EK. If kia'' = a^k3, where k3EK, then

gh = ah+*kik2 = a%+rp"hk2, withji+j2=ji+rpn, 0^j3<pn and r = 0, 1.

Consequently,

= a^pm+»a™ma*k3k2.

Since afEZ, we see that

ghd = a^+^kiato^+Vh = gdhe.

Hence 6 is an endomorphism of G.

Clearly 6 fixes K elementwise and since a9 = al+p", 6 is onto and

hence an automorphism. Let \a\ =p'. Since aB' = a(1+"m) for each

positive integer t, we see by Lemma 1 that aOp"~m = a while afip'~m 9^a.

Hence |0| =p'~m.    □

The definition of a regular p-group and the basic properties of such

groups are well known and may be found in any standard group

theory text (see for example [2]); these will be used without reference

throughout the rest of the paper. The next preliminary result that we

will establish is that metacyclic p-groups, p¥"2, are regular.

Lemma 3. Let G be a p-group, py^2. If G2 is cyclic, then G is regular.

Proof. If g.hEG, let H=(g, h). Then (gh)p = gvhpcd where

cEP(H2) and dEHp [3]. Since H2 is cyclic and Hv is a proper sub-

group of H2, it follows that cd =fp where fEH2. Hence G is regular.   □

Corollary 1. If G is a metacyclic p-group, p^2, then G is regular.

Let G be a regular p-group. An extremely useful class of automor-

phisms of G is constructed in

Lemma 4. Let K<\G and let aEG be such that G/K — (aK) is cyclic of

order pn. If xE®n(Z(K)), then the mapping cp(a, K, x) defined by

ajkcp(a, K, x) = (ax)'k, where 0^j<p" and kEK, is an automorphism
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of G under which K is elementwise fixed. Furthermore, \<p(a, K, x)\

= |x|.

Proof. Since G is regular and x£fi„(Z(7£)), (ax)p" = ap". Hence

<p(a, K, x) =<p is an automorphism of G which leaves K elementwise

fixed [5]. Since a<ps = ax", it follows that \<p\ = |x|.    □

Theorem. If p9^2 and G is a noncyclic metacyclic p-group of order

greater than p2, then \ G\ divides \ A(G) \.

Proof. We may assume that G is non-Abelian; indeed by R.

Faudree's result [l], we may assume that class G>2. Choose a, bEG

such that H=(b) and G/77=(a77) is cyclic of order k. Let G2 = (bl)

where / is a power of p. We may assume that (a, b) =bl. Furthermore,

\bG2\ =1 and since class G>2, \aG2\ =k. Let \bl\ =m. Then xra£Z

for each x£G and since (bl)k = (ak, b) =e, we see that m^k. Further-

more, since class G>2, it is also true that Km. Let k = rl and let

ak = (biy where l<5^m.

We note that 7(G) = (Ia, Ib) and hence that | 7(G) | = m2. Also if

a £ 7(G) and g, hEG are such that ga = gh, then hE(bl) = G2.

To complete the proof we will consider four cases; in each case we

will construct a subgroup S of A (G) such that | S| = Mm = | G |.

Case I. s^r.

Let c = b~°lra. Then (c, b)=bl, \c\=k, G = (b, c) and 77n(c) = £. Let

K=(c, bl). Then K<\G and G/K = ibK) is cyclic of order I. Also

cmllEZ(K) and \cmll\ =kl/m^l. Choose / such that \cmtll\ =1 and

let x = cm"1. Then <p(b, K, x)=d>EA(G), \<p\ =1. Furthermore,

G/H= (cH) is cyclic of order k and d(c, 77, cm) =9EA(G) with order

k/m. Since m>l, it follows that <pEC((d)). Hence, if S=(<p, d, 1(G)),

then  I S\ =klm.
Case II. 1 <s<r, k/s^m.

Letd = a-*l'b. Then (a,d)=bl, \d\ =ls^m, G = (a, d) and Hf\(d) = E.
Let L = (a, bl). Then L <G and G/L = (67,) = (dL) is cyclic of order I.

Finally, if M=(d, 6'), then M<G and G/M=(aM) is cyclic of order

k/s. We note that idm*,h, bl)=e and that \dm3,k\ =kl/m^k/s. If we

choose u such that |dm,ull\ =k/s and let y = dm'ul1, then <pia, M, y)

= <pEAiG) and |$| =k/s. Furthermore, since Is^lm, did, L, dm)

= 8EAiG) with order Is/m. Since k/s^m, it follows that <££C((0}).

Thus if S=(4>, 0, 7(G)), \S\ =klm.
Case III. l<5<r, k/s>m, ls^k/s.

Since k/s>m,  id, b')=e. Thus ^£&/.(Z(il7)) and tpia, M, d)=<p

EAiG) with order Is. UR = (tp, 7(G)), then \R\ =lsm2. Furthermore,

since    \a\ =km/s,   0(a,   M,   am)=6EAiG)   and    \d\ =k/s.   Since
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6EN((cp)), if S=(8, R), then | S| = 122| • [S:R]. By Lemma 1, [S:R]
= |amM| =k/ms. Hence \S\ =klm.

Case IV. Ks<r, k/s>m, ls>k/s.

Choose v such that ls = kv/s. Then dvEQk/.(Z(M)) and cp(a, M, d")

= cpEA(G) with order k/s. Also B(d, L, dm)=6EA(G),  \d\ =ls/m
and 6EN((cp)). Finally, letting S=(cp, d, 1(G)), we see that | S\ =klm

and the proof of the theorem is complete.    □
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