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Introduction.

As usual, we denote by -0 the automorphism group of Leech lattice which
is an even unimodular lattice in 24-dimensional Euclidean space [1]. So -0 has
a natural 24-dimensional representation p, over the rational number field. In
this paper, Frame shapes of conjugacy classes of -0 with respect to p,, the list
of which is given in Table I of Appendix, will play a central role. For the
definition of Frame shape, see §1.2.

Let & be the set of all elliptic modular functions f(z) satisfying the follow-
ing conditions:

(1) f(2) is a modular function with respect to a discrete subgroup I of

SL(2, R) containing I',(N) for some integer N G.e. /( fzzig )=f(z) for any (g 3)

e[" and meromorphic on the upper half plane and at all cusps of I'),

(2) the genus of I'is zero and f(z) is a generator of a function field for I,

(3) f(z) has a Fourier expansion of the form f(2)=1/g-+ -0 anq™ (g=0e2"%),

Now the main result of this paper is to show that various “transformations”
(cf. §1.1) of Frame shapes of -0 yield functionsof ¢ (Th. 3.2, 3.4, 3.5 and Table
II~IV in Appendix). Furthermore, an application of this result is as follows:
Let G be a finite group which has a d-dimensional representation p over the
rational number field where d is a divisor of 24. For each of such many (not
all) pairs (G, p), we can construct a mapping from G to &

Goor—> j(2)eF

such that all coefficients a.(o) (k=1) of a Fourier expansion j,(z)=1/¢+ X r-ea:(c)g*
are generalized characters of G (Th. 4.6,4.8 and 4.10). Such a mapping
is called a moonshine of G. A moonshine of Fischer-Griess’s Monster is con-
structed in a remarkable paper of Conway-Norton [2] and other examples of
moonshines can be found in Queen and Koike [4]. Constructions of moon-
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shines in this paper are rather elementary compared with those of Conway-
Norton-Queen. For examples of pairs (G, p) which does not yield a moonshine, we
refer readers to Remark 4.4.

The author is very grateful to Prof. Masao Koike for many valuable discus-
sions and suggestions.

NOTATIONS.

Z the ring of rational integers
@ the field of rational numbers
R the field of real numbers

SL2, Z)ﬂ{(g g) ’ a, b, ¢, d=Z and ad—bc:1}
SLE, R):{(g g) \ a,b,c, d=R and ad—bc:1}

R(N)z{(g NesLe, z) | c=0 modN}
{--->=a group generated by ---.

For the notations of conjugacy classes of -0, see the first paragraph of
Appendix.

§1. Generalized permutations and Frame shapes.
1.1. A symbol
1:[1‘”:1’12’2 (rieZ)

is called a generalized permutation if r,#0 for only a finite number of positive
integers t. For a generalized permutation =#=1],¢"¢, set

degx:;trt,
sgnw= I}(“D(t'”” .

Obviously degx and sgn=z are generalizations of degree and sign of a permuta-
tion on a finite set.

Now we will define some transformations of a generalized permutation. Let
¥ be a positive integer and z=]11.{" be a generalized permutation. Then define

x/rzlz[(rt)”“’, where |7, for any ¢,

rror:];[t””r“)(rt)””””, where #-+1|r, for any ¢,

wo(r/L)=TI (pt)re/T-Dg=re/ G- where r—1|r, for any ¢,
i

These are called the r-th harmonic, the r-transformation and the (r/1)-transforma-
tion of = respectively. All of these transformations have the same degree as r.
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We note that (2/1)-transformation can be defined for all generalized permutations.
Let 5(z) be Dedekind eta-function :

77(2)2(1"“7}1(1—(1"), g=e'r,
For a generalized permutation ==]I],™, we put
(1.1 elz)= 1:[ p(tz)e.

The meaning of the transformations defined above consists in considering the
transformation of functions 7.(z):

0 2(2) > N e(2) a*=x/r, mwe(r/1) or mor.
1.2. Let G be a finite group and
Goo+— plo)eGLd, Q)

be a d-dimensional representation of G over the rational number field @. Then

we will assign to every element (or every conjugacy class) of G a generalized

permutation of degree d as follows. The characteristic polynomial det(x/;— p(a))

(I4=the identity matrix of degree d) of p(g)(¢=G) can be written in the form
Iz =0 (r.eZ)

t

where ¢ ranges over all positive integers dividing the order of G. Then a
generalized permutation I].¢"t of degree d is called Frame shape of an element
g with respect to the representation p. We also refer to Frame shape of a
conjugacy class of G (w.r.t.p), as two conjugate elements of G yield the same
Frame shape.

REMARK 1.1. If a representation p is a permutation representation of G
(i.e. every p(o) is a permutation matrix), the Frame shape of ¢ w.r.t. p is
just a cycle decomposition of a permutation corresponding to p(¢). Thus Frame
shape can be regarded as a generalization of a cycle decomposition of an element
in a permutation group.

REMARK 1.2. If G has no subgroup of index 2 and so detp(s)=1 for all
c=G, we have sgnm=1 for all Frame shapes m of conjugacy classes of G,
because det p(g)=sgn .

REMARK 1.3. A generalized permutation is not always a Frame shape. For
example, a generalized permutation 1.27?4 is not a Frame shape, as (x —1)(x*—1)/
(x®=1)* is not a polynomial.
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§2. A class of elliptic modular functions.

2.1. As in the introduction, let & be the set of all elliptic modular functions
f(z) having the following properties:

(1) f(z) is a modular function with respect to a discrete subgroup I” of
SL(2, R) containing some I4(N),

(2) the genus of I' is zero and f(z) is a generator of a function field for I”
and

(3) f(z) has a Fourier expansion of the form f(z)=1/¢+ 3% o ang™ (g=e27%).
For simplicity, we call I in (1) and (2) a group for f(z) and also f(z) a
Hauptmodule for I" Clearly the well known modular invariant j(z) belongs to &
and I,(1)=SL(2, Z) is a group for j(z). Other examples of f(z)= & and a group
for f(z) can be found in Table 3 of [2] which is very useful in this paper. In
these examples, a group for f(z)< & is the one obtained by adjoining to [,(N)
some of its Atkin-Lehner’s involutions Wy

a@Q b

W. :W:
erTTe (cN 40

) a, b, c,deZ
where Q|N, i.e. Q is a divisor of N with (Q, N/Q)=1 and detW¢=Q. As in
and [10], we use the notations

N+Q1, QZ} Tty N——; N+

which denote

<FO(N); WQp WQg) ”'>) R(N)s <110(N)’ WQ ] Q||N>

respectively.

LEMMA 2.1. Let 5.(2) be a function defined by (1.1) for a generalized per-
mutation w. Assume that

(1) degr=-—24,

(2) 7z(2) is a modular function w.r.t. a discrete subgroup I’ of SL(2, R)
containing some Iy(N),

(B) I'iw={M(cc)=ic0| M} is generated by ((1) D,

(4) z=ioco is the unigue pole of n.(z) among all inequivalent cusps of I.

Then n.(z)= T and I' is a group for 7.(2).

PrROOF. The condition (1) means that 5,(z) has a Fourier expansion of the
form 1/g-+>5-0a,q™ and the condition (3) shows that ¢ can be taken as a
local parameter of 7.(z) at z=ico and so z=ico is a pole of 7.(z) of order 1.
Let ® be a Riemann surface corresponding to [, i.e. R=I"\H* where H* is a
union of the upper half plane and the set of all cusps of I. Since #(z) has no
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poles on the upper half plane, the condition (4) means that z=ico is the unique
pole of 5,(z) on % and so 7.(2) gives an isomorphism from % onto the Riemann
sphere. Thus the genus of R is zero and 77,,(2) is a generator of a function
field of ®. This completes the proof of Lemma 2.1l

2.2. Here we mention the well known transformation formula of Dedekind
eta-function :

a b
¢ d

where v(M)*=1. An explicit formula of v(M) was given by Petersson [6; Th.
2 of Chap. 4]:

ey p(EE )=t dyine)  for M=(

g )eSL(Z, Z)

©2.2) (M) <%)*exP{%[<a+d)c—bd(52“l>"3cj} if ¢ is odd
N v = .
(—c%)*eXp{%[(a+d>c"bd(€2’1>+3d—3*30d3} if ¢ is even

where, by using Jacobi symbol (?_n)’ we put

(/=) = (@=(iyvs o=t

0 \*¥ 0 0
Now we give some formulas which are useful for our calculations of %.(2):
1 ,
2.3) 77(2+—2—)=e””247y(22)3/79(z)77(4z) .

(2.4) If 2IN,|N and (2N, N)=N,,
n(2Noz/(Nz+1))=v(M) (Nz+1)"*p((Noz+1)/2),

2 —1
M:( )ESL(Z, VAR
N/N, (Ne—N)/2N,
1 2 )
(2.5) 1(z+3) 1 (s+5) =e" @) (@9 92).

(2.6) If 3|N,|N, BNy N)=N, and N/N,=¢ mod3 (e==1),
nBNoz/(Nz+1))=v(M)(Nz+1)27((Noz+e)/3),

3 —
M:( : )ESL(Z, Z).
N/N, (N,—Ne)/3
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@2.7) If qu(ffe de) is an Atkin-Lehner’s involution of Iy(N),

(W e(@)=v(M)(Q, 1)"**(cNz+dQ)"*»((Qt/(Q, 1))2),
a(@, t) bt/(Q, 1)
cN(Q, B/Qt dQ/(Q, 1)

and are obtained by direct computations. (2.4), (2.6) and (2.7) follow
from (2.1)

where M=( )ESL(Z, Z).

LEMMA 2.2 (M. Newmann [9; Th. 1]). Let z#=II.nt"t be a generalized

permutation and .(2)=IL.y p(tz)"t, where t ranges over all positive divisors of
some integer N. Assume that

© 3r=0,

ey ZL) rit=0 mod24,

2 SrN/t=0  mod24

3) the number zl|_i[vm is a rational square.

Then 74(2) is a modular function w.r.t. I(N).
A proof of can be done by using and (2.2).

LEMMA 2.3. Let n=I1,t"t be a generalized permutation of degree 24 and
r>1 be an integer with r|r, for any t. Assume that

ey 7)€,

(2) TI1¢¢'" is a rational square.
t

Then 77,:(z)" '€ F, where n/r is the r-th harmonic of =.
PrOOF. Let f(z)=9.(z)"* and g(z)=%.(z)"". Then we have

(%) g@)y=fl2)!'".
If I'is a group for f(z)e &, f(rz) is a modular function w.r.t. ]"'1=(8 2)-1F(g (1))
and [C(g(z): C(f(rz))]=r. Also we have, by (%),

(k) g(Mz)=dg(z) (6"=1) for any Me<Tl}

and, in particular,

(%%%) g(z-%-—’l,—) =g T g(z) for (é l{r) el;.

Now let I;={Mel,|g(Mz)=g(z)}. Then, by (*+) and (*+%), we must have
[1li:13]=r and so C(g(z)) is a function field for I,. By the assumption (2) and
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Lemma 2.2, I contains some /,(N). Thus g(z) 9. This completes the proof
of

LEMMA 2.4. For a generalized permutation m=TI[.t"t and T=(

SL(2, R), define

;-

meT= TI "¢ I1 (2% et me(4t)"e,
t: odd

t: even

If n(2)e9F, we have F>10,,1(2)=—(T2).

PROOF. If %.(z) is a modular function w.r.t. I, 9.,r(z) is a modular func-
tion w.r.t. T-'['T. From this we get F=y..r(z) if p.(z2)eF. The equality
Nror(2)=—10.(Tz) follows from [2.3], q.e.d.

§3. Frame shapes of conjugacy classes of -0.

3.1, The automorphism group -0 of Leech lattice has a natural 24-dimen-
sional representation p, over Q. It is not difficult to compute Frame shape of
every conjugacy class of -0 by using the character values of the representation
po and the power mapping of conjugacy classes of -0 [11; Table 1]. The list
of Frame shapes of conjugacy classes of -0 is given in Table I of Appendix.
The following observation of the list may be useful {cf. [2; p. 315]):

THEOREM 3.1. Let =11t be a Frame shape of -0. Then 2,7, is even
and if 25,7r:=0, we have %.(2)"'cF (=a class of elliptic modular functions
defined in § 2).

PRroOF. By inspection of Table I of Appendix, 2.7: is even. It can be
seen from Table 3 of [2] that, if X,7,=0, 5.(2)*= <.

REMARK 3.1. Let 3,r,=2k+0 and N be a product of L.C.M. and G.C.D.
of {t{r;#0}. Then %.(z) is a cusp form or an Eisenstein series of level N and
weight £ with some character, according as »,=0 for any ¢ or not (cf. [3], [5]

and [8]).

The following theorem is one of the main results of this paper:

THEOREM 3.2. Let n=II.;t"* be a Frame shape of -0 and r>1 be an integer
with r—1124 and r—1|r; for any t. Then we have

3.1 Neow(Z)'EF (me(r/L)=(r/D-transformation of = (§1.1)),

except for the following cases:

classes
+4C, 4F, 8D, 12M
2C, 4B, 61, 8B
4F
13 2C

-~ U1 W =
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In these exceptional cases, we have sgn(z¥ " P)y=—1, where gt/ P =]T, /"D,

REMARK 3.2. The case =2 of Th. 3.2 is a part of a theorem of Conway-
Norton-Queen [2], which says that a mapping

24
050 —> Do @ =g I1 1 (1 —edo)g™")

is a moonshine of -0, where ¢;(¢) (1=i=<24) are eigenvalues of p,(¢). In Table
II of Appendix, we will give ¢-(2/1) and a group for 7,,em(z)™" for each o.
This table can be also found in Queen [10; Table 11, but, in Queen’s table,
some conjugacy classes of -0 are missing and, in our table, a group for
Noon(2)? (6=-0) is described more explicitly than in Queen’s table.

REMARK 3.3. Notations being as in Th. 3.2, let G be a finite group with
no subgroup of index 2 and p be a 24/(r—1)-dimensional representation over
Q. If sgn(z¥" " V)=—1, /" is not a Frame shape of G w.r.t. p, because
sgn(n?“"P)=—1 means that the determinant of a linear transformation with
Frame shape '/ " is —1.

PrOOF OF THEOREM 3.2. This is done by using Table I of Appendix and
examining in case by case for each conjugacy class of :0. Here we will
give a proof of the case »=3. (Also the case »=2 (c¢f. Remark 3.2) can be dealt
with quite similarly, and other cases »>3 are rather easy to be examined.)

First of all, we see from Table I of Appendix that, if = is a Frame shape
of -0, w=(3/1) is

(1) a Frame shape of -0,

(2) for some 7, the »-th harmonic of a Frame shape IT.{t of -0 such that
>r:=0 and TI,t"*" is a rational square, or

(3) one of the following generalized permutations :

classes of = e (3/1)
+34 Q6167312 26312189/186129°
+=4C 3%6.122/122. 42, 126°122/233242
4F 123743
+6A4 122292182%/346¢, 2134184/126%92
6B 4%6°36%/25126183
8D 4.24%/8%12
+124 3442362/129212¢, 12426492362 /2234124182
12B 4%6236%/2. 12418
12C 2.4.18.36/6%122
12M 36/12
+158 1.5.9.45/3%15%, 2.3%10%15. 18.90/1. 5. 6%9. 30745
214 3%7.63/1.3.21%, 1.6%9. 14. 212126/2. 327. 18. 42263

244 6%8.72/2.18. 242



Automorphism group of Leech latlice 345

If we have the case (1) or (2), we can conclude from Th. 3.1 and
that 9z, (2} '=F. So suppose we have the case (3).

Classes +4C, 4F, 8D, 12M; 'These classes are exceptional ones in Th. 3.2
and then we have sgn(zg!/")=-—1,

Classes =6A4; We see from Table 3 of [2] that z-(3/1) is a Hauptmodule
for 18+ or 18--9.

Classes 12B or 12C; By Table 3 of [2], z<(3/1) is the 2nd-harmonic of a
Hauptmodule for 18+9 or 18+. Then follows from

Classes +34, —12A or +158B; =-(3/1) is a Hauptmodule for 9+, 36+ or 45+
respectively by Table 3 of [2]. ‘
Now conjugacy classes —3A4, 6B, 124, —158, =214 and 24A remain to be
examined. Since zn+(3/1) for 68 or 24A is the 2nd-harmonic of —34 or +12A4
respectively, it is sufficient to see (Lemma 2.3) that, for five classes —3A4, +12A4,
—54 and +21A4, 9., emn(2)'eF. Among these classes, we will prove for
the class —3A4, as other classes can be also dealt with quite similarly.

Let = be the Frame shape of the class —34 and let

J(@)=0 @@,

(1 0)(1 —1/3)
M=Ww, and
0 1

I'=<{5(18), M5,

where WZ:GS %) is an Atkin-Lehner’s involution of I,(18) (cf. §2.2). Firstly

it follows from that f(z) is a modular function w.r.t. I3(18) and then
we see that, by using (2.2), (2.4), (2.6) and (2.7), f(Mz)=f(z). Thus f(z) is a
modular function w.r.t. I. Now we will apply to show that f(2)e &
and I"is a group for f(z). A representative of inequivalent cusps of I,(18) is

0, 1/2, +£1/3, £1/6, 1/9, 1/18
and these cusps are divided into two classes under I':

0~—1/6~1/6~1/9 and 1/3~—1/3~1/2~1/18~1c0.

Since, by (2.7), f(Ws(2))=¢/ f(2) (¢=constant and Wm:( 1% ‘01) an Atkin-Lehner’s

involution of I,(18)), we have f(1/18)=f(ioo)=cc and f(0)=0. Thus z=ico is the
unique pole of f(z) among inequivalent cusps of I. Then yields that
fl(z)e g and I'is a group for f(z). This completes the proof of Th. 3.2.

In Table III of Appendix, we will give the list of 7x-(3/1) and groups for
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Nrown(@) "€ F. Also we will give the list of z-(r/1) (r>>3) in Table IV, together
with the list of mes, s-transformations of z.

3.2. In this paragraph, we give theorems analogous to Th. 3.2 for r-th
harmonics and r-transformations. For that purpose, it is convenient to introduce
the “ghost classes” of -0. We call the following generalized permutations “ghost
classes” of -0:

Name of classes Frame shapes
+97 3202, 6218%/3%92
16Z 8.16
182 6.18
+252 25/1, 1.50/2.25

We refer to [2],[3] and [8] for these classes. In[2], the class —25Z is denoted by 50Z.
It is easy to see the following

THEOREM 3.3. For all Frame shapes m of the ghost classes of -0, we have
Neon(B)TEF. Also we have Nz.em(@)'€F for Frame shapes of the classes

+9Z.

THEOREM 3.4. Let s>1 be an integer with s+1|24. For each Frame shape
m=IL,t"t of -0 with s+1|r, for any t, the s-transformation m-s of = is a Frame
shape of -0 or that of a ghost class of -0 except for the following cases:

s classes
2 AE, 12F
3 2B, 6H
5 4E

11 2B

For these exceptional classes, mes is an r-th harmonic of a Frame shape of -0 for
some r|24 and also we have 7,,52) ' EF and Nzos. (@) E .

The proof of this theorem is done just by inspection of Table I of Appendix
and we don’t need any facts from the theory of elliptic modular functions other
than (cf. Table IV of Appendix). Finally we have the following
theorem for »-th harmonics of Frame shapes of -0:

THEOREM 3.5. Let v>1 be an inieger and n=II.t"t be a Frame shape of -0
with vlr, for any t.

(1) Let 357,=0. If TI.t"*" is a rational square, we have 7., (z)"'€ .

(2) Let 2:7;#0. Then one of the following holds:
(1) =/r is a Frame shape of a conjugacy class or ghost class of -0,
(it) (Xered/r is odd, or
(1ii1) r=4 and =#=1%4%/28, a Frame shape of the class —4A.

Also the proof of this theorem is obtained by inspection of Table I of Ap-
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pendix and

§4. Some examples of moonshines for finite groups.

4.1. In this paragraph, we collect some lemmas on group characters.

LemMmA 4.1. Let G be a finite group and o— p(o) (6 =G) be an n-dimensional
representation of G over the complex number field. Let &,(0), &a), -, €,(c) be
eigenvalues of p(c). Define functions ap(a) (1=5k <o) and bp(o) (1=k=n) as
follows :

{1—ei(a)g) - (A—en(a)g)} "= ?;0 ay(o)g®,

(1+e(0)0) -+ (I-enl))= 33 bulo)g*

where q is a variable. Then ai(c) and bi(o) are characters of G.

PROOF. It can be easily seen that, if V is a representation space of G, a,(a)
(resp. bi(g)) is a character of the representation which p induces on the space
of symmetric (resp. anti-symmetric) tensors of V of degree k£, q.e.d.

LEMMA 4.2. Let G be a finite group and a— p(o) (6 =G) be a representation
of G over Q. For an element ¢ of G with Frame shape 11,1, define a function
X:(o) as follows:

7o(z) t=g ™ ( 20xk(a)qk>’

where m=2,r.t is the degree of p and 7,(2) is a function defined by (1.1). Then
(o) ts an ordinary character of G.
PROOF. Let

E(Q)Z(H(I—Q‘)T‘)"IZ 4? alaig®.
Then, by Lemma 4.1, a,(¢) is an ordinary character of G, as we have clearly
(=gt =(1—e(a)g) -+ (1—¢n(0)g)

where &,(0), -+, e,(0) are eigenvalues of p(s). Then it follows from 7z.(z)*
=JI5-,£(¢g™) that the coefficients X,;(¢) of 7n.(z)™* are ordinary -characters,
g.e.d.

LEMMA 4.3. Let ©, be the symmetric group of degree n and &(g)=r, C+q*
(co=1) be a formal power series of q with non-negative integral coefficients, i.e.
0=cereZ (£=1,2,3, ---). For an element o of &, with a cycle decomposition
T1:t™, define functions d.(g) as follows:

L&) = 3 dula)g* -
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Then di{c) are characters of &,.

Proor. We may assume that &(¢) is a polynomial, as d.(g) (1Zk=<n) are
clearly the same as the ones which are obtained from a polynomial 37, c.q".
Thus we may assume &£(g)=14-c,q+ -~ +c.q™ Let

m=¢1Coi o +Cq

and x,, %1, -+, X be m+1 independent variables. For o¢=I];t"t=&,, define a
function Xpgr,..z,(0) on &, as follows:

M+ Fxbi= 2 Xpgeperg(0)xfoxlt e xfm

i kot +kp=n orLrtm

It is well known [5;§5.2] that X;,..,(0) is a character of &, which is induced
from the principal character of the subgroup &, X &, X -+ X, of &,. Now, by
putting,

x0:1’ x1: Tt :xclzq;
= ... o= —=g?
xcl-l-l"— =Xegte, =47,
= .. =K, == n
Xeojtoteg— " TEn=g",

we see that d,.(¢) is a linear combination of several induced characters Xiegt,(0)
with non-negative coefficients. Thus d,(¢) is a character of &,, q.e.d.

LEMMA 4.4. Let d>1 be an integer and let
722)9(d2)/p(2)(2dz)=q """ (1+ 2 ceq") .

Then we have ¢, =0 (1=k <o),
Proor. If k=2dn, the ¢, are the same as the coefficients of g-expansion of

ﬁ (1_ 2h) ﬁ (1__ dh)/ﬁn(l_ h) ﬁ (1__ 2dh)
h=1 q h=1 q h=1 q q

h=1

L dn-1
— — 9 2h-1) . n2h-1 — A2h+ly-1
= (I =g ) =) TL (1—g2*).
Clearly all coefficients of g-expansion of the right hand side are non-negative.

4.2, Let G be a finite group and & be a class of elliptic modular functions
defined in the introduction. A mapping from G to F

Goaogr— j,(2)aF

is said to satisfy Moonshine condition or simply to be a moonshine if every coef-
ficient ap(o) (k=1) of a Fourier expansion of j,(2)=1/g+X,a:(a)® is a
generalized character of G. Furthermore, if every coefficient a,(¢) (£=1) of
70(2) is an ordinary character of G, this moonshine is called proper.
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REMARK 4.1. In the above moonshine condition, the constant term a.(o) of
a Fourier expansion of j,(z) need not necessarily to be any generalized character.
But, in all moonshines which appear in this paper, a,(¢) will be also a generalized
character.

Let d>1 be a divisor of 24 and ¢—p(o) (¢6=G) be a d-dimensional repre-
sentation of G over Q.

LEMMA 4.5. Let G, p and d be as above and m=II, h®* be a generalized
permutation of degree 24/d. For every element ¢ of G with Frame shape ¢=
II:i", we put

i@ =TL(I n(htz)™)"e.

Then 15(z) has a Fourier expansion of the form
. 1 &=
(%) 15@) ==+ 3 ala)g*
q k=o

and ax{e) (=0, 1, 2, --*) are generalized characters of G.

ProOF. It is clear that jZ(z) has a Fourier expansion of the form (x). For
each h, the coefficients of TI,%(htz)"t are generalized characters of G by Lemmal
4.2. From this, the second statement follows, q.e.d.

Now we ask when we have ;7 (z)= Z, i.e. a mapping ¢~ 77(z) is a moonshine.

THEOREM 4.6. Let G, p and d be as above. Assume that,

#) for any element ¢ of G with a Frame shape T1.17¢, a generalized permuta-
tion TI, 1%t/ of degree 24 is a Frame shape of -0.

(1) Let d*=1--(24/d). Then a mapping

G20 — ji ()= (g(d*t2)/n(t=)e)™

is a moonshine of G, where T],;i" is a Frame shape of @.
(2) Let d~=(24/d)—1. Then a mapping

G30+— g3, 0(2)=(I;I (ptz)n2d-tz)/nitz)n(d tz))e)™*

is also a moonshine of G, where I1,t" is a Frame shape of a.

Proor. (1) Let z* be a generalized permutation 4*/1. Then we have
74 «(2)=77*(z) in the notation of Thus the coefficients of a Fourier
expansion of s§ ,(z) are generalized characters by On the other
hand, we have

T8 H2)=Ne o tatin(2)

where ¢'=IT,#*t'¢ and ¢’°(d*/1) is a (d*/l)-transformation of ¢’. Then it
follows from (&) and Th. 3.2 that j§ ,(z2)=F.
(2) Let z~ be a generalized permutation (2.2d7)/(1.d"). Then we have, in
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the notation of
72, (2)=73 (=),
and alsc

J2.6(8)=Y 0 camo ().
Then (2) follows from #) and Th. 3.3, q.e.d.

REMARK 4.2. Moonshines in Th. 4.6 are not proper, i.e. Fourier coefficients
of 7§ ,(z) and 77 .(z) are not necessarily ordinary characters. Some examples
of proper moonshines will be given in the next paragraph §4.3.

Let p be a prime with p+1{24 and d>1 be an integer with d[24. Many
d-dimensional rational representations of SL(2, p) satisfy the condition (§) of
Th. 4.6. In the following, we will give examples of such representations and
Frame shapes w.r.t. them for p=b, 7.

SL(2,5)
+14 2A +3A +54
1¢ 22 1.3 5/1 absolutely irreducible
18 1222 32 1.5 a permutation representation
18 24712 32 1.5 absolutely irreducible
14 1.3 5/1
. 42722 absolutely irreducible
24/14 2.6/1.3 1.10/2.5
14 32/12 5/1
42722 not absolutely irreducible
24714 126%/2%23% 1.10/2.5
16 32 1.5
43728 not absolutely irreducible
26/1¢ 62/32 2.10/1.5
SL(2,7)
+1A 24 +34B 4AB +7AB
18 1222 32 2.4 7/1 absolutely irreducible
18 24/12 32 1242/2%  7/1 not absolutely irreducible
18 24 1232 42 1.7 permutation representation
18 24 3%/1 42 1.7 absolutely irreducible
18 3%/1 1.7
44/24 8%/47 absolutely irreducible
28/18 1.6%/2.38 2.14/1.7
18 1232 1.7
44724 82/42 not absolutely irreducible
28/18 2262/12/32 2.14/1.7
112 g4 72/12
83/43 46,26 not absolutely irredudible
l212/112 64/34 12142/2272

Notations: For SL(2,p) D¢, if homomorphic image of ¢ in PSL(2,p) is of order n,
conjugate class of ¢ is denoted by nA or +nA, according as ¢ and —¢ are conjugate in
SL(2,p) or not. And nAB (resp. +nAB) expresses that there exist two conjugate classes
nA and nB (resp. £nA and #nB) of PSL(2,p) of order n with the same Frame shapes.
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REMARK 4.3. Let p be one of representations of SL(2, 5) of degree 6 in
the above table. Then if ¢ is a class of order 5 and so its Frame shape is 1.5,
we have ;i .(z)=%(z)/%(25z) which is a ghost element of Monster’s moonshine.
Similarly another ghost element %(2z)n(25z)/79(z)7(50z) of Monster’s moonshine
also appears in the moonshines ¢~ ,(z) which are obtained from any one
of 4-dimensional representations of SL{2, 5).

REMARK 4.4. SL(2, 9) has representations of degree 4 and 6 with the fol-
lowing Frame shapes:

+14 2A +34 +3B 4A +54

1t 1.3 38/1% 5/1
42/22 8/4

(24714 2.6/1.3  1%%/2%3? 1.10/2.5

16 1222 133 32 2.4 1.5

The one of degree 6 is a natural permutation representation of PSL(2, 9)~%,
(=the Alternating group of degree 6). The representation of degree 4 satisfies
the condition (#) of Th. 4.6, while the one of degree 6 does not, as (1°3)*=1"%3*
is not a Frame shape of -0. It is easy to see that, if ¢=(1°3)%, 5., /1 (2)"" does
not satisfy the second condition in the definition of ¢. Thus the representation
of degree 6 does not yield a moonshine. Similarly the permutation representa-
tion of Mathieu group M. of degree 12 also does not yield a moonshine. In
fact, there are elements of M, with cycle decompositions 1‘4* and 1?2.8. These
permutations do not satisfy (#) of Th. 4.6 and it can be shown that, if ¢ is one
of these permutations, 7,2,/ (2) '¢ F, where ¢®*=1%* or 1‘2%8%

4.3. In this paragraph, we give some examples of proper moonshines for
Mathieu group M,, and PSL(2, p) (p+1|24).

LEMMA 4.7. Let o=II;t" be a cycle decomposition (=Frame shape) of an
element ¢ of My, w.r.t. the natural permutation representation of My, Then
(2/1)-transformation of o is a Frame shape of ‘0. More explicitly, we have the
following table:

o 18 1828 2tz 1835 38 4234 2448 40 1454 12223262 G4 1979
se(2/1) —~2A4 44 2B -3A4 -3D 8C 8A AE -5B 12E 6H -—7B

P 122.4.82 22100 1211 2.4.6.12 12 1.2.7.14 1.3.5.15 3.21 1.23
oo (2/1) 16B 10C  —11B  24C 12L  28B ~30B —21C --23AB

where the second line denotes conjugacy classes of -0 with Frame shapes a°(2/1).
Proor. This can be seen immediately from Table I of Appendix.

THEOREM 4.8. For an element o of M,y with a cycle decomposition TI,17t,
we put
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Telz)= l:I (p(2t2)2/ pltz)ndtz))e .

Then a mapping
M0 — j,(2)

is a proper moonshine of Ma,.
Proor. Let ¢'=0-(2/1)-(2/1). Then we have

g'= I;[ Fre(de)re(2t) T

and )
Jol@)=n(2)7".

Then it follows from and Th. 3.2 that j,(z)%. Furthermore, we
see from and 4.4 that this moonshine is proper, q.e.d.

LEMMA 4.9. Let p be a prime with p-+1[24 and p, be a permutation repre-
sentation of PSL(2, p) of degree p-+1 on a projective line over Fy, a finite field
of p elements. For an element o of PSL(2, p), let o=T11,t"t be a Frame shape
of 6 w.r.t. pp. Then a generalized permutation I, 1**"/?*Y of degree 24 is a
Frame shape of M,,.

Proor. It is easy to check this for each p=2, 3,5, 7, 11 and 23. See the
table in §4.2 for p=5, 7.

THEOREM 4.10. Notations being as in Lemma 4.9, we put, for PSL(2, p)=a,
Ip.a(2)= 1} (n(2tz)n{dtz)/n2dtz)n(tz))™

where d=24/(p+1)+1 and TI, 1"t is ¢ Frame shape of . Then a mapping
0 — Jp,4(2)

is a proper moonshine of PSL(2, p).
Proor. Let ¢'=J],t**"¢/**V_ Then we have

¢'°(d/1)(2/1)= 1:[ (2dtyretre(2t)"me(dt) e

and so

jp. o(2)= No'od/Do @)™,

By ¢’ is a Frame shape of M,, and then, by and Th.
3.2, 7..2)=F. By and 4.4, this moonshine is proper, gq.e.d.

REMARK 4.5. j,{(z)} and j. ,{(z) being in Th. 4.8 and 4.10 respectively, we
have j,(z2)=7.s, ,(2). Since PSL(2, 23) is a subgroup of M,, and the embedding
is unique up to conjugation, a moonshine o — 7,5 ,(z) of PSL(2, 23) is a restriction
of a moonshine ¢—7,(z) of M,,.
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4,4. Here we will make two remarks on Th., 4.6, 4.8 and 4.10. In these
theorems, we constructed moonshine of a finite group G by using a representa-
tion of G of degree d satisfying the condition () of Th. 4.6 and one of trans-
formations d*/1, d=-(2/1) and (2/1)+(2/1) (in this case, d=24) of “degree” 24/d.
These are, however, not all transformations we can use to construct moonshines.

In fact, for d=4 or 6, we can also use the following transformations of “degree”
24/d :

d=4  5:2/D-2/1),  (3/1)-(4/1)
d=6  3-2/D-2/1),  (3/D-3/1).

But these transformations do not always yield a moonshine. For example, for
a representation of SL(2, 5) or SL(2, 7) in which a Frame shape 2%/1® appears
(8§4.2), a transformation 3-(2/1)-(2/1) does not yield a moonshine, because we
can easily see that m=(2'%/1%).30(2/1)=(2/1)=2°6°8*24*/173?4°12"° but 7.(z)"'& 7.

The second remark is that j.(z) in Th. 4.8 can be related to some even
lattice.

Let V be a 24-dimensional vector space over § and ¢; (1=:/=24) be a basis
of V. Furthermore let (u, v) (i, v€V) be an inner product of V with (e, ¢;)=
204 Set L=3%%.,Ze,=V. Then L is an even lattice of V on which the Mathieu
group M,, acts in such a way that ¢f=e, ) (6=M,,). For each o= M,, we put

L.,={veL|v’=yv}
and

O,(z)= 3 eTt®w:  (@-series of L,).

vEL,

THEOREM 4.11. j,(2) being as in Th. 4.8, we have
(%) 0 ,(2)=J (2)*1+(22)

where I1:17 is a cycle decomposition of o and 9.(z)=II, n(tz).
PROOF. Let 0(2)=3,cze®"i%%. It is easy to see that @,(z)=TII,60@z)".
Then (+) follows from the identity 0(z)=9(22)°/9(2)*n{42)?, q.e.d.

Appendix. Table I~1V.

For conjugacy classes of -0, we use the following notations in §3~§4 and
Table I~IV. The heading column nA, nB, --- of Table I are the Atlas names
of conjugacy classes of the Conway’s simple group -1 (=the factor group of -0
by its center {+1)) [11; Table 1], i.e. conjugacy classes of 1 of order n are
named nA, nB, --- in descending order of their centralizer sizes.

Case (1). If the inverse image in -0 of a class nX (X=A, B, ---) of -1isa
conjugacy class of -0, this class is also denoted by nX.
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Case (2). If the inverse image in -0 of a class #X of -1 consists of two
conjugacy classes of -0, these classes are denoted by +nX and —nX.

Table I; In case (1), Frame shape of a class nX is written after the head-
ing column and in case (2), firstly Frame shape of +-nX and then that of —nX
are written. For a Frame shape ==I[,#"* with >,7,=0, a group for %.(z)™* is
given in parenthesis after the Frame shape by using notations of Table 2 and
3 of (cf. also §2.1 of this paper).

Table I[I~IV; Let = be a Frame shape of -0. If me(r/1) (resp. mes) is a
Frame shape of a conjugacy class nX (+nX or —nX)of -0, z<(r/1) (resp. m=s)
is also denoted by nX (nX or —nX). Note that + of +nX is omitted. And
if we(r/1) (resp. mes) is the m-th harmonic of a Frame shape of a class nX (4-nX
or —nX), mwe(r/1) (resp. mes) is denoted by nX/m(nX/m or —nX/m).

Some of (r/1)-transformations are expressed by generalized permutations with
symbols (?). These are exceptional classes in Th. 3,2

In Table II and III, groups for 7., wu(z)™" Or 7., wmn(z)"" are given in paren-
thesis after z+(2/1) or =-(3/1). Then the following notations are used:

() =69 Y

G- G D (-6 06 1)
Wo=an Atkin-Lehner’s involution of I(N) for some N.

A notation like “N-+Q), (h%), -7 denotes <[3(N), Wy, (1) 1/1}2)(}1 (1)>, "
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Table I. Frame shapes of conjugacy classes of -0.

24

1 1%, 224/1%% (2o

2A 1828, 216/18

28 422722 (4y29)

2C 212

32012 (3 126121212 (o
3 1%3°, 29671836 (6+3)
¢ 37713, 136%/233% (6

ap 3%, 6%/3% (6/3-)

TA LR 184828

4B 48/24

s 12248, 264414

4D 2444

4E 86748 (8/4-)

4F 48

sa 5918 (54, 1610872058 (10410
s 1'%, 2410%/1%5% (10+5)
s¢ 5°/1, 1.10°/2.5° (10-)
6o 3%6%/1%% (6v2), 1%62/283% (6-)

6B 201267486 (12/2+6)

6c  1'2.6°/3", 273% /1%

6D 2.6°/1°3 (6-), 133.6% 2"

or  122%3%2, 246% /1252

6F  3°6°/1.2, 1.6%/2%33

6G 2%>

61 12%76% (12/6-)

61 6

s 7t o, 1414472474 (ar10)
73 1377, 231437137% ey
8A 8%/2% (8/2-)

8B 2484 /4%

gc  2%8%/1%7% (80, 148%72%42

. g /42

88 1°2.4.8°, 234.8%/12

8F 4282
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Table I (continued)

9a  9°/1° (99, 131837239 (18+18)
0B 9°/3, 3.18%/6.9° (18-)
sc 1393732, 2332183136293 (18+9)
108 5210271222 (10+2), 1210%/2%5% (10-)
108 23203743103 (20/2+10)
10¢ 4%20%72%10% (20/2+5)
o0 1%2.10%/52, 235210/12
108 2.10°/1% (10-), 135.10%/2%
10F 22102
11a 12112, 22222712117 (22411)
126 1%12%/3%% (12412, 2%3%12% /1% %% (1214
128 2212% 16462 (124
12¢ 6212272242 (12/242)
120 1.127/3% (12-), 2.3%12%/1.4.6°
128 4212271237 (1243, 123242122 /2%62
12F 43243783123 (24/446)
12¢ 4%12%/2.6
128 26.122/1.3.42, 1.223.12% /4%
121 1%4.6%12/32, 2%3%4.12/12
127 2.4.6.12
128 223.12371%.6% (120), 13123/2.3.4.6
1L 242127 (24/12-)
12 122
138 137717 (13, 1226%/2213% (26+26)
144 22282742142 (28/2414)
4B 1.2.7.14, 2214%/1.7
158 1°15%/3%53 (15415), 233353303 1363103153 (30+6,10)
158 3%15%/1%5% (15+5), 125262302 72%3%10%15% (3045,6)
15¢  15%3% (15/3-), 3%30%/6%15% (30/3+10)
150 1.3.5.15, 2.6.10.30/1.3.5.15 (30+3,5)
158 1%15%/3.5, 223.5.30%/1%6.10.15% (30415)
16A 22162 /4.8
168 2.16°/1%8 (16-), 1*16%/2.8
184  9.18/1.2 (18+2), 1.18%/2%9 (18-)
188 2.3.18%/1%.9 (18-), 1%9.18/2.3

18C 1.2.182/6.9, 229.18/1.6
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Table I (continued)

20A
20B
20C

21IA
218
21C

22A

23A
238

24A
248
24C
24D
24E
24F

26A

28A
28B

30A
308
30C
30D
30E

33A
354
36A

39A
398

404
42A

60A

1220274252 (20420),
4.20
1.2.10.20/4.5,

1221273272 (21421),
7.21/1.3 (21+3),
3.21

2.22

1.23,
1.23,

22522027124210% (20+4)
2

2%5.20/1.4

2.2.2..2, 2.2 2.2

273777427 /176714721 (42+6,14)
1.3.14.42/2.6.7.21 (42+3,14)
6.42/3.21 (42/347)

2.46/1.23 (46+23)
2.46/1.23 (46+23)

2224276282 (2472412)

124.6.24%72.3%8%12 (24424),

8.24/2.6 (24/2+3)

2.3%4.24%71%6.8%12 (2448)

12.24/4.8 (24/4+2)

2.6.8.24/4,12
1.4.6.24/3.8,

2.3.4.24/1.8

2.52/4.26 (52/2+26)

4.28/1.7 (28+7),

1.4.7.28/2.14

4.56/8.28 (56/4+14)

1.2.15.30/3.5.6.10 (30+2,15),

2 2:42

223.5.302/1.6%10%15 (30+15)

2.10.12.60/4.6.20.30 (60/2+5,6)
6.60/12.30 (60/6+10)

1.6.10.15/3.5,
2.30/3.5 (30+15),

3.33/1.11 (33+11),
1.35/5.7 (35+35),
1.36/4.9 (36436),

1.39/3.13 (39+39),
1.39/3.13 (39+39),

2.40/8.10 (40/2+20)

2.3.5.30/1.15
2.3.5.30/6.10

1.6.11.66/2.3.22.33 (66+6,11)
2.5.7.70/1.10.14.35 (70+10,14)
2.9.36/1.4.18 (36+4)

2.3.13.78/1.6.26.,39 (78+6,26)
2.3.13.78/1.6.26.39 (78+6,26)

4.6.14.84/2.12.28.42 (84/2+6,14)

3.4.5.60/1.12.15.20 (60+12,15),

357

1.4.6.10.15.60/2.3.5.12.20.30 (60+4,15)
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Table 1I. (2/1)-transformations of Frame shapes of -0.
24,24, 48

14 =1A (2-), 1774577277 (44

24 GA (4-), 18426524 (4

28 “1A0(2/1)/2 (16+16,(38))

2c 2B (8+(54))

34 =34 (646), 2243121512 112,12626 (g 63Ty

3B -3B (6+3), 163048126/21%612 (124

3¢ -3¢ (6-), 2659129,3343618 (1244)

3 -3 (18+9,(—%6)), ~140(2/1)/3 (36+4,9,(%12))

s 15687288 (an), 2168/18,16 (e44T)

4B =280 (2/1)/2 (8-)

i 8C (8-), 1442857210 (g

4D 8a (L6+(8))

4E ~1A0(2/1) /4 (64464, (716))

4F 4B (32+(-78) , G16))

54 -54 (10+10), 21256208/1848102 ((10+10)%)

5B -5B (10+5), 1h45%0% /28108 (200

5 ~5C (10-), 225°20%/1.4.10°° (20+4)

6A 124 (12+412), 2434158719454 (12422T)

6B ~380 (2/1) /2 (26424, (312))5712

6c  223%.12°72%7 oo™y, 1%026312/2%3% (12412
60 1°3.4.12°72%% (12412), 2%12%/1°3.4%3 (124127
6E  12E (1243), 12324%12%/2%6% (1243)
6F 12D (12-), 233312%/1.4%6° (12)

6C ~3B/2 (2643, (312))

6H ~1A0 (2/1) /6 (144+144,(%24),(%48))

61 6H (7249, (~§12), (-524))

7A <7 (14+14), " 287%28% 1% %148 (e
7B =78 (14+7), 134373283/2014% (281)
84 4he(2/1) /2 (32+32,(%l6))

8B w4Ae(2/1)/2 (32+32T8,(%16))

sc  1%4%16%7208% 164y, 2016%/1%8% (16+16T)

8D —286(2/1)/2 (16-)

8E 168 (16-), 124%16%/2%8 (16-)

8F 4A14 (64+(~716))

9A  -9A (18+18), 2093363/134318% ((18418)T)
9B -9B (18-), 6292363/3.12.18% (36+4)

9C  ~9C (18+9), 13436%93363 /2032122186 (364)
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Table II (continued)

10A 204 (20420), 205220%7124%10% (204207)

108 —5A0(2/1)/2 ((40+40,c%20))ST20)

10C ~5Be (2/1)/2 (80+5,16,(%40))

100 2.4.5220°71%10° (20420™94),  1%4°10.20/2°5% (20+20TW4)
3 3,4, 4 5.2,.3,2 T

108 1%4.5.20%72%10% (20420), 2720271342510 (20+207)

10F 10 (4045, (320))

114 -11a (22411), 1242112442 72%2% (44

128 249848048 1% 010" (26+8,9,(212)) , 144868244 28488%1,8 (2a+24,w3(%12))

128 ~6A0 (2/1) /2 (2H,T )
12¢ 244 (48+48,(%24))

120 2.3%.24771.6%8.123 2448y,  1.4%6%24%722338.12% (2448T)

12 123%8%204%72%426210% (244y,  2%"s224%/1%3%5%12% (24437, 8T)

12F ~3A0(2/1) /4 (96+96,(%24),(%48))
126 —6F0(2/1)/2 (24HW.T)
5.9, 4,20 3 L, .2 2.2
12H 1.3.47247 /27678712 (24+W3T12), 476.247/1.2.3.8712 (24+W3T12)
121 2%8.3%12.24/1%. 6" (244.T) 1%4.8.6%24/2%3%12 (204, 1)
123 260 (48+3, (324))
12k 1°436%2437273.8.12° (24424), 2%3.2437138.12% (244247
121 ~1A0(2/1) /12 (576+(196),(%192),(%144),576; 7,x7.,%Dg)
1 1 1
121 121 (288+(- 324) ,-348) , (-272) , (-3144)
134 -13A (26+26), 24132502 /124226% ((26426)T)
144 “TRe (2/1)/2 ((56+56,(5/2))° 28)
148 28A (28+7), 1.4%7.28%12%14% (2847)
154 -15A (3046,10), 13436510%15%60%/203%5312320330% ((30+6,10)T)
158 -15B (3045,6), 243210%12215260% /12425264 20230% ((3045,6)T)
15C ~15C (90+9,10,(-330)), “5a0(2/1) /3 ((9049,10, (-530)) )
150 -15D (3043,5), 1.3.4.5.12.15.20.60/226210%30% (604)
22,2, 2 2 2, 4 4 T

158 -15E (30+15), 124%6%10%15%60%/2%3.5.12.20. 30 ((30+15)T)
164 ~8Ce (2/1)/2 (64+(332) ,64716)

2 2,33 3.2, 9, 3 T
168 1%4.8.32%2/2°16° (324), 238.32271%4.16° (32+327)
18A  36A (36+36), 239.362/1.4%18% (36+367)

188 1%4.6%9.36%/233.12.18° (36+36), 2

18C  4.6.9.36%/1.12.18° (36+36"4T

)
208 224757407 /187107207 (40+40, W (320)), 124%10%402/2%5%8220% ¢ 4048, (320))

208 -5B/4 (160+5,(-%40),(%80))
20c  4%5.40/1.8.10° (40+w5(%20)), 1.4°10.40/275.8.20 (4o+w5(%20))

33.36/1%4.6.9 (36+36")

),  1.4%6.36/239.12 (36+36"47
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Table II (continued)

21A  -21A (4246,14), 12426414%21%64% 1253272102 08%42% ((42+6,14)T)
218 -21B (4243,14), 226%7.21.28.84/1.3.4.12. 142422 (a2+3,10T)
21C -21¢ (126+7,9,(-§42)), 3.12.21.84/6%42% (252+4,9,7, (384))

224 ~118/2 (68+11, (344))

23AB  ~23A (46423), 1.4.23.92/2%46% (924)

244 124 (2/1)/2 (96+32,96°2%, (2ag))

248 2°3%8%12%46%/1%426316%24° (48+43,16T), 1%6°8°48%/2°3216224° (48+16,487)
24C 12E0(2/1)/2 (96+3,32,(%48))

24D 12474 (192+l92,(%48); Dg)

24E ~12E0 (2/1)/2 (96+3,32T24,(%48))

26F  2.3.8212.48/1.4.6%16.24 (as+w3(%24)), 1.6.8%8/223.16.24 (48+w3(%24))

26A -13A°(2/1)/2 ((104+1o&,(%52))ST52>

284  1.7.8.56/2.4.14.28 (564), 228.14%56/1.4%7.28% (56+77,87)

288 ~7A0(2/1) /4 ((224+224,(%56),(%112))5T112)

30A  60A (60+12,15), 1.4%6310%15.60%/233.5.12%20%30%  (s0+127,157)
308 ~15B0(2/1) /2 ((120+5,24,(%60))ST60)

300 ~540 (2/1) /6 ((360+360,(%60),(%lZO),(%lSO))STﬁO)

30D 3.4.5.60/2.6.10.30 (60412,15), 4.6%10%60/2.3.5.12.20.30 (60+127,157T)
0B 2.3.5.12.20.30/1.6%10%15 (60415,T,) , 1.4.6.10.15.60/2%3.5.30° (60+15, T4, )
334 -33A (66+6,11), 223.12.22233.136/1.4. 6211, 64.66% ((66+6,11)")
35  -35A (70+10,14), 1.4.10%14235.140/2%5.7.20.28.70% ((70+10,14) ")
A 2.4.9.72/1.8.18.36 (72472,1y(336)), 1.4%18%72/2%8.9. 36° (72+8,w9(%36))
39AB -394 (7646,26), 1.4.6°26739.156/2%3.12.13.52. 787 ((78+6,26)")
40A 2040 (2/1)/2 (l60+32,l60T40,(%40))

424 —2140(2/1)/2 ((l68+21,56,(%84))ST84)

60A 1.6.86.10.15.20.48.120/2.3.4.5.24.30.40.60 (120+15,120,W3(%6O)),

223.5.8.12.20230248.120/1.426210215424.40.602(120+15,24,w3(%60))

Table III. (3/1)-transformations of Frame shapes of -0.

1A 3A (3-), “3A (646)

24 6A  (642), -6A  (6-)

23 68 (12/246)

2C 3A/2  (6/2-)

38 190,312 (opy, 26312146,1051246 (18+w2(6(—%)))
3B %A (9-), —oA (18+18)

3D 3A/3 (9/34), -34/3 (18/3+6)
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Table III (continued)

4A 124 (12412), “12A4 (12+4)

4B 128 (12-)

te 3%6.12%1%2.4% (), 1%6312%/233%2 ()

4D 120 (12/2+2)

4E 12F  (24/446)

4T 123743 ()

54 154 (15+15), ~15A (30+6,10)

58 15B (15+5), S15B  (3045,6)

6A  12229%18%/3%% (184), 2%3%18%/1%689% (18+9)
6B ~340(3/1) /2 (72+(%36),w72(-%24); Dg)
6L 18A (1642), -18A  (18-)

6H -3A/6 (36/6+6)

61 3A/6  (18/6-)

74 21a (21421), _21A  (42+6,14)

8A 244 (24/2412)

8B S12472  (24/244)

8C  24B  (24+24), ~20B  (24+8)

8D 4.242/8212 )

&F 24D (24/442)

104 30A (30+2,15), =304 (30+15)

10¢ 308 (60/245,6)

108 158 (30/2+5)

114 33a  (33+11), —33A (66+6,11)
124 3%4%362/1%0%10% (36+9,w36(12(%)), 1%4%6%9%36212%3% 124182 (369
128 (=6A)o (2/1) /2 (36/2+9)
12¢ 640 (2/1)/2  (36/24)
12E 36A (36436), Z36A (3644)
12L -3A/12  (72/12+6)

12u 36/12 (2)

134 39AB  (39+39),  -39AB (78+6,26)
144 42A (84/2+6,14)

15 1.5.9.45/3°15%  (45+),  2.3%10.15218.90/1.5.629.30245 (9o+5,w2(30(%); Dg)
15C  15A/3 (45/3+15), ~-15A/3 (90/3+6,10)

204 60A (60+12,15), -60A (60+4,15)

214 3%7.63/1.9.21% (639,40, (21 (3)),
1.6%9.14.21%126/2.377.18.42%63 (126+9,126,u, (42(3)))
, 1L, 1
24A 12A0(3/1) /2 (144491, . (48(3)),(336) 3 Z,%2,%Z,)

361
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Table IV. Other transformations of Frame shapes of -0.

1A
2B
2C
3A
3B
3C
4E
4F
54
6B
6G
7B
9A
10B
12F
154

1A
2A
2B
2C
3A
3D
44
4B
4D
5B
6A
61
61
7A
8A
8B
12A

2-transf.
24, 4A
84
4D
64, 124
6E, 12E
6F, 12D
4A/4
8F
10A, 204
244
12J
14B,  28A
184, 36A
40A
124/4
304, 60A

3-transf.
3B, -3B
6E, -6E
-3B/2
6G
94, -9A
9z, -9Z
12E, -12E
126G
127
15D, -15D
184, ~18A
-3B/6
18Z
21B,
24C
24E
364,

-21B

~36A

T. Konbo

(4/1)-transf. 5-transf. (7/1)-transf.

4A, 4ae(2/1) 1A 5B, ~5B 74, =74
4A0(2/1)/2 2B 10C 144
8A 2C 10F 7A/2

124,  12a<(2/1) 34 15B, -15B 214, 214

12E, 12Ee(2/1) 3B 15D, -15D 21B, -21B

12D,  12pe(2/1) 4E -5B/4 288
4Ao(2/1) 4F 208 28/4 (?)
4AJ4 54 257, -25Z 354, -354

204,  204°(2/1) 6B 308 427
1240(2/1)/2

¢ ) 7-transf. (9/1)-transf,
24C
1A 7B, -7B 94, -94

2874,  2840(2/1)

i 3640(2/1) 24 14B, -14B 184, -184
! 3D 21C, -21C 9A/3, -9A/3
2040(2/1)/2

4A  28A, -28A 364, -364
124(2/1) /4
60A,  60A0(2/1) 11-transf. (13/1)~transf.
14 114, -1l1A 134, -134
(5/1)-transf,
oA s 2B ~11A/2 26A
» 7oA 2C 224 2672 (7)
104, -10A
34 33, -33A 394, -394
108
103723 (2) 23-transf, (25/1)~transt.

154, -15A 1A 234, -23A 25Z, -257

15C, -15C

204, -20A
2.20%/4210 (?)

104/2

252, 252

30A, ~30A
-54/6
30/6 (2)

354, -354
204/2

4,10.40/2.8.20 ()
60A, —60A
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