THE AUTOMORPHISM GROUP OF FINITE p-ABELIAN p-GROUPS

BY
Richard M. Davitt

If n is an integer, a group G is called n-Abelian if $(x y)^{n}=x^{n} y^{n}$ for all elements x, y of G. It is immediate that, for each integer n, the class of n-Abelian groups forms a variety which contains the variety of Abelian groups as a subvariety. F. Levi [8], O. Grün [5] and R. Baer [2], [3] have developed theory pertaining to n-Abelian groups for arbitrary groups. In this paper we restrict our attention to the class of finite p-Abelian p-groups, where p is a prime number. It should be noted that each p-Abelian p-group is trivially a regular p-group and also that each p-group of exponent p is a p-Abelian p-group.

It is well known that if G is a finite non-cyclic Abelian p-group of order greater than p^{2}, then the order $o(G)$ of G divides the order of the automorphism group $A(G)$ of $G[9$, Lemma 1]. It is natural to conjecture that if G is a finite non-cyclic p-group of order greater than p^{2}, then $o(G)$ divides $o(A(G))$. In recent years this result has proved for certain classes of finite p-groups [4], [9], [10]. Corollary 3 shows that it is also true for the class of finite p-Abelian p-groups.

In the paper the following notation is used. G is a finite p-group; $\exp G$ is the exponent of $G ; H \leq G$ means H is a subgroup of G and $H<G$ means H is a proper subgroup of $G ; H \triangle G$ means H is normal in $G ; E$ denotes the identity subgroup of G. If S is a subset of a group, then $\langle S\rangle$ denotes the subgroup generated by $S . \quad C_{G}(H)$ is the centralizer of H in G and $N_{G}(H)$ is the normalizer of H in G. The commutator $h^{-1} k^{-1} h k$ of two elements h, k of G is denoted by $(h, k) . \quad G^{(1)}$ is the derived group of $G, Z(G)$ is the center of G

$$
V_{k}(G)=\left\langle\left\{x^{p^{k}}: x \in G\right\}\right\rangle \quad \text { and } \quad \Omega_{k}(G)=\left\langle\left\{x \in G: o(x) \mid p^{k}\right\}\right\rangle
$$

$I(G)$ denotes the group of inner automorphisms of G and I denotes the identity element of $A(G)$. If $\theta \in A(G)$ and $H \leq G$, then $\left.\theta\right|_{H}$ denotes the restriction of θ to H. If H and K are groups, then $H \cong K$ means H is isomorphic to K. When there is no ambiguity, the indexing group G will be omitted in the above notation.

Definition 1. $D(G)=\left\{\theta \in A(G):\left.\theta\right|_{\Omega_{1}(z)}=I_{\Omega_{1}(Z)}\right\}$.
It is immediate that $I(G) \leq D(G) \leq A(G)$. The principal theorem of the paper, Theorem 3, states that if G is a finite non-Abelian p-Abelian p-group, then $o(G) \mid o(D(G) \mid o(A(G))$. We will prove this theorem through a series of remarks, lemmas and theorems. The first two lemmas are computational in nature.

Lemma 1. Let $k \geq 1$. If $r=\sum_{j=1}^{p}(p+1)^{j k}$, then $p \mid r$.

Lemma 2. If $p \neq 2$ and $n \geq 0$ then

$$
(p+1)^{p^{n}} \equiv 1 \bmod p^{n+1} \quad \text { and } \quad(p+1)^{p^{n}} \equiv\left(1+p^{n+1}\right) \bmod p^{n+2}
$$

Let G be a p-Abelian p-group. Since G is regular,

$$
V_{k}=\left\{x^{p^{k}}: x \in G\right\} \quad \text { and } \quad \Omega_{k}=\left\{x \in G: o(x) \mid p^{k}\right\}
$$

Furthermore, C. Hobby has shown that $G^{(1)} \leq \Omega_{1}$ and $V_{1} \leq Z[6$, Theorem 1]. Consequently, $\exp I(G) \leq p$.

An extremely useful decomposition of p-Abelian p-groups of exponent greater than p, which was suggested by a construction of J. Adney and T. Yen [1, Lemma 1], is found in

Lemma 3. Let G be a p-Abelian p-group of exponent greater than p and let $\mathcal{V}_{1}=\left\langle a^{p}\right\rangle \oplus M$, where $o(a)=p^{n+1}, n \geq 1$ and $M \leq G$. If

$$
L=\left\{x \in G: x^{p} \in M\right\}
$$

$t_{\text {hen } \Omega_{1}} \leq L, L \Delta G, G=\langle a\rangle L,\langle a\rangle \cap L=\left\langle a^{p^{n}}\right\rangle \leq \Omega_{1}(Z)$ and $G / L=\langle a L\rangle$ is cyclic of order p^{n}.

Proof. Clearly Ω_{1} is a subset of L. Since $G^{(1)} \leq \Omega_{1}, L \triangle G$ and $\langle a\rangle L \leq G$. If $g \in G$, then $g^{p}=a^{k p} m$ where $0 \leq k<p^{n}$ and $m \epsilon M$. Thus $m=g^{p} a^{-\overrightarrow{k p}}=$ $\left(g a^{-k}\right)^{p}, g a^{-k} \epsilon L$ and $G=\langle a\rangle L$. Clearly $\langle a\rangle \cap L=\left\langle a^{p^{n}}\right\rangle \leq \Omega_{1}(Z)$. Hence $G / L=\langle a L\rangle$ is cyclic of order p^{n}. \|

Lemma 4. (i) The mapping $\sigma: G \rightarrow G$ defined by $\sigma\left(a^{k} l\right)=a^{k(p+1)} l$, where $0 \leq k<p^{n}$ and $l \epsilon L$, is an automorphism of G of order p^{n} under which L is left elementwise fixed. Hence $\sigma \in D(G)$.
(ii) For any $x \in \Omega_{n}[Z(L)]$, the mapping $\phi_{x}: G \rightarrow G$ defined by

$$
\phi_{x}\left(a^{k} l\right)=(a x)^{k} l,
$$

where $0 \leq k<p^{n}$ and $l \epsilon L$, is an automorphism of G under which L is left elementwise fixed. Hence $\phi_{x} \in D(G)$.
(iii) If $S=\left\{\phi_{x}: x \in \Omega_{n}[Z(L)]\right\}$, then $S \leq D(G) \leq A(G)$ and $S \cong \Omega_{n}[Z(L)]$.

Proof. (i) To see that σ is a homomorphism let $g, h \in G$. Then $g=a^{k_{1}} l_{1}$, $h=a^{k_{2}} l_{2}$, where $0 \leq k_{1}, k_{2}<p^{n}$ and $l_{1}, l_{2} \in L$. Let

$$
a^{k_{1}} l_{1} a^{k_{2}} l_{2}=a^{k_{1}+k_{2}} l_{3} l_{2}
$$

where $l_{3} \epsilon L$ and let $k_{1}+k_{2}=k_{3}+r p^{n}$ where $0 \leq k_{3}<p^{n}$ and $r \geq 0$. Then

$$
\begin{aligned}
\sigma(g h) & =\sigma\left(a^{k_{3}} a^{r p^{n}} l_{3} l_{2}\right)=a^{k_{8}(p+1)} a^{r p^{n}} l_{3} l_{2}=a^{k_{3}(p+1)} a^{r p^{n}(p+1)} l_{3} l_{2}=a^{\left(k_{1}+k_{2}\right)(p+1)} l_{3} l_{2} \\
& =a^{k_{1}(p+1)} l_{1} a^{k_{2}(p+1)} l_{2}=\sigma(g) \sigma(h)
\end{aligned}
$$

Clearly σ fixes L elementwise and hence $\sigma(L)=L$. Since $\sigma(a)=a^{p+1}$ and $\left\langle a^{p+1}, L\right\rangle=G, \sigma \in A(G)$. Indeed, since $\Omega_{1}(Z) \leq L, \sigma \in D(G)$.

To determine the order of σ, it suffices to consider the action of the powers of σ on a alone. A routine induction proof shows that if $r \geq 0$, then
$\sigma^{r}(a)=a^{(p+1)^{r}}$. By Lemma 2,

$$
\sigma^{p^{n}}(a)=a^{(p+1)^{p^{n}}}=a^{1+\alpha p^{n+1}}=a
$$

while

$$
\sigma^{p^{n-1}}(a)=a^{(p+1)^{p^{n-1}}}=a^{1+p^{n}+\beta p^{n+1}}=a a^{p^{n}} \neq a .
$$

Therefore $o(\sigma)=p^{n}$.
(ii) Let $x \in \Omega_{n}[Z(L)]$. Since $(a x)^{p^{n}}=a^{p^{n}} x^{p^{n}}=a^{p n}, \phi_{x}$ is an automorphism of G under which L is elementwise fixed [7, p. 174]. Indeed since $\Omega_{1}(Z) \leq$ $L, \phi_{x} \in D(G)$.
(iii) Let $x, y \in \Omega_{n}[Z(L)]$. Since $\phi_{x} \phi_{y}(a)=\phi_{x}(a y)=a x y=\phi_{x y}(a)$, $S \leq D(G) \leq A(G)$. Indeed the mapping ρ which sends x into ϕ_{x} is clearly an isomorphism of $\Omega_{n}[Z(L)]$ onto S. \|

Corollary 1. If $x \in \Omega_{n}[Z(L)]$, then $o\left(\phi_{x}\right)=o(x)$ and

$$
\left\langle\phi_{x}\right\rangle=\left\{\phi_{y}: y \epsilon\langle x\rangle\right\} .
$$

Corollary 2. If $M \leq \Omega_{n}[Z(L)]$ and $T=\left\{\phi_{x}: x \in M\right\}$, then $T \leq S$ and $M \cong T$.

Lemma 5. If $R=\langle\sigma\rangle$, then

$$
\begin{gathered}
\sigma \in N_{A(G)}(S), \quad R S \leq D(G) \leq A(G) \\
R \cap S=\left\langle\phi_{a} p^{n}\right\rangle=\left\langle\sigma^{p^{n-1}}\right\rangle, \quad o(R S)=p^{n-1} o\left(\Omega_{n}[Z(L)]\right)
\end{gathered}
$$

and $R S / S=\langle S \sigma\rangle$ is cyclic of order p^{n-1}.
Proof. Let $x \in \Omega_{n}[Z(L)]$ and $l \in L$. Then

$$
\sigma^{-1} \phi_{x} \sigma(l)=l \quad \text { and } \quad \sigma^{-1} \phi_{x} \sigma(a)=a x^{p+1}
$$

Hence, $\sigma^{-1} \phi_{x} \sigma=\phi_{x}{ }^{p+1} \in S, \sigma \in N_{\Delta(G)}(S)$ and $R S \leq D(G) \leq A(G)$.
In determining $R \cap S$ it suffices to consider the action of the automorphisms under consideration on a alone. Since $a^{p^{n}} \epsilon \Omega_{1}(Z) \cap L$,

$\phi_{a}{ }^{n}$

is defined. As in the proof of Lemma $4, \sigma^{p^{n-1}}(a)=a a^{p^{n}}$. Hence,

$$
\left\langle\sigma^{p^{n-1}}\right\rangle=\left\langle\phi_{a} p^{n}\right\rangle \leq R \cap S
$$

Conversely, let $\theta \in R \cap S$. Then $\theta(a)=a x$ where $x \in \Omega_{n}[Z(L)]$ and $\theta(a)=a a^{k}$ where k is an integer. Hence,

$$
x=a^{k} \epsilon\langle a\rangle \cap L=\left\langle a^{p^{n}}\right\rangle
$$

By Corollary 1,

$$
\theta \in\left\langle\phi_{a} p^{n}\right\rangle \quad \text { and } \quad R \cap S=\left\langle\phi_{a} p^{n}\right\rangle .
$$

Since $o(R \cap S)=p, o(R S)=p^{n-1} o\left(\Omega_{n}[Z(L)]\right)$ and $R S / S=\langle S \sigma\rangle$ is cyclic of order p^{n-1}. \|

Lemma 6. Let $x \in \Omega_{n}[Z(L)]$ and let $s, k \geq 1$. Then

$$
\left(\phi_{x} \sigma^{k}\right)^{s}=\sigma^{a k} \phi_{x^{r}} \quad \text { where } \quad r=\sum_{j=1}^{s}(p+1)^{j k} .
$$

Proof. The proof is by induction on s. Since

$$
\sigma^{-k} \phi_{x} \sigma^{k}(a)=a x^{(p+1) k}
$$

the lemma is true if $s=1$. Inductively assume that for $s>1$,

$$
\left(\phi_{x} \sigma^{k}\right)^{0-1}=\sigma^{(\sigma-1) k} \phi_{x q}
$$

where $q=\sum_{j=1}^{s=1}(p+1)^{j k}$. Then

$$
\left(\phi_{x} \sigma^{k}\right)^{s}=\phi_{x} \sigma^{k} \sigma^{(s-1) k} \phi_{x q}=\sigma^{s k} \phi_{x}(p+1){ }^{s k} \phi_{x q}=\sigma^{s k} \phi_{x r}
$$

where $r=(p+1)^{s k}+q=\sum_{j=1}^{j}(p+1)^{j k}$. \|
Lemma 7. If $\theta \in \Omega_{1}(R S)$, then $\theta=\phi_{x}$ where $x \in \Omega_{1}[Z(L)]$.
Proof. Let $\theta \in \Omega_{1}(R S)$. By Lemma 5, $\theta=\phi_{x} \sigma^{k}$ where $0 \leq k<p^{n-1}$ and $\phi_{x} \in S$. Suppose, by way of contradiction, that $k>0$. Then by Lemma 6,

$$
I=\theta^{p}=\left(\phi_{x} \sigma^{k}\right)^{p}=\sigma^{k p} \phi_{x^{r}}
$$

where $r=\sum_{j=1}^{p}(p+1)^{\nu k}$. By Lemma 1, $p \mid r$. Let $r=\alpha p$. Since $0<k<p^{n-1}$ and $o(\sigma)=p^{n}, \sigma^{k p} \neq I$. Thus

$$
I \neq \sigma^{k p}=\phi_{x}(-a p) \in R \cap S=\left\langle\phi_{a^{p}}\right\rangle
$$

and by Corollary $1, x^{-\alpha p} \epsilon\left\langle a^{p^{p}}\right\rangle \leq\left\langle a^{p}\right\rangle$. Since $x \in L$,

$$
x^{-\alpha p} \in M \cap\left\langle a^{p}\right\rangle=E \quad \text { and } \quad \sigma^{k p}=\phi_{e}=I
$$

which is a contradiction. Thus $\theta=\phi_{x}$ where $x \in \Omega_{n}[Z(L)]$. Finally, by Corollary 1, $x \in \Omega_{1}[Z(L)]$. ||
Let G be a non-Abelian p-Abelian p-group of exponent p^{m+1} where $m \geq 1$. Let v_{1} be Abelian of type ($n_{1} \geq \cdots \geq n_{t}$). Choose $a_{1}, \cdots, a_{t} \in G$ such that $\mathcal{V}_{1}=\oplus_{i=1}^{t}\left\langle a_{i}^{p}\right\rangle$ and $o\left(a_{i}\right)=p^{n_{i}+1}$. For each i, let

$$
M_{i}=\oplus_{j \neq i}\left\langle a_{j}^{p}\right\rangle \text { and } L_{i}=\left\{x \in G: x^{p} \in M_{i}\right\} .
$$

Lemma 8. For each i,

$$
\Omega_{1} \leq L_{i} \triangle G, \quad G=\left\langle a_{i}\right\rangle L_{i}, \quad\left\langle a_{i}\right\rangle \cap L_{i}=\left\langle a_{i}^{p^{n_{i}}}\right\rangle \leq \Omega_{1}(Z),
$$

$G / L_{i}=\left\langle a_{i} L_{i}\right\rangle$ is cyclic of order $p^{n_{i}}$ and $v_{1}\left(L_{i}\right)=M_{i}$. Furthermore if $j \neq i$, then $a_{j} \in L_{i}$.

Proof. Fix i. Since $v_{1}=\left\langle a_{i}^{p}\right\rangle \oplus M_{i}$, the first part of lemma follows from Lemma 3. Also, if $j \neq i$, then $a_{j}^{p} \in M_{i}$ and $a_{j} \in L_{i}$. Consequently, $a_{j}^{p} \in V_{1}\left(L_{i}\right)$ and $M_{i} \leq v_{1}\left(L_{i}\right)$. Conversely, if $y \in v_{1}\left(L_{i}\right)$, then $y=x^{p}$ for some $x \in L_{i}$. Therefore $y=x^{p} \epsilon M_{i}$ and $v_{1}\left(L_{i}\right)=M_{i}$. \|

We note that $V_{1} \leq Z$ and $\exp V_{1}=p^{m}$. Hence either $\exp Z=p^{m}$ or $\exp Z=p^{m+1}$.

Lemma 9. Let $\exp Z=\exp V_{1}=p^{m}$ and let $n_{i}=m$ for some fixed i. Then $C\left(L_{i}\right)=\left\langle a_{i}^{p}\right\rangle Z\left(L_{i}\right)$ is an Abelian normal subgroup of G and $\Omega_{n_{i}}\left[C\left(L_{i}\right)\right]=$ $\left\langle a_{i}^{p}\right\rangle \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$.

Proof. Since $L_{i} \triangle G, C\left(L_{i}\right) \Delta G$. Also since $a_{i}^{p} \in Z$,

$$
\left\langle a_{i}^{p}\right\rangle Z\left(L_{i}\right) \leq C\left(L_{i}\right) .
$$

If $x \in C\left(L_{i}\right)$, then $x=a_{i}^{k} l$ where $0 \leq k<p^{n_{i}}$ and $l \in L_{i}$. If $p \mid k$, then $a_{i}^{k} \epsilon\left\langle a_{i}^{p}\right\rangle \leq Z$ and it follows immediately that $l \in Z\left(L_{i}\right)$. Suppose, by way of contradiction, that $p \nmid k$. Then $o(x)=p^{n_{i}+1}=p^{m+1}=\exp G$ and $G=\left\langle x, L_{i}\right\rangle$. Since $x \in C\left(L_{i}\right), x \in Z$ which contradicts the fact that $\exp Z=p^{m}$. Thus $p \mid k$ and $C\left(L_{i}\right)=\left\langle a_{i}^{p}\right\rangle Z\left(L_{i}\right)$ is an Abelian normal subgroup of G. Finally, since $a_{i}^{p} \in \Omega_{n_{i}}(Z)$,

$$
\Omega_{n_{i}}\left[C\left(L_{i}\right)\right]=\left\langle a_{i}^{p}\right\rangle \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right] .
$$

The following lemma which is merely an implementation of Lemma 4 is included for notational purposes.

Lemma 10. (i) For each i, the mapping $\sigma_{i}: G \rightarrow G$ defined by

$$
\sigma_{i}\left(a_{i}^{k} l\right)=a_{i}^{k(p+1)} l,
$$

where $0 \leq k<p^{n_{i}}$ and $l \in L_{i}$, is an automorphism of G of order $p^{n_{i}}$. If $R_{i}=\left\langle\sigma_{i}\right\rangle$, then $R_{i} \leq D(G) \leq A(G)$.
(ii) For fixed i, let $x \in \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$. Then the mapping ${ }_{i} \phi_{x}: G \rightarrow G$ defined by ${ }_{i} \phi_{x}\left(a_{i}^{k} l\right)=\left(a_{i} x\right)^{k} l$, where $0 \leq k<p^{n_{i}}$ and $l \in L_{i}$, is an automorphism of G. If

$$
S_{i}=\left\{{ }_{i} \phi_{x}: x \in \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]\right\}
$$

then $S_{i} \leq D(G) \leq A(G)$ and $S_{i} \cong \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$.
Lemma 11. $T=\oplus_{i=1}^{t} R_{i}$ exists and $\sigma_{j} \in N_{A(G)}\left(S_{i}\right), 1 \leq i, j \leq t$.
Proof. Fix i and let $j \neq i$. If $l_{i} \in L_{i}$, then $l_{i}=a_{j}^{k} l_{j}$ where $0 \leq k<p^{n_{j}}$ and $l_{j} \in L_{i} \cap L_{j}$. Consequently,

$$
\sigma_{j}^{-1} \sigma_{i} \sigma_{j}\left(l_{i}\right)=\sigma_{j}^{-1} \sigma_{i} \sigma_{j}\left(a_{j}^{k} l_{j}\right)=a_{j}^{k} l_{j}=l_{i}
$$

Since $\sigma_{j}^{-1} \sigma_{i} \sigma_{j}\left(a_{i}\right)=a_{i}^{p+1}$ we see that $\sigma_{j} \in C_{A(G)}\left(\sigma_{i}\right)$. If

$$
\theta \in\left\langle\sigma_{i}\right\rangle \cap\left\langle\sigma_{j}: j \neq i\right\rangle,
$$

then $\theta(l)=l$ for each $l \epsilon L_{i}$ and $\theta\left(a_{i}\right)=a_{i}$. Since $G=\left\langle a_{i}, L_{i}\right\rangle, \theta=I$ and $T=\oplus_{i=1}^{t} R_{i}$ exists.

By Lemma $5, \sigma_{i} \in N_{\Delta(\sigma)}\left(S_{i}\right)$ for each i. Fix i and let $j \neq i$. Let $x \in \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$ and let $l_{i} \in L_{i}$. Then $l_{i}=a_{j}^{k} l_{j}$ where $0 \leq k<p^{n_{j}}$ and
$l_{j} \in L_{i} \cap L_{j} . \quad$ Consequently,

$$
\sigma_{j}^{-1}{ }_{i} \phi_{x} \sigma_{j}\left(l_{i}\right)=a_{j}^{k} l_{j}=l_{i} .
$$

Furthermore,

$$
\sigma_{j}^{-1}{ }_{i} \phi_{x} \sigma_{j}\left(a_{i}\right)=a_{i} \sigma_{j}^{-1}(x)
$$

Since $G / L_{j}=\left\langle a_{j}^{p+1} L_{j}\right\rangle, x=a_{j}^{r(p+1)} m_{j}$ where $0 \leq r<p^{n_{j}}$ and $m_{j} \in L_{j}$. Hence

$$
\sigma_{j}^{-1}(x)=\sigma_{j}^{-1}\left(a_{j}^{r(p+1)} m_{j}\right)=a_{j}^{r} m_{j}
$$

If $y=a_{j}^{r} m_{j}$, then $y \in \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$ and $\sigma_{j}^{-1}{ }_{i} \phi_{x} \sigma_{j}={ }_{i} \phi_{y} \in S_{i}$. Hence

$$
\sigma_{j} \in N_{A(G)}\left(S_{i}\right)
$$

Lemma 12. For each i, let $W_{i}=\left\{{ }_{i} \phi_{x}: x \in \Omega_{1}(Z)\right\}$. Then

$$
W_{i} \leq D(G) \leq A(G) \quad \text { and } \quad W_{i} \cong \Omega_{1}(Z)
$$

Furthermore, if $j \neq i$, then $W_{j} \leq C_{A(G)}\left(W_{i}\right)$.
Proof. The first part of the lemma follows by Corollary 2; the last part follows by a routine computation when we observe that $\Omega_{1}(Z) \leq \Omega_{n_{i}}\left[Z\left(L_{i}\right)\right]$ for each i. \||

Techniques due to R. Ree [10, Theorem l] are used in the proof of the following.

Theorem 1. Let G be a non-Abelian p-Abelian p-group of exponent p^{m+1} where $m \geq 1$. If $\exp Z=\exp \mathcal{V}_{1}=p^{m}$, then $o(G)|o(D(G))| o(A(G))$.

Proof. Let ν_{1} be Abelian of type $\left(n_{1} \geq \cdots \geq n_{t}\right)$. Let

$$
\mathcal{V}_{1}=\oplus_{i=1}^{t}\left\langle a_{i}^{p}\right\rangle \quad \text { where } \quad o\left(a_{i}\right)=p^{n_{i}+1}
$$

The theorem is proved by considering two cases.
Case I. $\quad \exp Z\left(L_{1}\right) \leq \exp Z=p^{n_{1}} . \quad$ By Lemmas 5 and 9,

$$
R_{1} S_{1} \leq D(G) \leq A(G)
$$

and

$$
o\left(R_{1} S_{1}\right)=p^{n_{1}-1} o\left(\Omega_{n_{i}}\left[Z\left(L_{1}\right)\right]\right)=p^{n_{1}-1} o\left[Z\left(L_{1}\right)\right]=o\left(C\left(L_{1}\right)\right)
$$

Furthermore, the mapping $\rho: C\left(L_{1}\right) \rightarrow C\left(L_{1}\right)$ defined by $\rho(x)=\left(a_{1}, x\right)$ is an endomorphism of $C\left(L_{1}\right)$ since $C\left(L_{1}\right)$ is a normal Abelian subgroup of G. Let $K=\operatorname{Ker} \rho$ and $M=\operatorname{Im} \rho$. Then $o\left(C\left(L_{1}\right)\right)=o(K) o(M)$. We note that $o(Z) \mid o(K)$ since $Z \leq K \leq C\left(L_{1}\right)$. Since $M \leq G^{(1)} \leq \Omega_{1} \leq L_{1}$ and $M \leq C\left(L_{1}\right), M \leq \Omega_{1}\left[Z\left(L_{1}\right)\right]$. Let $T=\left\{{ }_{1} \phi_{y}: y \in M\right\}$. By Corollary 2, $T \leq S_{1}$ and $T \cong M$.

We shall show that $R_{1} S_{1} \cap I(G)=T$. Let $\theta \in R_{1} S_{1} \cap I(G)$. Since $\theta \in I(G)$, $o(\theta) \leq p$ and $\theta \in \Omega_{1}\left(R_{1} S_{1}\right)$. By Lemma $7, \theta={ }_{1} \phi_{x}$ where $x \in \Omega_{1}\left[Z\left(L_{1}\right)\right]$. Let $g \in G$ be such that $\theta=I_{g}$. If $l \in L_{1}$, then $\theta(l)={ }_{1} \phi_{x}(l)=l=g^{-1} l g$. Hence
$g \in C\left(L_{1}\right)$ and $\rho(g)$ is defined. Also ${ }_{1} \phi_{x}\left(a_{1}\right)=a_{1} x=g^{-1} a_{1} g$. Hence $x=\left(a_{1}, g\right)=\rho(g) \in M$ and ${ }_{1} \phi_{x} \in T$. Conversely, let ${ }_{1} \phi_{x} \in T$. Then

$$
x \in M=\operatorname{Im} \rho
$$

Choose $g \in G$ such that $\rho(g)=\left(a_{1}, g\right)=x$. It follows that

$$
{ }_{1} \phi_{x}=I_{g} \in I(G) \cap R_{1} S_{1} \quad \text { and } \quad T=R_{1} S_{1} \cap I(G)
$$

Now

$$
V=R_{1} S_{1} I(G) \leq D(G) \leq A(G)
$$

and

$$
o(V)=o\left(C\left(L_{1}\right)\right) o(G / Z) / o(M)=o(K) o(G / Z)
$$

Since $o(Z) \mid o(K)$, we see that $o(G)|o(V)| o(D(G)) \mid o(A(G))$.
Case II. $\exp Z\left(L_{1}\right)=\exp G=p^{n_{1}+1}$. In this case $n_{1}=n_{2}=m$ and without loss of generality we may assume that $a_{2} \in Z\left(L_{1}\right)$. By Lemmas 5 and 9 , $R_{2} S_{2} \leq D(G) \leq A(G)$ and

$$
o\left(R_{2} S_{2}\right)=p^{n_{2}-1} o\left(\Omega_{n_{2}}\left[Z\left(L_{2}\right)\right]\right)=o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right.
$$

Since $Z \leq \Omega_{n_{2}}\left[C\left(L_{2}\right)\right]$, $o(Z) \mid o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right)$. Furthermore, the mapping $\rho: C\left(L_{2}\right) \rightarrow C\left(L_{2}\right)$ defined by $\rho(x)=\left(a_{2}, x\right)$ is an endomorphism of $C\left(L_{2}\right)$. If $M=\operatorname{Im} \rho$, then $M \leq \Omega_{n_{2}}\left[Z\left(L_{2}\right)\right]$. Let $T=\left\{{ }_{2} \phi_{y}: y \in M\right\}$. By Corollary $2, T \leq S_{2}$ and $T \cong M$. As in case $\mathrm{I}, T=R_{2} S_{2} \cap I(G)$.

Let $V=R_{2} S_{2} I(G) \leq D(G) \leq A(G)$. Then

$$
o(V)=o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right) o(G / Z) / o(M)
$$

If $\left(a_{2}, x\right)=e$ for each $x \in C\left(L_{2}\right)$, then $M=E$ and

$$
o(V)=o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right) o(G / Z)
$$

Since $o(Z)\left|o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right), o(G)\right| o(V)|o(D(G))| o(A(G))$ and the theorem is true. Hence we may assume that $\left(a_{2}, b_{1}\right)=y \neq e$ for some $b_{1} \in C\left(L_{2}\right)$. Let $b_{1}=a_{1}^{k} l_{1}$ where $0 \leq k<p^{n_{1}}$ and $l_{1} \in L_{1}$. Since $a_{2} \in Z\left(L_{1}\right) \Delta G$, $\left(a_{2}, a_{1}^{k}\right) \in Z\left(L_{1}\right)$. Thus

$$
\left(a_{2}, b_{1}\right)=\left(a_{2}, a_{1}^{k} l_{1}\right)=\left(a_{2}, l_{1}\right)\left(a_{2}, a_{1}^{k}\right)=\left(a_{2}, a_{1}^{k}\right)
$$

and hence $p \nmid k$. It now follows that $o\left(b_{1}\right)=p^{n_{1}+1}=\exp G$ and indeed that $V_{1}=\left\langle b_{1}^{p}\right\rangle \oplus M_{1}$. Without loss of generality, let $a_{1}=b_{1}$. We note that $a_{1} \in Z\left(L_{2}\right),\left(a_{2}, a_{1}\right)=y \neq e$ and y is an element of order p in $M=\operatorname{Im} \rho$. Also since $y \in Z\left(L_{1}\right) \cap Z\left(L_{2}\right), y \in Z$. Let $x \in C\left(L_{2}\right)$. Then $x=a_{1}^{r} m_{1}$ where $0 \leq r<p^{n_{1}}$ and $m_{1} \in L_{1}$. Thus $\rho(x)=\left(a_{1}, x\right)=\left(a_{2}, a_{1}^{r} m_{1}\right)=\left(a_{2}, a_{1}^{r}\right)=y^{r}$ and $M=\langle y\rangle$. Therefore

$$
o(M)=o(T)=p \quad \text { and } \quad o(V)=o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right) o(G / Z) / p
$$

At this point in the proof of Case II it becomes convenient to turn our attention to two subcases.

Case II(A). $m=1$. Then $\exp G=p^{2}, Z=\Omega_{1}(Z), C\left(L_{2}\right)=Z\left(L_{2}\right)$, $\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]=\Omega_{1}\left[Z\left(L_{2}\right)\right]$, and $R_{2} S_{2}=S_{2}$.

If $Z<\Omega_{1}\left[Z\left(L_{2}\right)\right]$, then $p^{l} o(Z)=o\left(\Omega_{1}\left[Z\left(L_{2}\right)\right]\right)$ where $l \geq 1$. But then $o(V)=p^{l} o(Z) o(G / Z) / p=p^{l-1} o(G)$ and

$$
o(G)|o(V)| o(D(G)) \mid o(A(G))
$$

Thus we may assume that $Z=\Omega_{1}\left[Z\left(L_{2}\right)\right]$ and hence that

$$
S_{2}=W_{2}=\left\{{ }_{2} \phi_{x}: x \epsilon \Omega_{1}(Z)\right\}
$$

Let $W_{1}=\left\{{ }_{1} \phi_{x}: x \in \Omega_{1}(Z)\right\}$. By Lemma 12,

$$
W_{1} \leq S_{1}, \quad o\left(W_{1}\right)=o\left[\Omega_{1}(Z)\right] \quad \text { and } \quad W_{1} \leq C_{A(G)}\left(W_{2}\right)
$$

Since $\left\langle a_{1}^{p}\right\rangle \oplus\left\langle a_{2}^{p}\right\rangle \leq \Omega_{1}(Z), o\left(W_{1}\right) \geq p^{2}$. Let $W=V W_{1}=W_{2} I(G) W_{1}$. Then $W \leq D(G) \leq A(G)$ and

$$
o(W)=o(G) o\left(W_{1}\right) / p\left[o\left(W_{2} I(G) \cap W_{1}\right)\right] .
$$

We recall that $\left(a_{2}, a_{1}\right)=y$. Let $U=\left\langle{ }_{1} \phi_{y}\right\rangle$. Then $U \leq W_{1}$ and $o(U)=p$. Indeed, it can be shown by methods analogous to those used earlier in the proof that $U=W_{2} I(G) \cap W_{1}$. Thus

$$
o(W)=o(G) o\left(W_{1}\right) / p^{2}
$$

and since $o\left(W_{1}\right) \geq p^{2}, o(G)|o(W)| o(D(G)) \mid o(A(G))$.
Case II (B). $\quad m \geq 2$. Then $\exp G \geq p^{3}$ and $m=n_{1}=n_{2} \geq 2$. Since $\sigma_{1} \in C_{A(G)}\left(R_{2}\right)$ and $\sigma_{1} \in N_{A(G)}\left(S_{2}\right)$,

$$
W=R_{2} S_{2} I(G) R_{1}=V R_{1} \leq D(G) \leq A(G)
$$

Now $\theta\left(a_{1}^{p}\right)=a_{1}^{p}$ for each $\theta \in V$ while $\sigma_{1}\left(a_{1}^{p}\right)=a_{1}^{p^{2}} a_{1}^{p} \neq a_{1}^{p}$ since $o\left(a_{1}\right)=$ $p^{n_{1}+1} \geq p^{3}$. Hence $\sigma_{1} \boxminus V, V<W=V R_{1}$ and $o(W)=p^{l} o(V)$ where $l \geq 1$. Therefore

$$
o(W)=p^{l} o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right) o(G / Z) / p=p^{l-1} o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right) o(G / Z)
$$

Since $o(Z)\left|o\left(\Omega_{n_{2}}\left[C\left(L_{2}\right)\right]\right), o(G)\right| o(W) \mid o(D(G) \mid o(A(G))$. ||
Lemma 13. If G is a non-Abelian p-group of exponent p, then

$$
o(G) \mid o(D(G) \mid o(A(G)
$$

Proof. R. Ree actually proved this lemma in [10]. In Theorem 1 of that paper he showed that $o(G) \mid o(A(G))$ when G is a non-Abelian p-group of exponent p by constructing a subgroup of $A(G)$, say W, such that $o(G)|o(W)| o(A(G))$. A closer investigation of that proof reveals that it is indeed true that $W \leq D(G)$ and hence that

$$
o(G)|o(W)| o(D(G)) \mid o(A(G))
$$

Lemma 14. Let G be a p-Abelian p-group of exponent p^{m+1} where $m \geq 1$
and let $V_{1}=\oplus_{i=1}^{t}\left\langle a_{i}^{p}\right\rangle$ where $o\left(a_{i}\right)=p^{n_{i}+1}$. Suppose $a \in Z$ for some fixed j.
(i) Let $\theta \in D\left(L_{j}\right)$. If we extend θ to the mapping $\bar{\theta}: G \rightarrow G$ defined by $\bar{\theta}\left(a^{k} l\right)=a^{k} \theta(l)$, where $0 \leq k<p^{n_{j}}$ and $l \in L_{j}$, then $\bar{\theta} \in A(G)$.
(ii) If $V_{j}=\left\{\bar{\theta}: \bar{\theta}\right.$ is an extension of $\left.\theta \in D\left(L_{j}\right)\right\}$, then $V_{j} \leq D(G) \leq A(G)$ and $o\left(V_{j}\right)=o\left(D\left(L_{j}\right)\right)$.
(iii) $R_{j} V_{j} \leq D(G) \leq A(G)$ and $o\left(R_{j} V_{j}\right)=p^{n_{j}}\left(V_{j}\right)=p^{n_{j}} o\left(D\left(L_{j}\right)\right)$.

Proof. (i) Let $\theta \in D\left(L_{j}\right)$ and let $\bar{\theta}$ be the extension of θ to G. Since $a_{j} \in Z, \theta\left(a_{j}^{p^{n_{j}}}\right)=a_{j}^{p^{n_{j}}}$ and $G=\left\langle a_{j}, L_{j}\right\rangle$, it is clear that $\bar{\theta} \in A(G)$.
(ii) Since $D\left(L_{j}\right) \leq A\left(L_{j}\right)$, it follows that $V_{j} \leq A(G)$ and $o\left(V_{j}\right)=$ $o\left(D\left(L_{j}\right)\right)$. Then since $\Omega_{1}(Z) \leq \Omega_{1}\left[Z\left(L_{j}\right)\right]$ and since each $\theta \in D\left(L_{j}\right)$ fixes $\Omega_{1}\left[Z\left(L_{j}\right)\right]$ elementwise, each $\bar{\theta} \in V_{j}$ fixes $\Omega_{1}(Z)$ elementwise and $V_{j} \leq D(G) \leq$ $A(G)$.
(iii) Since $\sigma_{j} \in C_{A(G)}\left(V_{j}\right), R_{j} V_{j} \leq D(G) \leq A(G)$. If $\tau \in R_{j} \cap V_{j}$, then $\tau\left(a_{j}\right)=a_{j}$ and $\tau(l)=l$ for each $l \epsilon L_{j}$. Hence, $\tau=I$ and

$$
o\left(R_{j} V_{j}\right)=o\left(R_{j}\right) o\left(V_{j}\right)=p^{n_{j}} o\left(D\left(L_{j}\right)\right)
$$

Theorem 2. Let G be a non-Abelian p-Abelian p-group of exponent p^{m+1} where $m \geq 1$. If $\exp Z=\exp G=p^{m+1}$, then

$$
o(G) \mid o(D(G) \mid o(A(G))
$$

Proof. If G is a p-Abelian p-group satisfying the hypothesis of the theorem, then \mathcal{V}_{1} is a non-trivial Abelian p-group of type ($n_{1} \geq \cdots \geq n_{t}$). The proof is by induction on t.

If $t=1$, then V_{1} is cyclic of order $p^{n_{1}}$. Choose $a_{1} \in Z$ such that $o\left(a_{1}\right)=p^{n_{1}+1}$. Then $v_{1}=\left\langle a_{1}^{p}\right\rangle \oplus M_{1}$ where $M_{1}=E$. Hence $L_{1}=\Omega_{1}$ and $G / \Omega_{1}=\left\langle a_{1} \Omega_{1}\right\rangle$ is cyclic of order $p^{n_{1}}$. Since G is not Abelian and $a_{1} \in Z, \Omega_{1}$ is a non-Abelian p group of exponent p. By Lemma 13,

$$
o\left(\Omega_{1}\right)\left|o\left(D\left(\Omega_{1}\right)\right)\right| o\left(A\left(\Omega_{1}\right)\right)
$$

If $V_{1}=\left\{\bar{\theta}: \bar{\theta}\right.$ is an extension of $\left.\theta \in D\left(\Omega_{1}\right)\right\}$ as defined in Lemma 14, then

$$
R_{1} V_{1} \leq D(G) \leq A(G) \quad \text { and } \quad o\left(R_{1} V_{1}\right)=p^{n_{1}} o\left(D\left(\Omega_{1}\right)\right)
$$

Since $o(G)=p^{n_{1}} o\left(\Omega_{1}\right)$ and $o\left(\Omega_{1}\right) \mid o\left(D\left(\Omega_{1}\right)\right)$,

$$
o(G)\left|o\left(R_{1} V_{1}\right)\right| o(D(G) \mid o(A(G))
$$

Inductively, assume that the theorem is true for $t-1$ where $t>1$. Let G be a p-Abelian p-group satisfying the hypothesis of the theorem such that \mathcal{V}_{1} is Abelian of type $\left(n_{1} \geq \cdots \geq n_{t}\right)$ where $t \geq 2$. Choose $a_{1} \in Z$ such that $o\left(a_{1}\right)=p^{n_{1}+1}$ and choose $a_{2}, \cdots, a_{t} \in G$ such that $v_{1}=\oplus_{i=1}^{t}\left\langle a_{i}^{p}\right\rangle$ and $o\left(a_{i}\right)=$ $p^{n_{i}+1}$. Then $G / L_{1}=\left\langle a_{1} L_{1}\right\rangle$ is cyclic of order $p^{n_{1}}$. Since $a_{1} \in Z, L_{1}$ is a nonAbelian p-Abelian p-group of exponent at least p^{2}. But $\nu_{1}\left(L_{1}\right)=M_{1}=$ $\oplus_{i=2}^{t}\left\langle a_{i}^{p}\right\rangle$ has type $\left(n_{2} \geq \cdots \geq n_{t}\right)$. Thus there are $t-1$ elements in a basis for $V_{1}\left(L_{1}\right)$. If $\exp Z\left(L_{1}\right)=\exp \mathcal{V}_{1}\left(L_{1}\right)$, then $o\left(L_{1}\right) \mid o\left(D\left(L_{1}\right)\right)$ by

Theorem 1. If $\exp Z\left(L_{1}\right)=\exp L_{1}$, then $o\left(L_{1}\right) \mid o\left(D\left(L_{1}\right)\right)$ by the induction hypothesis. If $V_{1}=\left\{\bar{\theta}: \bar{\theta}\right.$ is an extension of $\left.\theta \in D\left(L_{1}\right)\right\}$ as defined in Lemma 14, then

$$
R_{1} V_{1} \leq D(G) \leq A(G) \quad \text { and } \quad o\left(R_{1} V_{1}\right)=p^{n_{1}} o\left(D\left(L_{1}\right)\right)
$$

Since $o(G)=p^{m_{1}} o\left(L_{1}\right)$ and $o\left(L_{1}\right) \mid o\left(D\left(L_{1}\right)\right)$,

$$
o(G)\left|o\left(R_{1} V_{1}\right)\right| o(D(G)) \mid o(A(G))
$$

Lemma 13, Theorem 1 and Theorem 2 may be consolidated into the following.

Theorem 3. If G is a non-Abelian p-Abelian p-group, then

$$
o(G)|o(D(G))| o(A(G))
$$

Corollary 3. If G is a non-cyclic p-Abelian p-group of order greater than p^{2}, then $o(G) \mid o(A(G))$.

Bibliography

1. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math., vol. 9 (1965), pp. 137-143.
2. R. Baer, Endlichkeitskriterien für Kommutatorgruppen, Math. Ann., vol. 124 (1952), pp. 161-177.
3. ——, Factorization of n-soluble and n-nilpotent groups, Proc. Amer. Math. Soc., vol. 4 (1953), pp. 15-26.
4. R. Faudree, A note on the automorphism group os a p-group, Proc. Amer. Math. Soc., vol. 19 (1968), pp. 1379-1382.
5. O. Grün, Beiträge zur Gruppentheorie. IV, Math. Nachr., vol. 3 (1949), pp. 77-94.
6. C. Hobby, A characteristic subgroup of a p-group, Pacific J. Math., vol. 10 (1960), pp. 853-858.
7. O. J. Huval, A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly, vol. 73 (1966), pp. 174-175.
8. F. Levi, Notes on group theory. I, VII, J. Indian Math. Soc., vol. 8 (1944), pp. 1-7; vol. 9 (1945), pp. 37-42.
9. A. D. Otто, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc., vol. 125 (1966), pp. 280-287.
10. R. Ree, The existence of outer automorphisms of some groups. II, Proc. Amer. Math. Soc., vol. 9 (1958), pp. 105-109.

Lafayette College

Easton, Pennsylvania

