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If n is an integer, a group G is called n-Abelian if (xy)" x’y for all ele-
ments x, y of G. It is immediate that, for each integer n, the class of n-Abelian
groups forms a variety which contains the variety of Abelian groups as a sub-
variety. F. Levi [8], O. Grfin [5] and R. Baer [2], [3] have developed theory
pertaining to n-Abelian groups for arbitrary groups. In this paper we restrict
our attention to the class of finite p-Abelian p-groups, where p is a prime
number. It should be noted that each p-Abelian p-group is trivially a regular
p-group and also that each p-group of exponent p is a p-Abelian p-group.

It is well known that if G is a finite non-cyclic Abelian p-group of order
greater than p, then the order o (G) of G divides the order of the automorphism
group A (G) of G [9, Lemma 1]. It is natural to coniecture that if G is a finite
non-cyclic p-group of order greater than p, then o (G) divides o (A (G)). In
recent years this result has proved for certain classes of finite p-groups [4],
[9], [10]. Corollary 3 shows that it is also true for the class of finite p-Abelian
p-groups.

In the paper the following notation is used. G is a finite p-group; exp G
is the exponent of G;H

_
G means H is a subgroup of G and H < G means H

is a proper subgroup of G; H A G means H is normal in G; E denotes the
identity subgroup of G. If S is a subset of a group, then (S} denotes the sub-
group generated by S. C (H) is the centralizer of H in G and N(H) is the
normalizer of H in G. The commutator h-k-hk of two elements h, k of G
is denoted by (h, k). G) is the derived group of G, Z (G) is the center of G

(G) ({x’xG}) and (G) {xG" o(x)p}).
I (G) denotes the group of inner automorphisms of G and I denotes the
identity element of A (G). If e A (G) and H G, then denotes the
restriction of to H. If H and K are groups, then H K means H is iso-
morphic to K. When there is no ambiguity, the indexing group G will be
otted in the above notation.

DEFINITION i. D (G)

It is immediate that I (G) D (G) A (G). The principal theorem of the
paper, Theorem 3, states that if G is a finite non-Abelian p-Abelian p-group,
then o ()]o (D (G)]o (A (G)). We will prove this theorem through series
of remarks, lemmas and theorems. The first two lemmas are computational
in nature.

LEMI. Let k i. If r - (p + l ), hen p r.
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LEMM_ 2. If p 2 and n >_ 0 then

(p + 1)" 1 mod p,+l and (p + 1)n _-- (1 -{- pn+l) mod p’+.
Let G be a p-Abelian p-group. Since G is regular,

X) {x x G} and 2 {x G o(x) pl.
Furthermore, C. Hobby has shown that G(1)

_
21 and 91 <: Z [6, Theorem 1].

Consequently, exp I(G)

_
p.

An extremely useful decomposition of p-Abelian p-groups of exponent
greater than p, which was suggested by a construction of J. Adney and T. Yen
[1, Lemma 1], is found in

LEMMA 3. Let G be a p-Abelian p-group of exponent greater than p and let
I)1 (a} @ M, where o (a pn+l, n >_ l and M

_
G. If

L {xeG’xeM},
then l

_
L, L G, G (a)L, (a) o L (a’} I(Z) and G/L (aL)

is cyclic of order p.
Proof. Clearly is a subset of L. Since G() fl, L G and (a)L G.

IfgeG, theng a*mwhereO k <pandmeM. Thusm g*
(ga-), gL and G (a)L. Clearly (a} L {a’) (Z). Hence
G/L (aL} is cyclic of order p.
LEM 4. (i) The mapping a" G G defined by a(al) a(+)l, where

0 < p and e L, is an automorphism of G of order p" under which L is left
elementwise fixed. Hence D (G ).

(ii) For any x e ,[Z (L )], the mapping G G defined by

(al) (ax )/,
where 0

_
p" and L, is an automorphism of G under which L is left

elementwise fixed. Hence e D (G ).
(iii) IfS { xe,[Z(L)]l,thenS

_
D(G)

_
A (G)andS.,,[Z(L)].

Proof. (i) To see that is a homomorphism let g, h G. Then g
h al, where 0

_
kl,/ ( p and 11, l. L. Let

alal a+la l
where la e L and let k - k. ka rp where 0

_
ka < p" and r >_ 0. Then

(gh) a (a*a’la l) a*(+)ala l a*(+)a(+)la l a(*’+**)(+l)la l
a*’(+)l a**(+l)l r (g)r (h).

Clearly a fixes L elementwise and hence (L) L. Since (a) a+1 and
(a+1, L) G, a e A (G). Indeed, since 21 (Z) _< L, a e D (G).
To determine the order of , it suffices to consider the action of the powers of

a on a alone. A routine induction proof shows that if r >_ 0, then
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rr (a) a(+1)’. By Lemma 2,

v (a)= a(+1> a++ a
while

rv-I (a) a(v+>v-I a++v+ aav a.

Therefore o () p.
(ii) Let x e 2"[Z (L)]. Since (ax)V" aV’x’ a’, is an automorphism

of G under which L is elementwise fixed [7, p. 174]. Indeed since t2 (Z) <
L, beD(G).

(iii) Let x, yel.[Z(L)]. Since b b(a) (ay) axy (a),
S < D (G) < A (G). Indeed the mapping p which sends x into is clearly
an isomorphism of [Z (L)] onto S.

COROLLARY 1.

COROLLARY 2.

If x e ,[Z (L ], then o() o (x and

If M <_ ,,[Z (L)] and T {" x e M}, then T <_ S and

LEMMAS. If R (a), then

RS <_ D (G) <_ A (G),

o (RS) pn-o ([Z (L)])

and RS/S (Sa) is cyclic of order p’-.
Proof. Let x e t2[Z (L)] and e L. Then

a-1 a (l) and -1 (a) ax+.
Hence,- +, S, e N(a) (S) and RS D (G) A (G).

In determining R n S it suffices to consider the action of the automorphis
under consideration on a alone. Since av" (Z) n L,

is defined. As in the proof of Lemma 4, v- (a) aa Hence,

Conversely, let 0 e R n S. Then (a) ax where x e .[Z (L)] and (a) aa
where k is an integer. Hence,

By Corollary 1,

Since o(R n S) p, o(RS) p-o([Z (L)]) and RS/S (S) is cyclic of
order p-.
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LEX 6. Let x e R,,[Z (L )] and le s, 1 >_ 1. Then

= where r (p+ 1)
Proof. The proof is by induction on s. Since

ffx-k ak(a)
the lemma is true if s 1. Inductively assume that for s > 1,

whereq 2 (p+ 1). Then
k (,--1)k_ k

wherer (p + 1)*+q =(p + 1). ]1
LEM 7. If 0 fl (RS), then 0 where x R[Z (L)].

Prog. Let 0efl(RS). By Lemmu 5, 0 a where 0
and e S. Suppose, by way of contradiction, that k ) 0. Then by
Lemma 6,

I 0 (a)
where r (p + 1). By Lemma 1, p]r. Let r ap. Since
0 <k <p-ando(a) p,aI. Thus

and by Corollary 1, x-" e (a’) (a). Since x e L,

x-"eMn(a) E and a I

which is a contradiction. Thus 0 where x e fl[Z(L)]. Finally, by
Corollary 1, x e [Z (L)].

Let G be a non-Abeliun p-Abelian p-group of exponent p+ where m 1.
Let be Abelian of type (n n). Choose a, a e G such that

(a)ando(a) p’+= For eachi, let

M (a) and L {xeG’xVeM}.
LEMM 8. For each i,

< (z),

G/L (a L) is cyclic of order p and (L) M. Furthermore if j i,
then a L.

Proof. Fix i. Since <a) M, the first part of lemma follows from
Lemma 3. Also, ifj i, thena e M and ae L. Consequently, a (L)
and M (L). Conversely, if y e (L), then y xv for some x e L.
Therefore y xveM and (L) M.
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We note that X)l _< Z and exp’01 p. Hence either expZ p or
exp Z p+.
LEMMA 9. Let exp Z exp X) p and le n mfor some fixed i. Then

C (L) (a)Z (L) is an Abelian normal subgroup of G and ,,[C (L)]
(a>,,,[Z(L,)].

Proof. Since L G, C (L) G. Also since a’ e Z,

(af)Z (L,) <_ C (L).

If x e C (L), then x a where 0 _< k < p" and e L. If p then
a e (a) _< Z and it follows immediately that Z (L). Suppose, by way of
contradiction, that p " /c. Then o(x) p,+l p,,+ exp G and
G (x, L). Since x e C (L), x e Z which contradicts the fact that exp Z p.
Thus p]k and C (L) (a)Z (L) is an Abelian normal subgroup of G.
Finally, since a e ., (Z),

(a,),[z(n,)].,,[C(L,)]
The following lemma which is merely an implementation of Lemma 4 is

included for notational purposes.

LEMMA 10. (i) For each i, the mapping G G defined by

a, (a l)

where O k < p’ and e L is an automorphism ofG of order p
then R, D (G) A (G).

(ii) For fixed i, let x [Z (L)]. Then the mapping G G defined
by (a l) (a x)l, where 0 k < p" and e L, is an automorphism of

then S D (G) A (G) and S ,,[Z (L)].

LEMMA 11. T $
_
R exists and a Na(o) (S), 1 i, j t.

kProof. Fiandletj i. IfleL,thenl alwhere0 k < p"’
and l L n L. Consequently,- -x (a l)

Since aTaa(a) af+ we see that ai e Ca(a)(a). If

hen (l) for eh L, nd (a)
nd

_
exists.

By Lemm , , N,a(S) for
kx,,[g(L)] nd le l,L. Then l al where 0 k < p’ nd
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l e L L. Consequently,
--1 k. a’(l) a. l. l.

Furthermore,
-1

tr , o’ (a ) a,7 (x ).

/a+lr a(+)mSinceG/L \ z.,#, x where O < r < pandm.eL. Hence- (a,(v+)m)ff (X) if71 am.
If y a me, then y e [Z(L)] and -a a eS. Hence

LEMX 12. For each i, let W {," (Z)}. Then

W, D (G) A (G) and W, fl(Z).

Furthermore, ifj i, then W Ca) (W).

Proof. The first prt of the lemm follows by Corollary 2; the lst prt
follows by routine computation when we observe that (Z) ,[Z (L)]
for eeh i. I

Techniques due to R. Ree [10, Theorem 1] re used in the proof of the
following.

TEOaE 1. Let G be a non-Abelian p-Abelian p-group of exponent p+
where m 1. If exp Z exp V p’, then o (G)[ o (D (G) [o (a (G) ).

Proof. Let be Abelin of type (n n). Let

V _’ (a) where o(a) p"’+.
The theorem is proved by considering two cses.

Case I. exp Z (Lx) exp Z p". By Lemms 5 nnd 9,

S,D(a) A(a)
nd

o p"’% (n.,[z (L,)]) (L,)] o (e (L,)).

Furthermore, the mpping p" C (L) C (L) defined by p (x) (a, x)
is nn endomorphism of C (L) since C (L) is normal Abelin subgroup of G.
Let K Ker p nd M Imp. Then o(C(L)) o(K)o(M). We note
thto(Z)]o(K) sineeZ K C(L). SinceM G() Lnnd
M C(L), M n[Z(L)]. Let T {.0u’YeM}. By Corollary 2,
TSxndTM.
We shll show thatRS n I (G) T. Let 0 e R S n I (G). Since 0 e I (G),

o(0) p nd 0 e (R Sx). By Lemm 7, 0 , where x e fl[Z (L)]. Let
geGbesuchtht0= Io IfleL,then0(l) ,(l) l= g-Xlg. Hence
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g e C (L1) nd p (g) is defined.
X (al, g) p (g) e M nd e T.

-1Also lz(al) al x g ag. Hence

xeM Imp.

Choose g e G such that p(g) (a, g) x. It follows that

and

Then

IeI(G) nRS and T RSnI(G).

V RlI (G)

_
D (G) _< A (G)

o(V) o(C(L))o(G/Z)/o(M) o(K)o(G/Z).

Since o(Z) o(K), we see that o(G) o(V) o(D(G)) o(A (G)).

Case II. exp Z (L) exp G p+. In this case n n m and with-
out loss of generality we may assume that a e Z (L1). By Lemmas 5 and 9,
RS _< D(G) _< A(G) and

o (R S) pn-lo ("n2[Z (L)]) o (.[C (L)].

Since g <_ ,[C (L)], o (g) o (,,[C (L)]). Furthermore, the mapping
p C (L) -- C (L) defined by p (x) (a, x) is an endomorphism of C (L.).
If M Im p, then M _< [Z(L)]. Let T {. y e M}. By Corollary
2, T _< S and T --- M. As in case I, T R S. n I (G).
Let V R S. I (G) <_ D (G) <_ A (G). Then

o(V) o(,[c(n.)])o(G/Z)/o(M).
If (a., x) e for each x e C (L.), then M E and

o(V) o(,[C(L.)])o(G/Z).
Since o(Z) o(,[c(n)]), o(G) o(V) o(D(G)) o(A (G)) and the theorem
is true. Hence we may assume that (a, b) y e for some b e C (L).
Let b al where 0 _< ] < p’ and leL1. Since aeZ(L) G,
(a, a) e Z (L). Thus

(a, b) (a., a 1,) (a., l)(a., a) (a, a)

and hence p k. It now follows that o (bl) p+l exp G and indeed that
Xh (b’) M. Without loss of generality, let a b. We note that
a eZ(L), (a, al) y e and y is an element of order p in M =Im p.
Also since y e Z (L) n Z (L), y e Z. Let x e C (L.). Then x am where
0 _< r < p and ml L Thus p (x) (a, x)
and M (y). Therefore

o(M) o(T) p and o(V) o(,[C(L)])o(G/Z)/p.

At this point in the proof of Case II it becomes convenient to turn our
attention to two subcases.

Conversely, let b e T.
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CsII(A). 1. Thenexp p, (), C() (),
,.[C (L)] 2[Z (L)], and R.S S.

If Z < ,[Z(L.)], then p’o(Z) o(,[Z(L)]) where _> 1. But then
o (V) p’o (Z)o (G/Z)/p p’-’o (G) and

o(G) o(V) o(D(G)) o(A (G)).

Thus we muy assume that Z 2[Z (L)] und hence that

Let W {" x e 2 (Z)}. By Lemm 12,

W <_ S, o(W) o[(Z)] and W

_
C(a)(W.).

Since (a’) (a’) _< (Z), o (W) _> p. Let W VW W. I (G)W.
Then W _< D (G) <_ A (G) and

o(W) o(G)o(W)/p[o(W.I(G) n W)].

We recall that (a,a) y. LetU= (). ThenU_< Wando(U) p.
Indeed, it can be shown by methods analogous to those used earlier in the
proofthut U W.I(G) n W. Thus

o (W) o (G)o (W)/p

and since o (W) >_ p, o (G) o (W) o (D (G) o (A (G) ).

CaseII(B). m >_ 2. ThenexpG >_ pandm n n >_ 2. Since
a C(a) (R.) and e Na(a) (S),

W RS.I(G)R VR <_ D(G) <_ A (G).

Now (a’) a’ for each e V while (r (a) aa a since o (a)
p’+ >_pa. HenceaV,V < W VR and o(W) po(V) where >_ 1.
Therefore

o (W) po (fi.[C (L.)])o (G/Z)/p p-o (fi.[C (L.)])o (G/Z).

Since o (Z) o (.[C (L)]), o (G) o (W) o (D (G) o (A (G)). I!
LEMMA 13. If G is a non-Abelian p-group of exponent p, then

o (G) o (D (G) lo (A (G).

Proof. R. Ree actually proved this lemma in [10]. In Theorem 1 of that
paper he showed that o (G) lo (A (G)) when G is a non-Abelian p-group of
exponent p by constructing a subgroup of A (G), say W, such that
o (G) o (W) o (A (G)). A closer investigation of that proof reveals that it is
indeed true that W <_ D (G) and hence that

o (G) lo (W)[o (D (G)) o (A (G)).

LEMMA 14. Let G be a p-Abelian p-group of exponent p"+ where m >_ 1
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(a) where o (a) p’’+l Suppose a e Z for some fixed j.and let X)l -1

(i) Let 0 e D (L). If we extend to the mapping G ---. G defined by
(al) aO (1), where 0 <_ < p"j and e L, then e A (G).
(ii) If Vj { is an extension of O eD(L)}, then V <_ D(G) <_ A (G)

and o (Vj o (D (Lj ).
(iii) R V <_ D(G) <_ A (G) and o(R V) p’Jo(V) p’o(D(L)).

Proof. (i) Let OeD(L) and let be the extension of to G. Since

a Z, 0 (a’n a’ and G (a, L), it is clear that e A (G).
(ii) Since D(L) <_ A (L), it follows that V _< A (G) and o(V.)

o(D (L)). Then since 21 (Z) _< el[Z (L)] and since each ) e D (L) fixes
21[Z (L)] elementwise, each e Vj fixes 1 (Z) elementwise and V _< D (G) _<
A (G).

(iii) SinceaeC(a)(V),RV <_ D(G) <_ A(G). If eR, V, then
r (a) a and r (1) for each e L. Hence, r I and

THEOREM 2.
where m >_ 1.

o(Rj Vj) o(R)o(V) p’*o(D(L)). II
Let G be a non-Abelian p-Abelian p-group of exponent p+

If exp Z exp G p’+, then

o(G) o(D(G) o(A (G)).

Proof. If G is a p-Abelian p-group satisfying the hypothesis of the theorem,
then X)l is a non-trivial Abelian p-group of type (nl >_ >_ n). The proof
is by induction on t.

Ift 1, then X) is cyclic of order p. ChooseaeZsuch that o(a) p’+.
Then X) (a’) M where M E. Hence L1 1 and G/ (a i} is
cyclic of order p’. Since G is not Abelian and ale Z, 21 is a non-Abelian p-
group of exponent p. By Lemma 13,

o (1) o (D (el)) o (A (1)).

If V1 { is an extension of e D(21)} as defined in Lemma 14, then

R V <_ D(G) <_ A (G) and o(R V) p"o(D(l)).

Since o (G) p"’o() and o () o (D (2)),

o(G) o(R V) o(D(G) o(A (G)).

Inductively, assume that the theorem is true for 1 where > 1. Let G
be a p-Abelian p-group satisfying the hypothesis of the theorem such that
I)1 is Abelian of type (n _> _> n) where >_ 2. Choose al e Z such that

(a’)ando(a)o (al) p+ and choose a., as G such that 1 -1

p+. Then G/L1 (al L1) is cyclic of order p. Since ale Z, L1 is a non-
Abelian p-Abelian p-group of exponent at least p. But X)l (L1) M
_

(a’) has type (n _> _> n). Thus there are 1 elements in a
basis for X)i(L1). If exp Z (L1) exp 1 (L1), then o (L1) o (D (L1)) by
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Theorem 1. If exp Z (L) exp L, then o (L) o (D (L)) by the in-
duction hypothesis. If V is an extension of D (L)} as defined in
Lemma 14, then

R V <_ D(G) <_ A (G) and o(R V) p"o(D(L)).

Since o (G) p"’o (L) and o (L) o (D (L)),

o(G) o(R V) o(D(G) o(A (G) ). ]1
Lemma 13, Theorem 1 and Theorem 2 may be consolidated into the follow-

ing.

THEORE 3. If G is a non-Abelian p-Abelian p-group, then

o(G) o(D(G)) o(A (G)).

COROLXRY 3. If G is a non-cyclic p-Abelian p-group of order greater than
p, then o (G o (A (G ) )
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