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THE AUTOMORPHISM GROUP OF A SHIFT OF FINITE TYPE

MIKE BOYLE, DOUGLAS LIND AND DANIEL RUDOLPH

ABSTRACT. Let (X1,07) be a shift of finite type, and G = aut(or) denote
the group of homeomorphisms of X7 commuting with or. We investigate
the algebraic properties of the countable group G and the dynamics of its
action on X7 and associated spaces. Using “marker” constructions, we show G
contains many groups, such as the free group on two generators. However, G is
residually finite, so does not contain divisible groups or the infinite symmetric
group. The doubly exponential growth rate of the number of automorphisms
depending on n coordinates leads to a new and nontrivial topological invariant
of o7 whose exact value is not known. We prove that, modulo a few points
of low period, G acts transitively on the set of points with least or-period n.
Using p-adic analysis, we generalize to most finite type shifts a result of Boyle
and Krieger that the gyration function of a full shift has infinite order. The
action of G on the dimension group of or is investigated. We show there are no
proper infinite compact G-invariant sets. We give a complete characterization
of the G-orbit closure of a continuous probability measure, and deduce that the
only continuous G-invariant measure is that of maximal entropy. Examples,
questions, and problems complement our analysis, and we conclude with a
brief survey of some remaining open problems.
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1. Introduction. Let T be a square nonnegative integral matrix. Following
Williams [Wi], we associate to T a homeomorphism or of a totally disconnected
compact space Xt as follows. If T is r x r, form the directed graph with r states
or nodes, and with T;; symbols or edges from state ¢ to state j. Let £ be the set of
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symbols of this graph. Then Xt C L£Z consists of those = (...,z_1,%0,21,...)
with the terminal state of x;_; matching the initial state of z; for all 7 € Z. Points
in X7 may be thought of as infinite trips on the graph. Clearly Xr is compact in
the topology induced from the product topology on £%, and the shift o7: X7 — X7
defined by (o7z); = 2i4+1 is a homeomorphism. This dynamical system (Xr,o07)
is called a shift of finite type or topological Markov shift. Such systems are intrinsi-
cally characterized as expansive homeomorphisms of totally disconnected compact
spaces with canonical coordinates [Bo]. They play a prominent role not only in
topological dynamics [DGS] and coding theory [ACH], but are also crucial to the
analysis of hyperbolic diffeomorphisms {Sm]. We shall assume throughout that or
is mixing, or, equivalently, that some power of T is strictly positive. To avoid trivial
exceptions, we also require T # [1].

Let G = aut(or) denote the group of homeomorphisms of X7 commuting with
or. If ¢ € G, then the fundamental observation of Curtis, Lyndon, and Hedlund
[H, Theorem 3.4] shows there is an n and a finite block map f: £2"*1 — [ so that
(02); = f(Zizn,... Zitn). It follows that G is countable, and is discrete in the
compact-open mapping topology. Despite the finite character of such mappings,
very little is known about the algebraic structure of G. Hedlund [H] showed that
for the full k-shift, aut(ofs)) contains two involutions whose product has infinite
order, and also a copy of every finite group. Ryan [Ry2] showed that the center
of aut(or) contains only the group ¥ of powers of or. However, it is still an open
problem whether the automorphism group of the 2-shift is generated by the shift
and involutions in the group. Another example of our ignorance is the inability to
settle the question whether the automorphism groups of the 2-shift and 3-shift are
isomorphic.

Recently two new approaches to the structure of G = aut(or) have been made.
Boyle and Krieger [BK] used the action of G on the invariant set of periodic points
for or to construct a nontrivial homomorphism from G to [[., Z/nZ called the
gyration function, and used this function to study G. Wagoner [Wa2], in analogy
with K-theory, constructed a nontrivial representation of G by using its action on
the space of Markov partitions of Xr. Furthermore, he has shown [Wal] that G
can be modelled by homeomorphisms commuting with a special diffeomorphism of
the sphere S9 for ¢ > 5.

Our purpose is to study the algebraic properties of G and the dynamics of its
action on X7 and some associated spaces. The general method used here to con-
struct elements of G goes back at least to Hedlund, and is usually called the “marker
method.” Roughly speaking, this method divides the symbols of a doubly infinite
sequence into program and data, and the automorphism makes the program act on
the data. The requirement of keeping program and data separated leads to certain
complications. Special cases of this idea are used in §2 to show that G contains the
free group on countably many generators, as well as the direct sum of countably
many copies of Z and of any countable collection of finite groups. However, G does
not contain a group with unsolvable word problem. Also, every subgroup of G is
residually finite, implying G cannot contain a nontrivial divisible group, nor the
infinite symmetric group. The finite type character of the shifts is related to the
failure of divisibility in their automorphism groups, for in Example 3.9 we construct
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a subshift whose automorphism group contains @ with 1 corresponding to the sub-
shift. Automorphisms constructed using markers have finite order, although their
composition may not. Conversely, we show that any finite-order element in G is
obtained from a marker construction by using appropriate coordinates (Proposition
2.6).

Divisibility of elements of G is discussed in §3. The main question, which remains
open, is whether an infinite-order element can have nth roots for infinitely many n.
An argument using Ryan’s theorem on the center of G shows that aut(o}4)) is not
algebraically isomorphic to aut(ofs)). However, we are not able to decide whether
aut(o[3)) and aut(ojg)) are isomorphic. In §4 we present an example of two shifts
of finite type with equal zeta-functions that have nonisomorphic automorphism
groups.

The growth of the set G,(or) of automorphisms depending on the central n
coordinates is doubly exponential in n. In §5 we define the symmetry of o to be

s(or) = limsup 1 log log |G (o7T)],
n—oo N
show that symmetry is a topological invariant, and prove that %h(aT) < s(or) <
h(or), where h(or) is the topological entropy of or. The precise value of s(or) is
not known to us for any T # [1].
Krieger has associated to o7 an automorphism T of a countable ordered abelian
group (Gr, 9; ) called the dimension group. In §6 we outline this construction, and

show that each ¢ € G induces an automorphism of (G, G5, f‘). The main question

~

is whether this dimension group representation 6: aut(or) — aut(T') is surjective.
In Theorem 6.8 we prove that if the eigenvalues of T are simple and no ratio of them
is a root of unity, then for all sufficiently large n the map é:aut(o%) — aut(T™)
is surjective. The argument uses the fact that if the eigenvalues of T' are simple,
then aut(f") is finitely generated. The proof of this has the Dirichlet unit theorem
as its priipal ingredient. Two examples complement the discussion, one of which
shows that aut(T) is not always finitely generated.

The period of a point is not altered under an automorphism, so GG acts on the
set @, of points with least or-period n. Is this action transitive? In Theorem 7.2
we prove a strong form of transitivity on @, for all sufficiently large n. However,
we give an example with two fixed points which we show cannot be interchanged by
any composition of finite-order automorphisms. Our analysis of the action of G on
periodic points implies certain algebraic properties of G, including that none of G,
G/[G,G), and G/X are finitely generated. We conclude §7 with an example showing
that the profinite topology on G does not always coincide with that induced from
the action of G on periodic points.

Boyle and Krieger [BK] introduced the gyration function of ¢ € G to be the
number g(p, or)(n) € Z/nZ indicating the total amount of twist given by ¢ to the
orbits of length n. The map g: G — [[,, Z/nZ defined by

() = (9(p,01)(1), 9(p,07)(2),...)

is a homomorphism called the gyration representation. They prove that g(ox), o(x))
has infinite order for k£ > 2. Using computer experimentation, we stumbled on the
fact that g(or,o7)(p™) converges p-adically, usually to a nonzero limit that turns
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out to be transcendental. This is the basis of our proof in §8 that if the product of
the nonzero eigenvalues of T is not +1, then g{or,o7) has infinite order. It is also
a key ingredient in our proof that o7 is not a limit, in the periodic point topology
on G, of products of finite-order elements (Proposition 8.3).

The search for nontrivial representations of G leads naturally to studying G-
invariant sets and measures on X7. In Theorem 9.2 we prove that if a point is not
or-periodic, then its G-orbit is dense. A modification of this argument shows that
if Y C Z are or-invariant compact subsets of or, then Z is in the G-orbit closure
of Y under the Hausdorff metric on compact subsets. In §10 we obtain a complete
characterization of the G-orbit closure of a probability measure on Xr. Roughly
speaking, a measure v is in the G-orbit closure of u when it has enough cumulative
entropy to accommodate an approximate image of u. The precise formulation is
given in Theorem 10.1. One simple consequence is that the measure of maximal
entropy on Xy is the only continuous G-invariant measure.

This work has benefitted substantially from numerous conversations with many
people. We would like in particular to thank Ethan Coven, John Franks, Ralph
Greenberg, Hang Kim, Bruce Kitchens, Neal Koblitz, Wolfgang Krieger, Gopal
Prasad, Frank Rhodes, Jonathan Rosenberg, Fred Roush, John Smillie, and Jack
Wagoner. We would also like to thank the Mathematical Science Research Institute,
the IBM Thomas J. Watson Research Center, and the National Science Foundation
for their support.

2. Markers and subgroups. We shall describe a method for building auto-
morphisms of G = aut(or), and use this method to construct subgroups of aut(or)
isomorphic to such groups as the direct sum of any countable collection of finite
groups, the free group on infinitely many generators, and the direct sum of count-
ably many copies of Z. However, we show G does not contain a group with unsolv-
able word problem, and in the next section that it does not contain a nontrivial
divisible group. We next discuss some elaborations of this marker method used
throughout this paper, and show that automorphisms of finite order coincide with
those obtained from a marker construction by using an appropriate symbolic pre-
sentation of Xr.

Recall from §1 that the set of symbols £ for X7 is the collection of edges for the
graph of T, and that points of X7 are just allowed bi-infinite sequences of symbols.
For z € Xr let z[m,n] = 2, -+ 2, € L* ™! be the block of coordinates of z
from m to n. Let B,(Xr) be the set of allowed blocks of symbols of length n for
T. Put B(X7) = Upe, Ba(Xr). Suppose M € B,,(Xr) and that D C Bi(Xr)
is a collection of blocks with MPM = {MDM: D € D} C Bym+k(Xr) such that
for every D € D the block M can overlap the concatenation M DM in only the
initial and final segments of length m (this disallows even partial overlaps at the
ends). Let 7 be an arbitrary permutation of D. Define the action of a block map
@r on z € Xr as follows. For each ¢, if z[¢,7 + 2m + k — 1] = M DM, define
(pr2)[t,i+2m+k — 1] = Mn(D)M. Require ¢, to have no other action. Because
the blocks from M DM cannot overlap except for the marker M, this is a well-
defined o-invariant map of finite order, so ¢, € aut(or). The correspondence
7 + o hence embeds the symmetric group sym D of D into aut(or). We shall
show shortly that |D| can be made arbitrarily large by an appropriate choice of M.
This implies by Cayley’s theorem that every finite group embeds into aut(or), and
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generalizes Hedlund’s argument [H, Theorem 6.13| from the automorphism group
of a full shift to that of a shift of finite type.

Blocks, or collections of blocks, with the kind of nonoverlapping property used
above play a role for constructing continuous maps similar to that of Rohlin bases
used to define measurable isomorphisms in ergodic theory [Sh, Chapter 10]. The
idea has surfaced in several guises, such as prefix synchronization codes in informa-
tion theory [G].

DEFINITION 2.1. Two blocks overlap if an initial segment of one coincides with
a terminal segment of the other. A collection of blocks in B(Xr) has only trivial
overlaps if distinct blocks do not overlap and each block overlaps itself only in the
entire block.

The following gives an ample supply of blocks with only trivial overlaps.

LEMMA 2.2. There is a collection M = ;2 ; M C B(Xr) such that M,
contains n blocks of equal length, M has only trivial overlaps, and

MM = {MM': M,M' € M} C B(Xr).

PROOF. Since or is mixing, and T # [1] by our convention, there must be a
loop g7y - - - ikt € B(Xr) of distinct symbols with £ > 1. Furthermore, one of
these symbols, which we can assume is ¢y, is followed by a symbol j; # ;.

First suppose 7; # ig. Choose a path of minimal length from 7; to the loop,
say ji1j2---Jrts. The case r = 0 is possible and corresponds to j; = ¢, for some
8 # 0,1. Define A = 4g-- 15, B = 20152 Jrls -tk € B(Xr). For 1 < qg<n
define M,,, = A2BIAB™~9*!. Noting the positions of o in these blocks, it follows
from the above minimality of paths that M = {M,4: 1 < ¢ < n,n > 1} has only
trivial overlaps, and that MM C B(X7) by construction. Since the lengths |Mpy,]
are equal for 1 < ¢ < n, the collections M, = {Mp,: 1 < ¢ < n} satisfy the
conclusions.

The remaining possibility is for j; = 7p. In this case let A = 4, ---44%p, and
put My, = A%3 A7 ™91, Again noting the positions of 7o in the M, shows that
Mpn = {Mpq: 1 < g < n} for n > 1 satisfy the conclusions. O

We shall say that G = aut{or) contains a group H if there is an isomorphism
of H to a subgroup of G. Using the markers constructed in Lemma 2.2, we will
show that G contains several kinds of infinite groups. For clarity, the constructions
are first carried out on convenient full shifts, then extended to general or by a
substitution map.

THEOREM 2.3. The group aut(or) contains the direct sum of every countable
collection of finite groups.

PROOF. We first obtain the embedding when o7 is the full 3-shift on {0, 1, 2},
then extend to general o7 by a substitution map using markers from Lemma 2.2.

First suppose X1 = {0,1,2}Z, and let D, = {0,1}*, M = 2. For 7 € sym(D,)
define o, € G using blocks MD, M = 20,2 as above. This yields an embedding of
sym Dy, to a subgroup of H, of G. Since (p,z); = 2 iff z; = 2 and blocks from 20,2
can overlap those from 20,,2 only in the end symbols when n # m, elements of
H,, commute with those of H,, for n # m. Thus G contains @, ; sym D,, which
clearly contains the direct sum of every countable collection of finite groups.
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For general or, use Lemma 2.2 to find three markers My, M;, and M; of equal
length with only trivial overlaps, such that M;M; € B(Xr) for all 4,5. If 7 €
sym D, = sym{0,1}", define o, to replace a block of the form MaM;, --- M; M>,
where iy - i, € Dp, with MoM; - - M; M, where w(iy...1,) = ji - Ja, and
have no other action. The nonoverlapping nature of the M; shows that ¢, is
well-defined, that m — ¢, embeds sym(D,,) into aut(or), and that the embedded
subgroups commute. The proof now concludes as in the first case. O

THEOREM 2.4. The group aut(or) contains the free product of any finite num-
ber of 2-element groups. Thus it contains the free group on two generators, hence
the free group on a countable number of generators.

PROOF. We embed the free product of three copies of Z/2Z, the generalization
to more copies being routine. We first work on a special full shift, then carry this
over to a general op.

Let the alphabet be £ = {0,1,2,3,*}, and o, be the full shift on L. Define
involutions ¢; for j = 1,2,3 as follows. All will be 2-block maps, and each will
exchange three pairs of 2-blocks. Specifically, ¢, exchanges s0 with sj for s €
L£\{0,7}. Thus each p; uses three markers for its definition, and has the important
property that markers defining its action are not affected by it. It follows that
each p; € aut(og). Let P be the free product of the 2-element groups {e, j} for
j =1,2,3. Define a homomorphism from P to aut(o ) by mapping a reduced word
W=Jn 51 €EPtoyy =, - p;. Since each <p? = I, the identity, this is well-
defined. Consider the point z = ---0000%0000- - -, with zg = *. Then (¢2)n, = Jn,
(w;llwz)n_l = jn—2 and so on. This means that inductively % determines the
spelling of w, so this mapping embeds P into aut(og). It is elementary group
theory that P contains the free group F, of two generators [MKS, §1.4], and it is
known [Ro, Theorem 11.27] that the commutator subgroup of F» is the free group
on a countable number of generators.

This idea generalizes to arbitrary o7 by using markers instead of symbols. If
Lr is the alphabet for or, for each a € {0,1,2, 3, *} use Lemma 2.2 to construct a
marker M, over Lr, all of equal length with only trivial overlaps, and beginning
with and followed by 7p. Define involutions ¢;, 1 < 7 < 3, to exchange M;Mpig
with MsM;io for s € £\ {0,5}, and have no other effect. Since these markers have
only trivial overlaps, the p; are well-defined. The argument that they generate the
free product of three copies of Z/2Z is exactly as before. O

REMARK 2.5. This theorem shows that G is not amenable.

THEOREM 2.6. The group aut(or) contains the countable direct sum of copies
of 1.

PROOF. We first perform the embedding when o is the full shift on the alphabet
L ={0,1,a,b,c}, then generalize. Let M,, = ab™c. Then M = {M,: n > 1} has
only trivial overlaps. For each n > 1 we will define two involutions ay,,8,, and then
put ©n = anfBn. The idea behind this construction is contained in [L2], where it is
used to construct automorphisms with interesting entropies. Define «, to switch
M, ijM, with M, j5iM,, where i,j € {0, 1}, and to have no other action. Define £,
to map riMpjs to jMyu1, where 4, 7,7, s € {0,1}, and M,, does not move. Declare 5,
to have no other action. Clearly a,, and 3, are well-defined involutions that do not
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move any My, and only affect those symbols 0 and 1 adjacent to the appearances
of M,, and that are not adjacent to markers with subscript distinct from n. If
©n = apfh, it follows that the ¢, commute, but have no other relations. The
action of , on the point (M,00)°°(M,01)(M,00) is to shift the block 01 to the
left by | M, |+ 2, proving that @, has infinite order. In fact, each ©, has topological
entropy log 4 [L2]. Thus the subgroup of G generated by the ¢, is isomorphic to
the countable direct sum of copies of Z.

The generalization to arbitrary or using markers Mg, M;, M,, M, and M,
should now be routine. O

This method allows the embedding of many kinds of countable groups into G.
But is there a reasonable answer to the following?

PROBLEM 2.7. Characterize the subgroups of aut(or).

At least two properties of countable groups prevent them from being embeddable
into aut(or). One is the lack of residual finiteness, which we consider in the next
section. For the other, recall that a finitely presented group is said to have solvable
word problem if there is an algorithm to decide whether a word in the generators
represents the identity. There are countable groups without this property [Ro,
Chapter 12]. We are endebted to Bruce Kitchens for the following observation.

PROPOSITION 2.8. The group aut{or) contains no finitely generated group with
unsolvable word problem.

PROOF. Suppose a subgroup K of G = aut(c) has n generators. The inverse of
an automorphism is explicitly computable, if only by trying all block maps using
coordinates from —k to k and increasing k until the inverse is found. Say that p € G
has range at most mif (pzx); depends on only =;—,, ..., Zitm. Thereis an m so that
all the generators and their inverses have range at most m. Then a word 1 of length
r in the generators and their inverses has range at most rm. As a block map, ¥ is
explicitly determined by the block maps inducing the generators and their inverses.
To check whether ¢ = I, it is only necessary to see if Y(Z—rp,...,Zrm) = o for
all allowed blocks of length 2rm + 1, a finite procedure. Thus K has solvable word
problem. OO

That a finitely presented subgroup of aut(or) has solvable word problem follows
from the residual finiteness of aut(or), considered in the next section. Proposition
2.8 is stronger. There exist finitely generated residually finite groups with unsolv-
able word problem. For these facts see Theorem 4.6 in Chapter 4 of [LS] and the
remarks that follow.

In each of the constructions above we have used a version of the marker method.
By this we mean that the automorphism permutes certain blocks when they occur
in the context of certain finite marking patterns, so that the marking patterns
are not altered by the permutation. A useful point of view is that these marking
patterns act as “program” on the “data” of blocks to be permuted. Invariance of
the marking patterns is a reflection of the necessary separation of program from
data. For the automorphisms ¢, constructed at the beginning of this section, the
marking pattern is a pair of M’s separated by k symbols, while the data is the
collection D of blocks permuted by w. In more elaborate constructions the marking
patterns can be quite complicated (see the proofs of Theorem 9.2 and Lemma 10.7),
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but the automorphisms produced will have finite order. At the other extreme, an
empty set of marking patterns corresponds to an automorphism that permutes
symbols. The following result, apparently first observed by John Franks, shows
that the finite-order elements of aut(or) are precisely those that are obtained from
a marker construction on a conjugate shift.

PROPOSITION 2.9. Suppose o € aut(or) has finite order. There is a shift of fi-
nite type oy and a conjugacy ¥ : Xt — Xy so that Ypyp~! is a 1-block permutation
of symbols in Xy.

PROOF. Let Ry be the partition of Xt into sets {z € X1: 290 = a} for a € Lr.
Suppose ©* = I, and put P = \/;:é ©~7Py. Note that v permutes the atoms
of P. Since P has atoms that are compact and open, there is an n > 1 so that
V;‘:_n 0677 Py refines P. Let P = V;-l:_n c~7P. Then P, is a compact open
partition of Xr refining 5, and a standard argument [B1] from symbolic dynamics
shows that if n is sufficiently large, P, is a 1-step Markov partition for o7 with
transition matrix, say, U indexed by the atoms of P,. This gives a conjugacy
¥: X7 — Xy. Since p commutes with or, it will permute the atoms of P;. Hence

Yy~ acts by permuting the symbols of Xy;. O

3. Residual finiteness and divisibility. In this section we will prove that
G = aut(or) is residually finite. Since this property is inherited by subgroups,
it will follow that G does not contain nontrivial divisible groups, nor the infinite
symmetric group. We then discuss some divisibility properties of G. We conclude
with a construction of a subshift whose automorphism group contains a copy of the
rationals.

Recall [MKS, p. 116] that an abstract group H with identity I is called residu-
ally finite if the intersection of all its normal subgroups of finite index is {I}. This is
equivalent to H having enough homomorphisms to finite groups to separate points,
and also to being able to embed H into a product of finite groups. The profinite
topology on H is the coarsest making all homomorphisms from H to finite groups
continuous. Then H is residually finite exactly when the profinite topology on H
is Hausdorff [MKS, Problem 2.4.24(a)]. Clearly a subgroup of a residually finite
group is itself residually finite.

THEOREM 3.1. The group aut(or) s residually finite.

PROOF. Let @, = @Qn(or) denote the set of points in Xr with least or-period
n. Since or is mixing, each @, is finite. An automorphism ¢ € G = aut{or) is a
topological conjugacy of o7 with itself, hence preserves @,. Thus for each n > 1,
an automorphism ¢ induces a permutation p|g, in the symmetric group sym Q.
Let K, denote the kernel of the map ¢ — ¢|g,.. The K, are normal in G, and since
U2, @n is dense in Xr, it follows that (>_, K, = {I}. Hence G is residually
finite. O

A group D is divisible if every element has roots of all orders [MKS, §6.2]. A
consequence of residual finiteness is that complete divisibility cannot occur in G.

COROLLARY 3.2. The group aut(or) contains no nontrivial divisible groups.

PROOF. Suppose D is a nontrivial divisible subgroup. Then D is residually
finite by Theorem 3.1. Let ¢ # I be in D, and N be a normal subgroup of finite
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index in D with ¢ ¢ N. Put n = |D/N|. Suppose there were a ¢ in D with
Y™ =¢p. Then N = (Y N)* = ¢y"N = pN, contradicting p ¢ N. 0O

To point out the role that finite type plays in Corollary 3.2, we construct in
Example 3.9 a subshift not of finite type whose automorphism group contains Q.
This construction can be amplified so the resulting automorphism group is exactly
Q.
Denote by So the group of permutations of the natural numbers fixing all but
finitely many elements. J. Wagoner has raised the question of whether G contains
Soo- The following negative answer has also been found, independently, by Kim
and Roush.

COROLLARY 3.3. The group aut(or) does not contain Su.

PROOF. If Ay is the infinite subgroup of S, consisting of the even permuta-
tions, then A is the union of the finite simple alternating groups, so is also simple.
If Soo were contained in aut(or), then by Theorem 3.1 the subgroup Ay would
also be residually finite. But A, is infinite and simple, so is not residually finite.
]

Corollary 3.2 shows for example that G does not contain Q or Z(p™) = Z[1/p]/Z
for primes p. However, the proof does not rule out partial divisibility.

PROBLEM 3.4. Is Z[1/p)] contained in aut(or) for any prime p?

This amounts to asking whether there is an automorphism of infinite order with
an infinite chain of pth roots. Indeed, we are unable to decide the following.

PROBLEM 3.5. Is there an automorphism in aut(o7) of infinite order having
an nth root for infinitely many n?

Note that if ¢ is such an automorphism, then it cannot be topologically conjugate
to a mixing shift of finite type. For if ¢ = oy and ¢¥™ = ¢, then 9 is also a mixing
shift of finite type ([BK, Lemma 2.5] or [L1, Theorem 8]), hence 1 is conjugate
to some oy. Then the spectral radius Ay of U would be a Perron number [L1,
§1] with nth root Ay, which is also a Perron number. But Ay has only finitely
many nontrivial factorizations into Perron numbers [L1, Theorem 4], so it has only
finitely many Perron roots.

Although we cannot characterize the subgroups of @ contained in G, there is a
complete answer for subgroups of Q/Z.

PROPOSITION 3.6. A subgroup of Q/Z s contained in aut(or) iff its p-torsion
subgroup is finite for every prime p.

PROOF. Recall that Q/Z = P, Z(p™) is the primary decomposition of Q/Z
[Ka, 83]. If H C Q/Z, then H has primary decomposition H = ®, Hp with
Hy, C Z(p™). If some H,, is infinite, then it is Z(p>), and then this divisible group
would be contained in G, contradicting Proposition 3.1. If all the H), are finite,
then H is contained in G by Theorem 2.3. 0O

We now turn to examining chains of roots of the identity I. If {n;: j > 1} is a
sequence of integers n; > 1 for all 7, call a prime p good for the sequence if it divides
at least one, but only finitely many, of the n;. Call p bad if it divides infinitely many
of the n;. Some primes may be neither good nor bad. We first discuss the case
when the roots generate a finite subgroup of G.
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PROPOSITION 3.7. Let {n;: 7 > 1} be a sequence with n; > 1. Then there are
p; € aut(or) with oo = I, go?j = p;_1 for j > 1, and which generate a finite
nontrivial subgroup of aut(or) iff {n;} has a good prime.

PROOF. First suppose there are ¢, having the properties mentioned. By skip-
ping to the first p; # I and adjusting indices, we may assume ¢; # I. Let p be
a prime dividing the order o(p1) of ¢1, and ® denote the group generated by the
@;. If p were bad, then ¢; would have a p*th root in ® for every k > 1. This
contradicts finiteness of ®. Since p | o{p;) and o(p1) | n1, it follows that p is good.

Conversely, suppose p is good. Choose the largest jo so that p | nj,. Let ¢ be a
pth root of I, say constructed using Theorem 2.3. Define p; =I for 0 <j < jo—1,
050 = ¥, and put p; = ¥* for j > jo, where k = (n;,41 - --n;)"! mod p. An easy
calculation shows these p; work. O

PROPOSITION 3.8. Suppose {n;: j > 1} is a sequence with n; > 1. Then there
are p; € aut{or) with po = I, go?j = @;_1 for j > 1, and which generate an
infinite subgroup of aut(or) iff {n;} has infinitely many good primes.

PROOF. First suppose there are ; as described, and let ® denote the subgroup
of G = aut{or) they generate. Since ® is a union of cyclic groups, it is abelian.
Suppose p divides o(yp;). If p were bad, then every element in ® would have a pth
root. This would force G to contain Z(p*®), contradicting Proposition 3.1. Thus
every bad prime is relatively prime to every o(p;). If {n;} had only finitely many
good primes, then there is a jg so that for 7 > jo each n; is a product of bad primes.
Thus (o(n;), n;) = 1 for § > jo, s0 0(p;+1) = o(g;’) = o(p;) for j > jo, implying
® is finite. This contradiction proves {n;} has infinitely many good primes.

Conversely, suppose {n;} has infinitely many good primes, say p; < pz < ---.
Since each p; divides only finitely many ng, by passing to a subsequence we can
assume there are n;, < n;, < --- such that p; | n;, for j > 1. Put ¢ = 1, and
let m; =n,,_, 41 N P Clearly it suffices to find a chain of roots for the m; that
generate an infinite subgroup.

Since p; is good, for each j there is a d; so that m;---my Z 0 mod p;l’ for

all k > 1. Let H; = Z/p¥Z, and put H = @2, H,. Let a0 = p}’ ' € Hj.
Inductively we can find a; x € H; so that m; xa;x = ajk—1. Let by = ay ;-1 +
ag,j—2+---+a;0 € H. Then the b; generate an infinite subgroup of H, and recalling
that p; | m; we find that m;b; = bj_,. By Theorem 2.6, H embeds into G. If p;
is the image of b; under this embedding, then the ¢; satisfy the requirements. O

In Corollary 3.2 we proved that the automorphism group of a shift of finite
type cannot contain a divisible group such as Q. If we drop the “finite type”
hypothesis, divisible subgroups are possible. The following construction yields a
minimal subshift (X, o) and an embedding of Q into aut(X, o).

The details of Example 3.9 are intricate, and the reader may wonder whether a
more “natural” action of Q@ would suffice. Unfortunately, because Q is not locally
compact, most natural actions of Q fail to be expansive, so cannot yield subshifts.
For example, @ acts on {0,1}2, but individual elements of this action are not
expansive. Expansive maps with roots of arbitrary order are harder to come by.

EXAMPLE 3.9. A minimal subshift (X, o) and an embedding of Q into aut(X, o)
s0 that 1 € Q corresponds to o € aut(X, o).
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We first sketch how to construct a subshift (X,o) with an nth root. Suppose
there are n symbols ag,ay,...,a,—1, and one “spacer” symbol s. Further suppose
that allowed blocks in X have a,,_; always preceded by an s, and ag always followed
by an s. Define a block map ¢ by p(a;) = a;41 for 0 <7 <n—2, and p(san-1) =
aps. In general, p(X) need not be X. However, if X is designed so ¢(X) = X, then
© gives an automorphism of (X,0). As the iterates of ¢ act on z € X, different
parts of z are moved left one position at different iterates, much like the familiar
slinky toy. The cumulative effect of ©™ is to move every symbol to the left once, so
© is an nth root of o.

Before giving the detailed construction, let us describe the role of the objects and
maps obtained. The construction will proceed by stages, starting with an initial

alphabet L. At stage ¢ > 3 we will have ¢! words w(Q) ..,’wéfll from £ forming

the set W@, Each w](-q) will be a concatenation of words from W(?—1) separated
by 0, 1, or 2 spacer symbols s. The subshift X will consist of all £ € £Z so that
every subblock of z is also a subblock of some constructed word. Every word from
W(@=1) will occur in every word from W(9), and s3 will never occur in any word.
From this it will follow that every allowed block in X occurs syndetically, so (X, o)
will be minimal. It will also follow that if z € X and ¢ > 3, then z[—00, 00| can be
uniquely decomposed into a concatenation of words from W(%) separated by 0, 1,
or 2 spacers s. For each g > 3 there will be maps 30(4) (3 £ k < q) defined on words
in W(). They will have the properties that (p q)) <pfcq_)1 for 4 < k < g, that
(<P(3)) ()

gives the same result as @, (@+7) yould. Thus on X the go(q) (g > 3) consistently
define a block map @y, and these obey ©f = o1 (k > 4), ©§ = 0. Hence mapping
1/k! to o for k > 3 embeds Q into aut(X, o), with 1 corresponding to o.

To begin the construction, let the alphabet be £ = {ao,as,...,as,8}. For the

initial stage ¢ = 3, put wj(s) =a; (0<j<5),and WO = {w(3): 0 <j <5}
Define qp(s)( §3)) (3) (0 €5 <4), and gog (swé3)) = w(()s)s This is the
method outlined in the ﬁrst paragraph to obtain a 6th root of ¢, so (p §3))6 =0,

and we need only make sure that <p(3) (X)=X.
Next we give the first inductive step, to ¢ = 4. Begin by defining for 0 < m < 3
the 4 words

3 3 3 3 3
wi®) = wl¥ (swi®)? [(swr(r?))( Wk mod 6) " (SWhtks moa e)] (sg”)*.

We then obtain the 4! words in W(%) by defining

6 = ¢, and the consistency condition that ¢, applied to a word in Wla+tr)

with = (@) (@®)  (0<r<5,0<m<3).

Note that every word in W3 occurs in every word in W4, Next put go( )( ](-4)) =

](3_)1 (0<j<4!—2),and go (sw‘(;,i) )= (4)3 Then let <p = (p$M)4. Words

from W) are cyclically moved by <p4 ) but break into 4 groups of 6 each on which

é ) acts exactly as go(a) Thus go(4) is consistent with <p3 ,and (p ‘(14))4 = <p:(,4) by
construction. Since every word from W{3) occurs in every word from W(4), and s®
never occurs here, the minimality conditions are satisfied at stage ¢ = 4.
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Suppose at stage g — 1 we have defined (¢ — 1)! words w] U for 0 <7<

(q — 1)' — 1 and maps go -1 (3 <k < g—1) so that (p; (= 1)) ¢§c_1) and
(g—1)

the <pk > are consistent. Construct stage ¢q as follows. First define, for
0<5<q—1,
(g—1)I-1
-1 1 -1 -1
wﬁrg) = w(()q )(Sw(()q )) - sw7(73+i1nod (g—1)! (sw(()q ))q~
1=0

We then obtain the ¢! words in W(9) by putting

wf,‘ilm = (sof,"_“))’(wi,i’)) O0<r<(g—1), 0<m<g—1)

(Q)( 9y = w Lfor0< 5 <gl—1,and o{ (sw'® ) = wl¥s.

Next define <pq by © o1

Finally, set
ol = () Bsk<a)

Then, as in the ¢ = 4 case, for fixed k each gok ( < p < q) is consistent with gofc‘”

and (py )) = ‘ch-1~ Every word in W(—1) occurs in every word of W(® and s*

never occurs. Furthermore, because of the repetitions of sw(()q_l) at the ends of the

wﬁg ), every z € X has z[—00, 00] decomposed uniquely as a concatenation of words

from W(® separated by no more than 2 s’s. This completes the construction of
stage q.

The W@ and gofcq) constructed obey the conditions described in the second
paragraph, and we thus obtain the required minimal subshift (X, o) and embedding
of Q into aut(X,¢). O

REMARK 3.10. In our construction of wJ(-Q), the words from W(=1) are cyeli-

cally listed once. However, any arrangement of words from W= with arbitrary
repetitions, would also work, provided each word is used at least once. By using a
long and highly recurrent listing of words from W(@—1) it is possible to construct a
uniquely ergodic subshift (X, o) so that aut(X, o) = Q, and such that every Borel
measurable mapping ¢: X — X commuting with ¢ is continuous. This should be
contrasted with the uniquely ergodic Morse minimal subshift, whose automorphism
group is just Z & (Z/2Z) with generators the shift and coordinate complementation
(see [CK, C]).

4. Nonisomorphic automorphism groups. Conjugate subshifts of finite
type have isomorphic automorphism groups. Also, clearly aut(or) = aut(og h.
Since there are shifts of finite type not conjugate to their inverse [PT, Proposition
3.30], there are nonconjugate shifts of finite type with isomorphic automorphism
groups. However, the following question remains open.

QUESTION 4.1. Ifoy is not conjugate to o1 or 0771, can aut(oy) and aut(or)
be 1somorphic as abstract groups?

In this regard, we know of only one useful invariant, namely the theorem of
Ryan [Ry1, Ry2] that the center of aut(or) is precisely the set of powers of or.
Thus, for example, as an abstract group aut(o(4)) = aut(o["’2]) has center generated

by an element with a square root in the group, while aut(o()) does not since the
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2-shift has no square root. The following example, a more refined application of
this idea, shows that the isomorphism class of aut(or) is not determined by the
zeta-function. The motivation for the specific matrices used lies in a consequence of
(B2] that there is only one shift equivalence class over Z for matrices whose nonzero
spectrum is {1,2}, while there are exactly two such classes for {1,8}, only one of
which can correspond to the cube of the first class.

EXAMPLE 4.2. Two mizing shifts of finite type with equal ¢-function and having
nonisomorphic automorphism groups.

Let

V= . T=V3 U=[7 6}.

1 2

—_O O
(=i =
—— O

1
1
0
0

Then ¢r(t) = ¢u(t) = [(1 - 8¢)(1 - t)]_l. Clearly the generator or for the center
of aut{or) has a cube root oy . Suppose oy has a cube root ¢ in aut(oy). Then
© is again a shift of finite type ([BK, Lemma 2.5] or [L1, Theorem 8}), say ¢ =
ow. Since oy = (ow)® = ows, the nonzero spectrum of W is {1,2} counting
multiplicity. Hence by [B2], there is an integer 5 so that W is shift equivalent over

Z to [??]:Wl. Since
W_IO 2 0 2 0 1 0 {2 0
LA R I R B -5 1f|7 1] |o 1

ol By -E Y

we would have
W13=N=|:8 O:I and M:[8 Ojl

and

01 11

shift equivalent over Z. Thus there would be matrices R and S over Z and a positive
integer | with RS = M, SR = N', NR = RM, and SN = MS. Now NR = RM
forces R13 = 0 and TR3; = —Rgs. Also, SN = MS forces Si2 = 0. Then RS = M!
implies R25S22 = 1, so Rao = 1. This contradicts 7Ry; = —Rgy. 0O

5. Symmetry. Let or be a mixing shift of finite type. As in the proof of
Proposition 2.8, say that ¢ € G = aut(or) has range at most n if (pz); depends
only on z;_pn,...,Zi+n. A natural measure of the symmetry of or is the rate of
growth of the subset G, (o) of those automorphisms in G with range at most [n/2].
This growth turns out to be doubly exponential, so we define the symmetry of or
as

s(or) = limsup 1 loglog |G, (oT)|.
n—oo N

The definition of symmetry depends on a particular presentation of or, but
the following proves that symmetry is a conjugacy invariant. Suppose or and
oy are conjugate via a mapping ¢¥: Xr — Xy. Choose m so that both ¢ and
¥~! have range at most m. If p € Gp(or), then Y~ ! € Gpiam(oy), so that
|Griam(ou)| 2 |Gnlor)|- Thus s(oy) > s(or), and by symmetry they coincide.
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THEOREM 5.1. If o is a mizing shift of finite type, then
$h(o) < s(o) < h(o).

PROOF. We first establish the upper bound. Represent o as o7 with r states,
and put X = Xr. Now |Gn(or)| is trivially bounded above by the total number
of block maps B,41(X) — {0,...,7 — 1}, or 71Ba+1(X)_1f h(ar) = log A, where A
is the dominant eigenvalue for T, there is a k > 0 so that |Bn41(X)| < kA™. Thus
|Gn(o)] < 72" so that s(o) < log A = k(o).

The lower bound uses the automorphisms constructed at the beginning of §2.
For this we first need to show that the number of marker-free blocks of length m
between two markers grows faster than (A17¢)™, where ¢ can be made small by
choosing long enough markers.

Fix a small ¢ > 0 and a marker M € B,(X), where n > ng with ng to be
determined. Let [ be a transition length for T, so that 7' > 0. There is an a > 0 so
that |Bx(X)| > aA* for k > 1. If k < n, then M has n — k + 1 subblocks of length
k. Hence if k is chosen so that aA¥ > n — k + 1, there will be a block C € Bi(X)
that does not appear in M. If ng is large enough, a choice of k < £n — 1 is possible.

Consider blocks MDM € By (X) of the form

MECB,CBy---CBgkCFM,

where B; € Bp_ok(X), N=(n—k)K 4+ 2n+ 2l + k, and E, F are fixed transition
blocks in B;(X). Since [ is a transition length, every block of B,_ax—2:1(X) can be
the central part of each B;. Hence the collection D of blocks D with the required
form has cardinality

|D| > (a/\n—2k——21)K > (a/\(l—e)n)K'

Since 2|C| + |B;| = n, a subblock of D € D with length n must contain C. Now
M does not contain C, and has only trivial self-overlap. Thus M can only occur
in MDM as the initial or terminal segment. As at the beginning of §2, distinct
permutations 7 € sym D determine distinct automorphisms ¢, € aut{or) whose
range is clearly at most N. Thus

|Gan41(07)| > [(a,\(l—s)n)x] |

Now Stirling’s formula implies that logm! > m(logm — 1), which applied to the
above yields

s(or) > limsup log log |Gan 41|

Nooo 2N +1
1 K
> i 1 /\(l—e)n
2 lmsup o T T k51 08 )
1—¢ 1—¢

2

5 logA = Th(oT).

Since € > 0 was arbitrary, the lower estimate is proved. O
We do not know the exact value of s(or) for any T # [1], nor whether the
definition’s lim sup is actually a limit.
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PROBLEM 5.2. Compute s(or).

For full shifts oy, this problem can be viewed as a quantitative inquiry into the
relative sparseness of aut(o|,)) in the semigroup of all block maps from X, to itself.
A topological measure of this sparseness has been given by Sears [Se]. We remark
that for oy,), if we replace “automorphism” by “surjective map” in the definition
of symmetry, the value is easily shown to be logr = h(o(,}). For any block map
involving k symbols can be used to define a right permutive block map using & + 1
symbols by adding modulo r the value of the block map on the initial £ symbols to
the last coordinate. Such right permutive maps are surjective [H, Theorem 6.6].

NOTE ADDED IN PROOF. H. Kim and F. Roush have shown that s{(a1) = h(oT)
for all irreducible T'. Their solution to Problem 5.2 uses a modification of the
construction used to prove Theorem 5.1.

Let ur be the measure of maximal entropy for or. Coven and Paul [CP] proved
that ur is p-invariant for every ¢ € G. Since G is not amenable (Remark 2.5),
the sets G, may provide a replacement for averaging sets for the action of G on

(XTaMT)'
QUESTION 5.3. If f € C(XT), does {Gn|_1 2 pec, f(pz) converge to

fdur
Xr

in any reasonable sense for most or all x € X7

6. Induced action on the dimension group. For this section only, we drop
our standing assumption that T be aperiodic, and assume only that T is nonnegative
integral and not nilpotent. Building on the fundamental work of Williams [Wi]
and Elliot [E], Krieger [Kr2| associated to each shift of finite type o1 an order-
preserving automorphism T of an ordered group (Gr, G7) called the dimension

group of or. The triple (G, G5, f) is a topological invariant since it can be
defined using only topological notions. Two shifts of finite type are shift equivalent
exactly when their dimension triples are isomorphic [Kr2].

We first review an algebraic description of the dimension triple, and indicate its
relationship to underlying topological notions. Next we show how an automorphism
o of or induces an automorphism 6(p) of the dimension triple. The basic problem is
to determine whether § is surjective. We do not settle this. We show in Theorem 6.8
that if the nonzero eigenvalues of T are simple, and if the ratio of distinct eigenvalues
is not a root of unity, then for all sufficiently large n the map é: aut(o%) — aut(T™")
is surjective. We also show that these hypotheses on the eigenvalues of T imply

-~

aut(T) = aut(T") for all n. Example 6.7 shows that in general aut(T?) can be
larger than a.ut(f), though still finitely generated. Also, using an idea suggested to
us by Gopal Prasad, in Example 6.9 we exhibit a T for which aut(f) is not finitely
generated.

Suppose T is an r X r nonnegative integral matrix. For the moment we drop our
standing assumption that T be aperiodic. It will be convenient to have matrices act
on the right, and for vectors to be row vectors. Say that v € Q" is eventually integral
(under T) if vT™ € Z* for large enough n. Call two eventually integral vectors v
and w equivalent if vT™ = wT™ for large enough n. The set §r of equivalence
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classes [v] of eventually integral vectors v inherits an additive group structure from
Q. The positive cone G is the set of [v] for the vT™ > 0 eventually.

Let R = T7Q" be the eventual range of T. Each class in §r has a unique
representativein R, so it will sometimes be convenient to regard Gr as embedded
in R. Define T on Gr by T([v]) = [vT]. By considering §r as a subgroup of R,
the extension of T to R is invertible, so T defines an automorphism of Gr. It
is clear t}Eit T is order-preserving. By the dimension triple of or we shall mean
(97, 67.T).

We now sketch Krieger’s topological construction of the dimension triple. For a
detailed introduction to these ideas, see [BMT, Chapters 2, 5, 11].

By an n-ray we shall mean a set of the form

z(—oo,n]* ={y € Xr: y; = z; for —o0 < j < n},

where ¢ € Xr. By an n-beam we mean a finite disjoint union of n-rays. Note
that although the notion of n-ray is tied to the presentation T', that of n-beam is
not, since an n-beam can be topologically described as a finite union of compact
open subsets of unstable sets in X7 in the natural inductive limit topology. If
C=U, 27 (—o0,n]* is an n-beam, define a vector vc,, € Z" whose tth entry is the
number of n-rays 27 such that z7 has terminal state «. If C is an n-beam, then
it is also an m-beam for m > n, and ve », = v, T™™". Define beams C and D
to be equivalent if for large enough k we have vc x = vp k. The set of equivalence
classes generate the positive cone Gt of an ordered group § using the definition
[C]+[D)=[CuD]if CND =. Now or acts on beams, preserves equivalence,
s0 induces an order-preserving automorphism o1 of §. Since equivalence of beams
corresponds to equivalence of eventually integral vectors, it is routine to verify that
the map sending the class [C] of an n-beam to T~ "([uc,n]) is an isomorphism of

(6,67%,57) to the dimension triple (G, 67, T) defined above.

Therefore, to prove that the dimension triple is a topological invariant, it suffices
to prove that if ¥:0r — oy is a topological conjugacy, then % maps beams to
beams, respects equivalence of beams, and intertwines or with oy. The routine
verifications are omitted. However, we add one note of caution. If ¥: X7 — Xy is
merely surjective, it is not necessarily true that ¢ maps beams to beams.

We shall denote the group of order-preserving automorphisms of the dimen-
sion triple by aut(f ). Suppose ¢ € aut(or). Since p is a self-conjugacy of or,
the argument above about topological invariance proves that ¢ induces an au-

~

tomorphism 6(y) € aut(T). A routine calculation shows §(pv) = 6(p)é(%), so

§:aut(or) — aut(T) is a homomorphism.

QUESTION 6.1. Is the dimension representation §:aut(or) — aut(T) always
surjective?

If U is an integral matrix commuting with T', we define U on 1 by U([v]) = [vU].

LEMMA 6.2. Suppose U and V are nonnegative integral matrices so that T =
UV =VU is an elementary strong shift equivalence of T to itself. Then there is a
© € aut(or) with 6(p) =U.

PROOF. This is mainly a matter of checking that the induced automorphism
defined by Williams [Wi] acts correctly on beams.
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Suppose T is r x r. Let W = [J U], so W2 = [[ 2], indexed by states
{0,1,...,2r — 1}. Then Bs(ow) is the disjoint union of the set Byy of paths
beginning and ending in {0,...,r — 1} and the set By y beginning and ending in
{r,...,2r — 1}. Thus Xy is the disjoint union of Xy y defined from By y and
XV,U deﬁned from By . Note that ow switches these sets. From the form of w2,
it follows that there are bijections 0y v: Bi(or) — Byy and Oy y: Bi(or) — By
that respect initial and terminal states mod r. These induce 1-block conjugacies,
denoted by the same symbol bvv: (Xr,07) = (Xyv,08) and by y: (Xr,07) —
(Xvu,0%). Let o = by UO'w9UV € aut(or).

We compute the action of ¢ on a left-infinite ray xz(—o0,n|*. Suppose z, has
terminal state :. Then fyy maps this to a ray in Xy y ending with state 2. Next
ow maps this to a union of rays, with U;; of them ending in state j. Finally,
0‘7}1 maps each ray ending in state j to one in X7 ending in state j. Passing to
the action of  on §r, we see the standard unit vector e; is mapped by §(p) to
Y -1 Uije;. Thus §(p) =U. O

Note that aut(or) is naturally a subgroup of aut(c%). Furthermore, the re-
striction of é:aut(c}) — aut(T") to aut(or) coincides with the definition of § of
aut(or).

PROPOSITION 6.3. Suppose ® € aut(T). Then for all sufficiently large n, there
18 a p € aut(o}) with 6(p) = ®.

PROOF. Let T be r x r acting on Q". Then R = T7Q" is the eventual range
of T, and K = kerT" is its eventual kernel. Hence Q" = R @ K. As before, we
may consider §r as embedded in R. Since Gr is torsion-free, the automorphism ¢
extends to a nonsingular Q-linear map W of §Gr ® Q@ = R. If O denotes the zero
map on K, and Uy is the matrix for 0 @W with respect to the standard basis, then
Up = 0 ©W has rational entries, and f]o =®. Let Vo = 0x ®W 1. Both Uy and
Vo have rows in 9; , so for k and n — k large enough, U = UpT* and V = VT~ *
have Z* entries. Thus UV = (0 ®@Ig)T™ = T™ = VU is an elementary strong shift
equivalence of T™ to itself. By Lemma 6.1, there isa ¢ € aut(aT) with 6(¢) = U.
Put o = 9o7¥. Then 6(p) = 6(1)6(07%) = UgTFT~* = Uy = 0

To use Proposition 6.3, we will establish some results about ﬁnite generation of
aut(f). In what follows, aut ( gT,:F) refers to the group of those automorphisms
of §r commuting with f, not necessarily preserving the positive cone. If U has
nonzero eigenvalues Ay, ..., Ak, let x;5(¢) denote Hle(t - A5

LEMMA 6.4. Suppose xj; is irreductble. Then aut(Gy, [7) 18 finitely generated
and abelian.

PROOF. By passing to the eventual range of U, we may suppose U is nonsingular.
Let U be r xr, and let A be an eigenvalue of U. By a theorem of Taussky [T], there
is an ideal J C Z[)] so that (Z",U) = (J, M), where M), denotes multiplication by
A. Hence (Gu,U) = (Z[1/A])J, M,). For more on this correspondence, see [BMT,
Chapter 5]. Under this isomorphism, an automorphism ® of U corresponds to an
automorphism of Z[1/A]J commuting with M), i.e. a Z[1/A]-module isomorphism.
Since the quotient field of Z[1/)] is Q()), there is an o € Q()) so that ® corresponds
to the restriction of M, on Z[1/A]J. Let S be the set of prime divisors of the ideal
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generated by A, and Og denote the ring of S-integral elements in Q(A). Since both
M, and M,-: are automorphisms of Z[1/A]J, it follows that ¢ is in the unit group
0 of Os. By the Dirichlet unit theorem [We, Theorem 5-3-10], the group 0 of

~

units is a finitely generated abelian group. Thus aut(U) corresponds to a subgroup
of OZ, so is also finitely generated and abelian. O

REMARK. The Dirichlet unit theorem shows that aut(Gy,U) is the product of
a finite cyclic group and a free abelian group on e + r + s — 1 generators, where
Q(A) has r real and 2s complex embeddings, and the factorization of the principal
ideal generated by A uses e distinct primes.

o~

PROPOSITION 6.5. If all the nonzero eigenvalues of T are simple, then aut(T)
18 finitely generated and abelian.

PROOF. Factor x7(t) = t™pi(t)---pk(t), where the p,(t) are distinct irre-
ducibles. If T is r X r, then Q" is the direct sum of the eventual kernel of T and the
rational subspaces R; corresponding to the p;(t). Let §; = grNR;, and T; = Tg;.

Suppose ® € aut(T'). As before, ® extends to a Q-linear map of Q" which is invert-
ible on @le R;. Since the p;(t) are distinct and irreducible, each R; is ®-invariant.
It follows <I>|ngis an automorphism of (G,,T;). Hence the map & EB;?:I ®|g,
takes aut(Gr,T) to @le aut(g,,T;). Since @le G, has finite index in Gr, this
mapping is injective. By using an integral basis for Z" N R;, the map T; is seen to
be a dimension group automorphism, so aut(§;,T;) is finitely generated abelian by
Lemma 6.4. This proves aut(Gr,T) is finitely generated abelian. The group aut(7T)
of order-preserving automorphisms is therefore also finitely generated abelian. 0O

LEMMA 6.6. Suppose the nonzero eigenvalues of T are simple. If T does not
have distinct eigenvalues whose ratio is an nth root of unity, then aut(T") = aut(T).

PROOF. As noted above, aut(T) C aut(T™) is trivial.
Using the notations from the proof of Proposition 6.5, we see the hypotheses on
the eigenvalues of 7' mean that the spectra of T"| R, are disjoint for 1 < 5 < k.

Thus any @ € aut(f”) extends to a Q-linear map under which the R; are invariant.
Since the eigenvalues of T" on R; are distinct, and ® commutes with T on R;, it
follows by linear algebra that ® commutes with T on R;, completing the proof. O
EXAMPLE 6.7. An aperiodic matriz T for which aut(T?) is larger than aut(T),
but both are finitely generated.
Let

~
il
=N
o =
IR

Then over Z[1/3] we find

9 0 0 1 1 0
Vvity=U=1{0 3 0 |, whereV=|[1 0 1
0 0 -3 1 -1 -1

Since the eigenvalues of U are distinct, we obtain Gy = Z[1/3]%, and aut(Gy, U) =
GL(1,2{1/3]))® = [Z ® (Z/2Z)}®. Since order-preserving automorphisms of Gr just

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE AUTOMORPHISM GROUP OF A SHIFT OF FINITE TYPE 89

need to preserve the positive dominant eigendirection, aut(gr, 9;, f) is a subgroup
of index 2 in aut(gT,f). The conjugacy of T and U takes place over Z[1/3], so
aut(Gy,U) = aut(§p, T). Hence aut(T) = 22 @ (2/22)2.

On the other hand, U? has a repeated eigenvalue of 32, and any automorphism
of the corresponding subgroup of Gy extends to one of Gyy. Thus

aut(Gy, U%) = GL(1,Z[1/3]) & GL(2,Z[1/3)).
As before, we conclude aut(T?) = Z & GL(2,Z[1/3]), which is larger than

aut(T). O
We remark that by using flementary matrix operations, one can show that
GL(2,2[1/3)), and hence aut(T?), is a finitely generated nonabelian group.

Assembling the pieces, we now state the main result of this section.

THEOREM 6.8. Suppose the nonzero eigenvalues of T are simple. If no ratio
of distinct eigenvalues is a root of unity, then for all sufficiently large n we have
that &: aut(op) — aut(T™) = aut(T) is surjective. If some ratios of eigenvalues are
roots of unity, the conclusion still holds for infinitely many n.

PROOF. Let us first suppose no rativof distinct eigenvalues is a root of unity.
By Lemma 6.6, we have aut(T™) = aut(T). By Proposition 6.5, aut(T) is finitely
generated. Using Proposition 6.3, for all sufficiently large n, each generator is in
6(aut(o%)), implying the conclusion.

If some ratios of distinct eigenvalues are roots of unity, the preceding argument
still holds for all n relatively prime to the orders of these roots of unity. 0O

We conclude with an example to show that finite generation of aut(T) does not
generally hold.

EXAMPLE 6.9. An aperiodic matriz T with aut(f) not finitely generated.

We are grateful to Gopal Prasad for the idea behind the following. Let

5 2 2
T=1(4 4 1
0 3 6
Then T is conjugate over Z[1/3] to
9 00 1 1 0
U=V~'TV =10 3 0|, whereV=1|1 0 1
0 3 3 1 -1 -1
As in the argument for Example 6.7, aut(Gy) = GL(1,Z[1/3]) x H, where H is

the group of automorphisms of Z[1/3]> commuting with W = [32]. By analogy

with the K AN decomposition of Lie groups, it is easy to see that H = K x A x N,
where K = {*1}, A= {3"]: n € Z}, and

N={[; ‘1’] :an[1/3]}.

Now N is isomorphic to the additive group Z[1/3], which is not finitely generated.
Thus H is not finitely generated, so aut(T) = Z x H is also not finitely generated.
]

The following question appears to us basic to understanding the structure of
aut(or).
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QUESTION 6.10. IfT is aperiodic, vs the kernel of the dimenston representation
of aut(or) generated by elements of finite order?

This question is especially pertinent to understanding the action of aut(or) on
the periodic points of or (see §7 and [BK]). It is a natural generalization of an
older one, which to the best of our knowledge was first explicitly conjectured by F.
Rhodes in correspondence with G. Hedlund.

CONJECTURE 6.11 (F. RHODES). The automorphism group of the 2-shift is
generated by the 2-shift and involutions.

7. Induced action on periodic points. Each automorphism of o7 maps a
periodic point to another with the same period. This action of G on periodic points
was studied by Boyle and Krieger [BK]. We begin by discussing a fundamental
question about this action, and give a partial answer in Theorem 7.2. We then
discuss several representations of G provided via periodic points, and conclude
with remarks about some related topologies on G.

Let P, = Py(or) denote the fixed points of 0%, and @, = Qn(or) be those
points with least or-period n. Since Q,, is or-invariant, we can define aut(@,,or)
to be the group of bijections of @,, commuting with o7. Let F,, = U?:l Q-

QUESTION 7.1. When ts an automorphism in aut(F,,or) the restriction of
one in aut(Xr,or)?

This question is the natural generalization of a long-standing problem of R. F.
Williams, namely when can fixed points be switched by an automorphism. The
latter problem, posed originally as a potential refinement of shift equivalence, has
withstood serious attacks for a number of years. Example 7.3 below provides a
concrete case of a shift of finite type having two fixed points which no composition
of finite-order elements can switch. It cannot be ruled out at present that the
answer to Question 7.1 is “always”.

THEOREM 7.2. Let op be a mizing shift of finite type. There is an no(T) so
that if n > ng and z,y € Qn(or) have disjoint orbits, there is a composition ¢ of
involutions in aut(or) so that oz =y, py = z, and @ fizes all points whose orbit
has length < n and does not contain = or y.

PROOF. The proof elaborates ideas from [BK], where this is proved for full
shifts with ng = 1. Let us first describe some convenient notation. Shorten or to
o, Xt to X, By(XT) to B,, and B(X7) to B. If A =ag - an_1 € Bp, let A[t, j]
denote a; - - -a;. If A? € By, let A% denote the point z € X with z; = A[{ mod n).
If 0 < i < n, let 0*(A) be the cyclic permutation Afi,n — 1]A[0,7 — 1] of A. Then
o (A®) = (0'A)*™°.

First suppose A and B are distinct blocks in B, with A2B?A? € B. Although
(AB)*® need not have least period 2n, we claim there are cyclic permutations
o*(A), o*(B) so that (tri(A)ai(B))oo € Q2n. To prove this, suppose (AB)*® has
least period 2n/m < 2n, so AB = C™ with m > 3 and odd since A # B. Thus
|C| is even, so write C = DE with |D| = |E| and D # E. Thus A = D(ED)? and
B = E(DE)? with ¢ = 1(m - 1). Let A; = 0/PI(4) and B, = ¢!P|(B), and put
F =A,B, = (ED)*"'EDDDE(DE)'E. Suppose F* has period k < 2n. Since
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D # E, we conclude k < n, hence

k< 2?” - %w < 2¢|D.
Now choose j > 1 such that |D| < jk < 2¢|D|, and translate the central DDD
block in F by jk to the left. It follows that this block contains either DE or ED
as a subblock, implying D = E, a contradiction. Hence F*° € Qa,, verifying
our claim. Note that the cyclic permutations A; and B; retain the property that
A%B?A?% € B, s0o AP, B, and (A4;B;)™ are allowed points in X.

If 2,y € Qy, say that ¢ € G switches £ and y if pz = y, y = 2z, and p fixes
all points whose o-orbit has length < n and does not contain = or y. We shall
write in this case ¢:2z—y. Suppose now that A,B € B, with A2, B2 € B and
A%, B® € @, defining disjoint orbits with A[i] = B[] for some 0 < ¢ < n. We will
construct an involution p45: A%« B>, First replace A by 0*A and B by ¢*B, so
now A2B?A? € B. By the above, we can further replace A by ¢ A and B by ¢’ B
so that still A2B?A? € 8 and also (AB)® € Q3,,. To define p4p, let a frame be a
word in {A, B}®. If z[i — 2n,¢ + 3n — 1] is a frame, define
B ifzfi,i+n—-1]=A,

A ifz[i,i+n-1] =B,

and require p4p to have no other effect. To see that ¢ 4p is well-defined, suppose
the contrary. Then there are two frames C and D with C[-2n,3n — 1 — k] =
D[-2n + k,3n — 1] for some k with 0 < k < n. Since A® € @y, it follows that
A occurs in AA only in the initial and terminal halves, and also B does not occur
in AA. Thus C and D have the form ABABA or BABAB. The overlapping of C
and D force (AB)* to have period < 2n, contradicting (AB)*™ € Q3. Thus pap
is well-defined. Clearly it preserves frames. It follows that ¢ 4p is an involution in
G, and obviously it switches A% with B,

To complete the proof, let [ > 0 be a transition length for or, so that (T%);; > 0
for all 7,5 € L. There is an ng = no(T) so that for all a,b € £ and n > ng, there are
at least 3n blocks D in B, satisfying D[0] = a, D[l] = b, and D™ € @,,. This follows
by counting, since the number of n-blocks satisfying the first two conditions is at
least kA7 for suitable £ > 0, while the number of n-blocks D with D* having period
< n is no more than 3, ;. [Ba| = O(/\;/Q). Now fix n > no(T'), and suppose
T,y € Qn have distinct orbits. Put A = z[0,n — 1] and B = y[0,n — 1]. By the
choice of ng, there is C € B, with C[0] = A[0], C[l] = B[l], C*® € Q,, and the orbit
of C* missing z and y. By the above, pac: A®—C® and ppc: B®—C>®. Then
¢ =paceBcpac: AX—B*®, and no other orbits of length < n are affected. 0O

Theorem 7.2, with a smaller estimate for ng(7’), has been proved independently
by M. Nasu [N].

The following example shows it is possible to have periodic orbits that cannot
be switched by products of finite-order automorphisms.

EXAMPLE 7.3. A mizing or with exactly two fized points that are also fized by
every finite-order automorphism of or.

Let

(pAB(Z)[i,i+ n— l] = {

110
T=10 0 1],
3 0 1
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and Q,(or) = {z,y}, where £ = 0% and y = 2°°. Suppose ¥ € G with ¢* = I
and ¢: zey. Now (Yor)* = ok, so ¢or is a root of a mixing shift of finite type,
hence itself is a mixing shift of finite type ([L1, Theorem 8] or [BK, Lemma 2.5]).
Since the characteristic polynomial of T is irreducible over Q, it follows that o
and Yot have equal ¢-functions. But z € Q2(vo7), while Q2(o7) is empty. This
contradiction shows such a i cannot exist. Furthermore, o7 has no roots. For
suppose ¥* = or. Then as before 1 is a shift of finite type, say ¢ = oy. But then
the product of the nonzero eigenvalues of U is 3!/%, contradicting integrality of this
product. In this example, no combination of marker constructions and roots of the
shift can switch r and y, and it remains open whether this is possible. 0O

Recall that P, = P,(o7) denotes the fixed points of 0%, and that @, = Qn(o7)
is the set of points with least or-period n. Clearly each ¢ € G restricts to a
permutation m,(p) = @lg, € aut(Qn,or). If Qn = &, set aut(Qn,or) to the
trivial group, so then m, is also trivial. Call

oo
m(p) = (m1(p), m2(p),.-.) € H aut(Qn, o)
n=1
the periodic point representation of ¢ € G. The proof of Theorem 3.1 shows that
it is faithful.

PROPOSITION 7.4. The periodic point representation m of G s faithful. O

The next two representations are derived from 7. Let ¥ = {0%}: n € Z}, and
Qn = @n/T be the set of orbits of length n. If ¢ € G, then 7, () commutes with
7n(0), so induces a permutation p,(p) € aut(Qn,or). Call

() = (p1(0), p2(9),-..) € [ aut(Qn,07)

n=1
the periodic orbit representation of ¢ € G, where again we use the convention that

the symmetric group of the empty set is the trivial group. Clearly p(c*) = I, but
3> exhausts the kernel of p.

PROPOSITION 7.5. The periodic orbit representation p of G is faithful on G/X.

PROOF. Suppose pn(p) = I for n > 1. By Theorem 2.5 of [BK], it follows that
pex. 0O

We next prove that the range of p is large, in that its closure in the compact
group [1.2, aut(Qn,or) is a subgroup of finite index.

THEOREM 7.6. The closure of p(G) in [],>, aut(Qn,01) 18 a subgroup of finite
indez.

PROOF. Let ng = ng(T) from Theorem 7.2. We assume without loss that
|Qn| 2 1 for n > ng. Suppose n > ng, and let 8; € aut(Q;,07) for 1 < 5 < n with
6; =Iif1<j < ng. Weshow there is a ¢ € G with p;(p) =0, (1<j5<n). It
will follow that p(G) is a finite union of cosets of H:’:no aut(Qn,07). Set 1 =1,
and suppose inductively that ¢, € G has been found with p;(p;) =8, for1 <7 < 7.
Since p;+1(p;) 10,41 € aut(Q,41,07) is a product of transpositions, by Theorem
7.2 there is a product 1,4 of involutions in G with p;(¥;4+1) =Ifor 1 <7< j and
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pi+1(%i+1) = pj+1(5) " 0541. Set p;11 = @;4;41 and continue. Then p = pn
has the required properties. O

One implication of this density result is another proof of Ryan’s theorem [Ry?2]
on the center of G. This proof was obtained jointly with W. Krieger.

THEOREM 7.7 (RYAN). The center of G is L.

PROOF. Choose n; > ng(T) so that if n > nq, then |@,| > 3. If ¢ commutes
with every element in G, then by Theorem 4.5 its restriction p, (@) to orbits com-
mutes with all of aut(Q,,o7) for n > n;. Hence p,(p) = I for n > nq, so by
Theorem 2.5 in [BK] it follows that p € . O

THEOREM 7.8. The groups G, G/Z, and G/|G,G] are not finitely generated.

PROOF. We show each factors onto an arbitrarily large product of two-element
groups, which shows each is not finitely generated. By Theorem 4.5 there is an
n; > ng(T) so that for n > n; we have |Q,| > 2 and that (pn,,...,pn) maps G
onto H] —n, @ut(Q;,07). Denoting the sign of a permutation p by sgnp € {£1},
it follows that (sgn pp,,...,sgnp,) maps G onto {£1}"~"1. This mapping factors
through G — G/X and G — G/[G,G] , completing the proof. O

We now recall the gyration function g introduced in [BK]. To define g, let ¢ € G,
and from each orbit v € Q, pick an element z., € ~. Since p(z,) € ©(7), there is
an integer n(v, o) defined modulo n so that ¢(z,) = 6™ ¥z, Put g(p)(n) =
g(p,0)(n) = 3o o, n(7, ), where by convention an empty sum is 0. The value
of g(p)(n) is shown in [BK] to be independent of the choice of the z., and also

9(v¥)(n) = g(p)(n) + ¢(¢)(n) mod n. Call

a9(p) = (9(0)(1),9()(2),... )€ [] 2/nz

n=1

the gyration function of ¢ € G, and call the homomorphism ¢ — g{p) the gyration
representation. This function is studied in detail by Boyle and Krieger [BK]

The periodic orbit and gyration representations are related. If § € aut(Qn,,or)
commutes with 7,(or) = olg,, its gyration number g(0) € Z/nZ is defined as
above. Also, let p(f) be the permutation induced by 6 on the orbit space Q, =
Qn/Z. Call a sequence (y,...,60,) with 6; € aut(Q;,or) consistent if whenever
2™Mg < N with ¢ odd, then

(Oyms) 0 mod 2™q if ]_[J L sgnp(fa54) =1,
2mq) =
! 2m~lg  mod 2™q if szl sgnp(02,~q) =1

In particular, if m = 0 the empty product being 1 means g(8,) = 0. If o7 is
a full shift, it is shown in [BK] that a necessary and sufficient condition for a
sequence (0y,...,0,) with 6; € aut(Q;(o7),0r) to be the restriction 8; = 7;(p) of
a product ¢ of involutions is that it be consistent. Necessity was also shown for a
broad class of or. One consequence is that for a product ¢ of involutions, sgn p(yp)
and g(p) determine each other. This is significant since many marker constructions
are involutions. We show a modified form of the sufficiency condition is true for
general shifts of finite type.
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THEOREM 7.9. Let or be a mizing shift of finite type, and fix N > no(T') with
no(T) as in Theorem 7.2. If 6; € aut(Q,(or),07) for 1 < j < N with 0; = I if
1< 7 < ng, and if (61,...,0xn) ts consistent, then there i3 a product ¢ of involutions
with m;(p) =0; for 1< 7 < N.

PROOF. We first observe that the involution ¢4 in the proof of Theorem 7.2
can be constructed so that (71(¢4p),...,m™n(pap)) is consistent. Let k = |4|, and
change the definition of “frame” in the construction from {4, B}® to {4, B}2N+1.
The only points of period < N affected by ¢4p have period a multiple of k, and
are concatenations of A’s and B’s. Let g, be the 2-shift on {0, 1}, and 7 € aut(o3)
be the 1-block map exchanging 0 and 1. Mapping A — 0 and B — 1 shows that
prk(pap) € aut(Qni(or),0r) and pn(r) € aut(Q,(02),02) have the same sign.
Furthermore, g(pap,or)(2nk) = kg(r,02)(2n) mod 2nk. Since pm(pap) = I if
m # 0mod k, and (m1(r),...,mn(7)) is consistent from Lemma 3.3 of [BK], it
follows that (m1(©4B),...,7n(ap)) is also consistent.

To construct v, assume inductively that ©,, has been found with =;(m) = 0;
for 1 < 7 < m and so that (m1(¢m),..., TN (pm)) is consistent. As in the proof
of Lemma 3.7 of [BK], there is a product ¢,, of involutions of the above type
fixing points with period < m such that 41 (¥m+1) = Tm+1(©m 0m+1) if the
gyration number of ©;,'0,,,1 vanishes. However, this follows from consistency of
the §; = m;(pm). O

Although G is discrete is the compact-open mapping topology, there are at least
two other natural topologies on G making it a nondiscrete topological group. The
first is the periodic point topology, defined as the weakest topology making the
restriction homomorphisms G — aut(Qn,or) continuous for all n. In this topology
an automorphism is close to the identity it if fixes all points with period less than
some large bound. The second is the profinite topology on G, which has as basic
open sets the cosets of finite-index normal subgroups of G. Clearly the profinite
topology refines the periodic point topology, and the proof of Proposition 7.4 shows
both are Hausdorff. Do they coincide? The following example shows the answer in
general is “no”.

EXAMPLE 7.10. A mixing shift of finite type such that the profinite topology
on its automorphism group strictly refines the periodic point topology.

Let

T =

—_—= O

1 1
0 1],
11

indexed with states a, b, and ¢. We will use the dimension group representation of
G to define a homomorphism 6 from G to {+1}, and show that for every n there is
a oy € G fixing all points of period < n for which 8(y,) = —1. This will show that
the profinite neighborhood ker 8 of I in G contains no periodic point neighborhood
of I.

Now T has characteristic polynomial x7(t) = (t+1)(t2—2t—1), so —1 is a simple
eigenvalue of T', with corresponding eigenvector v =[1 —1 0]. Recall from §6 the
dimension group representation 6:G — aut(Gr, 9;,?). Now Zv C §r, and any

element ¢ € aut(§r, g;,f) must map v to either v or —v. Let §(¢p) be the choice
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of sign used, so §: G — {x1} with 6(p)(v) = 6(p)v. Since § is a homomorphism,
so is 6.

We now show that # has the required property. Fix n > 1. The blocks M; = ¢"a
and M, = c™b have only trivial overlaps. Define ¢ € aut(or) to switch these blocks,
and have no other effect. Clearly @, fixes all points with period < n. We compute
the action of §(,) on v. For j = a,b, ¢ choose the points 27 so that

5 {c ifz #0,
xr = . .
7 ifz=0.

T

Consider the 0-rays C; = z/(—00,0]* for j = a,b,c. Under the correspondence
of equivalence classes of beams to classes of eventually nonnegative vectors in Gr
described in §6, each class [C;] corresponds to the class of the standard unit basis
vector ;. Now o, exchanges the O-rays C, with Cy, and fixes C;. Thus

01 0
6(pn)=|(1 0 0],
0 0 1
and 6{pp)v = —v,s0 () =-1. O

8. p-adic aspects of the gyration representation. Let us begin by recalling
some notation from the previous section. We let @, = @,(o7) denote the points
in X7 with least or-period n, and Q, = Qn(07) = Qn/X be the orbit space of
Qn under or. For each orbit v € @, pick z, € v. If p € G, then pz., € p(v), so
there is an integer n(~, ) defined modulo n so that pz., = 0™("¥)z.. The nth
gyration number of p is

glp,or)(n)= Y n(v.p) €Z/nl.
VEQn(oT)

If Q, = &, this number is defined by convention to be 0. The gyration representa-
tion of ¢ is the homomorphism sending ¢ € G to its gyration function

g(v,or) = (9(p,07)(1),9(p,07)(2),...) € [ 2/nZ.
n=1

If o}, is the full r-shift, Boyle and Krieger [BK, Corollary 2.3] showed that
9(0(r), 0(r)) has infinite order in [J72, Z/nZ. It follows that 0|, is not a product
of finite-order elements in G. Indeed, oy, is not even the limit in the periodic
point topology of such products [BK, Theorem 2.8]. Also, g(o(,) x I, 0}, X 0(4)) has
infinite order [BK, Proposition 2.4]. Using p-adic analysis, we shall extend these
results to matrices T' for which the product det™ T of the nonzero eigenvalues is
not 1. The crucial fact is that, roughly speaking, for most primes p the numbers
glor,o7)(p™) converge p-adically to a transcendental limit in the p-adic completion
Qp of Q.

To see the computational significance of this convergence, consider Table 1 of the
gyration function of the 2-shift acting as a self-automorphism, evaluated at powers
of 3 and of 5. We have expanded the values to the appropriate base.

The evident stabilization of the digit coefficients for, say, 5" can be expressed
by saying that g(og),0(9))(5") converges 5-adically to some « € Q5. To prove this
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n 9(o(2),072))(3") g(op2), 072))(5™)

1 2=2 1=1

2 | 2=2+0-3 1=1+40-5

3 | 11=240-3+1-32 26=1+0-5+1-52

4 38=2+0-3+1-324+1-38 276 =1+0-5+1-52+2.53

5 38=2+0-3+1-32+1-33 2776 =14+0-5+1-52+2.53+4.54

TABLE 1. Values of the gyration function for the 2-shift.

convergence, and identify the limit, note that since each orbit contributes 1 to the
gyration function, we have

|P5"(‘7[2})| - |P5"—1(0[2])|
5n
5" 5 57 — jn—1

As n — oo, we have 25" — w(2) € Qs, a 4th root of unity, the so-called
Teichmiiller representative of 2. Also, since 5 — 5"~! — 0 in Qs, the third factor
converges to the 5-adic derivative of 2* at z = 0, namely the 5-adic logarithm logy 2
(see (Ko, Chapter 5, §1] for details). Thus g(o7(g),0[2})(5™) converges 5-adically, with
limit & = (1 - §)w(2)logs 2. If we denote ag+a15+a25% +- - by .apajaz ..., then
w(2) = .212134..., £logs 2 = .330333..., and the product is oo = .101240..., in
agreement with the table entry. Furthermore, logy 2 is transcendental [Br]. Since
%w(?) is algebraic, the limit « is also transcendental. Since o mod 5™ is a unit
in Z/5"Z, it follows that g(o(s],0(2))(5™) generates Z/5"Z for n > 1. Hence oy
could not be a product of finite-order elements in G, for otherwise the orders of
g(o72), 0(2))(n) would be uniformly bounded in n. This analysis fails at the prime
2, since g(o7(g),0(2])(2") — 0 in Q. However, 2 is the only exceptional prime.

It is perhaps interesting to note that the p-adic convergence of the gyration
function was first discovered by computer experimentation.

The ideas above extend to more general or by using the p-adic eigenvalues of T'.

9(o2),0(2))(5") = |Qsn (072))| =

THEOREM 8.1. Suppose the product of the nonzero eigenvalues of T 13 not 1.
Then the gyration representation g(or,or) has infinite order in []oo  Z/nZ.

PROOF. Let the characteristic polynomial of T be
xr(t) =t™(t% +art*™ ' + - + aq),

where ag # £1 by assumption. Choose an odd prime p relatively prime to aq. A
good account of the basic p-adic analysis used here is contained in {Ko]. Let K be
the splitting field of xT over the p-adic completion Q, of Q. The p-adic valuation
| - |p extends uniquely to K. Thus xr(t) factors over K as t™ H‘;=1(t — ;). Since
aq4 is a unit in the ring of integers in K, each |A,|, = 1. It follows there is an integer
r > 0 so that |1 — /\;|p < 1for1 <3 <d. We will prove that g(or-,or-)(p")
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converges p-adically to a nonzero limit, show this forces g(or-,or-) to have infinite
order, and conclude from this that g(or,07) = g(or) also has infinite order.

For arbitrary U, we have |Qn(ov)| = 24, #(n/d)tr U¢?, where u is the Mobius
function, and g(oy,ov)(n) = |@n(ov)|/n. Hence

glorr,or-)(p") = ;% {tr (T)P" —tr (T')P"_l}

)\T(P -p" 1) -1

(- (B

Since |1 — A7|p < 1, it follows that /\;”" — 1 in K. The second factor in the
sum converges to the p-adic derivative of A7* with respect to z at z = 0, which is
rlog, ;. Here log, y is the p-adic logarithm defined for y € K with |y —1}, < 1 by
the convergent series log,y = >~ (—1)"*!(y — 1)"/n. Thus as n — oo,

1
glorr,o7r)(p") — (1 - 1_7) log, ag # 0,

the nonvanishing following since ag # +1. This means that as n increases, the p-
adic expansion of g(orr, o7 )(p™) has low order coefficients that stabilize to nonzero

values. In particular, if
1
1— - }log,aj
i( p) P

then p"~*g(opr, 07+ )(p") # 0 mod p™ for n sufficiently large. This clearly implies
that g(orr,o7r) has infinite order. We conclude by showing this forces g(or,or)
to also have infinite order. First note that g(o7-,0rr) = g(0%,0%) = rg(or,0%).
The calculation of Proposition 1.6 of [BK] shows that if a; = a;(r,n) € Z is defined
so ra; = j mod jn when j = (r, jn) and 0 otherwise, then

> pFk,
4

9(p,07)(n) =Y _a;g(p,07)(jn) modn.
3lr

Apply this to ¢ = o7 in the above to express g(orr,o7r)(n) as an integral combi-
nation of the g(or,07)(yn) for 5 | r. Thus if g(or,or) had finite order, so would
g(orr,orr). This contradiction establishes the theorem. O

REMARKS. 1. If A is a unit in K, the splitting field of xr over Q,, then A"
converges to a (p® — 1)st root of unity w(A) in K, where e is the ramification index
of K over Q. The above shows that we always have in @, that

(8-1) lim g(or,or)(p") = (1-——)logp H/\“’(’\’

n— 00
=1

However, we cannot conclude from this that the limit is nonzero. By taking rth
powers, we force w(A}) = 1, so the product in (8-1) is a} # 1, and the limit does
not vanish. The general question of whether (8-1) is nonzero hinges on how the
A; and the corresponding root of unity w(A;) interact. For example, if the A;
are multiplicatively independent, then the p-adic versions of Baker’s transcendence
results [Br] show that (8-1) is not zero.
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2. If the product of the nonzero eigenvalues of T is +1, all that is needed to
prove the theorem is to find one prime p for which (8-1) does not vanish. Since this
is the “typical” case, finding such a p can usually be done by hand. For example,
if T = [i (1)] we can take p = 3 and simply check that the product in (8-1) is not
+1. Indeed, all but finitely many primes will work in this case.

3. If det™ T # %1, the roots of unity w(A,) in (8-1) are merely a nuisance, to
be eliminated by passing to rth powers. However, when det™ T = %1 it is essential
that at least some of the w(A;) not be 1 to obtain a nonzero limit in (8-1).

The proof of Theorem 8.1 can be modified to obtain the following.

THEOREM 8.2. Suppose the product of the nonzero eigenvalues of T s not £1.
Then g(or x I,or X oy) has infinite order.

PROOF. Choose a prime p relatively prime to det™ T and to det™ U. We first
compute the gyration function g(or x I,o1 X oy)(p™). Now

n
Qpr (o7 x ou) = | J {Qpr(07) X Qe (00) U Qe (07) X Qpn(0v)}-
k=0
If (z,y) € Qur(07) X Qpn(0v), then the smallest ¢ > 0 for which (o x I)¥(z,y) is
in the o7 x oy-orbit of (z,y) is ¢ = p*, and this element is (z,y) itself. It follows
that such orbits contribute 0 mod p™ to the gyration function. Let 0 < k <n —1.
For each orbit v € Qpn (o) pick £ € 4. Then

U {24} X Qpe(ov)

'VEQp" (o1)

is a complete set of orbit representatives for Qpn(o1) X Qpe(oy). Since

(o1 x I)(z,y) = (o7 x ov)(z,05'y),
each representative contributes 1 to the gyration function. Hence

n—1

glor x Ior x ou)(p") = |Qpn(o7)| Y |Qpr (07)]

k=0

= I%(trT”" — trT”n_l)(trU”"_l).

Suppose K is a splitting field for xr(t) and xy(t) over Q,. Let T have nonzero
p-adic eigenvalues Ay,..., Ay, and let those of U be uy,. .., u.. Then by the above

/\pn _/\pn—l e
glor x I,or x oy)(p") = Z S|y

n
i, p

The p-adic convergence of this expression follows as before. To obtain a nonzero
limit, pass to rth powers to obtain AJ” T, u;”" — 1, and argue as in the proof
of Theorem 8.1. DO

Theorem 2.9 of [BK| implies that if det™ T # +1, then or is not the product
of finite-order elements in G. This is also a consequence of Theorem 8.1. The
following, which generalizes Theorem 2.8 of [BK], shows o7 is not even a limit of
such products.
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PROPOSITION 8.3. Suppose the product of the nonzero eigenvalues of or is not
+1. Then o s not the limit, in the periodic point topology on G, of products of
fintte-order elements.

PROOF. The periodic point topology was defined in §7 to be the coarsest making
the restriction maps G — aut(Q,, or) continuous. From the proof of Theorem 8.1
we can conclude there is a prime p and an integer m so that for all n > m we have

glor,or)}(p") #0 mod p™.

The result now follows exactly as in the proof of Theorem 2.8 of [BK] by using
Proposition 2.7 there. O

REMARK 4. All of the above results will hold even if det* T = %1, provided
the prime p used in the proofs can be chosen so that (8-1) is nonzero. As indicated
in Remark 2, in specific case this can usually be done ad hoc.

PROBLEM 8.4. Remove the restriction det™ T # £1 from the above.

The proof of Theorem 8.1 shows that g(or,o7)(p"™) converges p-adically for all
primes p. It is also easy to see that if ¢ has finite order, then g(p,o7)(p™) — 0
in Q,. Thus for automorphisms ¢ constructed by known methods, g(p,or)}(p™)
always converges p-adically.

QUESTION 8.5. Does the gyration function g{p, o1 )(p™) converge p-adically for
every o € aut(or)?

9. Compact invariant sets. In §7 we investigated G = aut(or) by studying
its action on the compact G-invariant sets Q,(or) of points with least op-period
n. Are there other compact G-invariant subsets of X7? In this section we show
that, modulo possibly a few orbits of low period, every compact G-invariant subset
is a finite union of various Q,(o7) or all of X7. We also discuss the implications
for the action of G on the compact space of subshifts equipped with the Hausdorff
metric.

Several constructions and proofs to follow are made clearer by the process of
“passing to a higher order block presentation”, described as follows. Recall from §1
that if T is » x r, then the graph of T has r states or nodes, and E:’j:l T;; symbols
or edges. Order the set £ of symbols arbitrarily. Let E(T') be the transition matrix
for symbols, defined by E(T)., = 1 if the terminal state of z matches the initial
state of y, and O otherwise. Iterating this procedure yields the transition matrix
E™(T) = E(E™1(T)) for allowed n-blocks of symbols. Specifically, we define the
n-block presentation of T to be Tl = E"~1(T), where E°(T) = T. The symbols
for T are then the allowed n-blocks of o7, i.e. Lopin) = Bplor). If B,C € Lyin,
then ng =1if B[l,n — 1] = C[0,n — 2], and 0 otherwise. Thus the symbols in a
point x € X have simply been recoded in X;» by using n-blocks of symbols.

There is a natural conjugacy Bn: X7 — Xrpin defined by

(Bnz)i = z[t — k,i — k +n — 1], where k = [g] .

The metric on X s is understood to be that induced from X7 under 3,. With this
convention, the maximum of the diameters of the sets B* = {y € Xy :yo = B}
over B € L) tends to 0 as n — oo.
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If K is a subshift of X7, let B(K) be the collection of all blocks that occur in
some point in K. For z € X, put B(z) = B(Xz). If B € B,(Xr), put B* =
{z € X71:2[0,n — 1] = B}. Here the reader should distinguish B considered as an
n-block from Xt from B considered as a symbol from Xp(»;. The homeomorphism

B introduces a factor of UIT" /% between the two meanings of B*. In particular,
max{diam(B*): B € L} — 0 asn — oo.

Thus if Y7,...,Y, are disjoint subshifts of X7, for all large enough n the sets
Ly (Y;) of symbols from Ly occurring in Y; are disjoint. Furthermore, if Z C
Xt is a shift of finite type, for all large enough n we can represent Z as 1-step on
the symbols Ly (Z).

For completeness, we prove a standard technical result. A stronger version is
contained in [DGS, 26.17)].

LEMMA 9.1. Suppose B € B(Xt) and that B ¢ B(z). Then there is an infinite
mizing shift of finite type Z C X1 with B € B(Z) and Z disjoint from Lx.

PROOF. Since our standing assumption is that or is mixing, there are C; €
B(Xr), 7 =0,1, with relatively prime lengths, with BC;B € B(Xr), and such that
B occurs only as the initial and terminal block in each BC;B. Form the shift of
finite type Z C Xt of points of the form - -- BC;_, BC;,BC;, B--- withtx =0or 1
for k € Z. Since the C; have relatively prime lengths, or|z is mixing with positive
entropy. Let n > 2(|Co| + |Ci] + |B|). Every block in B8,(Z) contains B as a
subblock, while B does not occur in . Thus, by passing to a higher order block
presentation, for large enough n, we can realize Z as a 1-step shift of finite type on
an alphabet disjoint from the symbols occurring in z. Thus ZNTz=@. O

THEOREM 9.2. The automorphism group orbit Gx of x € X1 is dense if and
only if = is not o -periodic.

PROOF. Since the period of a point is preserved under an automorphism, a
or-periodic point z clearly has Gz finite.

Now assume z is not or-periodic. To show Gz = X7, it is enough to prove that
for every B € B(Xr) there is a ¢ € G with B € B(pz). If B € B(x), take p = I.
Thus we assume B ¢ B(z), and find ¢. By Lemma 9.1, there is a mixing shift of
finite type Z disjoint from £z with B € B(Z).

We first treat the case that a block in B(z) occurs exactly once in z. By passing
to the n-block presentation of X, we can assume Z is a 1-step shift of finite type
on an alphabet £(Z) C Lpm = Bn(or) disjoint from the symbols occurring in
z, that B occurs as a subword of b € £(Z), and that a symbol a € L) occurs
in z at a unique index, which by applying a power of o) we can assume is O.
For the rest of this case, all symbols and blocks are from the n-block presentation.
Let  be a transition length for X5 (. and for Z. Since both are mixing, there is
a block E = aAbCbA'z[4l,6l] such that |A] < I, |A'| < I, a does not occur in A
and occurs in A’ at most once, C € B(Z), and |E| = 6l 4+ 1. We claim that E and
F = z][0,6!] overlap only trivially in the sense of §2. Since a occurs only as the
initial symbol in F while E contains symbols from Z never used in F', it follows E
does not overlap F, and that F only overlaps itself trivially. The only nontrivial
overlap of E with itself could occur with the occurrence of a in A’, but this is ruled
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out since this would force z[4/,6!] and C to have symbols in common. Thus, as in
§2, the map ¢ € G defined by interchanging E and F' and having no other effect is
a well-defined involution. Since the symbol b from the n-block presentation occurs
in pz, it follows that the original block B occurs in ¢z, completing this case.

We next turn to the recurrent case. Here blocks in z can recur with distress-
ing frequency, making the nonoverlapping condition for markers more difficult to
achieve. The reader should keep in mind the Thue-Morse sequence, where every
allowed block of length n recurs within 8n, to better understand the complications
below.

Let z, B, and Z retain their meanings, and assume we have already passed to a
higher order block presentation with B a subword of b € £{Z) and L(Z)NL(z) = &.
Choose symbols a,c € L(z) = B;(z) so that there are words aAb, bA'c € B(Xr),
where A and A’ use no symbols from L£(z), and so that some word aFc occurs in
z. We claim we can assume there are arbitrarily long words of the form aFc in
B(z). For if not, the longest such word could occur only once, and the previous
case applies. Let [ be a transition length for X and for Z. Adjusting z by a power
of or if necessary, there is a k > 4l with 29 = a and zx = ¢, and a word C € B(Z)
so that D = aAbCbA'c € B(X) with |D| = k + 1. Note that the only symbols in D
that are also in £(z) are the initial and terminal symbols. Let E = z{0, k]. Since
is not or-periodic, there is a p > k so that z[—p,p—j] # z[-p+J,p] for 0 < 7 < k.
Define &: Bap41(X) — Bap+1(X) by replacing each occurrence of D by E; if a block
begins with a terminal segment of D, replace it with the corresponding terminal
segment of E, and similarly at the other end. Since D cannot overlap itself except
possibly in one symbol, ¢ is well-defined. Note that £(z[—p, p]) = z[—p, p|.

Let M = €1 (z[—p, p})NBp(X){D, E}Bp_i(X). Then M has the nonoverlapping
property that if M, M’ € M, then M[-p,p—j] # M'[-p+J,p] for 0 < j < k, since
otherwise applying £ would contradict the choice of p. Define ¢ € G as follows. If
y(—p,p] € M, then put

E ify[0,k] =D,

WMMHz{Dimmu:E

Declare ¢ to have no other action. Because of the nonoverlapping property of the
words in M mentioned above, a symbol in y can be affected at most once by ¢,
so @ is well-defined. If y|—p,p] € M, then (py)[—p,p] € M, proving that ¢ is an
involution. Finé.lly, since the symbol b from the higher order presentation occurs
in D, which is a subblock of (¢z)[—p,p|], we see that the original block B € B(z),
completing the proof. O

THEOREM 9.3. Let or be a mizing shift of finite type, and define no(T) as in
Theorem 7.2. If K 1s a compact G-invariant set, then either K = Xr, or K is a
finite union of Qn,(or) with n; > no(T') together with possibly a finite number of
orbits with periods < ng(T).

PROOF. If K contains a nonperiodic point, then K = Xt by Theorem 9.2. If
T € KNQnr(oT) for some n > no(T), then by Proposition 7.3 we have Q,(o7) C K.
If n; — oo, then U;”; 1 @n;(07) is dense, so either K contains only a finite number
of the sets Qn(or) for n > ng(T),or K =Xr. O
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REMARKS 1. Until the question of switching points with small periods, such as
in Example 7.3, is settled, the possibility remains that for some n < ng(T) the set
Qn(o7) could have proper G-invariant subsets.

2. An irreducible shift of finite type is a finite tower over a mixing base shift of
finite type, so Theorem 9.3 easily extends to this case.

Let § denote the compact space of subshifts of (Xr,0r) equipped with the
Hausdorff metric. In this context, two subshifts Y, Z € § are close if for a large n
the sets B,(Y) and B,(Z) coincide. This is the topological analogue of the weak
topology on or-invariant measures used in the next section. From this description
it is evident that G acts continuously on S. Theorem 9.3 identifies all but a finite
number of the fixed points of this action. The result also shows that if Y € §
is infinite, then Xt is in the G-orbit closure of Y in §. We now generalize this
argument.

PROPOSITION 9.4. IfY C Z C X1 are infinite subshifts with Z mizing, then
Z 18 in the G-orbit closure of Y in the Hausdorff metric.

PROOF. Fix an n > 1, and enumerate the blocks of B,(Z) as By, ..., Bg. Since
or|z is mixing, there is B € B(Z) which contains each B;. Pick y € Y with infinite
orbit. Let Z' C Xp be the shift of finite type so that B,(Z’) = B,(Z). Then
Z' is mixing since Z is. The construction of ¢ with B € B(ypy) in the proof of
Theorem 9.2 can be carried out with Z’ as the ambient space, so ¢Y C Z’. Since
each Bj occurs in B, we can conclude that B, (pY) = B,(Z’) = B,(Z). Thus every
neighborhood of Z in § contains an image Y for some ¢ € G, completing the
proof. O

It is more difficult to determine when a subshift Z in general position is in the
G-orbit closure of Y. Two necessary conditions follow.

PROPOSITION 9.5. IfY and Z are subshifts of X7 and Z is in the G-orbit
closure of Y, then

(1) h(or|z) = hlorly),
(2) 1@QnloTl|z)l 2 |@nlorly)| for n > 1.

PROOF. Suppose px € G with oY — Z. Since topological entropy is upper
semicontinuous on §, and h(or|y.y) = h(oT]y ), property (1) holds. Also, for fixed
n we must have for large enough & that px[Qn(or|v)] C @n(oT|z), from which (2)
follows. O

PROBLEM 9.6. Determine necessary and sufficient conditions on Y, Z € § for
Z to be in the G-orbit closure of Y.

Of course, Example 7.3 shows that this problem is not solved even for subshifts
with a finite number of points.

10. Orbits of measures. Let P(X7) denote the compact convex set of or-
invariant probability measures on X, and M (X7) be the or-invariant nonnegative
measures, each equipped with the weak topology. The group G = aut(or) acts nat-
urally on both spaces, and the unique measure u of maximal entropy is invariant
under every ¢ € G [CP]. Are there other continuous G-invariant measures? We
show there are none, and obtain a complete characterization of the G-orbit closure
in P(X7) of a continuous probability measure.
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To state our result, let h(x) denote the entropy of or with respect to u € M(Xr).
If Py is the partition of X1 by the Oth coordinate, then

1
hw)=lim ~ 37 —p(A)logu(A).
AG\/;l 01 o7 Po

Observe that this formula applies even to nonnegative measures with total mass
different from 1, and that if r,s > 0 and p,v € M(Xr), then [W, Theorem 8.1]
h(rp + sv) = rh(p) + sh(v). We shall use a version of the ergodic decomposition
suited to our needs. For 4 € P(Xr) there is a measurable function ¢ ~ u* from
[0,1] to P(X7) so that each p! is ergodic under or, if E C X7 is Borel then u*(E) is
measurable in ¢t with u(F) = fol ut(E)dt, and h(u) is decreasing in ¢. Note that the
u* need not be distinct. Indeed, if u is already ergodic, then ut = u for a.e. t. All
but the entropy statement follows from the standard ergodic decomposition [DGS,
Chapter 13]; h(u*) can be arranged to be decreasing by a measurable rearrangement
of [0,1]. A limiting form of the linearity of h mentioned above shows that if £ C
[0,1], then h( [, pu'dt) = [ h(

Define the cumulative entropy H,(t)= fo ®)ds for 0 < t < 1. This function
can be defined without reference to the ergodic decompos1t10n by

H,(t) =sup{h(v): v € M(XT), v < p, v(X7) =t}.

For by ergodicity of the u yifv < ,u with v(Xr) =t, then v = fol u1® ds with
fo 8)ds =t. Thus h(v fo ) ds which, by monotonicity of h( t), has
ma.x1mum value H,(t) when pis the mdlcator function of [0, ¢]. Our characterization
of orbit measures is the following.

THEOREM 10.1. Letor be a mizing shift of finite type on Xr, let G = aut(or),
and suppose u € P(Xr) is continuous. Then v 13 in the G-orbit closure of p iff
H,<H, on|0,1].

COROLLARY 10.2. The measure ur of mazximal entropy for or is the only
G-tnvariant continuous probability measure on Xr.

PROOF OF THE COROLLARY. Suppose u € P(X7) is continuous and G-
invariant. Then h(ut) < h(uk) = h(or) for all t, so H, < Hy,. Thus ur €
Gu={u}. O

Note that if 4 and v are ergodic, the condition of Theorem 10.1 reduces to
h(p) < h(v).

We will first prove the necessity of the condition H, < H, by using upper
semicontinuity of entropy. The main work is to prove its sufficiency. We first find
in Lemma 10.3 a partition 0 = tg < t; < --- < tx = 1 so that if J, = [t,c 1, tk),
or = |Jk|, and px = of ! fJ utdt, then p is a convex combination Zk 1 Otk ke,
where the px are mutually singular and h(ut) is almost constant. We then use the
Convex Approximation Lemma 10.4 to perturb v to 0 = Zle Uk, 80 that the
Uy, are mixing Markov measures with disjoint supports and h(&x) > h(ux). Using
a Rohlin stack argument in Lemma 10.5 based on a marker, and assuming that
almost every u' has full support, we construct a marker automorphism in Lemma
10.6 mapping 4 close to v that does not affect a preassigned subshift. The case when
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u does not have full support, involving difficulties similar to those in the second
half of the proof of Theorem 9.2, is treated in Lemma 10.7. Using a decomposition
from Lemma 10.8, the pieces of the proof for sufficiency are, at last, assembled.

PROOF OF THEOREM 10.1 (NECESSITY). Suppose u € P{(X7) is continuous
with ergodic decomposition u = fol p*ds, and ¢, € G has p,u — v weakly. Fix
t € [0,1] and put ' = fot u° ds. By compactness, a subsequence of ¢, u' converges
to some v/, where /(Xr) =t and v/ < v. By the intrinsic definition of H, given
above, we get h(v') < H,(t). Using the upper semicontinuity of entropy [W,
Theorem 8.2] and that h(u’) = h(pnu') for all n, we have

Hy(t) = (') = limsup h(papt') < (V') < H,(t). O

n—oo

We begin building the machinery to prove sufficiency. For y € M(X7) let
supp(y) denote the complement of the largest open p-null set.

LEMMA 10.3. Let u,v € P(Xr), let Z C Xt be a proper subshift, and suppose
h(v) > h(u). For every neighborhood V of v in P(Xt) and € > 0, there is a mizing
Markov measure v € V. with |h(P) — h(v)| < €, supp(P)NZ =, and ¥ L p.

PROOF. Let V be a neighborhood of v in P(Xr) and € > 0. Replacing T
by a higher order block presentation if necessary, there is a § with 0 < 6 < € so
that if |v'(a*) — v(a*)| < 6 for all @ € Lr, then v/ € V. Since Z is proper, there
is a D € By4(Xr) so that D* N Z = &, where we continue to use the notation
D* = {z € Xr: z[0,d — 1] = D}. Let ! be a transition length for T, and let v > 0
whose value will be determined later. By the ergodic and Shannon-McMillan-
Breiman theorems, there is an m large enough so m/(2l+d+m+1) > 1-6/3 and
collections C; C B;(Xt) (j =m,m+ 1) so that

(10-1) exp[m(h(v) — )] <|C;| < exp[mh(v)]
and
(10-2) [fo(C) — v(a™)| < g— for all C € Cp, U Copya,

where f,(C) denote the frequency of the symbol a in C. For each C € C =
Cm U Cmy1 choose Ag, A; € Bi(Xr) with C' = AgCA; so that DC'D € B(X7).
Form the collection C’ of such blocks. Let Y be the shift of finite type with the
subblocks of concatenations of elements of DC' as allowed blocks. Clearly Y is
topologically mixing since m and m + 1 are relatively prime. Let ¥ be the measure
of maximal entropy on Y. We show first that |h{(T)—h(v)| < € and supp(¥)NZ = &,
then perturb 7 to get singularity with respect to u.

First note that Y ¢ U24**™ 03.(D*) and Zno%(D*) = @ for all j,s0 YNZ = Q.

Let v/ be any op-invariant measure with +/(Y) = 1. By the ergodic theorem,
there is a y € Y so that y[0,d — 1] = D and |f,(y[0,n - 1]) — V'(a*)| < 6/3
for all a € Lr and sufficiently large n. Pick n so that y[0,n — 1] has the form
DCiDC3---DCy, C; € C'. Then k > n/(2l +d + m), and if C; has central block
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C; then
k
nfa(yl0,n ~ 1)) = nv(a”)| < (2d+ Dk + 3 1C51(fa(C)) - v(a"))
j=1
20+ d 6 2
< (= —n< Zén.
= (2l+d+m>n+ 3" < 3"
In particular, [U(a*) — v(a*)] < 6 for a € Lr, proving T e V.
Next we estimate h(T) = h(or|y) by estimating |8,(Y)|. Every E € B,(Y) has
the form E = ADC{DCj - -- DC; B, where |A|,|B| < 2l +d+m, C} € (', and
n n
—_  — 2<kL
20+d+m+1 _k_21+d+'m
Making independant choices of the C7, it follows from (10-1) that

1Bo(Y)] > (exp[m(h(v) — 1)])*
= exp[(2l+d+m+1) (h(”)_’”]

ol (1-£)or -]

where k; > 0. Hence
)

.1
Morly) = Jim 2 log 8n(¥)| 2 (13 ) (b0) =) > hv) —
n—oo n 3
for ~ small enough. Similar estimates show

1Bo(Y)| < |Batsasm(X7)[? (explmh(v)])*

< kg exp [(m) nh(u)]

for suitable ko > 0, showing h(or|y) < h(v). Thus h(v) — € < h(7) < h(v).

We have hence found a mixing Markov measure ¥ € V so that |h(¥) — h(v)| < €
and supp(7)NZ = . By perturbing the transition probabilities of 7, we can obtain
a continuous family {P4 } of mixing Markov measures each supported on Y and with
TUp = U. For small enough « the T, remain in V and have |h(7,) — h(v)| < €. Now
the T, are ergodic and distinct, so they are mutually singular. It follows that all
but countably many of the 7, are singular with respect to u. Set U to be any of
these. O

If u has ergodic decomposition u = fol p' dt, define hoo (1) = ess supo<i<i h(ut).

CONVEX APPROXIMATION LEMMA 10.4. Let p,v € P(Xt) with H, < H,
and hoo{u) < h(or), and let Z be a proper subshift. For every neighborhood V of v
in P(Xr) thereisabD = E,’fz 1 0k €V and a corresponding convez decomposition
u= Ef:x ok pr, where ay > 0 with Z,’c{:l ax = 1, such that the py and Uy are
all mutually disjoint probability measures, the Uy are mizing Markov measures with
disjoint supports that are also disjoint from Z, and hoo(ur) < h(Dg).

PROOF. Let u = fol utdt and v = fol vt dt be the monotone ergodic decompo-
sitions as described above. Put 8 = h(o1) — hoo () > 0. Choose € > 0 so that
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if v/ € P(Xt) and |v — V|| < 2¢, then v/ € V. By partitioning [0, h(or)] into
intervals of length < ¢8/2, we can find 0 =ty < #; < --- < tg_; < tx =1 so that
if Jx = [tk—1,tk) and pg = |Ji| 7} ka ut dt, then the py are mutually singular and

(10-3) sup {h(u*)} ~ inf {h(u")} < eB/2.
teJe teJy

Put ax = |Jk|. We now inductively define v, € P(X) so that v = Z,If:] ok and
h(l/k) > h(u)- Let

S+t1 tl
81=sup{351—t1: / h(ut)dtZ/ h(ut)dt}.
s 0

Since H, (t1) > H,(t1), the set defining s; is nonvoid. Put v; = ¢! f;‘“‘ vtdt. By
definition h(vy) > h(u1), and we claim H,_,, > H,_,, on (0,1 —t,], which allows
inductive construction of all the vx. To prove the claim, first suppose s; = 1 — ¢;.
Then using monotonicity

f {h(uf)}>i/l h(ut) dt

in
0<t<1-1, =t Sy,
1 t t t
2 — [ h(u)dt2 sup {h(u)},
1Jo t1<t<L1

so H,_,, > H,_,, follows trivially. Now assume s; < 1 —t;, so by continuity
S Rty dt = [ h(ut)dt. If u < sy, then

| H,_, (u)= /Ou h(vt)dt > /Ou h(ut) dt

t1+u
> [ ) dt = ey (0,

t1
while if sy <u <1-—1¢, then

ti1+u 81+t
Hu—u1 (u) =‘/.0 h(l/t) dt ’-/ h(l/t)dt

S
t1+u ;1
> [ hutyde— [ bt de = Haopo ),
0 0
verifying our claim.
For each k let vy = fol vt dt be the ergodic decomposition, put vj = fol_s vidt+
eur, and sum V' = Z,Ic{zl vy.. We show h(vy) > hoo(px). For by (10-3)
1

h(v) = h(vg) — o h(vL) dt + eh(oT)
> h(pk) — ehoo(pk) + €h(o7)
> hoo(tik) +€B/2 > hoo(uk)-

Since ||v — v'|| < 2¢, it follows by our choice of € that v/ € V. Finally, by Lemma

10.3 we can inductively modify each v} to Uk so that & = Z,If:l oDy, satisfies the
conclusions. O

If FC X7 and z € F, define rp(z) = min{n > 0: o}z € F},and put F,, = {z €
F :rp(z) = n}. For a collection C C B(Xt) let C* =g C™.
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LEMMA 10.5. Suppose ur € P(Xrt) for 1 < k < K are mutually singular,
and € > 0. There is an M = M(e, us,...,uk) so that if F is compact open and
N >n > M, then there are collections Cp(ug) C Bo(Xr), disjoint in n and k, such
that |Cp (k)| < exp[n(hoo (k) +€)] for 1 <k < K and

Z"NkF N Crlpk)” Zn/lk

n=M

PROOF. The rough idea is to use singularity of the u; to first find disjoint
collections Dy of atoms having the right exponential size and containing most of
the ug-mass. Using the idea that a partial orbit can intersect at most one of these
atoms with frequency > %, we obtain from the Dy the required disjoint collections
Crn (k).

Since the uy are mutually singular, there is an s and disjoint collections Dy C
Bas+1(X7) such that ux(Dg) > 1 —¢/12 for 1 < k < K. Applying the version of
the Shannon-McMillan-Breiman theorem from [DGS, Theorem 13.4] to o7 and to
or 1 for all large enough M and 1 < k < K we have

1 € €

+) = : —_— —1]* — 1——
we(Ey) = {z mszlig/ﬁ — log ui(2[0,m ])<hoo(,uk)+2}> 3’
- £ €
pi(Ey ) = pr {z:  sup ——loguk(z[—m+l 0]") < hoolpr) + 5 ¢ >1— .
m>M/6 2 12

Let Ex = Ef NE;, and fix M so that ug(Ex) > 1—¢/6, and also satisfying M > 6s
and

(10-4) gexp [hoo(uk) +(n+ l)g] < explne]

forn>M/6and 1 <k < K.
Suppose now F is compact open, and M <n < N. If z € F,, with (r’ z € E} for
some n/3 < j < 2n/3, then

pr(alsin = 1) > exp [~(n = 5) (heolae) + 5 ).

The number of blocks z[j,n — 1] arising from such an z is thus bounded above by
exp [(n — 7)(hoo (k) + €/2)]. Similarly the number of blocks z[0, 7] from such an z
is < exp [(5 + 1)(hoo (x) + €/2)]- It follows using (10-4) that the number of blocks
z[0,n — 1], where z € F,, and o3.z € Ex for some n/2 < j < 2n/3 is bounded above
by

Zexp [(n+ 1) (hoo(ue) + 3 )| < exp[nlhoo(ue) +)].

Now let C, (14x) denote the collection of blocks z[0,n—1], where z € F,, o{a € Ex
for some n/3 < j < 2n/3, and

2n

{ 53 S?, 1[1—3]+3]€Dk} > 2

6

Since the Dy are disjoint, clearly the C,, (1) are disjoint in k and trivially in n since
the lengths differ. The discussion above proves |Cp,(ux)| < exp[n(hoo(ur) + €)l.
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Finally, since

nur{z € Fp: z[0,n — 1] & Cn(uk)}

2n/3 2n/3
<3ue | Egn |J ohFu| +6u | D20 |J obFn ],
j=n/3 j=n/3
we have
N N
D k(FaNCalue)") 2 D mk(F) = 3uk(E§) ~ 611i(D5°)
n=M n=M
N
2 Z n/‘k(Fn) —£ a
n=M

LEMMA 10.6. Suppose u,v € P(X7) with H, < H,, that p is continuous,
and that supp(ut) = Xt for a.e. t. Let Z be a proper subshift of X7 and V be a
neighborhood of v in P(Xrt). Then there is an involution ¢ € aut{or) such that
pp €V and p 13 the identity on Z.

PROOF. We first reduce to the case hoo() < h(or). Let to = sup{t: h(ut) =
h(or)}. Since or is intrinsically ergodic, for 0 < ¢t < tg we have ut = vt = ur.
Since ur is G-invariant, any ¢ € G, in particular the ¢ we construct below, maps

0t° ptdt = tour to foto vt dt. Removing this part from each, we are reduced to the
case h(ut) < h(or) for all ¢. Since it is enough to map (1 —¢)~! f: utdt to V for
a sufficiently small € > 0, we can and do assume hy (u) < h(or).

Using the Convex Approximation Lemma, there is I = Z,}c{zl ol € V and
u= Z,{f:l appx with ax > 0, Z,};l ar = 1, so that the ux and Uy are all mutually
disjoint, the 7, are mixing Markov measures with supports Y; that are mutually
disjoint and disjoint from Z, and hoo(ux) < h(Dg).

By passing to a higher block presentation, we can assume that the or|y, and
or are 1-step, Ly, and Lz are all disjoint, and that there is a o > 0 so that if
|v'(a*) — D(a*)| < éo, then v/ € V. Let § > 0, which will eventually be made small
enough for everything which follows to work. The first requirement on ¢ is that

(10-5) (1= 6)[h(D%) — 6] > h(ue) +6

for all k.
By the ergodic and Shannon-McMillan-Breiman theorems, there exists an My
so that for n > My there is a collection C,, (D) C B,(Y%x) so that

|Cn (k)| > expln(h(k) - 6)),
’;k(cn(i)k)*) >1- 5’
and
(10-6) 1fa(C) = ik(a®)| <6 foralla€ Lr.

There is a block Ag € B(Xr) so that AjN (Z U Ule Yk) = . Since the number

of blocks in B,(Xr) beginning with Ay grows exponentially in n, and each p has
full support, there is a block A beginning with Ag so that 0 < ux(A*) < 62/4|A|
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for 1 <k < K. Let |A| = d and put M = [d/46]. Let [ be a transition length for
each or|y, and for or. We may assume d is large enough so that M > Mp, that
M > M(6,uy,...,pk) from Lemma 10.5, and that n—2d—4! > (1-6)nforn > M.
Since supp(ur) = Xr, there is an N > M so that ug (U o A*) >1-6 for

1<k<K.Let F=A*. If F, = {z € F: rp(z) = n}, then
Znuk ) >1— Mpug(A*) -6 >1—26.

By Lemma 10.5, there are mutually disjoint collections C,(ui) C Bn(X7) so that
|Cn(u)| < exp[n(hoo(pk) + 6)] and
N
(10-7) > npe(Fo 0 Calpk)*) > 1 - 36.
n=M

We now construct . For each k choose a block A so AA, € B(Xr) has minimal
length such that it ends with a block from By(Y%). Note that |Ax| < d is possible.
Clearly |Ak| < 2d + I since [ is a transition length for or. Similarly choose Bg so
B A € B(Xr) and has minimal length for such a block starting with a block from
B4(Yy). For each C € Cp_34-41(Pk) there is a C' containing C as a subblock so
that AAxC’'BrA € Br1+4(XT), and so that A occurs only as the initial and terminal
d-block. Form D,; = {AAkCIBkA :C e Cn—3d—4l(17k)}, S0

|Dnk| = |Cn—3a-a1(Pk)| > exp|(n — 3d — 41)(h(ix) — 6)]
> exp(n(1 — 6)(h(Fk) - 6)]
> exp(n(hoo(tk) + 6)] > |Ca k)l
Thus it is possible to define a permutation 0,x of AB,_4(Xr)A so that 62, = I,
Onk(Cn(uk)A) C Duk, and Oy is the identity off Cp, (k) AUOnk(Crn(ux)A) Note that
each block in C,(ui) begins with A, so these 8, are exactly the type introduced
in §2, where here A is the marker block.

If z € Xt with z[i,7 + n+ d] € Cn(ur)A U Opi(Cpn(ux)A), where M < n < N
and 1 < k < K, define (pz)([i,% + n + d]) = Onk(z[i,i + n +d}). Since the C,(ux)
are disjoint in n and k, and 62, = I, it follows that ¢ is a well-defined involution.

We complete this proof by showing that |pux(a*) — Pg(a*)| < o for each k and
a € Lr. This will imply that |pu(a*) — #(a*)| < 6 for a € Lr, so pu € V, the
required conclusion. If C € C,(ux) then

Pl (at N L_J U;‘(Fn N 0nk(C*))) =nfa (onk(c))‘P,uk(Fn n 0nk(C)*)
=0

=nf, (onk(C))uk(Fn n C‘)

Letting
N n-1

E= U U U U%(anank(c)*),

n=M j=0 Ce€Cp ()

then (10-7) above shows that pux(E) > 1 — 36 while by (10-6) |pui(a* N E) —
Uk(a*)] < 26. For 6 sufficiently small this forces [oui(a*)—Dx(a*)| < o , concluding
the proof. O
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The following result deals with the case that u does not have full support. Com-
plications arise because g may be highly recurrent, so that constructing markers
with the necessary disjointness is more difficult. To appreciate the problems, an
excellent example to keep in mind while reading the proof is for u to be the unique
invariant measure supported on the Morse minimal set and v to be the measure of
maximal entropy on X[s). In this sense, the difficulties parallel those in the second
half of the proof of Theorem 9.2.

LEMMA 10.7. Suppose u,v € P(X7) with H, < H,,, that u is continuous, and
supp(u) # Xr. For every neighborhood V of v in P(Xr) there is an involution
p € aut{or) with pp € V.

PROOF. Let Z = supp(u) # Xr. Since supp(u!) C Z for a.e. t, it follows
that hoo(u) < h(or|z) < h(or). By the Convex Approximation Lemma, there is a
U= Z,};l aplr €V and u = ZkK=1 ok, where oy > 0 with Z,Ic{zl ar = 1, the ug
and Dy are all mutually singular, each 7 is mixing Markov supported on a mixing
shift of finite type Yi with the Yy and Z mutually disjoint, and heo(ug) < h(D)
for all k.

By passing to a higher order block presentation, we may arrange Ly, and Lz
to be disjoint, or|Yx and or to be 1-step, and for there to exist a dp > 0 so that if
[v'(a*) — ¥(a*)| < o, then v/ € V. Introduce § > 0, which will eventually be made
small enough for the following to work.

Before starting the main argument, we first recode o1 so that for each a € Lz
and all k there are “escape” blocks A,x and Ag, so that A, starts with a, has
no other symbol in Lz, and ends with a symbol from Ly,, while Ak, has these
properties in reverse order. To arrange this recoding, first choose A}, starting
with a, no other symbol is a, and ending with a symbol from Ly,. Choose A},
to have these properties in reverse order. Introduce entirely new distinct symbols
bak, bka & L for all a and k. Form a new shift of finite type from Xt by replacing
all symbols in A}, except the first and last by the same number of b,x’s, and
similarly with the A}, and bg,’s. This recoding of X7 has the property sought,
but is not 1-step. Pass to a higher order block presentation so the resulting shift is
1-step, and the existence of the escape blocks as above is preserved.

By the ergodic and Shannon-McMillan-Breiman theorems, there is an My so
that for n > My and all k there is a collection C,,(Dx) C B, (Yk) so that

Uk (Cn(Dk)*) > 1 =6, |Cn (Dk)| > expln(h(Dg) — 8)], and

(10-8) |[fa(C) — k(™) <6 forall C € Cp(P) and a € L

Let My = M (6, u,..., k) from Lemma 10.5, and let { be a transition length for
or and each or|y,. Now fix M > max{4l/6, My, M;}. Forn > M, eachc,d € Lz,
and C € Cp—4(Vk) there is a block A xC'Akq € B, (X1) with C a subblock of .
Form the collection D,k(c,d) of such blocks. Note that each D € Dy(c,d) starts
with ¢, ends with d, has no other symbols in Lz, and |f,(D) — Dx(a*)| < 26 by
(10-8). Also,

(10-9) |Dnic(c, d)| = [Crn—ai(P)| > exp|(n — 4l)(h(Dk) — 6)).
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We now construct ¢. Recall that C € B,(Xr) is called j-periodic if C[0,n—j] =
C|j,n]. Since p is continuous, there is a p > M so that for all k,

7 (U{C‘: C € Byp+1(Xr) is j-periodic for some j < M}) <.

By [Krl1] or [B1, Lemma 2.2], there is a compact open set F C Z such that
{0}.F: 0 < j < M} is disjoint, and
2M-1
{z € Z: z[—p,p] is not j-periodic for all j < M} C U oy F.
7=0
Recall that 7 is the return time function for F, and put F,, = {z € F: rp(z) = n}.
By the above we have
2M—1
(10-10) > nu(Fn) >1-8.
n=M
Since F is compact open, there is a ¢ > p so that F is a union of sets o.?B* for
B € Byg+1(Z). Let

7= {A€Byram+1(2): 07T A* C F).
Since M > M (8, p1, . .., px) from Lemma 10.5, choose disjoint collections C,, (1) C
Bn(Z) for M <n < 2M and all 1 < k < K so that |Cp (k)] < exp[n(hoo(ux) + 6)]

and
aM -1

Z npk (Fn N Cr(pi)®) > 1 —26.
n=M
Thus for 6 small enough |Cp, (k)| < |Dnk(c,d)| for all c,d € Lz. It follows there is
a injection
0 - |J Dukle.d)
c,deLz
that fixes the first and last symbols.

Now define £: B(Xr) — B(X7) to replace any occurrence of 8,(C) by C, where
M <n<2M —1and C € C,(ux). This map is well-defined because blocks from
Dnik(c,d) can only overlap in the end symbols, and these symbols are fixed by 6.
Let

£ ={E[2M,2q+6M +1]: E € ¢ ' (Bom(2)FB2m(2))}

and put F = a;(q+2M)£‘. We claim that {aJTE 0 < j < M} is disjoint. For if

= oy for 2,y € E and some 0 < j < M, applying £ to z[—q — 2M, g + 2M] and
y[—q — 2M — j,q+ 2M — j] shows this would contradict disjointness of {a‘}F :0<
j < M}. The mapping ¢ is now defined as follows. If o%.x € E and 05"~ ! € E
for M < n < 2M, then

(02)lii+n—1] = { 0,:(1[1',.2' + n —1]), ?f :c[z:,z:+ n—1] € Cpuk),
0 (zlt, i+ n—1)), ifz[i,i+n—1] €0, (Calux))

Because {07.: 0 < j < M} is disjoint, ¢ is well-defined. The definition of £ is made
so that z[-q — 2M,q + 2M] € € iff (pz)[—q — 2M,q + 2M] € £. Hence p? = 1.
Finally, the estimate that |pu(a*) — &(a*)| < 8 for all a € L1 follows from (10-8)
and (10-10) exactly as in the previous lemma. 0O
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LEMMA 10.8. Let p,v € P(Xt) with H, < H,, let E C [0,1] have positive
measure, and set yg = fE utdt, uy = p — ug. Then there is a decomposition
v =1y + v, with H,,J. > H,‘j for =0, 1.

PROOF. Let a be the measure of F, and put
ug = sup{u <l-a:H(t+u)—H,(u) > H,(t)for0<t < a}.

The defining set clearly contains 0, so is nonempty. Put vy = f:ﬁ°+a vtdt and
v; = v — vy. By definition, for 0 <t < g,

Hyo(t) = Hy(t + u) — Hy(u) 2 Hy, (1)

We now show H,, > H,,. If up = 1 — a, then since h(u') is decreasing in ¢, for
0<t<1-awe have

(10-11) Ho, (8) = Hy(t) 2 Ha(t) 2 Hy, (0).

Now suppose ug < 1 — a. Then by continuity

uo+a
(10-12) / h(u‘)dt:/ h(ut) dt.

uo E
If t < ug, then (10-11) shows H,, (t) > H, (t). If 9 <t < 1 - a, then using
(10-12) we obtain

uo+a

H,,(t) = H,(t +a) —/ h(v®) ds

>H,(t+a) - / h(p®)ds > H, (t). O
E

PROOF OF THEOREM 10.1 (SUFFICIENCY). Suppose y is continuous with
H, < H,, and that V is a neighborhood of v in P(Xr). There are € > 0 and
a neighborhood Vp of v in M(Xr) so that if ' € Vp and v € P(Xr), then
(A=W +e])/[(1 — el (Xr)+e]€V.

Since every proper subshift is contained in a proper shift of finite type, and there
are only countably many of the latter, there is a proper subshift Z C Xr such that

m(Ey) = m({t € [0,1): supp(u’) ¢ Z,supp(u') # X1}) <&,

where m is Lebesgue measure. Let Eg = {t € [0,1]: supp(u’) C Z} and E; = {t €
[0,1] : supp(ut) = X1}. These sets are clearly measurable. If m(Ep) = 0, then by
Lemma 10.6 all but ¢ of u can be mapped to a measure in Vp, and we are done.

Thus suppose m(Eg) =a > 0. Let p; = | E, ut dt. Two applications of Lemma
10.8 show that there is a decomposition v = vy + vy + vp With H,, > H,  for
0 < 7 £ 2. By Lemma 10.7, there is a ¢; € G so that ¢y is close to vg. By
Lemma 10.6, there is a o € G that is the identity on ¢;(Z) and that maps us
close to ;. It follows that the ¢; can be chosen so that p2¢1 maps o + pg into
Vo, and since ua(X1) < €, we obtain finally (p2e1)u€V. 0O

11. Problems and questions. During the course of this paper we have in-
dicated several open problems and questions. Two of these seem to us the most
important. Recall that F,, is the set of points in Xz with period < n.
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QUESTION 6.10. Is the kernel of the dimension representation generated by
elements of finite order?

QUESTION 7.1. When is an automorphism in aut(F,,or) the restriction of
one in aut(Xp,or)?

Several others seem to be particularly interesting. Problem 3.3 asks whether
there is an automorphism of infinite order with nth roots for infinitely many n.
This is basic to understanding the kind of divisibility present in G. Our lack of
knowledge about the algebraic structure of G is pointed out in Question 4.1, which
asks for a nontrivial case of two shifts of finite type having isomorphic automorphism
groups. In particular, are the automorphism groups of the 2-shift and the 3-shift
isomorphic? Problem 6.1 asks whether the dimension group representation 6 of G is
always surjective. The p-adic behavior of the gyration function is quite interesting.
Specifically (Question 8.5), does g{p, or)(p") always converge p-adically for every
@ € G?7 Problem 9.6 generalizes Question 7.1 above to characterizing the orbits of
subshifts of X¢.
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