THE AUTOMORPHISM GROUP OF A FINITE METACYCLIC *p*-GROUP

RICHARD M. DAVITT

ABSTRACT. In this paper it is shown that if G is a finite non-Abelian metacyclic *p*-group, $p \neq 2$, then the order of G divides the order of the automorphism group of G.

It is well known that if G is a finite noncyclic Abelian p-group of order greater than p^2 , then the order |G| of G divides the order of the automorphism group A(G) of G. This result has recently been extended to other classes of finite p-groups [1], [6]. We recall that a group G is said to be *metacyclic* if G possesses a cyclic normal subgroup K such that G/K is also cyclic. The purpose of this paper is to show that |G| divides |A(G)| if G is a finite noncyclic metacyclic p-group of order greater than p^2 , $p \neq 2$.

The following notation is used: G is a finite p-group where p is a prime; class G denotes the nilpotency class of G; G_n is the *n*th element in the descending central series of G; Z(G) denotes the center of G (or Z, if no ambiguity is possible); $H \leq G$ means H is a subgroup of G, [G:H] denotes the index of H in G and $H \triangleleft G$ means that H is normal in G. If x, $y \in G$, then |x| denotes the order of x, (x, y) $=x^{-1}y^{-1}xy$ and $\langle x, y \rangle$ is the subgroup generated by x and y; more generally, if S is a subset of G, then $\langle S \rangle$ is the subgroup generated by S; $P(G) = \langle x^p : x \in G \rangle$ and $\Omega_m(G) = \langle x \in G : |x| \leq p^m \rangle$. I(G) denotes the group of inner automorphisms of G; I is the identity subgroup of A(G); if $S \leq A(G)$, C(S) is the centralizer of S in A(G) and N(S) is the normalizer of S in A(G).

Before proving the main theorem of the paper, we will establish a number of preliminary results.

LEMMA 1. Let m and n be positive integers. If
$$p \neq 2$$
, then

(i) $(1+p^m)^{p^n} \equiv 1 \mod p^{n+m}$ and

(ii) $(1+p^m)^{p^{n-1}} \equiv (1+p^{n+m-1}) \mod p^{n+m}$.

PROOF. (i) Since $1+p^m \equiv 1 \mod p^m$, $(1+p^m)^{p^n} \equiv 1^{p^n} \mod p^{n+m}$ [4, Lemma 3.2 (iv)].

(ii) Part (ii) is proved by induction on n. The straightforward but

Received by the editors November 24, 1969.

AMS Subject Classifications. Primary 20XX; Secondary 2022, 2025, 2040.

Key Words and Phrases. Finite p-groups, regular, metacyclic, automorphism group.

computational induction proof also uses [4, Lemma 3.2 (iv)], the binomial theorem and the fact that $p \neq 2$.

LEMMA 2. Let $K \triangleleft G$ and let $a \in G$ be such that $G/K = \langle aK \rangle$ is cyclic of order p^n . If $e \neq a^{p^m} \in \Omega_n(Z)$, then the mapping $\theta(a, K, a^{p^m})$ defined by $a^{jk}\theta(a, K, a^{p^m}) = a^{j(p^m+1)}k$, where $0 \leq j < p^n$ and $k \in K$, is an automorphism of G of order $|a|/p^m$ which fixes K elementwise.

PROOF. Let $\theta(a, K, a^{p^m}) = \theta$. If $g, h \in G$, then $g = a^{j_1}k_1$ and $h = a^{j_2}k_2$, where $0 \leq j_1, j_2 < p^n$ and $k_1, k_2 \in K$. If $k_1 a^{j_2} = a^{j_2}k_3$, where $k_3 \in K$, then $gh = a^{j_1+j_2}k_3k_2 = a^{j_3+rp^n}k_3k_2$, with $j_1+j_2 = j_3+rp^n$, $0 \leq j_3 < p^n$ and r = 0, 1. Consequently,

$$gh\theta = a^{j_3(p^m+1)}a^{rp^n}a^{r(p^m+n)}k_3k_2$$

= $a^{(j_3+rp^n)(p^m+1)}k_3k_2$
= $a^{j_1(p^m+1)}a^{j_2p^m}a^{j_2}k_3k_2.$

Since $a^{p^m} \in \mathbb{Z}$, we see that

$$gh\theta = a^{j_1(p^m+1)}k_1a^{j_2(p^m+1)}k_2 = g\theta h\theta.$$

Hence θ is an endomorphism of G.

Clearly θ fixes K elementwise and since $a\theta = a^{1+p^m}$, θ is onto and hence an automorphism. Let $|a| = p^s$. Since $a\theta^t = a^{(1+p^m)^t}$ for each positive integer t, we see by Lemma 1 that $a\theta^{p^{s-m}} = a$ while $a\theta^{p^{s-m-1}} \neq a$. Hence $|\theta| = p^{s-m}$.

The definition of a regular p-group and the basic properties of such groups are well known and may be found in any standard group theory text (see for example [2]); these will be used without reference throughout the rest of the paper. The next preliminary result that we will establish is that metacyclic p-groups, $p \neq 2$, are regular.

LEMMA 3. Let G be a p-group, $p \neq 2$. If G_2 is cyclic, then G is regular.

PROOF. If $g,h \in G$, let $H = \langle g, h \rangle$. Then $(gh)^p = g^p h^p cd$ where $c \in P(H_2)$ and $d \in H_p$ [3]. Since H_2 is cyclic and H_p is a proper subgroup of H_2 , it follows that $cd = f^p$ where $f \in H_2$. Hence G is regular.

COROLLARY 1. If G is a metacyclic p-group, $p \neq 2$, then G is regular.

Let G be a regular p-group. An extremely useful class of automorphisms of G is constructed in

LEMMA 4. Let $K \triangleleft G$ and let $a \in G$ be such that $G/K = \langle aK \rangle$ is cyclic of order p^n . If $x \in \Omega_n(Z(K))$, then the mapping $\phi(a, K, x)$ defined by $a^{jk}\phi(a, K, x) = (ax)^{jk}$, where $0 \leq j < p^n$ and $k \in K$, is an automorphism

R. M. DAVITT

of G under which K is elementwise fixed. Furthermore, $|\phi(a, K, x)| = |x|$.

PROOF. Since G is regular and $x \in \Omega_n(Z(K))$, $(ax)^{p^n} = a^{p^n}$. Hence $\phi(a, K, x) = \phi$ is an automorphism of G which leaves K elementwise fixed [5]. Since $a\phi^s = ax^s$, it follows that $|\phi| = |x|$. \Box

THEOREM. If $p \neq 2$ and G is a noncyclic metacyclic p-group of order greater than p^2 , then |G| divides |A(G)|.

PROOF. We may assume that G is non-Abelian; indeed by R. Faudree's result [1], we may assume that class G > 2. Choose $a, b \in G$ such that $H = \langle b \rangle$ and $G/H = \langle aH \rangle$ is cyclic of order k. Let $G_2 = \langle b^l \rangle$ where l is a power of p. We may assume that $(a, b) = b^l$. Furthermore, $|bG_2| = l$ and since class G > 2, $|aG_2| = k$. Let $|b^l| = m$. Then $x^m \in Z$ for each $x \in G$ and since $(b^l)^k = (a^k, b) = e$, we see that $m \leq k$. Furthermore, since class G > 2, it is also true that l < m. Let k = rl and let $a^k = (b^l)^s$ where $1 < s \leq m$.

We note that $I(G) = \langle I_a, I_b \rangle$ and hence that $|I(G)| = m^2$. Also if $\sigma \in I(G)$ and $g, h \in G$ are such that $g\sigma = gh$, then $h \in \langle b^1 \rangle = G_2$.

To complete the proof we will consider four cases; in each case we will construct a subgroup S of A(G) such that |S| = klm = |G|. Case I. $s \ge r$.

Let $c = b^{-s/r}a$. Then $(c, b) = b^l$, |c| = k, $G = \langle b, c \rangle$ and $H \cap \langle c \rangle = E$. Let $K = \langle c, b^l \rangle$. Then $K \triangleleft G$ and $G/K = \langle bK \rangle$ is cyclic of order l. Also $c^{m/l} \in Z(K)$ and $|c^{m/l}| = kl/m \ge l$. Choose t such that $|c^{mt/l}| = l$ and let $x = c^{mt/l}$. Then $\phi(b, K, x) = \phi \in A(G)$, $|\phi| = l$. Furthermore, $G/H = \langle cH \rangle$ is cyclic of order k and $\theta(c, H, c^m) = \theta \in A(G)$ with order k/m. Since m > l, it follows that $\phi \in C(\langle \theta \rangle)$. Hence, if $S = \langle \phi, \theta, I(G) \rangle$, then |S| = klm.

Case II. $1 < s < r, k/s \leq m$.

Let $d = a^{-r/s}b$. Then $(a, d) = b^l$, $|d| = ls \ge m$, $G = \langle a, d \rangle$ and $H \cap \langle d \rangle = E$. Let $L = \langle a, b^l \rangle$. Then $L \triangleleft G$ and $G/L = \langle bL \rangle = \langle dL \rangle$ is cyclic of order l. Finally, if $M = \langle d, b^l \rangle$, then $M \triangleleft G$ and $G/M = \langle aM \rangle$ is cyclic of order k/s. We note that $(d^{ms/k}, b^l) = e$ and that $|d^{ms/k}| = kl/m \ge k/s$. If we choose u such that $|d^{msu/l}| = k/s$ and let $y = d^{msu/l}$, then $\phi(a, M, y) = \phi \in A(G)$ and $|\phi| = k/s$. Furthermore, since $ls \le lm$, $\theta(d, L, d^m) = \theta \in A(G)$ with order ls/m. Since $k/s \le m$, it follows that $\phi \in C(\langle \theta \rangle)$. Thus if $S = \langle \phi, \theta, I(G) \rangle$, |S| = klm.

Case III. $1 < s < r, k/s > m, ls \le k/s$. Since $k/s > m, (d, b^{l}) = e$. Thus $d \in \Omega_{k/s}(Z(M))$ and $\phi(a, M, d) = \phi \in A(G)$ with order ls. If $R = \langle \phi, I(G) \rangle$, then $|R| = lsm^{2}$. Furthermore, since $|a| = km/s, \theta(a, M, a^{m}) = \theta \in A(G)$ and $|\theta| = k/s$. Since $\theta \in N(\langle \phi \rangle)$, if $S = \langle \theta, R \rangle$, then $|S| = |R| \cdot [S:R]$. By Lemma 1, $[S:R] = |a^m M| = k/ms$. Hence |S| = klm.

Case IV. 1 < s < r, k/s > m, ls > k/s.

Choose v such that ls = kv/s. Then $d^v \in \Omega_{k/s}(Z(M))$ and $\phi(a, M, d^v) = \phi \in A(G)$ with order k/s. Also $\theta(d, L, d^m) = \theta \in A(G)$, $|\theta| = ls/m$ and $\theta \in N(\langle \phi \rangle)$. Finally, letting $S = \langle \phi, \theta, I(G) \rangle$, we see that |S| = klm and the proof of the theorem is complete. \Box

References

1. R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382.

2. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996.

3. P. Hall, A contribution to the theory of groups of prime-power orders, Proc. London Math. Soc. (2) 36 (1933), 29-95.

4. J. C. Howarth, Some automorphisms of finite nilpotent groups, Proc. Glasgow Math. Assoc. 4 (1960), 204-207. MR 22 #9537.

5. O. J. Huval, A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly 73 (1966), 174-175.

6. A. D. Otto, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc. 125 (1966), 280-287. MR 34 #4362.

LAFAYETTE COLLEGE, EASTON, PENNSYLVANIA 18042

879