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THE AUTOMORPHISM GROUP OF A SHIFT OF FINITE TYPE

MIKE BOYLE, DOUGLAS LIND AND DANIEL RUDOLPH

ABSTRACT. Let (Xt,ot) be a shift of finite type, and G = aut(or) denote
the group of homeomorphisms of Xt commuting with ct- We investigate
the algebraic properties of the countable group G and the dynamics of its
action on Xt and associated spaces. Using "marker" constructions, we show G
contains many groups, such as the free group on two generators. However, G is
residually finite, so does not contain divisible groups or the infinite symmetric
group. The doubly exponential growth rate of the number of automorphisms
depending on n coordinates leads to a new and nontrivial topological invariant
of ot whose exact value is not known. We prove that, modulo a few points
of low period, G acts transitively on the set of points with least or-period n.
Using p-adic analysis, we generalize to most finite type shifts a result of Boyle
and Krieger that the gyration function of a full shift has infinite order. The
action of G on the dimension group of o~t is investigated. We show there are no
proper infinite compact G-invariant sets. We give a complete characterization
of the G-orbit closure of a continuous probability measure, and deduce that the
only continuous G-invariant measure is that of maximal entropy. Examples,
questions, and problems complement our analysis, and we conclude with a
brief survey of some remaining open problems.

Table of Contents
§1.      Introduction 71
§2.      Markers and subgroups 74
§3.      Residual finiteness and divisibility 78
§4.      Nonisomorphic automorphism groups 82
§5.      Symmetry 83
§6.      Induced action on the dimension group 85
§7.      Induced action on periodic points 90
§8.      p-adic aspects of the gyration  representation 95
§9.      Compact invariant sets 99
§10.    Orbits of measures 102
§11.    Problems and questions 112

1.   Introduction. Let T be a square nonnegative integral matrix.  Following
Williams [Wi], we associate to T a homeomorphism oT of a totally disconnected
compact space XT as follows. If T is r x r, form the directed graph with r states
or nodes, and with T¿_, symbols or edges from state i to state j. Let £. be the set of
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symbols of this graph. Then Xt C £z consists of those x = (...,X-X,x0,xx,...)
with the terminal state of Xi_x matching the initial state of X{ for all i G Z. Points
in XT may be thought of as infinite trips on the graph. Clearly XT is compact in
the topology induced from the product topology on t1, and the shift ot'- Xt —* Xt
defined by (otx)í = Zt+i is a homeomorphism. This dynamical system (Xt,o-t)
is called a shift of finite type or topological Markov shift. Such systems are intrinsi-
cally characterized as expansive homeomorphisms of totally disconnected compact
spaces with canonical coordinates [Bo]. They play a prominent role not only in
topological dynamics [DGS] and coding theory [ACH], but are also crucial to the
analysis of hyperbolic diffeomorphisms [Sm]. We shall assume throughout that ot
is mixing, or, equivalently, that some power of T is strictly positive. To avoid trivial
exceptions, we also require T ^ [1].

Let G = aut(<7r) denote the group of homeomorphisms of Xt commuting with
ot- If <p G G, then the fundamental observation of Curtis, Lyndon, and Hedlund
[H, Theorem 3.4] shows there is an n and a finite block map /: £2n+1 —» £ so that
(<7>x)i = f(xi-n,... ,xt+n). It follows that G is countable, and is discrete in the
compact-open mapping topology. Despite the finite character of such mappings,
very little is known about the algebraic structure of G. Hedlund [H] showed that
for the full fc-shift, aut(fj[icj) contains two involutions whose product has infinite
order, and also a copy of every finite group. Ryan [Ry2] showed that the center
of aut (err) contains only the group E of powers of ot- However, it is still an open
problem whether the automorphism group of the 2-shift is generated by the shift
and involutions in the group. Another example of our ignorance is the inability to
settle the question whether the automorphism groups of the 2-shift and 3-shift are
isomorphic.

Recently two new approaches to the structure of G = aut(rjT) have been made.
Boyle and Krieger [BK] used the action of G on the invariant set of periodic points
for ctt to construct a nontrivial homomorphism from G to n^Li Z/nZ called the
gyration function, and used this function to study G. Wagoner [Wa2], in analogy
with 7f-theory, constructed a nontrivial representation of G by using its action on
the space of Markov partitions of Xt- Furthermore, he has shown [Wal] that G
can be modelled by homeomorphisms commuting with a special diffeomorphism of
the sphere Sq for q > 5.

Our purpose is to study the algebraic properties of G and the dynamics of its
action on Xt and some associated spaces. The general method used here to con-
struct elements of G goes back at least to Hedlund, and is usually called the "marker
method." Roughly speaking, this method divides the symbols of a doubly infinite
sequence into program and data, and the automorphism makes the program act on
the data. The requirement of keeping program and data separated leads to certain
complications. Special cases of this idea are used in §2 to show that G contains the
free group on countably many generators, as well as the direct sum of countably
many copies of Z and of any countable collection of finite groups. However, G does
not contain a group with unsolvable word problem. Also, every subgroup of G is
residually finite, implying G cannot contain a nontrivial divisible group, nor the
infinite symmetric group. The finite type character of the shifts is related to the
failure of divisibility in their automorphism groups, for in Example 3.9 we construct
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THE AUTOMORPHISM GROUP OF A SHIFT OF FINITE TYPE 73

a subshift whose automorphism group contains Q with 1 corresponding to the sub-
shift. Automorphisms constructed using markers have finite order, although their
composition may not. Conversely, we show that any finite-order element in G is
obtained from a marker construction by using appropriate coordinates (Proposition
2.6).

Divisibility of elements of G is discussed in §3. The main question, which remains
open, is whether an infinite-order element can have nth roots for infinitely many n.
An argument using Ryan's theorem on the center of G shows that aut(<7[4]) is not
algebraically isomorphic to aut(cT[2j). However, we are not able to decide whether
aut(cT[3]) and aut(r7[2]) are isomorphic. In §4 we present an example of two shifts
of finite type with equal zeta-functions that have nonisomorphic automorphism
groups.

The growth of the set Gn(oT) of automorphisms depending on the central n
coordinates is doubly exponential in n. In §5 we define the symmetry of gt to be

s(trr) = limsup-loglog|Gn(crT)|,
n—>co   ri

show that symmetry is a topological invariant, and prove that \h(oT) < s(o~t) <
/i(<7t), where /i(or) is the topological entropy of ot- The precise value of s(ot) is
not known to us for any T ^ [1].

Krieger has associated to <rT an automorphism T of a countable ordered abelian
group (5T, St) caHed the dimension group. In §6 we outline this construction, and
show that each ¡p G G induces an automorphism of (ST, St,T). The main question
is whether this dimension group representation 8: aut(o"r) —► aut(T) is surjective.
In Theorem 6.8 we prove that if the eigenvalues of T are simple and no ratio of them
is a root of unity, then for all sufficiently large n the map <5:aut(fjJ) —> aut(Tn)
is surjective. The argument uses the fact that if the eigenvalues of T are simple,
then aut(Tn) is finitely generated. The proof of this has the Dirichlet unit theorem
as its priipal ingredient. Two examples complement the discussion, one of which
shows that aut(T) is not always finitely generated.

The period of a point is not altered under an automorphism, so G acts on the
set Qn of points with least rrr-period n. Is this action transitive? In Theorem 7.2
we prove a strong form of transitivity on Qn for all sufficiently large n. However,
we give an example with two fixed points which we show cannot be interchanged by
any composition of finite-order automorphisms. Our analysis of the action of G on
periodic points implies certain algebraic properties of G, including that none of G,
G/[G, G], and G/E are finitely generated. We conclude §7 with an example showing
that the profmite topology on G does not always coincide with that induced from
the action of G on periodic points.

Boyle and Krieger [BK] introduced the gyration function of <p € G to be the
number g(<p,o~T)(n) S Z/nZ indicating the total amount of twist given by <p to the
orbits of length n. The map g:G —> Yl^Li Z/nZ defined by

9{<P) = (9Í<P,o-t)(1),9(<P,o-t)(2), ■ ■ ■)
is a homomorphism called the gyration representation. They prove that g(cr^,a[k])
has infinite order for k > 2. Using computer experimentation, we stumbled on the
fact that g(crT,o~T)(pn) converges p-adically, usually to a nonzero limit that turns

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 MIKE BOYLE, DOUGLAS LIND, AND DANIEL RUDOLPH

out to be transcendental. This is the basis of our proof in §8 that if the product of
the nonzero eigenvalues of T is not ±1, then g(oT,o-T) has infinite order. It is also
a key ingredient in our proof that ot is not a limit, in the periodic point topology
on G, of products of finite-order elements (Proposition 8.3).

The search for nontrivial representations of G leads naturally to studying G-
invariant sets and measures on Xt- In Theorem 9.2 we prove that if a point is not
cTfr-periodic, then its G-orbit is dense. A modification of this argument shows that
if Y c Z are crr-invariant compact subsets of <jT, then Z is in the G-orbit closure
of Y under the Hausdorff metric on compact subsets. In §10 we obtain a complete
characterization of the G-orbit closure of a probability measure on Xt- Roughly
speaking, a measure v is in the G-orbit closure of /i when it has enough cumulative
entropy to accommodate an approximate image of fi. The precise formulation is
given in Theorem 10.1. One simple consequence is that the measure of maximal
entropy on Xt is the only continuous G-invariant measure.

This work has benefitted substantially from numerous conversations with many
people. We would like in particular to thank Ethan Coven, John Franks, Ralph
Greenberg, Hang Kim, Bruce Kitchens, Neal Koblitz, Wolfgang Krieger, Gopal
Prasad, Frank Rhodes, Jonathan Rosenberg, Fred Roush, John Smillie, and Jack
Wagoner. We would also like to thank the Mathematical Science Research Institute,
the IBM Thomas J. Watson Research Center, and the National Science Foundation
for their support.

2. Markers and subgroups. We shall describe a method for building auto-
morphisms of G = aut(oT), and use this method to construct subgroups of aut^r)
isomorphic to such groups as the direct sum of any countable collection of finite
groups, the free group on infinitely many generators, and the direct sum of count-
ably many copies of Z. However, we show G does not contain a group with unsolv-
able word problem, and in the next section that it does not contain a nontrivial
divisible group. We next discuss some elaborations of this marker method used
throughout this paper, and show that automorphisms of finite order coincide with
those obtained from a marker construction by using an appropriate symbolic pre-
sentation of Xt-

Recall from §1 that the set of symbols £ for Xt is the collection of edges for the
graph of T, and that points of Xt are just allowed bi-infinite sequences of symbols.
For x G XT let z[m,n] = xm ■ ■ -xn G £"—m+i ^ tjje block of coordinates of x
from m to n. Let Bn(Xj-) be the set of allowed blocks of symbols of length n for
T. Put B(XT) = IXLi Bn(XT)- Suppose M G ßm(XT) and that D C Bk(XT)
is a collection of blocks with MDM = {MDM: D G 0} C ß2m+k(^T) such that
for every D G D the block M can overlap the concatenation MDM in only the
initial and final segments of length m (this disallows even partial overlaps at the
ends). Let 7r be an arbitrary permutation of D. Define the action of a block map
j3, on i 6 Xt as follows. For each i, if x[i,i + 2m + k — 1] = MDM, define
(ipnx)[i,i + 2m + k — 1] = Mrr(D)M. Require ip^ to have no other action. Because
the blocks from MDM cannot overlap except for the marker M, this is a well-
defined fj-invariant map of finite order, so <p„ G aut(<Tx). The correspondence
7T <-» ipn hence embeds the symmetric group symD of D into aut(or). We shall
show shortly that |2?| can be made arbitrarily large by an appropriate choice of M.
This implies by Cayley's theorem that every finite group embeds into aut(<7:r)> and
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generalizes Hedlund's argument [H, Theorem 6.13] from the automorphism group
of a full shift to that of a shift of finite type.

Blocks, or collections of blocks, with the kind of nonoverlapping property used
above play a role for constructing continuous maps similar to that of Rohlin bases
used to define measurable isomorphisms in ergodic theory [Sh, Chapter 10]. The
idea has surfaced in several guises, such as prefix synchronization codes in informa-
tion theory [G].

DEFINITION 2.1. Two blocks overlap if an initial segment of one coincides with
a terminal segment of the other. A collection of blocks in B(Xt) has only trivial
overlaps if distinct blocks do not overlap and each block overlaps itself only in the
entire block.

The following gives an ample supply of blocks with only trivial overlaps.

LEMMA 2.2. There is a collection M = U^Li Mn C B(Xt) such that Mn
contains n blocks of equal length, M has only trivial overlaps, and

MM = {MM': M,M' G M} C B{XT).

PROOF. Since ot is mixing, and T ^ [1] by our convention, there must be a
loop to*i"'*fct'o € B(XT) of distinct symbols with k > 1. Furthermore, one of
these symbols, which we can assume is i'o, is followed by a symbol jx ^ ix.

First suppose jx ^ ir,. Choose a path of minimal length from jx to the loop,
say jxJ2 ■ ■ ■ jAs- The case r = 0 is possible and corresponds to jx = ia for some
s t¿ 0,1. Define A = i0--ik, B = 10J1J2 • • • jAs •••ik £ B(XT). For 1 < q < n
define Mnq = A2BqABn~q+1. Noting the positions of i0 in these blocks, it follows
from the above minimality of paths that M — {Mnq : 1 < q < n, n > 1} has only
trivial overlaps, and that MM C B(Xt) by construction. Since the lengths \Mnq\
are equal for 1 < q < n, the collections Mn = {Mnq : 1 < q < n} satisfy the
conclusions.

The remaining possibility is for jx = Íq. In this case let A — ix • ■ Aqir¡, and
put Mnq = A2¿oAí'o~9+1. Again noting the positions of i0 in the Mnq shows that
Mn = {Mnq : 1 < q < n} for n > 1 satisfy the conclusions.     D

We shall say that G = aut(o-fr) contains a group 77 if there is an isomorphism
of 77 to a subgroup of G. Using the markers constructed in Lemma 2.2, we will
show that G contains several kmds of infinite groups. For clarity, the constructions
are first carried out on convenient full shifts, then extended to general oT by a
substitution map.

THEOREM 2.3. The group aut(fTr) contains the direct sum of every countable
collection of finite groups.

PROOF. We first obtain the embedding when <tt is the full 3-shift on {0,1,2},
then extend to general ot by a substitution map using markers from Lemma 2.2.

First suppose XT = {0,1,2}Z, and let Dn = {0,1}", M = 2. For tt G sym(P„)
define ^€G using blocks MDnM = 2P„2 as above. This yields an embedding of
sym dn to a subgroup of 77„ of G. Since (<p*x)i — 2 iff z¿ = 2 and blocks from 2P„2
can overlap those from 2Dm2 only in the end symbols when n ^ m, elements of
Hn commute with those of 77m for n / m. Thus G contains 0^°=! sym Pn, which
clearly contains the direct sum of every countable collection of finite groups.
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For general ot, use Lemma 2.2 to find three markers M0, Mx, and M2 of equal
length with only trivial overlaps, such that MiMj G B(Xt) for all i,j. If 7r G
sym£>n = sym{0, l}n, define tp^ to replace a block of the form M2Mi1 ■ ■ ■ MinM2,
where ix ■ ■ ■ in G Dn, with M2Mj, ■ ■ ■ MjnM2, where ir(ix... in) = jx ■ ■ ■ jn, and
have no other action. The nonoverlapping nature of the M¿ shows that <pn is
well-defined, that 7t ?-► <pv embeds sym(Dn) into aut(cTT), and that the embedded
subgroups commute. The proof now concludes as in the first case.     D

THEOREM 2.4. The group aut(crr) contains the free product of any finite num-
ber of 2-element groups. Thus it contains the free group on two generators, hence
the free group on a countable number of generators.

PROOF. We embed the free product of three copies of Z/2Z, the generalization
to more copies being routine. We first work on a special full shift, then carry this
over to a general ot-

Let the alphabet be £ = {0,1,2,3,*}, and a¿ be the full shift on £. Define
involutions <pj for j — 1,2,3 as follows. All will be 2-block maps, and each will
exchange three pairs of 2-blocks. Specifically, ¡pj exchanges sO with sj for s G
£\{0,j}. Thus each <pj uses three markers for its definition, and has the important
property that markers defining its action are not affected by it. It follows that
each ipj G aut(o¿). Let P be the free product of the 2-element groups {e,j} for
j = 1,2,3. Define a homomorphism from P to aut(<7£) by mapping a reduced word
w = jn ■ ■ ji G P to V = fj„ ■ ■ ' <Pji ■ Since each tp? = I, the identity, this is well-
defined. Consider the point x = • • • 0000*0000 • • •, with xc, = *. Then (ipx)n = jn,
(ip~1xpx)n-X = jn-2 and so on. This means that inductively ib determines the
spelling of w, so this mapping embeds P into aut(<7£). It is elementary group
theory that P contains the free group F2 of two generators [MKS, §1.4], and it is
known [Ro, Theorem 11.27] that the commutator subgroup of F2 is the free group
on a countable number of generators.

This idea generalizes to arbitrary ot by using markers instead of symbols. If
£t is the alphabet for ot, for each a G {0,1,2,3, *} use Lemma 2.2 to construct a
marker Ma over £t, all of equal length with only trivial overlaps, and beginning
with and followed by ¿n. Define involutions <pj, 1 < j < 3, to exchange MsM0ir,
with MsMjio for s G £ \ {0,,/}, and have no other effect. Since these markers have
only trivial overlaps, the <pj are well-defined. The argument that they generate the
free product of three copies of Z/2Z is exactly as before.    D

REMARK 2.5. This theorem shows that G is not amenable.

THEOREM 2.6. The group aut^) contains the countable direct sum of copies
of I.

PROOF. We first perform the embedding when ot is the full shift on the alphabet
£ = {0,l,o,b,c), then generalize. Let Mn = abnc. Then M — {M„: n > 1} has
only trivial overlaps. For each n > 1 we will define two involutions an,ßn, and then
put <£>7i — anßn- The idea behind this construction is contained in [L2], where it is
used to construct automorphisms with interesting entropies. Define an to switch
MnijMn with MnjiMn, where i,j G {0,1}, and to have no other action. Define ßn
to map riMnjs to jMni, where i,j,r, s G {0,1}, and Mn does not move. Declare ßn
to have no other action. Clearly an and ßn are well-defined involutions that do not
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move any M^, and only affect those symbols 0 and 1 adjacent to the appearances
of Mn and that are not adjacent to markers with subscript distinct from n. If
ipn =¡= anßn, it follows that the ipn commute, but have no other relations. The
action of ipn on the point (M„00)oo(M„01)(Mn00)00 is to shift the block 01 to the
left by |Mn| + 2, proving that ¡pn has infinite order. In fact, each <pn has topological
entropy log 4 [L2]. Thus the subgroup of G generated by the <pn is isomorphic to
the countable direct sum of copies of Z.

The generalization to arbitrary o~t using markers Mo, Mi, Ma, Mb, and Mc
should now be routine.     D

This method allows the embedding of many kinds of countable groups into G.
But is there a reasonable answer to the following?

PROBLEM 2.7.   Characterize the subgroups o/aut(<7x).

At least two properties of countable groups prevent them from being embeddable
into aut((7r). One is the lack of residual finiteness, which we consider in the next
section. For the other, recall that a finitely presented group is said to have solvable
word problem if there is an algorithm to decide whether a word in the generators
represents the identity. There are countable groups without this property [Ro,
Chapter 12]. We are endebted to Bruce Kitchens for the following observation.

PROPOSITION 2.8. The group aut^^) contains no finitely generated group with
unsolvable word problem.

PROOF. Suppose a subgroup K of G = aut(tx) has n generators. The inverse of
an automorphism is explicitly computable, if only by trying all block maps using
coordinates from —k to k and increasing k until the inverse is found. Say that ip EG
has range at most m if (<px)i depends on only x¿-m,..., xl+m. There is an m so that
all the generators and their inverses have range at most m. Then a word ib of length
r in the generators and their inverses has range at most rm. As a block map, ib is
explicitly determined by the block maps inducing the generators and their inverses.
To check whether ip = 7, it is only necessary to see if ip(x-rm,..., xrm) = xq for
all allowed blocks of length 2rm + 1, a finite procedure. Thus K has solvable word
problem.     D

That a finitely presented subgroup of aut((77') has solvable word problem follows
from the residual finiteness of aut(cTr), considered in the next section. Proposition
2.8 is stronger. There exist finitely generated residually finite groups with unsolv-
able word problem. For these facts see Theorem 4.6 in Chapter 4 of [LS] and the
remarks that follow.

In each of the constructions above we have used a version of the marker method.
By this we mean that the automorphism permutes certain blocks when they occur
in the context of certain finite marking patterns, so that the marking patterns
are not altered by the permutation. A useful point of view is that these marking
patterns act as "program" on the "data" of blocks to be permuted. Invariance of
the marking patterns is a reflection of the necessary separation of program from
data. For the automorphisms <pn constructed at the beginning of this section, the
marking pattern is a pair of M's separated by k symbols, while the data is the
collection D of blocks permuted by it. In more elaborate constructions the marking
patterns can be quite complicated (see the proofs of Theorem 9.2 and Lemma 10.7),
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but the automorphisms produced will have finite order. At the other extreme, an
empty set of marking patterns corresponds to an automorphism that permutes
symbols. The following result, apparently first observed by John Franks, shows
that the finite-order elements of aut(r7T) are precisely those that are obtained from
a marker construction on a conjugate shift.

PROPOSITION 2.9. Suppose <p G aut(<rT) has finite order. There is a shift of fi-
nite type o\j and a conjugacy ip: Xt —* Xjj so that tpipip-1 is a 1-block permutation
of symbols in Xtj .

PROOF. Let Pq be the partition of XT into sets {x G XT : xc, = a} for a G £t-
Suppose ¡pk — 7, and put P = \fJZr]'P~:' Po- Note that <p permutes the atoms
of P. Since P has atoms that are compact and open, there is an n > 1 so that
V"=_n<7_J^o refines P. Let Px = \/"=_no'~:>P. Then Px is a compact open
partition of XT refining PQ, and a standard argument [Bl] from symbolic dynamics
shows that if n is sufficiently large, Px is a 1-step Markov partition for ot with
transition matrix, say, U indexed by the atoms of Px. This gives a conjugacy
ip: Xt —* Xu- Since <p commutes with aT, it will permute the atoms of Px. Hence
tpipip-1 acts by permuting the symbols of Xrj.     D

3. Residual finiteness and divisibility. In this section we will prove that
G = aut(ox) is residually finite. Since this property is inherited by subgroups,
it will follow that G does not contain nontrivial divisible groups, nor the infinite
symmetric group. We then discuss some divisibility properties of G. We conclude
with a construction of a subshift whose automorphism group contains a copy of the
rationals.

Recall [MKS, p. 116] that an abstract group H with identity 7 is called residu-
ally finite if the intersection of all its normal subgroups of finite index is {7}. This is
equivalent to 77 having enough homomorphisms to finite groups to separate points,
and also to being able to embed 77 into a product of finite groups. The profinite
topology on H is the coarsest making all homomorphisms from 77 to finite groups
continuous. Then 77 is residually finite exactly when the profinite topology on 77
is Hausdorff [MKS, Problem 2.4.24(a)]. Clearly a subgroup of a residually finite
group is itself residually finite.

THEOREM 3.1.   The group aut(fjT) is residually finite.

PROOF. Let Qn — Qn(cT) denote the set of points in XT with least err-period
n. Since ot is mixing, each Qn is finite. An automorphism <p G G = aut(crr) is a
topological conjugacy of ot with itself, hence preserves Qn. Thus for each n > 1,
an automorphism <p induces a permutation <p|q„ in the symmetric group symQ„.
Let Kn denote the kernel of the map p h-► ¡p\qu . The Kn are normal in G, and since
UtÍLi Qn is dense in XT, it follows that C\nc=x Kn = W- Hence G is residually
finite.      D

A group D is divisible if every element has roots of all orders [MKS, §6.2]. A
consequence of residual finiteness is that complete divisibility cannot occur in G.

COROLLARY 3.2.   The group aut(<7T) contains no nontrivial divisible groups.

PROOF. Suppose D is a nontrivial divisible subgroup. Then D is residually
finite by Theorem 3.1. Let <p ̂  I be in D, and TV be a normal subgroup of finite
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index in D with <p £ N.   Put n = \D/N\.   Suppose there were a ip in D with
tpn = (p. Then TV = (ipN)n = ipnN = <pN, contradicting <p <£ TV.     D

To point out the role that finite type plays in Corollary 3.2, we construct in
Example 3.9 a subshift not of finite type whose automorphism group contains Q.
This construction can be amplified so the resulting automorphism group is exactly
Q

Denote by S^ the group of permutations of the natural numbers fixing all but
finitely many elements. J. Wagoner has raised the question of whether G contains
5qo. The following negative answer has also been found, independently, by Kim
and Roush.

COROLLARY 3.3.   The group aut(f7r) does not contain Sqq.

PROOF. If iM is the infinite subgroup of 5^ consisting of the even permuta-
tions, then Aqo is the union of the finite simple alternating groups, so is also simple.
If Soo were contained in aut^r), then by Theorem 3.1 the subgroup Aqq would
also be residually finite. But A,» is infinite and simple, so is not residually finite.
D

Corollary 3.2 shows for example that G does not contain Q or Z(p°°) = Z[l/p]/Z
for primes p. However, the proof does not rule out partial divisibility.

PROBLEM 3.4.   7s Z[l/p] contained in aut(crT) for any prime p?

This amounts to asking whether there is an automorphism of infinite order with
an infinite chain of pth roots. Indeed, we are unable to decide the following.

PROBLEM 3.5. 7s there an automorphism in aut(t7r) of infinite order having
an nth root for infinitely many n?

Note that if <p is such an automorphism, then it cannot be topologically conjugate
to a mixing shift of finite type. For if ip = o~u and ipn = <p, then ip is also a mixing
shift of finite type ([BK, Lemma 2.5] or [LI, Theorem 8]), hence ip is conjugate
to some ay. Then the spectral radius \y of U would be a Perron number [LI,
§1] with nth root Ay, which is also a Perron number. But \tj has only finitely
many nontrivial factorizations into Perron numbers [LI, Theorem 4], so it has only
finitely many Perron roots.

Although we cannot characterize the subgroups of Q contained in G, there is a
complete answer for subgroups of Q/Z.

PROPOSITION 3.6. A subgroup o/Q/Z is contained en aut(fjT) iff its p-torsion
subgroup is finite for every prime p.

PROOF. Recall that Q/Z = 0pZ(p°°) is the primary decomposition of Q/Z
[Ka, §3]. If 77 c Q/Z, then 77 has primary decomposition 77 = ©p77p with
77p C Z(p°°). If some 77p is infinite, then it is Z(p°°), and then this divisible group
would be contained in G, contradicting Proposition 3.1. If all the 77p are finite,
then 77 is contained in G by Theorem 2.3.     D

We now turn to examining chains of roots of the identity I. If {uj : j > 1} is a
sequence of integers n¿ > 1 for all j, call a prime p good for the sequence if it divides
at least one, but only finitely many, of the rij. Call p bad if it divides infinitely many
of the Uj. Some primes may be neither good nor bad. We first discuss the case
when the roots generate a finite subgroup of G.
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PROPOSITION 3.7. Let {n3■: j > 1} be a sequence with n3 > 1. Then there are
tpj G aut(cTr) with (po = I, ip;3 = <Pj-X for j > 1, and which generate a finite
nontrivial subgroup o/aut(<rr) iff {nj} has a good prime.

PROOF. First suppose there are ¡pj having the properties mentioned. By skip-
ping to the first <pj ^ 7 and adjusting indices, we may assume ipx ^ I- Yet p be
a prime dividing the order o(ipx) of <px, and $ denote the group generated by the
<Pj. If p were bad, then ipx would have a pfeth root in $ for every k > 1. This
contradicts finiteness of $. Since p | o(px) and o(px) \ nx, it follows that p is good.

Conversely, suppose p is good. Choose the largest jo so that p | nj0. Let ip be a
pth root of 7, say constructed using Theorem 2.3. Define <pj = I for 0 < j < jo — 1,
<Pj0 — ip, and put <pj = ipk for j > jo, where k = (nj0+x •• ■ n,)-1 mod p. An easy
calculation shows these <pj work.    D

PROPOSITION 3.8. Suppose {n}: j > 1} is a sequence with Uj > 1. Then there
are ¡pj G aut(r7r) im'î/î ^o = J> <Pj' = fj-i for j > 1, and which generate an
infinite subgroup o/aut(<7p) iff {n3} has infinitely many good primes.

PROOF. First suppose there are <pj as described, and let $ denote the subgroup
of G = aut(<7:r) they generate. Since $ is a union of cyclic groups, it is abelian.
Suppose p divides o(<pj). If p were bad, then every element in $ would have a pth
root. This would force G to contain Z(p°°), contradicting Proposition 3.1. Thus
every bad prime is relatively prime to every o(<p0). If {uj} had only finitely many
good primes, then there is a jo so that for j > j0 each Uj is a product of bad primes.
Thus (o(nj),nj) = 1 for j > j0, so o(<pj+1) = o(<p"J) = o(<pj) for j > j0, implying
3> is finite. This contradiction proves {uj} has infinitely many good primes.

Conversely, suppose {n,-} has infinitely many good primes, say pi < p2 < • ■ • •
Since each pj divides only finitely many n^, by passing to a subsequence we can
assume there are n¿t < n¿2 < • • • such that pj | n^. for j > 1. Put io = 1, and
let m.j — Uij_,+\ .. .Uij. Clearly it suffices to find a chain of roots for the mj that
generate an infinite subgroup.

Since pj is good, for each j there is a dj so that mx • ■ ■ m,k ^ 0 mod p ■' for

all k > 1. Let 77., = I/pfl, and put 77 = ®^=xHj. Let aj¡0 = pf'1 € H3.
Inductively we can find üj^ G 77^ so that mj+kdj,k — Oj,k—i-  Let bj = «ij-i +
o-2,j-2-\-l"aj,o G H. Then the bj generate an infinite subgroup of 77, and recalling
that pj | mj we find that mjbj = bj-X. By Theorem 2.6, 77 embeds into G. If <pj
is the image of bj under this embedding, then the <pj satisfy the requirements.      D

In Corollary 3.2 we proved that the automorphism group of a shift of finite
type cannot contain a divisible group such as Q. If we drop the "finite type"
hypothesis, divisible subgroups are possible. The following construction yields a
minimal subshift (X,o) and an embedding of Q into aut (X,o).

The details of Example 3.9 are intricate, and the reader may wonder whether a
more "natural" action of Q would suffice. Unfortunately, because Q is not locally
compact, most natural actions of Q fail to be expansive, so cannot yield subshifts.
For example, Q acts on {0,1}^, but individual elements of this action are not
expansive. Expansive maps with roots of arbitrary order are harder to come by.

EXAMPLE 3.9. A minimal subshift (X, o) and an embedding o/Q into aut(X, a)
so that 1 G Q corresponds to o G aut(X,o).
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We first sketch how to construct a subshift (X, o) with an nth root. Suppose
there are n symbols ao,ax,...,an-X, and one "spacer" symbol s. Further suppose
that allowed blocks in X have an-X always preceded by an s, and oo always followed
by an s. Define a block map <p by <p(a,j) = Oj+i for 0 < j < n — 2, and tp(san-i) —
aos. In general, <p(X) need not be X. However, if X is designed so <p(X) = X, then
<p gives an automorphism of (X, a). As the iterates of <p act on x G X, different
parts of x are moved left one position at different iterates, much like the familiar
slinky toy. The cumulative effect of <pn is to move every symbol to the left once, so
ip is an nth root of o.

Before giving the detailed construction, let us describe the role of the objects and
maps obtained. The construction will proceed by stages, starting with an initial
alphabet £. At stage q > 3 we will have q\ words w0 ,... ,wqq'_x from £ forming

the set W (q\ Each Wj will be a concatenation of words from IlK«-1) separated
by 0, 1, or 2 spacer symbols s. The subshift X will consist of all x G £z so that
every subblock of x is also a subblock of some constructed word. Every word from
T^K«-1) will occur in every word from 1A)(q\ and s3 will never occur in any word.
From this it will follow that every allowed block in X occurs syndetically, so (X, o)
will be minimal. It will also follow that if x G X and q > 3, then x[—oo, oo] can be
uniquely decomposed into a concatenation of words from W^ separated by 0, 1,
or 2 spacers s. For each q > 3 there will be maps ipkq' (3 < k < q) defined on words
in "W^. They will have the properties that (<pk )k = <Pk_x for 4 < k < q, that
(p>2 )6 = cr, and the consistency condition that pk' applied to a word in T|>(9+r)
gives the same result as Pk would. Thus on X the <pk (q > 3) consistently
define a block map p>k, and these obey <pk = <pk-i (k > 4), tp% = a. Hence mapping
1/fc! to p>k for k > 3 embeds Q into aut(X,<r), with 1 corresponding to a.

To begin the construction, let the alphabet be £ = {oo, ax,...,05, s}. For the
initial stage q = 3, put wf] = uj (0 < j < 5), and W(3) = {wf] : 0 < j < 5}.
Define <p{33)(wf]) = wf^x (0 < j < 4), and <pf] (swf] ) = w[03)s.   This is the
method outlined in the first paragraph to obtain a 6th root of a, so (^3 )6 = a,
and we need only make sure that ^3   (X) = X.

Next we give the first inductive step, to 0 = 4. Begin by defining for 0 < m < 3
the 4 words

Wtf = 43 Vo3))3 [(SW^)(SW^+X mod 6) - - - («gk mod fl)] (8WC3))4.

We then obtain the 4! words in W^ by defining

«&m = bfrrf)        (0 < r < 5, 0 < m < 3).
Note that every word in )V ̂  occurs in every word in W ̂ . Next put <p4   (Wj   ) =

wj-îi (0 < J < 4! - 2). and Á4)(sw4^-i) = wo)s- Then let ^34) = (^i4))4- Words
from ~W ^ are cyclically moved by <p\ ' but break into 4 groups of 6 each on which
<£>3 acts exactly as tp¿ . Thus ^3 ' is consistent with <pj¡ ', and (^4 7 - pj by
construction. Since every word from W ̂  occurs in every word from W ̂ , and s3
never occurs here, the minimality conditions are satisfied at stage q — 4.
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Suppose at stage q - 1 we have defined (q - 1)! words wq~ 'for 0 < j <

(q - 1)! - 1 and maps p>kq~1] (3 < k < q - 1) so that (<pkq~1])k = pkqIx] and
the ipk  ,..., p>k        are consistent. Construct stage q as follows. First define, for
0 < j < q - 1,

"(9-1)1-1

n
7=0

wM^w^iswt'Y (<2-l)
SWm-Mmod («-!)! (sw0'(9-1)

We then obtain the q\ words in W^ by putting

«#L = tei-i'Vrf)       (0 < r < (a - 1)!, 0 < m < a - 1).
Next define <pqq) by pqq)(w{q)) = w(q¡x for 0 <j < ql-1, and ^(«wjlj = w{0q)s.
Finally, set

<PÏ) = ^))qi,ki (3<fc<g).
Then, as in the g = 4 case, for fixed k each ipk (k < p < q) is consistent with pj¡. ,
and (pjj. )* = ^fc_j. Every word in 1V^q~x"> occurs in every word of 1V^q\ and s3
never occurs. Furthermore, because of the repetitions of sw^ at the ends of the
Wm , every x G X has x[—oo, oo] decomposed uniquely as a concatenation of words
from W^ separated by no more than 2 s's. This completes the construction of
stage q.

The "W^ and pk constructed obey the conditions described in the second
paragraph, and we thus obtain the required minimal subshift (X, a) and embedding
of Q into aut(X, o).     O

REMARK 3.10. In our construction of w¿, the words from "W^q~^ are cycli-
cally listed once. However, any arrangement of words from "W^q~l\ with arbitrary
repetitions, would also work, provided each word is used at least once. By using a
long and highly recurrent listing of words from W^q_1\ it is possible to construct a
uniquely ergodic subshift (X, er) so that aut(X, o) = Q, and such that every Borel
measurable mapping <p: X —> X commuting with o is continuous. This should be
contrasted with the uniquely ergodic Morse minimal subshift, whose automorphism
group is just Z © (Z/2Z) with generators the shift and coordinate complementation
(see [CK, C]).

4. Nonisomorphic automorphism groups. Conjugate subshifts of finite
type have isomorphic automorphism groups. Also, clearly aut(fj7-) = aut(cr^1).
Since there are shifts of finite type not conjugate to their inverse [PT, Proposition
3.30], there are nonconjugate shifts of finite type with isomorphic automorphism
groups. However, the following question remains open.

QUESTION 4.1. If o\j is not conjugate to o~t or o^1, can aut(otj) and aut^x)
be isomorphic as abstract groups'!

In this regard, we know of only one useful invariant, namely the theorem of
Ryan [Ryl, Ry2] that the center of aut(o-fr) is precisely the set of powers of oT-
Thus, for example, as an abstract group aut(<7[4]) = aut(a?2]) has center generated
by an element with a square root in the group, while aut(<7[2]) does not since the
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2-shift has no square root. The following example, a more refined application of
this idea, shows that the isomorphism class of aut(aT) is not determined by the
zeta-function. The motivation for the specific matrices used lies in a consequence of
[B2] that there is only one shift equivalence class over Z for matrices whose nonzero
spectrum is {1,2}, while there are exactly two such classes for {1,8}, only one of
which can correspond to the cube of the first class.

EXAMPLE 4.2.   Two mixing shifts of finite type with equal c -function and having
nonisomorphic automorphism groups.

Let

V =

10 0 1
0 10 1
0 110
10    10

T = V3, U = 7   6
1    2

l-iThen fr(0 = &/(£) = [(1 - 8r)(l - i)] \ Clearly the generator <rr for the center
of aut(rTT) has a cube root ay. Suppose otj has a cube root <p in aut(au)- Then
<p is again a shift of finite type ([BK, Lemma 2.5] or [LI, Theorem 8]), say <p —
ow- Since au = (a\y)3 — ow3, the nonzero spectrum of W is {1,2} counting
multiplicity. Hence by [B2], there is an integer j so that W is shift equivalent over
Zto [)x] =WX. Since

Wx =

and

U =

we would have

1    0
j    1

1    -1
0     1

2     0
-j    1

1    2

3 _  ¡V _W? = N
8   0
0    1

1    2

and    M

1    0
j    1

1    -1
0     1

2    0
0    1

8    0
0    1

8   0
1    1

shift equivalent over Z. Thus there would be matrices 72 and S over Z and a positive
integer I with RS = Ml, SR = Nl, NR = RM, and SN = MS. Now TV7Í = 7ÎM
forces RX2 = 0 and 77i2i = -7i22. Also, STV = MS forces Sx2 = 0. Then RS = Ml
implies R22S22 = 1, so 7222 = ±1. This contradicts 7722i = —R22.     D

5. Symmetry. Let 07- be a mixing shift of finite type. As in the proof of
Proposition 2.8, say that <p G G = aut(<7fr) has range at most n if (px)¡ depends
only on a;¿_n,... , 2¿+„. A natural measure of the symmetry of ot is the rate of
growth of the subset Gu(ot) of those automorphisms in G with range at most [n/2].
This growth turns out to be doubly exponential, so we define the symmetry of or
as

s(aT) =limsup-loglog|G„(<TT)|.
n—*oo   n

The definition of symmetry depends on a particular presentation of aT, but
the following proves that symmetry is a conjugacy invariant. Suppose aT and
au are conjugate via a mapping ip:XT —» X¡y. Choose m so that both ip and
V>_1 have range at most m. If p E Gn(cTr), then ippip~l G Gn+4m(ou), so that
|Gn+4m(<T[/)| > \Gn(aT)\- Thus s(ou) > s(rJ:r), and by symmetry they coincide.
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THEOREM 5.1.   Ifa is a mixing shift of finite type, then

\h(a) < s(a) < h(a).

PROOF. We first establish the upper bound. Represent a as ot with r states,
and put X — Xt- Now |Gn(<7r)| is trivially bounded above by the total number
of block maps Bn+x(X) -> {0,... ,r - 1}, or rIS»-uWI. If h(aT) = log A, where A
is the dominant eigenvalue for T, there is a k > 0 so that |fln+i(X)| < «A™. Thus
\Gn{a)\ < rKX", so that s(a) < logA = h(a).

The lower bound uses the automorphisms constructed at the beginning of §2.
For this we first need to show that the number of marker-free blocks of length m
between two markers grows faster than (A1_e)m, where e can be made small by
choosing long enough markers.

Fix a small s > 0 and a marker M G Bn(X), where n > no with no to be
determined. Let / be a transition length for T, so that Tl > 0. There is an a > 0 so
that |Sfc(X)| > aAfc for k > 1. If k < n, then M has n-k + 1 subblocks of length
k. Hence if k is chosen so that aA* > n - k + 1, there will be a block C G Bk(X)
that does not appear in M. If no is large enough, a choice of k < |n — / is possible.

Consider blocks MDM G Bn (X) of the form

MECBXCB2 ■ ■ ■ CBKCFM,

where B3 G Bn-2k(X), N = (n - k)K + 2n + 11 + k, and E,F are fixed transition
blocks in Bi(X). Since / is a transition length, every block of Bn-2k-2i(X) can be
the central part of each B3. Hence the collection D of blocks D with the required
form has cardinality

\D\ > {aXn~2k-2l)K > {a\^-^n)K.

Since 2|C| + \B3\ = n, a subblock of D G D with length n must contain C. Now
M does not contain C, and has only trivial self-overlap. Thus M can only occur
in MDM as the initial or terminal segment. As at the beginning of §2, distinct
permutations tt G symD determine distinct automorphisms p^ G aut(aT) whose
range is clearly at most TV. Thus

\G2N+i(o-t)\ > \{a\{x-e)n) m,

Now Stirling's formula implies that logm! > m(logm - 1), which applied to the
above yields

s(aT) > lim sup loglog|G2iV+i|
jV—oo   ^JV + 1

> »msup--—-—¿-■-—^--logiaA*1-6)")*
-  k^J, 2(n-k)K + A(n + l) + 2k + l    6V ;

1 — £ 1 - £
> —s— !ogA = ——h(aT)-

Since £ > 0 was arbitrary, the lower estimate is proved.     G
We do not know the exact value of s(ot) for any T ^ [1], nor whether the

definition's lim sup is actually a limit.
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PROBLEM 5.2.   Compute s(aT)■

For full shifts a^ this problem can be viewed as a quantitative inquiry into the
relative sparseness of aut(<T[r]) in the semigroup of all block maps from X[r] to itself.
A topological measure of this sparseness has been given by Sears [Se]. We remark
that for <7[r], if we replace "automorphism" by "surjective map" in the definition
of symmetry, the value is easily shown to be logr = h(a^). For any block map
involving k symbols can be used to define a right permutive block map using k + l
symbols by adding modulo r the value of the block map on the initial k symbols to
the last coordinate. Such right permutive maps are surjective [H, Theorem 6.6].

NOTE ADDED IN PROOF. H. Kim and F. Roush have shown that s(aT) = h(aT)
for all irreducible T. Their solution to Problem 5.2 uses a modification of the
construction used to prove Theorem 5.1.

Let ht be the measure of maximal entropy for aT- Coven and Paul [CP] proved
that ßT is ip-mvariant for every <p G G. Since G is not amenable (Remark 2.5),
the sets G„ may provide a replacement for averaging sets for the action of G on
(Xr,uT).

QUESTION 5.3.   7// G C(Xt), does |Gn|_1 E<¿,eG„ f(<Px) converge to

/     fdßT
JXt

in any reasonable sense for most or all x G Xr?

6. Induced action on the dimension group. For this section only, we drop
our standing assumption that T be aperiodic, and assume only that T is nonnegative
integral and not nilpotent. Building on the fundamental work of Williams [Wi]
and Elliot [E], Krieger [Kr2] associated to each shift of finite type aT an order-
preserving automorphism T of an ordered group (St,St) called the dimension
group of aT- The triple (St^St,T) is a topological invariant since it can be
defined using only topological notions. Two shifts of finite type are shift equivalent
exactly when their dimension triples are isomorphic [Kr2].

We first review an algebraic description of the dimension triple, and indicate its
relationship to underlying topological notions. Next we show how an automorphism
p of aT induces an automorphism 6{p) of the dimension triple. The basic problem is
to determine whether 6 is surjective. We do not settle this. We show in Theorem 6.8
that if the nonzero eigenvalues of T are simple, and if the ratio of distinct eigenvalues
is not a root of unity, then for all sufficiently large n the map 6: aut(aT) —» aut(T")
is surjective. We also show that these hypotheses on the eigenvalues of T imply
aut(T) = aut(Tn) for all n. Example 6.7 shows that in general aut(T2) can be
larger than aut(T), though still finitely generated. Also, using an idea suggested to
us by Gopal Prasad, in Example 6.9 we exhibit a T for which aut(T) is not finitely
generated.

Suppose T is an r x r nonnegative integral matrix. For the moment we drop our
standing assumption that T be aperiodic. It will be convenient to have matrices act
on the right, and for vectors to be row vectors. Say that v G Qr is eventually integral
(under T) if vTn G Zr for large enough n. Call two eventually integral vectors v
and w equivalent if vTn = wTn for large enough n.   The set Qt of equivalence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



80 MIKE BOYLE, DOUGLAS LIND, AND DANIEL RUDOLPH

classes [v] of eventually integral vectors v inherits an additive group structure from
Qr. The positive cone Qj. is the set of [v] for the vTn > 0 eventually.

Let R = TrQr be the eventual range of T. Each class in Qt has a unique
representative in 7?, so it will sometimes be convenient to regard Qt as embedded
in R. Define T on Q? by T([v\) = [vT]. By considering Qt as a subgroup of 72,
the extension of T to 72 is invertible, so T defines an automorphism of Qt- It
is clear that T is order-preserving.  By the dimension triple of ot we shall mean
{St'$t>t)-

We now sketch Krieger's topological construction of the dimension triple. For a
detailed introduction to these ideas, see [BMT, Chapters 2, 5, 11].

By an n-ray we shall mean a set of the form

i(—oo, n]* = {y G XT : yj = Xj for -oo < j < n),

where x G Xt- By an n-beam we mean a finite disjoint union of n-ray s. Note
that although the notion of n-ray is tied to the presentation T, that of n-beam is
not, since an n-beam can be topologically described as a finite union of compact
open subsets of unstable sets in XT in the natural inductive limit topology. If
C = IJ x3(—oo, n]* is an n-beam, define a vector vc,n £ Zr whose ¿th entry is the
number of n-rays zJ such that xn has terminal state i. If C is an n-beam, then
it is also an m-beam for m > n, and vc,m = vc,nTm~n. Define beams G and D
to be equivalent if for large enough k we have vc,k = vo,k. The set of equivalence
classes generate the positive cone Q+ of an ordered group Q using the definition
[G] + [D\ = [C U D] if G fi D = 0. Now <tt acts on beams, preserves equivalence,
so induces an order-preserving automorphism aT of Q. Since equivalence of beams
corresponds to equivalence of eventually integral vectors, it is routine to verify that
the map sending the class [G] of an n-beam to T_"([i>c,n]) is an isomorphism of
(S,S+,&t) to the dimension triple (St'St,T) defined above.

Therefore, to prove that the dimension triple is a topological invariant, it suffices
to prove that if ip-.OT -• ffy is a topological conjugacy, then ip maps beams to
beams, respects equivalence of beams, and intertwines ot with du- The routine
verifications are omitted. However, we add one note of caution. If i¡>:Xt —► Xu is
merely surjective, it is not necessarily true that ip maps beams to beams.

We shall denote the group of order-preserving automorphisms of the dimen-
sion triple by aut(T). Suppose p G aut (ot). Since tp is a self-conjugacy of &t,
the argument above about topological invariance proves that <p induces an au-
tomorphism 6(ip) G aut(T). A routine calculation shows 6(<pip) = 6{(p)6(ip), so
6: aut(f7r) —» aut(T) is a homomorphism.

QUESTION 6.1. Is the dimension representation <5:aut(<7x) —► aut(T) always
surjective?

If U is an integral matrix commuting with T, we define U on QT oyU([v\) = [vU].

LEMMA 6.2. Suppose U and V are nonnegative integral matrices so that T =
UV — VU is an elementary strong shift equivalence of T to itself. Then there is a
ip G aut(<Tr) with 6(p) — U.

PROOF. This is mainly a matter of checking that the induced automorphism
defined by Williams [Wi] acts correctly on beams.
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Suppose T is r x r. Let W = [JJ], so W2 = [o£], indexed by states
{0,1,...,2r - 1}. Then B2(o~w) is the disjoint union of the set Buy of paths
beginning and ending in {0,..., r - 1} and the set Bv,u beginning and ending in
{r,... ,2r — 1}. Thus XW2 is the disjoint union of XVy defined from Buy and
Xi/,t/ defined from Bv,u- Note that aw switches these sets. From the form of W2,
it follows that there are bijections Buy'. Bi(ot) —* Buy and 8y,u'- Bi(ot) —* Bv,u
that respect initial and terminal states mod r. These induce 1-block conjugacies,
denoted by the same symbol, Buy- (Xt,o~t) —* (Xuy,°~w) and Bv,u- (Xt,o~t) —*
(XVyU,aw). Let p = 8r}jcrwBuy G aut(<7T).

We compute the action of p on a left-infinite ray x(—oo,n]*. Suppose xn has
terminal state i. Then Buy maps this to a ray in Xuy ending with state i. Next
aw maps this to a union of rays, with Uij of them ending in state j. Finally,
B^u maps each ray ending in state j to one in Xt ending in state j. Passing to
the action of <p on QT, we see the standard unit vector e¿ is mapped by 6(<p) to
Z;=1 Uijej. Thus 6(<p) =Û.     D

Note that aut(f7j') is naturally a subgroup of aut(öy.). Furthermore, the re-
striction of 6:aut(a^.) —> aut(Tn) to aut(<TT) coincides with the definition of 6 of
aut(<7r).

PROPOSITION 6.3. Suppose $ G aut(T). Then for all sufficiently large n, there
is a <p G aut(o-J) with 8(p) = $.

PROOF. Let T be r x r acting on Qr. Then 72 = TrQr is the eventual range
of T, and K = kerTr is its eventual kernel. Hence Qr = 72 © K. As before, we
may consider Çt as embedded in 72. Since Qt is torsion-free, the automorphism $
extends to a nonsingular Q-linear map W of §t ® Q = R- If Ok denotes the zero
map on K, and i/o is the matrix for 0k®W with respect to the standard basis, then
U0 = 0k®W has rational entries, and <70 = $. Let V0 = Ok © W~l. Both U0 and
Vo have rows in Q%, so for k and n — k large enough, U = UoTk and V = VoTn~k
have Z+ entries. Thus UV = (0K®IR)Tn =Tn =VU is an elementary strong shift
equivalence of T" to itself. By Lemma 6.1, there is a ip G aut(<7j;) with 6(ip) = U.
Put <p = ipOrk. Then 6(<p) = 6(ip)6(a^k) = Û0fkT-k = Û0 = $.     D

To use Proposition 6.3, we will establish some results about finite generation of
aut(T). In what follows, aut(^r,T) refers to the group of those automorphisms
of Qt commuting with T, not necessarily preserving the positive cone. If U has
nonzero eigenvalues Xx,... ,\k, let Xt/(0 denote FT _1(i - A.y).

LEMMA 6.4. Suppose \u is irreducible. Then aut(Çu,U) is finitely generated
and abelian.

PROOF. By passing to the eventual range of U, we may suppose U is nonsingular.
Let U be r x r, and let A be an eigenvalue of U. By a theorem of Taussky [T], there
is an ideal J C Z[A] so that (Ir, U) = (J, M\), where M\ denotes multiplication by
A. Hence (Su,Û) = (Z[1/A]J,M\). For more on this correspondence, see [BMT,
Chapter 5]. Under this isomorphism, an automorphism $ of U corresponds to an
automorphism of Z[l/A] J commuting with M\, i.e. a Z[l/A]-module isomorphism.
Since the quotient field of Z[l/A] is Q(A), there is an a G Q(A) so that $ corresponds
to the restriction of Ma on Z[l/A] J. Let S be the set of prime divisors of the ideal
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generated by A, and Os denote the ring of S-integral elements in Q(A). Since both
Ma and Ma-i are automorphisms of Z[l/A] J, it follows that a is in the unit group
Og of Os- By the Dirichlet unit theorem [We, Theorem 5-3-10], the group Og of
units is a finitely generated abelian group. Thus aut(i7) corresponds to a subgroup
of Og , so is also finitely generated and abelian.     D

REMARK. The Dirichlet unit theorem shows that aut(§u,U) is the product of
a finite cyclic group and a free abelian group on e + r + s - 1 generators, where
Q(A) has r real and 2s complex embeddings, and the factorization of the principal
ideal generated by A uses e distinct primes.

PROPOSITION 6.5. If all the nonzero eigenvalues ofT are simple, then aut(T)
is finitely generated and abelian.

PROOF. Factor xr(t) = tmpx(t) ■ ■ -pk(t), where the pj(t) are distinct irre-
ducibles. If T is r x r, then Qr is the direct sum of the eventual kernel of T and the
rational subspaces 72., corresponding to thep3(t). Let Q3 = St^Rj, andTj = T\g..
Suppose í> G aut(T). As before, $ extends to a Q-linear map of Qr which is invert-
ible on ©J=1 Rj. Since the p3 (t) are distinct and irreducible, each 72., is ^-invariant.

It follows <fr\g3 is an automorphism of (Sj,T3). Hence the map $ i-> ®*=1 $\g}
takes aut($T,T) to ®,-=1 ant(Qj,Tj). Since ®J=1 So nas finite index in ÇT, this
mapping is injective. By using an integral basis for 17 n Rj, the map Tj is seen to
be a dimension group automorphism, so aut(£j, Tj) is finitely generated abelian by
Lemma 6.4. This proves aut^^T) is finitely generated abelian. The group aut(T)
of order-preserving automorphisms is therefore also finitely generated abelian.     D

LEMMA 6.6. Suppose the nonzero eigenvalues ofT are simple. IfT does not
have distinct eigenvalues whose ratio is an nth root of unity, then aut(T") = aut(T).

PROOF. As noted above, aut(T) C aut(T") is trivial.
Using the notations from the proof of Proposition 6.5, we see the hypotheses on

the eigenvalues of T mean that the spectra of Tn\nj are disjoint for 1 < j < k.
Thus any $ G aut(T") extends to a Q-linear map under which the Rj are invariant.
Since the eigenvalues of Tn on 72j are distinct, and $ commutes with T" on 72j, it
follows by linear algebra that $ commutes with T on Rj, completing the proof. D

EXAMPLE 6.7. An aperiodic matrix T for which aut(T2) is larger than aut(T),
but both are finitely generated.

Let

Then over Z[l/3] we find

V~1TV = U =

T =

where V =

Since the eigenvalues of U are distinct, we obtain Qu — Z[l/3] , and aut(£r/, U) =
G7/(l,Z[l/3])3 = [Z © (Z/2Z)]3. Since order-preserving automorphisms of QT just
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need to preserve the positive dominant eigendirection, aut(£T, St,T) is a subgroup
of index 2 in aut(,pT,T).  The conjugacy of T and U takes place over Z[l/3], so
aat(Su,Û) - aut(gT,f). Hence aut(f) = Z3 © (Z/2Z)2.

On the other hand, II2 has a repeated eigenvalue of 32, and any automorphism
of the corresponding subgroup of §u extends to one of Qu- Thus

ant(9u, Û2) = GL(1, Z[l/3]) © GL(2, Z[l/3]).
As before, we conclude aut(f2) = Z © GL(2, Z[l/3]), which is larger than
aut(f). □

We remark that by using elementary matrix operations, one can show that
GL(2, Z[l/3]), and hence aut(T2), is a finitely generated nonabelian group.

Assembling the pieces, we now state the main result of this section.

THEOREM 6.8. Suppose the nonzero eigenvalues ofT are simple. If no ratio
of distinct eigenvalues is a root of unity, then for all sufficiently large n we have
that 8:ant(aj.) —* aut(Tn) = aut(T) ts surjective. If some ratios of eigenvalues are
roots of unity, the conclusion still holds for infinitely many n.

PROOF. Let us first suppose no ratio of distinct eigenvalues is a root of unity.
By Lemma 6.6, we have aut(Tn) = aut(T). By Proposition 6.5, aut(T) is finitely
generated. Using Proposition 6.3, for all sufficiently large n, each generator is in
¿(aut(fjj)), implying the conclusion.

If some ratios of distinct eigenvalues are roots of unity, the preceding argument
still holds for all n relatively prime to the orders of these roots of unity.     D

We conclude with an example to show that finite generation of aut(T) does not
generally hold.

EXAMPLE 6.9. An aperiodic matrix T with aut(T) not finitely generated.
We are grateful to Gopal Prasad for the idea behind the following. Let

"5    2    2

T =

Then T is conjugate over Z[l/3] to
"9    0   0

U = V~1TV = where V

As in the argument for Example 6.7, aut(£t/) = GL(l,Z[l/3]) x 77, where 77 is
the group of automorphisms of Z[l/3]2 commuting with IV = [3°]. By analogy
with the KAN decomposition of Lie groups, it is easy to see that 77 = K x A x TV,
where K = {±1}, A = {3n7: n G Z}, and

N={[1   ;]:a€Z[l/3]}.
Now TV is isomorphic to the additive group Z[l/3], which is not finitely generated.

Thus H is not finitely generated, so aut(T) = Z x 77 is also not finitely generated.
D

The following question appears to us basic to understanding the structure of
aut(o-T).
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QUESTION 6.10. 7/T is aperiodic, is the kernel of the dimension representation
of aut(oT) generated by elements of finite order?

This question is especially pertinent to understanding the action of aut(o-r) on
the periodic points of ot (see §7 and [BK]). It is a natural generalization of an
older one, which to the best of our knowledge was first explicitly conjectured by F.
Rhodes in correspondence with G. Hedlund.

CONJECTURE 6.11 (F. RHODES). The automorphism group of the 2-shift is
generated by the 2-shift and involutions.

7. Induced action on periodic points. Each automorphism of aT maps a
periodic point to another with the same period. This action of G on periodic points
was studied by Boyle and Krieger [BK]. We begin by discussing a fundamental
question about this action, and give a partial answer in Theorem 7.2. We then
discuss several representations of G provided via periodic points, and conclude
with remarks about some related topologies on G.

Let Pn = Pni^r) denote the fixed points of aïf, and Qn = Qn(o~r) be those
points with least rjr-period n. Since Qn is or-invariant, we can define aut(Qn,OT)
to be the group of bijections of Qn commuting with err- Let Fn = U?=i Qj-

QUESTION 7.1. When is an automorphism in aut(Fn,o-r) the restriction of
one in aut(XT, o~t)?

This question is the natural generalization of a long-standing problem of R. F.
Williams, namely when can fixed points be switched by an automorphism. The
latter problem, posed originally as a potential refinement of shift equivalence, has
withstood serious attacks for a number of years. Example 7.3 below provides a
concrete case of a shift of finite type having two fixed points which no composition
of finite-order elements can switch. It cannot be ruled out at present that the
answer to Question 7.1 is "always".

THEOREM 7.2. Let aT be a mixing shift of finite type. There is an no(T) so
that if n > no and x,y G Qn(o~T) have disjoint orbits, there is a composition p of
involutions in aut(<7r) so that px = y, ipy = x, and p fixes all points whose orbit
has length < n and does not contain x or y.

PROOF. The proof elaborates ideas from [BK], where this is proved for full
shifts with no = 1. Let us first describe some convenient notation. Shorten aT to
a, XT to X, S„(XT) to S„, and B(XT) to S. If A = a0 ■ ■ -an-i G S„, let A[i,j]
denote o¿ • • • a3-. If A2 G B2n, let A°° denote the point x G X with Xi — A[i mod n].
If 0 < i < n, let a%(A) be the cyclic permutation A[i,n — 1]A[0, i — 1] of A. Then
<7¿(A°°) = (ctM)°°.

First suppose A and B are distinct blocks in Bn with A2B2A2 G B. Although
(AB)°° need not have least period 2n, we claim there are cyclic permutations
¿(A), a1 (73) so that {ai(A)ai(B))°° G Q2n- To prove this, suppose (AB)°° has
least period 2n/m < 2n, so AB = Cm with m > 3 and odd since A ^ B. Thus
|G| is even, so write G = DE with |D| = \E\ and D ¿ E. Thus A = D(ED)q and
B = E(DE)q with q = \(m - 1). Let Ax = a^(A) and Bx = a^(B), and put
F = AXBX = (ED)q-1EDDDE(DE)''-1E. Suppose F°° has period ifc < 2n. Since
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<PAB(z)[i,i + n- 1] = I

D ,¿ Tí, we conclude k < n, hence

k<f = ̂ \D\<2q\D\.
Now choose j > 1 such that \D\ < jk < 2q\D\, and translate the central DDD
block in F by jk to the left. It follows that this block contains either DE or ED
as a subblock, implying D = E, a contradiction. Hence F°° G Q2n, verifying
our claim. Note that the cyclic permutations Ai and Bx retain the property that
AjB2A2 G B, so Af, Bf, and (AXBX)°° are allowed points in X.

If x, y G Qn, say that p G G switches x and y if p>x = y, py = x, and p fixes
all points whose rj-orbit has length < n and does not contain x or y. We shall
write in this case p:x^>y. Suppose now that A,B G Bn with A2,732 G B and
A°°, 73°° G Qn defining disjoint orbits with A[i] = B[i] for some 0 < i < n. We will
construct an involution pab '■ A00«-»^00. First replace A by a1 A and B by axB, so
now A2TJ2A2 G S. By the above, we can further replace A by a-7 A and B by aJB
so that still A2T?2A2 G S and also (AB)°° G Q2n- To define pab, let a frame be a
word in {A, B}5. If z[t - 2n, i + 3n - 1] is a frame, define

B if x[i,i + n - 1] = A,
A if x[i,i + n — 1] = B,

and require <p>ib to have no other effect. To see that pab is well-defined, suppose
the contrary. Then there are two frames G and D with C[—2n, 3n — 1 — k] =
D[—2n + k,3n - 1] for some k with 0 < k < n. Since A°° G Qn, it follows that
A occurs in A A only in the initial and terminal halves, and also B does not occur
in AA. Thus G and D have the form ABABA or BAB AB. The overlapping of G
and 7? force (AB)°° to have period < 2n, contradicting (AT?)00 G Q2n- Thus <pab
is well-defined. Clearly it preserves frames. It follows that pab is an involution in
G, and obviously it switches A°° with T?°°.

To complete the proof, let I > 0 be a transition length for aT, so that (Tl)ij > 0
for all i,jeC There is an no = no(T) so that for all a, 6 G C and n > no, there are
at least 3n blocks D in Bn satisfying D[0] = a, D[l] = b, and D°° G Qn. This follows
by counting, since the number of n-blocks satisfying the first two conditions is at
least kAj. for suitable k > 0, while the number of n-blocks D with D°° having period
< n is no more than J2d\n,d<n \Bd\ = 0(\T'2). Now fix n > n0(T), and suppose
x,V G Qn have distinct orbits. Put A = x[0,n — 1] and B = y[0,n — 1\. By the
choice of n0, there is C G S„ with G[0] = A[0], C[l] = B[l], C°° G Qn, and the orbit
of C°° missing x and y. By the above, pAc '■ A°°^C°° and pBC : B°°^C°°. Then
<P — <Pac<Pbc<Pac '■ A°°<->B°°, and no other orbits of length < n are affected.     D

Theorem 7.2, with a smaller estimate for no(T), has been proved independently
by M. Nasu [N].

The following example shows it is possible to have periodic orbits that cannot
be switched by products of finite-order automorphisms.

EXAMPLE 7.3. A mixing ot with exactly two fixed points that are also fixed by
every finite-order automorphism of aT-

Let "1 1 0'

0 0 1
3 0 1
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and Qi(<7t) = ix,y}, where x = 0°° and y = 2°°. Suppose ip G G with tpk = I
and ip: x-^y. Now (ipOT)k = oT, so tpOT is a root of a mixing shift of finite type,
hence itself is a mixing shift of finite type ([LI, Theorem 8] or [BK, Lemma 2.5]).
Since the characteristic polynomial of T is irreducible over Q, it follows that ot
and ipOT have equal ç-functions. But x G Q2(iPot), while Q2(ot) is empty. This
contradiction shows such a ip cannot exist. Furthermore, or has no roots. For
suppose ipk = aT- Then as before ip is a shift of finite type, say ip = au- But then
the product of the nonzero eigenvalues of U is 31/*, contradicting integrality of this
product. In this example, no combination of marker constructions and roots of the
shift can switch x and y, and it remains open whether this is possible.     D

Recall that Pn = Pu(^t) denotes the fixed points of aT, and that Qn = Qn(o~r)
is the set of points with least or-period n. Clearly each p € G restricts to a
permutation TTn(p) = p\q„ G aut(Qn,err)- If Qn = <Z>, set aut(G;„,(7r) to the
trivial group, so then 7rn is also trivial. Call

oo

■k(p) = (tti(<£>),7T2(<£>),...) G "[I aut(Q„,crT)
77=1

the periodic point representation of p G G. The proof of Theorem 3.1 shows that
it is faithful.

PROPOSITION 7.4.   The periodic point representation tt of G is faithful.      D

The next two representations are derived from tt. Let E = {aT: n G Z}, and
Qn — Qn/^> be the set of orbits of length n. If p> G G, then nn(p>) commutes with
7rn(er), so induces a permutation pn(<p) G aut(Qn,0T). Call

oo

PÍ<P) = {pii<p),P2(v),.-.) G Yl aut(2n,CTT)
77=1

the periodic orbit representation of p G G, where again we use the convention that
the symmetric group of the empty set is the trivial group. Clearly p(ak) = I, but
E exhausts the kernel of p.

PROPOSITION 7.5.   The periodic orbit representation pofG is faithful on G/E.

PROOF. Suppose pn(p) = I for n > 1. By Theorem 2.5 of [BK], it follows that
pG E.     D

We next prove that the range of p is large, in that its closure in the compact
group Yln°=i aut^m^r) is a subgroup of finite index.

THEOREM 7.6. The closure ofp(G) in Yln°=i aut(2n,r7r) is a subgroup of finite
index.

PROOF. Let n0 — n0(T) from Theorem 7.2. We assume without loss that
\Qn\ > 1 for n > n0. Suppose n > no, and let 83 G aut(Qj,o~t) for 1 < j <n with
Bj — I if 1 < j < no- We show there is a p> G G with Pj(p) — B3, (1 < j < n). It
will follow that p(G) is a finite union of cosets of n^no au*(i2ni^r). Set p>x — I,
and suppose inductively that <p3 G G has been found with Pi(pj) — Bj for 1 < i < j.
Since pj+x(pj)~l8j+x G aut(-2-7-i-i,<T:r) is a product of transpositions, by Theorem
7.2 there is a product ipj+i of involutions in G with pi(ipj+x) = I for 1 < i < j and
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Pj+X(tpj+X) = p3+x(pj) 10j+i. Set <pj+1 = Pjipj+i and continue. Then ip = pn
has the required properties.     D

One implication of this density result is another proof of Ryan's theorem [Ry2]
on the center of G. This proof was obtained jointly with W. Krieger.

THEOREM 7.7 (RYAN).   The center of G is E.

PROOF. Choose nx > no(T) so that if n > nx, then |j2„| > 3. If <p commutes
with every element in G, then by Theorem 4.5 its restriction pn(p>) to orbits com-
mutes with all of aut(Qn,o~T) for n > nx. Hence pn(p>) — I for n > nx, so by
Theorem 2.5 in [BK] it follows that <p G E.     D

THEOREM 7.8.   The groups G, G/E, and G/[G,G] are not finitely generated.

PROOF. We show each factors onto an arbitrarily large product of two-element
groups, which shows each is not finitely generated. By Theorem 4.5 there is an
ni > n-o(T) so that for n > nx we have |<2n| > 2 and that (pni ,■■■, pn) maps G
onto n?=m aut(fij,or). Denoting the sign of a permutation p by sgnp G {±1},
it follows that (sgnpni,... ,sgnpn) maps G onto {±l}n_ni. This mapping factors
through G —► G/E and G —► G/[G, G] , completing the proof.     G

We now recall the gyration function g introduced in [BK]. To define g, let p G G,
and from each orbit 7 G J2n pick an element x~, G 7. Since p(x^) G pyi), there is
an integer n(~i,p>) defined modulo n so that p(x~¡) = an^,,p^xv>1. Put g(p)(n) =
g(ip,a)(n) — J2-^eQ n(^'^)' where by convention an empty sum is 0. The value
of g(p)(n) is shown in [BK] to be independent of the choice of the x~,, and also
g(tpip)(n) = g(p)(n) + g(ip)(n) mod n. Call

00

g(p) = (g(p)(l),g(p)(2),...)€YlI/nl
77=1

the gyration function of p G G, and call the homomorphism p (—► g(p) the gyration
representation. This function is studied in detail by Boyle and Krieger [BK]

The periodic orbit and gyration representations are related. If 8 G aut(<2n,<7r)
commutes with ^„(0-7-) = a\çn, its gyration number g(6) G Z/nZ is defined as
above. Also, let p(B) be the permutation induced by B on the orbit space Qn =
Qn/E. Call a sequence (Bx,... ,Bn) with Bj G aut(Qj,ot) consistent if whenever
2m? < TV with 0 odd, then

(0 mod 2mq        if n^1 ^ P(^q) = h
g(02ma)  7=   <

[ 2m~\     mod 2mq        if nr=l sgnp(ö23i) = -1.

In particular, if m = 0 the empty product being 1 means g(Bq) = 0. If or is
a full shift, it is shown in [BK] that a necessary and sufficient condition for a
sequence (Bx,... ,Bn) with Bj G aut^^erT^or) to be the restriction Bj = ttj(p) of
a product <p of involutions is that it be consistent. Necessity was also shown for a
broad class of ot- One consequence is that for a product <p of involutions, sgnp(<p)
and g(p>) determine each other. This is significant since many marker constructions
are involutions. We show a modified form of the sufficiency condition is true for
general shifts of finite type.
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THEOREM 7.9. LetoT be a mixing shift of finite type, and fix TV > no(T) with
n0(T) as in Theorem 7.2. If 83 G a,ut(Qj(aT),0T) for 1 < j < N with Bj = I if
1 < j < Mo, o,nd if(Bx,... ,(9;v) is consistent, then there is a product p of involutions
with TTj(p) = Bj for 1 < j < TV.

PROOF. We first observe that the involution pab in the proof of Theorem 7.2
can be constructed so that (ki(p>ab), ■■-, ̂ n(pab)) is consistent. Let k = \A\, and
change the definition of "frame" in the construction from {A, B}5 to {A,B}2N+1.
The only points of period < TV affected by pab have period a multiple of k, and
are concatenations of A's and TTs. Let a2 be the 2-shift on {0,1}, and r G aut(<r2)
be the 1-block map exchanging 0 and 1. Mapping A —* 0 and B —* 1 shows that
Pt7/c(<Pab) G aut(Q.nk(oT),o-T) and p„(r) G aut(£n(<72),o-2) have the same sign.
Furthermore, g(pAB,o~T)(1nk) = kg(r,a2)(2n) mod 2nk. Since pm(pAß) = T if
m ^ 0 mod k, and {ttx(t),. .. ,ttn(t)) is consistent from Lemma 3.3 of [BK], it
follows that {ki(p>ab),■ ■ ■ ,^n(<Pab)) is also consistent.

To construct p, assume inductively that pm has been found with irj(<pm) = Bj
for 1 < j < m and so that [TTi(p>m),... ,iTN(Pm)) is consistent. As in the proof
of Lemma 3.7 of [BK], there is a product tpm of involutions of the above type
fixing points with period < m such that TTm+i(ipm+i) = ^m+i{'Prn1^m+i) if the
gyration number of pn^Bm+x vanishes. However, this follows from consistency of
the 83= iTj(pm)-     □

Although G is discrete is the compact-open mapping topology, there are at least
two other natural topologies on G making it a nondiscrete topological group. The
first is the periodic point topology, defined as the weakest topology making the
restriction homomorphisms G —* aut(Qn,OT) continuous for all n. In this topology
an automorphism is close to the identity it if fixes all points with period less than
some large bound. The second is the profinite topology on G, which has as basic
open sets the cosets of finite-index normal subgroups of G. Clearly the profinite
topology refines the periodic point topology, and the proof of Proposition 7.4 shows
both are Hausdorff. Do they coincide? The following example shows the answer in
general is "no".

EXAMPLE 7.10. A mixing shift of finite type such that the profinite topology
on its automorphism group strictly refines the periodic point topology.

Let "0 1 1

1 0 1
1    1    1

indexed with states a, b, and c. We will use the dimension group representation of
G to define a homomorphism B from G to {±1}, and show that for every n there is
aipn GG fixing all points of period < n for which 8(pn) = -1. This will show that
the profinite neighborhood ker B of I in G contains no periodic point neighborhood
ofT.

Now T has characteristic polynomial Xr(t) — (t + l)(t2 — 2t — l), so —1 is a simple
eigenvalue of T, with corresponding eigenvector v = [1 —1 0]. Recall from §6 the
dimension group representation 6:G —* aut(QT,Q'T~,T). Now 2v C Qt, and any
element p G aut(,5T, St^) must map v to either v or — v. Yet B(p) be the choice
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of sign used, so B:G —* {±1} with 6(p>)(v) = B(<p)v. Since <5 is a homomorphism,
so is 8.

We now show that 8 has the required property. Fix n > 1. The blocks Mx = cna
and M2 = cnb have only trivial overlaps. Define p G aut(<7r) to switch these blocks,
and have no other effect. Clearly pn fixes all points with period < n. We compute
the action of 6(p>n) on v. For j = a,b,c choose the points xJ so that

if i ¿ 0,
if i = 0.

-{

Consider the 0-rays C3 = x^(—oo,0]* for j = a,b,c. Under the correspondence
of equivalence classes of beams to classes of eventually nonnegative vectors in Qt
described in §6, each class [Cj] corresponds to the class of the standard unit basis
vector ej. Now pn exchanges the 0-rays Ca with G&, and fixes Cc. Thus

¿{<Pn) =

and 6(pn)v — —v, so 8(p>n) — —1.     D

0 1    0
1 0   0
0   0    1

8. p-adic aspects of the gyration representation. Let us begin by recalling
some notation from the previous section. We let Qn = Qn(oT) denote the points
in Xt with least or-period n, and Qn = Q.n(o~T) = Qn/E be the orbit space of
Qn under aT- For each orbit 7 G Qn pick x1 G 7. If p G G, then px1 G p(-)), so
there is an integer n(q,p) defined modulo n so that px-, = a^'^x^. The nth
gyration number of p is

g(p,aT)(n) =      ^     n(i,<p) G I/nl.
teQn(<rT)

If Qn =0, this number is defined by convention to be 0. The gyration representa-
tion of p> is the homomorphism sending p GG to its gyration function

00

g(p,crT) = {g(p,aT)(l),g(p,oT)(2),. . .) e Yl^/nl.
71=1

If <T[r] is the full r-shift, Boyle and Krieger [BK, Corollary 2.3] showed that
o(<7[r],<7[r]) has infinite order in YlnLi Z/nZ. It follows that <7[rj is not a product
of finite-order elements in G. Indeed, r7[r] is not even the limit in the periodic
point topology of such products [BK, Theorem 2.8]. Also, g(a^ x T, a^ x rj[s] ) has
infinite order [BK, Proposition 2.4]. Using p-adic analysis, we shall extend these
results to matrices T for which the product detx T of the nonzero eigenvalues is
not ±1. The crucial fact is that, roughly speaking, for most primes p the numbers
g(aT,OT)(pn) converge p-adically to a transcendental limit in the p-adic completion
QP of Q.

To see the computational significance of this convergence, consider Table 1 of the
gyration function of the 2-shift acting as a self-automorphism, evaluated at powers
of 3 and of 5. We have expanded the values to the appropriate base.

The evident stabilization of the digit coefficients for, say, 5n can be expressed
by saying that g(o-[2],o~[2])(5n) converges 5-adically to some a G Q5. To prove this
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ff(<T[2],<7[2j)(3n) g(a[2\,a[2])(on)

2 = 2
2 = 2 + 0

11 = 2 + 0
38 = 2 + 0
38 = 2 + 0

3
3 + 1
3 + 1
3 + 1

32
32 + l
32 + l

33
33

1 = 1
1 = 1 + 0

26 = 1 + 0
276 = 1 + 0

2776 = 1 + 0

5
5 + 1
5 + 1
5 + 1

52
52 + 2
52+2

53
53+4

TABLE l. Values of the gyration function for the 2-shift.

convergence, and identify the limit, note that since each orbit contributes 1 to the
gyration function, we have

9{0-[2},0-[2})(5n) = \Q5"(0-[2]
1-TV (o[2 (°"[2])l

5"

As n —* co, we have 25" —► w(2) G Q5, a 4th root of unity, the so-called
Teichmüller representative of 2. Also, since 5" - 5n_1 —► 0 in Q5, the third factor
converges to the 5-adic derivative of 2X at x = 0, namely the 5-adic logarithm log5 2
(see [Ko, Chapter 5, §1] for details). Thus g(cr[2],<r\2})(5n) converges 5-adically, with
limit a = (1 — i)w(2)log52. If we denote Oo + oi5 + a252-,-by .aoOi02 • ■ ■, then
u(2) = .212134..., I log5 2 = .330333..., and the product is a = .101240..., in
agreement with the table entry. Furthermore, log5 2 is transcendental [Br]. Since
§0/(2) is algebraic, the limit a is also transcendental. Since a mod 5n is a unit
in Z/5nZ, it follows that g(o[2],°~[2])(5n) generates Z/5"Z for n > 1. Hence <7[2]
could not be a product of finite-order elements in G, for otherwise the orders of
o(iT[2j,cr[2])(n) would be uniformly bounded in n. This analysis fails at the prime
2, since o(<J[2],(T[2])(2n) —♦ 0 in Q2. However, 2 is the only exceptional prime.

It is perhaps interesting to note that the p-adic convergence of the gyration
function was first discovered by computer experimentation.

The ideas above extend to more general a? by using the p-adic eigenvalues of T.

THEOREM 8.1. Suppose the product of the nonzero eigenvalues ofT is not ±1.
Then the gyration representation g(oT,crT) has infinite order in ü^i Z/nZ.

PROOF. Let the characteristic polynomial of T be

XT(t)=tm(td + axtd-1 + --- + ad),

where ad 7e ±1 by assumption. Choose an odd prime p relatively prime to ad- A
good account of the basic p-adic analysis used here is contained in [Ko]. Let K be
the splitting field of xt over the p-adic completion Qp of Q. The p-adic valuation
I • \p extends uniquely to K. Thus Xr(0 factors over K as tm Yl3=x(t - X3). Since
ad is a unit in the ring of integers in K, each \\j\p = 1. It follows there is an integer
r > 0 so that |1 - AJ|P < 1 for 1 < j < d.   We will prove that g(aT<-,aT'-)(pn)
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converges p-adically to a nonzero limit, show this forces g(aT',<?TT) to have infinite
order, and conclude from this that g(aT,0T) — 9(o~t) also has infinite order.

For arbitrary U, we have \Qn(o~u)\ — Hd\n ß(n/d)trUd, where u is the Möbius
function, and g(au,<ru)(n) — \Qn(o~u)\/n. Hence

g(aTr,OTr)(pn) = £ {tr(T'Y" -tr(T'Y"-1}

y^-p"-1)

pn -pn-1

Since |1 - \rj\p < 1, it follows that Ajp —> 1 in K. The second factor in the
sum converges to the p-adic derivative of X™ with respect to x at x — 0, which is
r logp Xj. Here logp y is the p-adic logarithm defined for y G K with \y - l\p < 1 by
the convergent series logp y = Y^™=i(~l)n+1 (v ~ l)n/n- Thus as n —* co,

g(aT<,oTr)(pn) - U - £) logpod # 0,

H)
the nonvanishing following since a¿ ^ ±1. This means that as n increases, the p-
adic expansion of g(a^,0Tr )(Pn) has low order coefficients that stabilize to nonzero
values. In particular, if

logpod    >p~*
p

then pn_*:o((J7'r,(Trr)(pn) ^é 0 mod pn for n sufficiently large. This clearly implies
that g(oTr,<TTr) has infinite order. We conclude by showing this forces g(aT,ar)
to also have infinite order. First note that g(urr,f7rr) = g(<rT,aj.) — rg(aT,crT).
The calculation of Proposition 1.6 of [BK] shows that if aj = a_, (r, n) G Z is defined
so raj = j mod jn when j = (r, jn) and 0 otherwise, then

g(p>,aT)(n) = ^2ajg(<p,aT)(jn)   modn.
j\r

Apply this to p — aT in the above to express g(aTT,crT')(n) as an integral combi-
nation of the g(oT,o-T)(jn) for j \ r. Thus if g(oT,OT) had finite order, so would
g(o~Tr,0Tr). This contradiction establishes the theorem.      D

REMARKS. 1. If A is a unit in K, the splitting field of \t over Qp, then Ap"
converges to a (pe — l)st root of unity w(A) in K, where e is the ramification index
of K over Qp. The above shows that we always have in Qp that

"-H)(8-1) lim g(aT,o-T)(p
n—>oo

However, we cannot conclude from this that the limit is nonzero. By taking rth
powers, we force w(AJ) = 1, so the product in (8-1) is ard / 1, and the limit does
not vanish. The general question of whether (8-1) is nonzero hinges on how the
Xj and the corresponding root of unity u(Xj) interact. For example, if the A_,
are multiplicatively independent, then the p-adic versions of Baker's transcendence
results [Br] show that (8-1) is not zero.
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2. If the product of the nonzero eigenvalues of T is ±1, all that is needed to
prove the theorem is to find one prime p for which (8-1) does not vanish. Since this
is the "typical" case, finding such a p can usually be done by hand. For example,
if T = [ j ¿] we can take p = 3 and simply check that the product in (8-1) is not
±1. Indeed, all but finitely many primes will work in this case.

3. If detx T t¿ ±1, the roots of unity u(X3) in (8-1) are merely a nuisance, to
be eliminated by passing to rth powers. However, when detx T = ±1 it is essential
that at least some of the oj(Xj) not be 1 to obtain a nonzero limit in (8-1).

The proof of Theorem 8.1 can be modified to obtain the following.

THEOREM 8.2. Suppose the product of the nonzero eigenvalues ofT is not ±1.
Then g(oT x T,Ot x au) has infinite order.

PROOF. Choose a prime p relatively prime to detx T and to detx U. We first
compute the gyration function g(aT x T,or x ou){pn). Now

71

Qp*(oT x au) = \J {Qp"(ctt) x Qpk(au)UQpk(aT) x Qpn(au)}-
fc=0

If (x, y) G Qpkfa) x Qpn(au), then the smallest g > 0 for which (or x I)q(x,y) is
in the ot x rj(/-orbit of (x,y) is q = pk, and this element is (x,y) itself. It follows
that such orbits contribute 0 mod pn to the gyration function. Let 0 < k < n — 1.
For each orbit 7 G ÖP"(o't) pick x~¡ G 7. Then

1^Q.pn((7T)

is a complete set of orbit representatives for <3p»(crT) x Qpk(au)- Since

(aT x I)(x,y) = (aT x au)(x,a¡}1y),

each representative contributes 1 to the gyration function. Hence
77-1

g(aT xI,aTx °u)(pn) = \Q.P"(°t)\ Yl \Qpk((T'r)\
k=0

= 4(trT"" -trT^'HirC/"""1).

Suppose K is a splitting field for xr(t) and Xu(t) over Qp. Let T have nonzero
p-adic eigenvalues Ai,..., A¿, and let those of U be p,x,..., \ie. Then by the above

g(aT xI,aTx ou)(pn) = £ f A?   ~5      j /if".

The p-adic convergence of this expression follows as before.  To obtain a nonzero
n n

limit, pass to rth powers to obtain A¿ —> 1, n v —» 1, and argue as in the proof
of Theorem 8.1.     D

Theorem 2.9 of [BK] implies that if detx T ^ ±1, then aT is not the product
of finite-order elements in G. This is also a consequence of Theorem 8.1. The
following, which generalizes Theorem 2.8 of [BK], shows ot is not even a limit of
such products.
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PROPOSITION 8.3. Suppose the product of the nonzero eigenvalues of aT is not
±1. Then ot is not the limit, in the periodic point topology on G, of products of
finite-order elements.

PROOF. The periodic point topology was defined in §7 to be the coarsest making
the restriction maps G —► aut(Qn,0-:r) continuous. From the proof of Theorem 8.1
we can conclude there is a prime p and an integer m so that for all n > m we have

g(aT,oT)(pn)^0   modpm.

The result now follows exactly as in the proof of Theorem 2.8 of [BK] by using
Proposition 2.7 there.     D

REMARK 4. All of the above results will hold even if detx T = ±1, provided
the prime p used in the proofs can be chosen so that (8-1) is nonzero. As indicated
in Remark 2, in specific case this can usually be done ad hoc.

PROBLEM 8.4.   Remove the restriction detx T ^ ±1 from the above.

The proof of Theorem 8.1 shows that g(aT,(?T)(pn) converges p-adically for all
primes p. It is also easy to see that if p has finite order, then g(p,aT)(pn) —► 0
in Qp. Thus for automorphisms p constructed by known methods, g(p,<fT)(pn)
always converges p-adically.

QUESTION 8.5. Does the gyration function g(p>,OT)(pn) converge p-adically for
every p G aut(<7r)?

9. Compact invariant sets. In §7 we investigated G = aut(<rr) by studying
its action on the compact G-invariant sets Qu(o~t) of points with least rjfr-period
n. Are there other compact G-invariant subsets of XT? In this section we show
that, modulo possibly a few orbits of low period, every compact G-invariant subset
is a finite union of various Qn(o~T) or all of Xt- We also discuss the implications
for the action of G on the compact space of subshifts equipped with the Hausdorff
metric.

Several constructions and proofs to follow are made clearer by the process of
"passing to a higher order block presentation", described as follows. Recall from §1
that if T is r x r, then the graph of T has r states or nodes, and ][][ =1 T¿¿ symbols
or edges. Order the set £ of symbols arbitrarily. Let E(T) be the transition matrix
for symbols, defined by E(T)xy = 1 if the terminal state of x matches the initial
state of y, and 0 otherwise. Iterating this procedure yields the transition matrix
En(T) = E(En~1(T)) for allowed n-blocks of symbols. Specifically, we define the
n-block presentation of T to be TW = 7£n_1(T), where E°(T) = T. The symbols
for T'n) are then the allowed n-blocks of ot, i.e. £tm = Bn{aT)- If B,C G £Tw,
then T¿n¿ = 1 if B[l, n - 1] = G[0, n - 2], and 0 otherwise. Thus the symbols in a
point x G Xt have simply been recoded in XT\n\ by using n-blocks of symbols.

There is a natural conjugacy ßn:XT —* XT[n¡ defined by

m(ßnx)i = x[i — k,i — k + n — 1],        where k =   —   .

The metric on XTi„i is understood to be that induced from XT under ßn. With this
convention, the maximum of the diameters of the sets B* — {y G XT[n)-.yo = B}
over B G £Tw tends to 0 as n —» oo.
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If K is a subshift of XT, let S (Tí) be the collection of all blocks that occur in
some point in K. For x G XT, put B(x) = S (Ex). If B G Bn(XT), put B* =
{x G Xt'.x[0, n - 1] = B}. Here the reader should distinguish B considered as an
n-block from XT from B considered as a symbol from XT[„]. The homeomorphism
ßn introduces a factor of OjV    between the two meanings of B*. In particular,

max{diam(ß*) : B G Ctm} —► 0    as n —> oo.

Thus if Yx,...,Yk are disjoint subshifts of XT, for all large enough n the sets
£rin] (Yj) of symbols from £T\n\ occurring in Yj are disjoint. Furthermore, if Z C
Xt is a shift of finite type, for all large enough n we can represent Z as 1-step on
the symbols £tm(Z).

For completeness, we prove a standard technical result. A stronger version is
contained in [DGS, 26.17].

LEMMA 9.1. Suppose B G B(XT) and that B £ B(x). Then there is an infinite
mixing shift of finite type Z C Xt with B G B(Z) and Z disjoint from Ex.

PROOF. Since our standing assumption is that aT is mixing, there are Cj G
B(Xt), j = 0,1, with relatively prime lengths, with BCjB G B(XT), and such that
B occurs only as the initial and terminal block in each BCjB. Form the shift of
finite type Z C Xt of points of the form • ■ ■ BCí_íBCí0BCí,B ■ ■ ■ with ik = 0 or 1
for k G Z. Since the Cj have relatively prime lengths, ot\z is mixing with positive
entropy. Let n > 2(\Co\ + \CX\ + \B\). Every block in Bn(Z) contains B as a
subblock, while B does not occur in x. Thus, by passing to a higher order block
presentation, for large enough n, we can realize Z as a 1-step shift of finite type on
an alphabet disjoint from the symbols occurring in x. Thus Z n Ex = 0.     G

THEOREM 9.2. The automorphism group orbit Gx of x G Xt is dense if and
only if x is not ot -periodic.

PROOF. Since the period of a point is preserved under an automorphism, a
(TT-periodic point x clearly has Gx finite.

Now assume x is not ar-periodic. To show Gx = XT, it is enough to prove that
for every B G B(XT) there is a p G G with B G B(px). If B G B(x), take p = I.
Thus we assume B fi B(x), and find p. By Lemma 9.1, there is a mixing shift of
finite type Z disjoint from Ex with B G B(Z).

We first treat the case that a block in B(x) occurs exactly once in x. By passing
to the n-block presentation of Xt , we can assume Z is a 1-step shift of finite type
on an alphabet £(Z) C £Tw = Bn(oT) disjoint from the symbols occurring in
x, that B occurs as a subword of 6 G C(Z), and that a symbol a G £-tM occurs
in x at a unique index, which by applying a power of aT[n] we can assume is 0.
For the rest of this case, all symbols and blocks are from the n-block presentation.
Let I be a transition length for XT|„] and for Z. Since both are mixing, there is
a block E = aAbCbA'x[4l,6l] such that |A| < I, \A'\ < I, a does not occur in A
and occurs in A' at most once, G G B(Z), and \E\ = 6/ + 1. We claim that E and
F = x[0,6Z] overlap only trivially in the sense of §2. Since a occurs only as the
initial symbol in F while E contains symbols from Z never used in F, it follows E
does not overlap F, and that F only overlaps itself trivially. The only nontrivial
overlap of E with itself could occur with the occurrence of a in A', but this is ruled
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out since this would force x[4/,6/] and G to have symbols in common. Thus, as in
§2, the map <p G G defined by interchanging E and F and having no other effect is
a well-defined involution. Since the symbol b from the n-block presentation occurs
in px, it follows that the original block B occurs in px, completing this case.

We next turn to the recurrent case. Here blocks in x can recur with distress-
ing frequency, making the nonoverlapping condition for markers more difficult to
achieve. The reader should keep in mind the Thue-Morse sequence, where every
allowed block of length n recurs within 8n, to better understand the complications
below.

Let x, B, and Z retain their meanings, and assume we have already passed to a
higher order block presentation with B a subword of b G L(Z) and £(Z)n£(x) = 0.
Choose symbols a,c G £(x) = B\(x) so that there are words a Ab, bA'c G B(XT),
where A and A' use no symbols from £(x), and so that some word aFc occurs in
x. We claim we can assume there are arbitrarily long words of the form aFc in
B(x). For if not, the longest such word could occur only once, and the previous
case applies. Let / be a transition length for Xt and for Z. Adjusting x by a power
of ot if necessary, there is a k > 41 with x0 = a and xk = c, and a word G G B(Z)
so that D = aAbCbA'c G B(X) with \D\ = k + l. Note that the only symbols in D
that are also in £(x) are the initial and terminal symbols. Let E = x[0, k\. Since x
is not (Tr-periodic, there is a p > Ac so that x[-p,p — j] ^ x[—p + j, p] for 0 < j < k.
Define £ : B2p+i (X) —» B2p+i (X) by replacing each occurrence of D by E; if a block
begins with a terminal segment of D, replace it with the corresponding terminal
segment of E, and similarly at the other end. Since D cannot overlap itself except
possibly in one symbol, £ is well-defined. Note that £(x[-p, p]) = x{—p,p\.

Let M = Ç-l{x[-p,p])nBp(X){D,E}Bp-k(X). Then M has the nonoverlapping
property that if M,M' G M, then M[—p,p- j] ^ M'[-p + j,p] for 0 < j < k, since
otherwise applying £ would contradict the choice of p. Define peGas follows. If
y[~P,p] G M, then put

(wMM1./*  »«M-».\wn ,  j     \D   if y[0> ¿j = £_

Declare p to have no other action. Because of the nonoverlapping property of the
words in M mentioned above, a symbol in y can be affected at most once by p>,
so p is well-defined. If y[—p,p] G M, then (py)[—p,p] G M, proving that tp is an
involution. Finally, since the symbol b from the higher order presentation occurs
in D, which is a subblock of (p>x)[—p,p], we see that the original block B G B(x),
completing the proof.      D

THEOREM 9.3. LetoT be a mixing shift of finite type, and define no(T) as in
Theorem 7.2. If K is a compact G-invariant set, then either K = Xt, or K is a
finite union of Qnj(oT) with nj > no(T) together with possibly a finite number of
orbits with periods < uq(T).

PROOF. If K contains a nonperiodic point, then K = Xt by Theorem 9.2. If
x G KC\Qn(oT) for some n > no(T), then by Proposition 7.3 we have Qn(o~T) C K.
If nj —* oo, then \J°°-X Qn3 (°~t) is dense, so either K contains only a finite number
of the sets Qu(o~t) for n > no(T), or K = Xt-     □
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REMARKS 1. Until the question of switching points with small periods, such as
in Example 7.3, is settled, the possibility remains that for some n < no(T) the set
Qn(o~r) could have proper G-invariant subsets.

2. An irreducible shift of finite type is a finite tower over a mixing base shift of
finite type, so Theorem 9.3 easily extends to this case.

Let S denote the compact space of subshifts of (Xt,&t) equipped with the
Hausdorff metric. In this context, two subshifts Y,Z G S are close if for a large n
the sets Bn(Y) and Bn{Z) coincide. This is the topological analogue of the weak
topology on rjx-invariant measures used in the next section. From this description
it is evident that G acts continuously on S. Theorem 9.3 identifies all but a finite
number of the fixed points of this action. The result also shows that if F G S
is infinite, then Xt is in the G-orbit closure of F in S. We now generalize this
argument.

PROPOSITION 9.4. If Y C Z c XT are infinite subshifts with Z mixing, then
Z is in the G-orbit closure of Y in the Hausdorff metric.

PROOF. Fix an n > 1, and enumerate the blocks of Bn(Z) as Bx,..., Bk. Since
ot\z is mixing, there is B G B(Z) which contains each Bj. Pick y GY with infinite
orbit. Let Z' C XT be the shift of finite type so that Bn(Z') = Bn(Z). Then
Z' is mixing since Z is. The construction of p with B G B(p>y) in the proof of
Theorem 9.2 can be carried out with Z' as the ambient space, so pY C Z'. Since
each Bj occurs in B, we can conclude that Bn(pY) = Bn(Z') = Bn(Z). Thus every
neighborhood of Z in S contains an image pY for some <p G G, completing the
proof.     D

It is more difficult to determine when a subshift Z in general position is in the
G-orbit closure of Y. Two necessary conditions follow.

PROPOSITION 9.5. 7/y and Z are subshifts of XT and Z is in the G-orbit
closure ofY, then

(1) h{aT\z) > h(aT\Y),
(2) \Qn{o-T\z)\>\Qn(oTW)\ for n>l.

PROOF. Suppose pk G G with pkY —> Z. Since topological entropy is upper
semicontinuous on S, and h{oT\<pkY) = h(aT\y), property (1) holds. Also, for fixed
n we must have for large enough k that pk[Qn(o~T\Y)] C Qn(o~T\z), from which (2)
follows.     D

PROBLEM 9.6. Determine necessary and sufficient conditions onY,Z G S for
Z to be in the G-orbit closure ofY.

Of course, Example 7.3 shows that this problem is not solved even for subshifts
with a finite number of points.

10. Orbits of measures. Let P(XT) denote the compact convex set of crr-
invariant probability measures on Xt, and M(Xt) be the or-invariant nonnegative
measures, each equipped with the weak topology. The group G = aut(rjr) acts nat-
urally on both spaces, and the unique measure p,T of maximal entropy is invariant
under every p G G [CP]. Are there other continuous G-invariant measures? We
show there are none, and obtain a complete characterization of the G-orbit closure
in P(Xt) of a continuous probability measure.
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To state our result, let h(pZ) denote the entropy of err with respect to p G M(Xt).
If Po is the partition of Xt by the 0th coordinate, then

h(p) = lim - V -p(A)\ogp(A).
n—>oo n '—'

*ev;:oV*>
Observe that this formula applies even to nonnegative measures with total mass
different from 1, and that if r, s > 0 and p,v G M(Xt), then [W, Theorem 8.1]
h(rp + sv) = rh(p) + sh(v). We shall use a version of the ergodic decomposition
suited to our needs. For u G P(XT) there is a measurable function t h-> pl from
[0,1] to P(Xj-) so that each p7 is ergodic under or, if E C Xt is Borel then p} (E) is
measurable in t with p(E) = /0 pt(E) dt, and h(p}) is decreasing in t. Note that the
p} need not be distinct. Indeed, if p is already ergodic, then pl = p for a.e. t. All
but the entropy statement follows from the standard ergodic decomposition [DGS,
Chapter 13]; h(pl) can be arranged to be decreasing by a measurable rearrangement
of [0,1]. A limiting form of the linearity of h mentioned above shows that if E C
[0,1], then h(fE p} dt) = fE h(p}) dt.

Define the cumulative entropy Hß(t) = fQ h(ps) ds for 0 < t < 1. This function
can be defined without reference to the ergodic decomposition by

//„(f) = sup{n(iv): u g M(Xr-), v < p, v(XT) = t).

For by ergodicity of the //, if v < p with v(Xt) = t, then v = fQ p(s)ps ds with
J0 p(s)ds = t. Thus h(i>) = /0 p(s)h(ps)ds which, by monotonicity of h(pT'), has
maximum value T7M(r) when p is the indicator function of [0, t]. Our characterization
of orbit measures is the following.

THEOREM l O. I. Let aT be a mixing shift of finite type on XT, let G = aut(rjT),
and suppose p, G P(Xt) is continuous. Then u is in the G-orbit closure of p, iff
Hp^Hy on [0,1].

COROLLARY 10.2. The measure pt of maximal entropy for ot is the only
G-invariant continuous probability measure on Xt-

PROOF OF THE COROLLARY. Suppose p G P(XT) is continuous and G-
invariant. Then h(pl) < h(pT) = «(ctt) for all t, so T7^ < 77^. Thus pt G
G¡x = {p).     D

Note that if p and u are ergodic, the condition of Theorem 10.1 reduces to
h(p) < h(v).

We will first prove the necessity of the condition 77^ < T7^ by using upper
semicontinuity of entropy. The main work is to prove its sufficiency. We first find
in Lemma 10.3 a partition 0 = to < tx < • •• < tjç = 1 so that if Jk = [tk-i,tk),
ak = \Jk\, and pk = a^1 fj p* dt, then p is a convex combination Ylk=i akP-k,
where the pk are mutually singular and h(p\) is almost constant. We then use the
Convex Approximation Lemma 10.4 to perturb v to ¿> = J2k=i ak^k, so that the
¿>fc are mixing Markov measures with disjoint supports and h(vk) > h(pk). Using
a Rohlin stack argument in Lemma 10.5 based on a marker, and assuming that
almost every pf has full support, we construct a marker automorphism in Lemma
10.6 mapping n close to v that does not affect a preassigned subshift. The case when
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p does not have full support, involving difficulties similar to those in the second
half of the proof of Theorem 9.2, is treated in Lemma 10.7. Using a decomposition
from Lemma 10.8, the pieces of the proof for sufficiency are, at last, assembled.

Proof of Theorem 10.l (Necessity). Suppose p g P(Xt) is continuous
with ergodic decomposition p = /0 ps ds, and pn G G has pn/i-t i/ weakly. Fix
t G [0,1] and put p' = f0 pa ds. By compactness, a subsequence of pnp! converges
to some v', where v'(Xt) = f and v' < v. By the intrinsic definition of Hu given
above, we get h(u') < Hu(t). Using the upper semicontinuity of entropy [W,
Theorem 8.2] and that h(p') = h(p>np') for all n, we have

7/M(f) = h(p') = limsup/i(v?„//) < h(v') < Hv(t).     D
71—7 00

We begin building the machinery to prove sufficiency. For p G M(XT) let
supp(p) denote the complement of the largest open /¿-null set.

LEMMA 10.3. Let p, v G P(Xt), let Z C Xt be a proper subshift, and suppose
h(v) > h(p). For every neighborhood V of u in P(Xt) and £ > 0, there is a mixing
Markov measure v G V with \h(i>) — h(v)\ < s, supp(£) fl Z = 0, and i> ± p.

PROOF. Let V be a neighborhood of v in P(XT) and e > 0. Replacing T
by a higher order block presentation if necessary, there is a ó with 0 < o < e so
that if \v'(a7) - ^(a*)| < 6 for all a G Zt, then v' G V. Since Z is proper, there
is a D G Bd(XT) so that D* D Z = 0, where we continue to use the notation
D* = {x G Xr : x[0, d - 1] = D). Let I be a transition length for T, and let 7 > 0
whose value will be determined later. By the ergodic and Shannon-McMillan-
Breiman theorems, there is an m large enough so m/(2l + d + m + l) > 1-6/3 and
collections Cj C Bj(Xt)    (j = m,m + 1) so that

(10-1) exp[m(h(i/) - 7)] < \Cj\ < exp[mh(t/)]

and

(10-2) \fa{C) - v(a*)\ < I     for all C G Cm ̂ Cm+i,

where fa(C) denote the frequency of the symbol a in G. For each C G C =
Cm U Cm+i choose A0,AX G Bi(XT) with C = A0CAX so that DC'D G B(XT).
Form the collection C of such blocks. Let Y be the shift of finite type with the
subblocks of concatenations of elements of DC as allowed blocks. Clearly Y is
topologically mixing since m and m + 1 are relatively prime. Let V be the measure
of maximal entropy on Y. We show first that \h(p) — h(v)\ < £ and supp(F)flZ = 0,
then perturb V to get singularity with respect to p.

First note that Y C {jf=0d+m 4(D*) and Zn^D*) = 0 for all j, so Yf\Z = 0.
Let v' be any 07-invariant measure with v'(Y) = 1. By the ergodic theorem,

there is a y G Y so that y[0,d - 1] = D and \fa(y[0,n - 1]) - i>'(a*)| < 6/3
for all a G £t and sufficiently large n. Pick n so that y[0,n - 1] has the form
DC'XDC2 ■ • • DC'k, Cj G C. Then k > n/(2l + d + m), and if C!¡ has central block
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Cj then

nfa(y[0,n - 1]) - nv(a*)\ < (2d + l)k + £ \C3\{fa(C3) - v(a*))
j=i

21+ d< 7    21 + d    \
\2l + d + m)

6        2C
n + —n < -bn.

o oK2l + d + m,

In particular, |iv(a*) - v(a*)\ < 6 for a G Lt, proving V G V.
Next we estimate h(V) = /i(ot|y) by estimating |S„(F)|. Every E G Bn(Y) has

the form E = ADC'XDC2 ■ ■ ■ DC'kB, where |A|, \B\ < 21 + d + m, Cj G C, and
n .... n

2/ + d + m + 1 2<k< 2l + d + m'
Making independent choices of the Cj, it follows from (10-1) that

|Bn(F)|>(exp[m(/i(t,)-7)])fc

where kx > 0. Hence

> kx exp

> kx exp

1

(-r^-") n(h(u) - 7)V2/ + d + m + l/   y  y '      "

1 n(h(ir) - 7)

h(aT\Y)= Hm -log|Sn(F)|
n—»oo n

>(l-iyh{v)-1)>h{v)-e

for 7 small enough. Similar estimates show

\Bn(Y)\ < \B2l+d+m(XT)\2{exP[mh(u)])k
7       m
Ai< k2 exp nh(v)21 + d + m,

for suitable k2 > 0, showing ft(o-r|y) < h(u). Thus h(u) - e < h(V) < h(i>).
We have hence found a mixing Markov measure V G V so that \h(V) — h(v)\ < e

and supp(Z7)nZ = 0. By perturbing the transition probabilities of V, we can obtain
a continuous family {Va } of mixing Markov measures each supported on Y and with
Vq = V. For small enough a the Va remain in V and have \h(Va) — h(v)\ < £. Now
the Va are ergodic and distinct, so they are mutually singular. It follows that all
but countably many of the Va are singular with respect to p. Set v to be any of
these.     D

If p has ergodic decomposition p = fQ p} dt, define /ioo(p) = ess supo<t<i hip*).

Convex Approximation Lemma 10.4. Let p,v g P(XT) with Hß < Hv
and hoo(p) < h(aT), and let Z be a proper subshift. For every neighborhood V of u
in P(Xt) there is au = JZfc=i ak&k G V and a corresponding convex decomposition
p — I^fc=1 QfcPfc, where ak > 0 with ^fc=1 ak = 1, such that the pk and vk are
all mutually disjoint probability measures, the i>k are mixing Markov measures with
disjoint supports that are also disjoint from Z, and h^ip/ç) < h(vk).

PROOF. Let p = fQ pl dt and v = fQ vl dt be the monotone ergodic decompo-
sitions as described above.  Put ß — /i((Tr) — ̂ oo(m) > 0.  Choose e > 0 so that
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if v' G P(XT) and \\i/ - i/'\\ < 2e, then i/' g V. By partitioning [0,h(aT)] into
intervals of length < e/3/2, we can find 0 = fo < fi < ■ ■ ■ < fir-i < Ik = 1 so that
if Jk = [f/c-i,tk) and pk = \Jk\~1 fj l¿ dt, then the pk are mutually singular and

(10-3) supM/i')} - inf {hin*)} < eß/2.
t€Jk tZJk

Put ak = \Jk\. We now inductively define vk G P(Xt) so that v = ^2k=x akvk and
h(vk) > h(pk). Let

»l s < 1 - f, :   /        ft(i/') dt > i    h(pl) dt \ .

Since Hv(tx) > T7,¿(fi), the set defining sx is nonvoid. Put vx = tx * f^1+tl v% dt. By
definition h(vx) > h(px), and we claim Hv-V, > //„-„j on [0,1 — fi], which allows
inductive construction of all the vk. To prove the claim, first suppose Si = 1 — fi.
Then using monotonicity

inf     {h(v*)}> - [      h{v*)dt
o<t<i-t/ v )f - tx yx_fJ V '

>i j' h(pl)dt>   sup   {/iiV)},
fi To ti<t<i

so T/tz-i/j > Hli-ßl follows trivially.   Now assume Si  < 1 — tx, so by continuity
//jl+tl h(v*) dt = /o1 h(p*) dt. If u < «i, then

/■tí pu

#„_„,(«)=/   h(ul)dt> j   h(ii*)dt
To To

•/ti

tl+u
h(pt)dt = Hll-ßl(u),7/J-Ii

while if si < u < 1 — f, then
rti+u rsi+ti

Hv-Vl(v)= h(^)dt- h(v*)dt
TO TtJ!

/■ii+u /-ti
>/        h(ii*)dt-        h(pt)dt = Hli-lil(u),

Jo To
verifying our claim.

For each A; let vk — f0 vk dt be the ergodic decomposition, put u'k — f0     vk dt +
£pT, and sum v' = Y,k=i v'k- We snow n(v'k) > hoo(pk)- For by (10-3)

h(vk) = h(vk) - /     h(uk) dt + £h(aT)
Jl-E

> h(pk) - £/ioo("fc) + £h(aT)

> h^pk) + £ß/2 > hoo(pk).

Since \\l> - v'\\ < 2e, it follows by our choice of e that i/ G V. Finally, by Lemma
10.3 we can inductively modify each v'k to vk so that v = Yi,k=i akVk satisfies the
conclusions.     G

If F C XT and x G F, define rF(x) = min{n > 0: aTx G F}, and put Fn — {x G
F : rF(x) = n). For a collection C C B(XT) let C* = [Jcec c*■

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE AUTOMORPHISM GROUP OF A SHIFT OF FINITE TYPE 107

LEMMA 10.5. Suppose pk G P(Xt) for 1 < k < K are mutually singular,
and £ > 0. There is an M = M (s, px,..., pk) so that if F is compact open and
N >n> M, then there are collections Cn(pk) C Bn(XT), disjoint in n and k, such
that \Cn(pk)\ < exp[n(Ooo(pfc) +e)] for l<k<K and

N N

Y^ npfc(FnnC„(pfc)*) > Y2 "W(fn) ~e-
n=M n=M

PROOF. The rough idea is to use singularity of the pk to first find disjoint
collections Dk of atoms having the right exponential size and containing most of
the /ifc-mass. Using the idea that a partial orbit can intersect at most one of these
atoms with frequency > |, we obtain from the Dk the required disjoint collections
Cn(pk).

Since the pk are mutually singular, there is an s and disjoint collections Dk C
S2s+i(Xr) such that pk(Pk) > 1 - e/12 for 1 < k < K. Applying the version of
the Shannon-McMillan-Breiman theorem from [DGS, Theorem 13.4] to or and to
aZT , for all large enough M and 1 < k < K we have

pk(E'¡r)= pk\x:     sup-logpfc(x[0,m-1]*) </tœ(pfc) + -> > 1-—,
[      m>M/6    "î 2 J 12

pk(Er) = pk\x:     sup-log pk(x[-m+ 1,0]*) <h00(pk) + -\ >1-—■
{        m>M/6     m ¿ J l¿

Let Ek — Ek nTSfc , and fix M so that Pk(Ek) > 1 -e/6, and also satisfying M > 6s
and

n        r £ i(10-4) - exp |fcoo(p*) + (n + 1)-J < exp[ne]

for n > M/6 and 1 < k < K.
Suppose now F is compact open, and M < n < N. If x G Fn with a^xGEk for

some n/3 < j < 2n/3, then

P-k(x[J,n-1Y) >exP [-(n-J) [hoc(Pk)+ 2)] •

The number of blocks x[j, n — 1] arising from such an x is thus bounded above by
exp [(n - j)(h00(pk) + £/2)\. Similarly the number of blocks x[0, j] from such an x
is < exp [{j + l)(nc»(Aífc) + £/2)]- It follows using (10-4) that the number of blocks
x[0, n — 1], where x G Fn and o^x G Ek for some n/2 < j < 2n/3 is bounded above
by

- exp [(n + 1) (noo(Pfc) + 2)] ^ exP [n{h°°(ßk) + e)].

Now let Cn(pk) denote the collection of blocks x[0, n-1], where x G Fn, a^x G Ek
for some n/3 < j < 2n/3, and

f.n^.^2n      .. .      ,     „] n>6-

Since the Dk are disjoint, clearly the Cn(pk) are disjoint in k and trivially in n since
the lengths differ.   The discussion above proves |Cn(pfc)| < exp[n(n00(pfc) + e)].
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Finally, since

npk{xGFn: x[0,n-l] g Cn(ßk)}
(2n/3 \ / 2n/3

Eck n (J (ATFn \+6pk[ Dkc n |J 4f„
■7=77/3 7 V j=n/3

we have
AT N

J2 npk(Fn n C„(pa:)*) > J2 nMFn) - Zßk(Ei) - 6pk(Dkc)
n=M n = M

N

> J2 npk(Fn)-£.      n
n=M

LEMMA 10.6. Suppose p,v G P(XT) with Hß < 7/„, that p is continuous,
and that supp(p') = Xt for a.e. t. Let Z be a proper subshift of Xt and V be a
neighborhood of u in P(Xt). Then there is an involution p G aut(oT') such that
pp G V and p is the identity on Z.

PROOF. We first reduce to the case hoo(p) < h(aT). Let fo = sup{f: h(pl) =
/i(ctt)}. Since aT is intrinsically ergodic, for 0 < t < to we have p} — v* = pt-
Since pt is G-invariant, any p G G, in particular the p we construct below, maps
/0° pl dt = toPT to /0° vl dt. Removing this part from each, we are reduced to the
case h(pl) < «(oj-) for all t. Since it is enough to map (1 - e)-1 / pl dt to V for
a sufficiently small £ > 0, we can and do assume hoo(p) < «(ot).

Using the Convex Approximation Lemma, there is v = J2k=i °-kVk S V and
p — Y^k=i Ctkllk with a*, > 0, ]Cíc=i ak — 1) so that the pk and Vk are all mutually
disjoint, the Vk are mixing Markov measures with supports Yk that are mutually
disjoint and disjoint from Z, and ñoo(pjt) < h{ï>k)-

By passing to a higher block presentation, we can assume that the o-j-|yfc and
ot are 1-step, £yk and £z are all disjoint, and that there is a 60 > 0 so that if
\u'(a*) - P(a*)\ < 6o, then v' G V. Let 6 > 0, which will eventually be made small
enough for everything which follows to work. The first requirement on 6 is that

(10-5) (l-6)[h(Dk)-6]>h(pk) + 6

for all k.
By the ergodic and Shannon-McMillan-Breiman theorems, there exists an M0

so that for n > Mo there is a collection Cn(&k) C Bn(Yk) so that

\Cn(h)\ >exp[n(h(Dk) -6)],

î>k{Cn(î>kY) > 1-6,
and

(10-6) \fa(C) - ¡>k(am)\ < S   for all o G £T-

There is a block A0 G B(XT) so that Aq n (z U (jk=x Yk) = 0. Since the number
of blocks in B„(Xt) beginning with A0 grows exponentially in n, and each pk has
full support, there is a block A beginning with Aq so that 0 < Pk(A*) < ¿>2/4|A|
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for 1 < k < K. Let |A| = d and put M = [d/46]. Let I be a transition length for
each or|yt and for aT. We may assume d is large enough so that M > M0, that
M > M(6, px,... ,pk) from Lemma 10.5, and that n — 2d—4l > (l — 6)n for n > M.
Since supp(pfc) = Xt, there is an N > M so that pk (\Jj=o "t^*) > 1 - 5 for
1 < k < K. Let F = A*. If Fn = {x G F: rF(x) = n}, then

JV

J2 npk(Fn) > 1 - Mpk(A*) -6 > 1-26.
n=M

By Lemma 10.5, there are mutually disjoint collections Cn(Pk) C Bu(Xt) so that
\Cn(pk)\ < exp[n(hoo(pk) + 6)] and

iV

(10-7) Y, nMF" n Cnißk)*) >l-36.
n=M

We now construct p. For each k choose a block Ak so AAk G B (Xt) has minimal
length such that it ends with a block from Bd(Yk). Note that \Ak\ < dis possible.
Clearly |Afc| < 2d + / since / is a transition length for aT. Similarly choose Bk so
BkA G B(Xt) and has minimal length for such a block starting with a block from
Bd(Yk). For each C G Cn-zd-4i(vk) there is a G' containing G as a subblock so
that AAkC'BkA G Bn+Á^-r), and so that A occurs only as the initial and terminal
d-block. Form Dnk = {AAkC'BkA : C G Cn-3d-4i(i>k)}, so

\Dnk\ = |Cri-3d-4i(¿:'fc)l > exp[(n - 3d - 4l)(h(vk) - 6)]
> exp[n(l - 6)(h(i>k) - 6)]
> exp[n(/ioo(/Zfc) + 6)] > |C„(^fc)|.

Thus it is possible to define a permutation Bnk of ABn-d(Xr)A so that 82k — I,
Bnk(Cn(p-k)A) C Dnk, and 8nk is the identity off Cn(pk)Au8nk(Cn(Pk)A) Note that
each block in Cn(pk) begins with A, so these 8nk are exactly the type introduced
in §2, where here A is the marker block.

If i € It with x[t,t + n + d\ G Cn(ßk)A U 8nk(Cn(Pk)A), where M < n < N
and 1 <k < K, define (px)([i,i + n + d\) = 8nk(x[i,i + n + d]). Since the Cn(Pk)
are disjoint in n and k, and 82k = I, it follows that p is a well-defined involution.

We complete this proof by showing that \<ppk(a*) - £fc(a*)| < ¿o for each k and
a G £t- This will imply that \pp(a*) — v(a*)\ < <5o for a G £t, so pp G V, the
required conclusion. If G G Cn(Pk) then

<PPk jo*n (J oT{Fnn8nk{C*)) 1  =nfa{8nk(C))ppk{Fnn8nk(Cy)

= nfa{8nk(C))pk(FnnC*).
Letting

N      77-1

E=  U   U      U     o-T{Fnn8nk(Cy),
„=M j=0 CeCn(uk)

then (10-7) above shows that ppk(E) > 1 - 36 while by (10-6) \ppk(a* f) E) -
¿>ic(a*)| < 2o. For 6 sufficiently small this forces \ppk(a*) — i>k(a*)\ < 6o , concluding
the proof.     D
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The following result deals with the case that p does not have full support. Com-
plications arise because p may be highly recurrent, so that constructing markers
with the necessary disjointness is more difficult. To appreciate the problems, an
excellent example to keep in mind while reading the proof is for p to be the unique
invariant measure supported on the Morse minimal set and v to be the measure of
maximal entropy on X[2¡. In this sense, the difficulties parallel those in the second
half of the proof of Theorem 9.2.

LEMMA 10.7. Suppose p, v G P(Xt) with T7M < 7/„, that p is continuous, and
supp(p) t¿ Xt- For every neighborhood V of u in P(Xt) there is an involution
p G aut(or) with pp G V.

PROOF. Let Z — supp(p) ^ Xt- Since supp(p') C Z for a.e. t, it follows
that hoo(p) < h(oT\z) < h(oT). By the Convex Approximation Lemma, there is a
v - Z)fc=i akh € V and p = J2k=i akP-k, where ak > 0 with £*=i ak = 1, the pk
and î>k are all mutually singular, each vk is mixing Markov supported on a mixing
shift of finite type Yk with the Yk and Z mutually disjoint, and hoo(pk) < h(£>k)
for all k.

By passing to a higher order block presentation, we may arrange £Yk and £z
to be disjoint, or|F*- and <7r to be 1-step, and for there to exist a ¿o > 0 so that if
|z/(a*) - v(a*)\ < 6o, then v' G V. Introduce 6 > 0, which will eventually be made
small enough for the following to work.

Before starting the main argument, we first recode ot so that for each a G £z
and all k there are "escape" blocks Aak and Aka so that Aak starts with a, has
no other symbol in £z, and ends with a symbol from £yk, while Aka has these
properties in reverse order. To arrange this recoding, first choose A'ak starting
with a, no other symbol is o, and ending with a symbol from £yk. Choose A'ka
to have these properties in reverse order. Introduce entirely new distinct symbols
bak, bka ^ £t for all a and k. Form a new shift of finite type from Xt by replacing
all symbols in A'ak except the first and last by the same number of bak's, and
similarly with the A'ka and 6/ca's. This recoding of Xt has the property sought,
but is not 1-step. Pass to a higher order block presentation so the resulting shift is
1-step, and the existence of the escape blocks as above is preserved.

By the ergodic and Shannon-McMillan-Breiman theorems, there is an Mo so
that for n > Mo and all k there is a collection Cn(vk) C B„(Yk) so that

¡>k{Cn(h)*) > I - 6,        \Cn(h)\ > exp[n(h(i>k) -6)],        and

(10-8) \fa(C) - h(a*)\ < 6    for all C G Cn(i>k) and a G £r

Let Mi = M(6, pi,..., pk) from Lemma 10.5, and let / be a transition length for
ot and each orlr*- Now fix M > max{4//o, Mo, Mi}. For n> M, each c,d G £z,
and C G Cn-4i(^K) there is a block AckC'Akd S Bn(Xr) with C a subblock of 6".
Form the collection Dnk(c, d) of such blocks. Note that each D G Dnk(c,d) starts
with c, ends with d, has no other symbols in £z, and \fa(D) — ùk(a*)\ < 26 by
(10-8). Also,

(10-9) \Dnk(c,d)\ = \Cn-4i(h)\ > exP[(n - 4l)(h(h) - 6)\.
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We now construct <p. Recall that C G Sn(Xr) is called ¿-periodic if C[0,n-j] =
C[j,n]. Since p is continuous, there is a p > M so that for all k,

Pk( [J{C* '■ C G B2p+i(XT) is ¿-periodic for some j < M) J < 6.

By [Krl] or [Bl, Lemma 2.2], there is a compact open set F C Z such that
{oj.F: 0 < j < M} is disjoint, and

2M-1

{x G Z: x[-p,p] is not ¿-periodic for all j < M} C   [J   a^F.
-7=0

Recall that rF is the return time function for F, and put Fn = {x G F: rF(x) = n}.
By the above we have

2M-1

(10-10) J2 npk(Fn) >l-6.
n=M

Since F is compact open, there is a o > p so that F is a union of sets aZf^B* for
BGB2q+i(Z). Let

J={AG B2q+AM+i(Z) : a-{q+2M)A* c F}.
Since M > M(6, px,..., pk) from Lemma 10.5, choose disjoint collections Cn(Pk) C
Bn(Z) for M < n < 2M and all 1 < k < K so that |C„(pfc)| < exp[n(/i00(plc) + <5)]
and

2AÍ-1

Y, npk(FnnCn(Pk)')>l-26.
n=M

Thus for 6 small enough |C„(p/c)| < \Dnk(c,d)\ for all c,d G £z- It follows there is
a injection

8n. Cn(Pk) —    (J    £>nk(c,d)
c,deCz

that fixes the first and last symbols.
Now define £: S(Xt) —► B(Xr) to replace any occurrence of #n(C) by G, where

M < n < 2M — 1 and C G Cn(Pk)- This map is well-defined because blocks from
Dnk(c,d) can only overlap in the end symbols, and these symbols are fixed by 8n.
Let

8 = {E[2M,2q + 6M + 1] : E G C1 (B2M(Z)?B2M(Z))}
and put E = o-^(,+2A/)¿". We claim that {aTE: 0 < j < M} is disjoint. For if
x = Oj.y for x, y G E and some 0 < j < M, applying £ to x[—q — 2M, q + 2M] and
y[—q — 2M — j,q + 2M — j] shows this would contradict disjointness of {a^F : 0 <
j < M). The mapping p is now defined as follows. If aTx G E and o^""-1 G E
for M <n< 2M, then

(     \f •+    _ il - / On(x[i,i + n- 1]),       if x[t',t + n-1] G C„(p/t),
f  "  J~ I 9-1 (x[i, t + n-1]),    if x[i,i + n-l] G 8n{Cn(Pk)).

Because {a^ : 0 < j < M} is disjoint, p is well-defined. The definition of Í is made
so that x[-q - 2M,q + 2M] G Í iff (px)[-q - 2M,q + 2M\ G Î. Hence p2 = T.
Finally, the estimate that \pp(a") — £(a*)| < ¿o for all a G £t follows from (10-8)
and (10-10) exactly as in the previous lemma.     G
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LEMMA 10.8. Let p,v G P(XT) with T7M < Hu, let E c [0,1] have positive
measure, and set p0 — fEpldt, px = p — po- Then there is a decomposition
v = vo + vi with HVj > Hllj for ¿ = 0, 1.

PROOF. Let a be the measure of E, and put

u0 = sup{u < 1 - a: Hv(t + u) - Hv(u) > T/^Jf) for 0 < f < a}.

The defining set clearly contains 0, so is nonempty.   Put vq — /„ °  ° vl dt and
vx = u — u0- By definition, for 0 < t < a,

HU0(t) = Hu(t + u)- Hv(u) > H^(t).

We now show HUl > H/Ài.  If uo — 1 — a, then since h(pl) is decreasing in f, for
0 < Í < 1 - a we have

(10-11) HUl(t) = //„(f) > //„(f) > //Ml(f).

Now suppose no < 1 — o. Then by continuity
ruo+a r

(10-12) / h(vt)dt= /  /i(/i')df.

If f < uo, then (10-11) shows HVl(t) > Hfil(t).   If uq < t < 1 — a, then using
(10-12) we obtain

ruo-ra

HUl{t) = H„{t + a) - h(vs)ds
Juo

>Hß(t + a)- [ h(ps) ds > H^ (t).       D
Je

Proof of Theorem 10.l (Sufficiency). Suppose p is continuous with
Hß < Hu, and that V is a neighborhood of v in P(Xt). There are e > 0 and
a neighborhood V0 of v in M(Xt) so that if z/ G Vq and v" G P(XT), then
[(1 - ey + ei/"]/[(l - e)i/'(Jfr) + e] G V.

Since every proper subshift is contained in a proper shift of finite type, and there
are only countably many of the latter, there is a proper subshift Z C Xt such that

m(Ex) = m{{t G [0,1] : supp(p') £ Z,supp(pt) ¿ XT}) < e,

where m is Lebesgue measure. Let E0 = {t G [0,1] : supp(p') C Z} and E2 = {f G
[0,1] : supp(p') = Xt}. These sets are clearly measurable. If m(Eo) = 0, then by
Lemma 10.6 all but e of p can be mapped to a measure in Vb, and we are done.

Thus suppose m(E0) = a > 0. Let pj = fE p* df. Two applications of Lemma
10.8 show that there is a decomposition v = vq + ux + 1*2 with 77^ > Hflj for
0 < ¿ < 2. By Lemma 10.7, there is a px G G so that pxp0 is close to u0. By
Lemma 10.6, there is a P2 G G that is the identity on Pi(Z) and that maps p2
close to i^. It follows that the tp3 can be chosen so that p2pi maps p0 + p2 into
Vb, and since P2(Xr) < £, we obtain finally (p>2px)p G V.     G

11. Problems and questions. During the course of this paper we have in-
dicated several open problems and questions. Two of these seem to us the most
important. Recall that Fn is the set of points in Xt with period < n.
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QUESTION 6.10. Is the kernel of the dimension representation generated by
elements of finite order?

QUESTION 7.1. When is an automorphism in aut(Fn,OT) the restriction of
one in aut(Xj-,o:r)?

Several others seem to be particularly interesting. Problem 3.3 asks whether
there is an automorphism of infinite order with nth roots for infinitely many n.
This is basic to understanding the kind of divisibility present in G. Our lack of
knowledge about the algebraic structure of G is pointed out in Question 4.1, which
asks for a nontrivial case of two shifts of finite type having isomorphic automorphism
groups. In particular, are the automorphism groups of the 2-shift and the 3-shift
isomorphic? Problem 6.1 asks whether the dimension group representation 6 of G is
always surjective. The p-adic behavior of the gyration function is quite interesting.
Specifically (Question 8.5), does g(p,OT)(pn) always converge p-adically for every
p GG? Problem 9.6 generalizes Question 7.1 above to characterizing the orbits of
subshifts of Xy.
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