The automorphism group of Leech lattice and elliptic modular functions

Dedicated to Professor Hirosi Nagao on his 60th birthday

By Takeshi KONDO

(Received May 28, 1984)

Introduction.

As usual, we denote by $\cdot 0$ the automorphism group of Leech lattice which is an even unimodular lattice in 24-dimensional Euclidean space [1]. So $\cdot 0$ has a natural 24-dimensional representation ρ_0 over the rational number field. In this paper, Frame shapes of conjugacy classes of $\cdot 0$ with respect to ρ_0 , the list of which is given in Table I of Appendix, will play a central role. For the definition of Frame shape, see § 1.2.

Let $\mathcal F$ be the set of all elliptic modular functions f(z) satisfying the following conditions:

- (1) f(z) is a modular function with respect to a discrete subgroup Γ of $SL(2, \mathbf{R})$ containing $\Gamma_0(N)$ for some integer N (i. e. $f\left(\frac{az+b}{cz+d}\right)=f(z)$ for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\in \Gamma$ and meromorphic on the upper half plane and at all cusps of Γ),
 - (2) the genus of Γ is zero and f(z) is a generator of a function field for Γ ,
 - (3) f(z) has a Fourier expansion of the form $f(z)=1/q+\sum_{n=0}^{\infty}a_nq^n$ $(q=e^{2\pi iz})$.

Now the main result of this paper is to show that various "transformations" (cf. §1.1) of Frame shapes of $\cdot 0$ yield functions of \mathcal{F} (Th. 3.2, 3.4, 3.5 and Table II \sim IV in Appendix). Furthermore, an application of this result is as follows: Let G be a finite group which has a d-dimensional representation ρ over the rational number field where d is a divisor of 24. For each of such many (not all) pairs (G, ρ) , we can construct a mapping from G to \mathcal{F}

$$G \ni \sigma \longmapsto j_{\sigma}(z) \in \mathcal{G}$$

such that all coefficients $a_k(\sigma)$ $(k \ge 1)$ of a Fourier expansion $j_{\sigma}(z) = 1/q + \sum_{k=0}^{\infty} a_k(\sigma) q^k$ are generalized characters of G (Th. 4.6, 4.8 and 4.10). Such a mapping is called a *moonshine* of G. A moonshine of Fischer-Griess's Monster is constructed in a remarkable paper of Conway-Norton [2] and other examples of moonshines can be found in Queen [10] and Koike [4]. Constructions of moonships of moonships can be found in Queen [10] and Koike [4].

shines in this paper are rather elementary compared with those of Conway-Norton-Queen. For examples of pairs (G, ρ) which does not yield a moonshine, we refer readers to Remark 4.4.

The author is very grateful to Prof. Masao Koike for many valuable discussions and suggestions.

NOTATIONS.

Z the ring of rational integers

Q the field of rational numbers

R the field of real numbers

$$SL(2, \mathbf{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbf{Z} \text{ and } ad - bc = 1 \right\}$$

$$SL(2, \mathbf{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbf{R} \text{ and } ad - bc = 1 \right\}$$

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{Z}) \middle| c \equiv 0 \mod N \right\}$$

$$\langle \cdots \rangle = \text{a group generated by } \cdots.$$

For the notations of conjugacy classes of $\cdot 0$, see the first paragraph of Appendix.

§ 1. Generalized permutations and Frame shapes.

1.1. A symbol

$$\prod_{t} t^{r_t} = 1^{r_1} 2^{r_2} \cdots \qquad (r_t \in \mathbf{Z})$$

is called a generalized permutation if $r_t \neq 0$ for only a finite number of positive integers t. For a generalized permutation $\pi = \prod_t t^{r_t}$, set

$$\deg \pi = \sum_{t} t r_{t},$$

$$\operatorname{sgn} \pi = \prod_{t} (-1)^{(t-1)r_{t}}.$$

Obviously $\deg \pi$ and $\operatorname{sgn} \pi$ are generalizations of degree and sign of a permutation on a finite set.

Now we will define some transformations of a generalized permutation. Let r be a positive integer and $\pi = \prod_t t^{r_t}$ be a generalized permutation. Then define

$$\begin{split} \pi/r &= \prod_t (rt)^{r_t/r}, \quad \text{where } r | r_t \text{ for any } t, \\ \pi \circ r &= \prod_t t^{r_t/(r+1)} (rt)^{r_t/(r+1)}, \quad \text{where } r+1 | r_t \text{ for any } t, \\ \pi \circ (r/1) &= \prod_t (rt)^{r_t/(r-1)} t^{-r_t/(r-1)}, \quad \text{where } r-1 | r_t \text{ for any } t. \end{split}$$

These are called the r-th harmonic, the r-transformation and the (r/1)-transformation of π respectively. All of these transformations have the same degree as π .

We note that (2/1)-transformation can be defined for all generalized permutations. Let $\eta(z)$ be Dedekind eta-function:

$$\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n), \qquad q = e^{2\pi i z}.$$

For a generalized permutation $\pi = \prod_t t^{r_t}$, we put

(1.1)
$$\eta_{\pi}(z) = \prod_{t} \eta(tz)^{r_t}.$$

The meaning of the transformations defined above consists in considering the transformation of functions $\eta_{\pi}(z)$:

$$\eta_{\pi}(z) \longmapsto \eta_{\pi^{\bullet}}(z) \qquad \pi^* = \pi/r, \quad \pi \circ (r/1) \quad \text{or} \quad \pi \circ r.$$

1.2. Let G be a finite group and

$$G \ni \sigma \longmapsto \rho(\sigma) \in GL(d, \mathbf{Q})$$

be a d-dimensional representation of G over the rational number field Q. Then we will assign to every element (or every conjugacy class) of G a generalized permutation of degree d as follows. The characteristic polynomial $\det(xI_d-\rho(\sigma))$ $(I_a$ =the identity matrix of degree d) of $\rho(\sigma)(\sigma \in G)$ can be written in the form

$$\prod_{t} (x^t - 1)^{r_t} \qquad (r_t \in \mathbf{Z})$$

where t ranges over all positive integers dividing the order of G. Then a generalized permutation $\Pi_t t^{r_t}$ of degree d is called *Frame shape* of an element σ with respect to the representation ρ . We also refer to Frame shape of a conjugacy class of G (w.r.t. ρ), as two conjugate elements of G yield the same Frame shape.

REMARK 1.1. If a representation ρ is a permutation representation of G (i.e. every $\rho(\sigma)$ is a permutation matrix), the Frame shape of σ w.r.t. ρ is just a cycle decomposition of a permutation corresponding to $\rho(\sigma)$. Thus Frame shape can be regarded as a generalization of a cycle decomposition of an element in a permutation group.

REMARK 1.2. If G has no subgroup of index 2 and so det $\rho(\sigma)=1$ for all $\sigma \in G$, we have $\operatorname{sgn} \pi=1$ for all Frame shapes π of conjugacy classes of G, because det $\rho(\sigma)=\operatorname{sgn} \pi$.

REMARK 1.3. A generalized permutation is not always a Frame shape. For example, a generalized permutation $1.2^{-2}4$ is not a Frame shape, as $(x-1)(x^4-1)/(x^2-1)^2$ is not a polynomial.

§ 2. A class of elliptic modular functions.

- **2.1.** As in the introduction, let \mathcal{F} be the set of all elliptic modular functions f(z) having the following properties:
- (1) f(z) is a modular function with respect to a discrete subgroup Γ of $SL(2, \mathbf{R})$ containing some $\Gamma_0(N)$,
- (2) the genus of Γ is zero and f(z) is a generator of a function field for Γ and
- (3) f(z) has a Fourier expansion of the form $f(z)=1/q+\sum_{n=0}^{\infty}a_nq^n$ $(q=e^{2\pi iz})$. For simplicity, we call Γ in (1) and (2) a group for f(z) and also f(z) a Hauptmodule for Γ . Clearly the well known modular invariant j(z) belongs to \mathcal{F} and $\Gamma_0(1)=SL(2,\mathbb{Z})$ is a group for j(z). Other examples of $f(z)\in\mathcal{F}$ and a group for f(z) can be found in Table 3 of [2] which is very useful in this paper. In these examples, a group for $f(z)\in\mathcal{F}$ is the one obtained by adjoining to $\Gamma_0(N)$ some of its Atkin-Lehner's involutions W_Q

$$W_{Q,N} = W_Q = \begin{pmatrix} aQ & b \\ cN & dQ \end{pmatrix}$$
 a, b, c, $d \in \mathbf{Z}$

where Q||N, i.e. Q is a divisor of N with (Q, N/Q)=1 and $\det W_Q=Q$. As in [2] and [10], we use the notations

$$N+Q_1, Q_2, \cdots, N-, N+$$

which denote

$$\langle \Gamma_0(N), W_{Q_1}, W_{Q_2}, \cdots \rangle$$
, $\Gamma_0(N)$, $\langle \Gamma_0(N), W_{Q} \mid Q || N \rangle$

respectively.

LEMMA 2.1. Let $\eta_{\pi}(z)$ be a function defined by (1.1) for a generalized permutation π . Assume that

- (1) $\deg \pi = -24$,
- (2) $\eta_{\pi}(z)$ is a modular function w.r.t. a discrete subgroup Γ of $SL(2, \mathbf{R})$ containing some $\Gamma_0(N)$,
 - (3) $\Gamma_{i\infty} = \{M(i\infty) = i\infty \mid M \in \Gamma\}$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,
 - (4) $z=i\infty$ is the unique pole of $\eta_{\pi}(z)$ among all inequivalent cusps of Γ . Then $\eta_{\pi}(z) \in \mathcal{F}$ and Γ is a group for $\eta_{\pi}(z)$.

PROOF. The condition (1) means that $\eta_{\pi}(z)$ has a Fourier expansion of the form $1/q + \sum_{n=0}^{\infty} a_n q^n$ and the condition (3) shows that q can be taken as a local parameter of $\eta_{\pi}(z)$ at $z=i\infty$ and so $z=i\infty$ is a pole of $\eta_{\pi}(z)$ of order 1. Let \Re be a Riemann surface corresponding to Γ , i.e. $\Re = \Gamma \setminus \mathfrak{F}^*$ where \mathfrak{F}^* is a union of the upper half plane and the set of all cusps of Γ . Since $\eta(z)$ has no

poles on the upper half plane, the condition (4) means that $z=i\infty$ is the unique pole of $\eta_{\pi}(z)$ on \Re and so $\eta_{\pi}(z)$ gives an isomorphism from \Re onto the Riemann sphere. Thus the genus of \Re is zero and $\eta_{\pi}(z)$ is a generator of a function field of \Re . This completes the proof of Lemma 2.1.

2.2. Here we mention the well known transformation formula of Dedekind eta-function:

(2.1)
$$\eta\left(\frac{az+b}{cz+d}\right) = v(M)(cz+d)^{1/2}\eta(z) \quad \text{for } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{Z})$$

where $v(M)^{24}=1$. An explicit formula of v(M) was given by Petersson [6; Th. 2 of Chap. 4]:

$$(2.2) \quad v(M) = \begin{cases} \left(\frac{d}{c}\right)^* \exp\left\{\frac{\pi i}{12} \left[(a+d)c - bd(c^2-1) - 3c\right]\right\} & \text{if } c \text{ is odd} \\ \left(\frac{c}{d}\right)_* \exp\left\{\frac{\pi i}{12} \left[(a+d)c - bd(c^2-1) + 3d - 3 - 3cd\right]\right\} & \text{if } c \text{ is even} \end{cases}$$

where, by using Jacobi symbol $\left(\frac{n}{m}\right)$, we put

$$\left(\frac{c}{d}\right)^* = \left(\frac{c}{\mid d\mid}\right) \quad \text{and} \quad \left(\frac{c}{d}\right)_* = \left(\frac{c}{\mid d\mid}\right)(-1)^e, \qquad e = \frac{\operatorname{sgn} c - 1}{2} \cdot \frac{\operatorname{sgn} d - 1}{2},$$

$$\left(\frac{0}{+1}\right)^* = 1, \qquad \left(\frac{0}{1}\right)_* = 1 \quad \text{and} \quad \left(\frac{0}{-1}\right)_* = -1.$$

Now we give some formulas which are useful for our calculations of $\eta_{\pi}(z)$:

(2.3)
$$\eta\left(z+\frac{1}{2}\right)=e^{\pi i/24}\eta(2z)^3/\eta(z)\eta(4z).$$

(2.4) If $2|N_0|N$ and $(2N_0, N)=N_0$,

$$\eta(2N_0z/(Nz+1)) = v(M)(Nz+1)^{1/2}\eta((N_0z+1)/2),$$

$$M = \begin{pmatrix} 2 & -1 \\ N/N_0 & (N_0 - N)/2N_0 \end{pmatrix} \in SL(2, \mathbf{Z}).$$

(2.5)
$$\eta\left(z+\frac{1}{3}\right)\eta\left(z+\frac{2}{3}\right) = e^{\pi i/12}\eta(3z)^4/\eta(z)\eta(9z).$$

(2.6) If $3|N_0|N$, $(3N_0, N)=N_0$ and $N/N_0\equiv \varepsilon \mod 3$ ($\varepsilon=\pm 1$),

$$\eta(3N_0z/(Nz+1))=v(M)(Nz+1)^{1/2}\eta((N_0z+\varepsilon)/3),$$

$$M = \begin{pmatrix} 3 & -\varepsilon \\ N/N_0 & (N_0 - N\varepsilon)/3 \end{pmatrix} \in SL(2, \mathbf{Z}).$$

(2.7) If
$$W_Q = \begin{pmatrix} aQ & b \\ cN & dQ \end{pmatrix}$$
 is an Atkin-Lehner's involution of $\Gamma_0(N)$,
$$\eta(tW_Q(z)) = v(M)(Q,\ t)^{-1/2}(cNz + dQ)^{1/2}\eta((Qt/(Q,\ t)^2)z)\,,$$
 where $M = \begin{pmatrix} a(Q,\ t) & bt/(Q,\ t) \\ cN(Q,\ t)/Qt & dQ/(Q,\ t) \end{pmatrix} \in SL(2,\ Z)\,.$

(2.3) and (2.5) are obtained by direct computations. (2.4), (2.6) and (2.7) follow from (2.1).

LEMMA 2.2 (M. Newmann [9; Th. 1]). Let $\pi = \prod_{t \mid N} t^{r_t}$ be a generalized permutation and $\eta_{\pi}(z) = \prod_{t \mid N} \eta(tz)^{r_t}$, where t ranges over all positive divisors of some integer N. Assume that

$$(0) \sum_{t} r_{t} = 0,$$

(1)
$$\sum_{t} r_{t} t \equiv 0 \mod 24,$$
(2)
$$\sum_{t} r_{t} N / t \equiv 0 \mod 24$$

$$\sum r_t N/t \equiv 0 \qquad \text{mod } 24$$

(3) the number
$$\prod_{t \mid N} t^{r_t}$$
 is a rational square.

Then $\eta_{\pi}(z)$ is a modular function w.r.t. $\Gamma_0(N)$.

A proof of Lemma 2.2 can be done by using (2.1) and (2.2).

LEMMA 2.3. Let $\pi = \prod_t t^{r_t}$ be a generalized permutation of degree 24 and r>1 be an integer with $r|r_t$ for any t. Assume that

$$\eta_{\pi}(z)^{-1} \in \mathcal{G} ,$$

(2)
$$\prod_{t} t^{r_t/r} \text{ is a rational square.}$$

Then $\eta_{\pi/r}(z)^{-1} \in \mathcal{F}$, where π/r is the r-th harmonic of π .

PROOF. Let $f(z) = \eta_{\pi}(z)^{-1}$ and $g(z) = \eta_{\pi/r}(z)^{-1}$. Then we have

(*)
$$g(z)=f(rz)^{1/r}$$
.

If Γ is a group for $f(z) \in \mathcal{G}$, f(rz) is a modular function w.r.t. $\Gamma_1 = {r \choose 0}^{-1} \Gamma {r \choose 0}^{-1}$ and [C(g(z)):C(f(rz))]=r. Also we have, by (*),

(**)
$$g(Mz) = \delta g(z) \ (\delta^r = 1)$$
 for any $M \in \Gamma_1$

and, in particular,

$$(***) g\left(z+\frac{1}{r}\right)=e^{-2\pi i/r}g(z) \text{for } \begin{pmatrix} 1 & 1/r \\ 0 & 1 \end{pmatrix} \in \Gamma_1.$$

Now let $\Gamma_2 = \{M \in \Gamma_1 \mid g(Mz) = g(z)\}$. Then, by (**) and (***), we must have $[\Gamma_1:\Gamma_2]=r$ and so C(g(z)) is a function field for Γ_2 . By the assumption (2) and Lemma 2.2, Γ_2 contains some $\Gamma_0(N)$. Thus $g(z) \in \mathcal{G}$. This completes the proof of Lemma 2.3.

Lemma 2.4. For a generalized permutation $\pi = \prod_t t^{r_t}$ and $T = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbf{R})$, define

$$\pi \circ T = \prod_{t: \text{ even}} t^{r_t} \prod_{t: \text{ odd}} (2t)^{3r_t} t^{-r_t} (4t)^{-r_t}$$
.

If $\eta_{\pi}(z) \in \mathcal{F}$, we have $\mathcal{F} \ni \eta_{\pi \circ T}(z) = -\eta_{\pi}(Tz)$.

PROOF. If $\eta_{\pi}(z)$ is a modular function w.r.t. Γ , $\eta_{\pi \circ T}(z)$ is a modular function w.r.t. $T^{-1}\Gamma T$. From this we get $\mathcal{F} \ni \eta_{\pi \circ T}(z)$ if $\eta_{\pi}(z) \in \mathcal{F}$. The equality $\eta_{\pi \circ T}(z) = -\eta_{\pi}(Tz)$ follows from (2.3), q.e.d.

§ 3. Frame shapes of conjugacy classes of $\cdot 0$.

3.1. The automorphism group $\cdot 0$ of Leech lattice has a natural 24-dimensional representation ρ_0 over \mathbf{Q} . It is not difficult to compute Frame shape of every conjugacy class of $\cdot 0$ by using the character values of the representation ρ_0 and the power mapping of conjugacy classes of $\cdot 0$ [11; Table 1]. The list of Frame shapes of conjugacy classes of $\cdot 0$ is given in Table I of Appendix. The following observation of the list may be useful (cf. [2; p. 315]):

THEOREM 3.1. Let $\pi = \prod_t t^{r_t}$ be a Frame shape of $\cdot 0$. Then $\sum_t r_t$ is even and if $\sum_t r_t = 0$, we have $\eta_{\pi}(z)^{-1} \in \mathcal{F} (=a \text{ class of elliptic modular functions} defined in § 2).$

PROOF. By inspection of Table I of Appendix, $\sum_t r_t$ is even. It can be seen from Table 3 of [2] that, if $\sum_t r_t = 0$, $\eta_{\pi}(z)^{-1} \in \mathcal{F}$.

REMARK 3.1. Let $\sum_t r_t = 2k \neq 0$ and N be a product of L.C.M. and G.C.D. of $\{t | r_t \neq 0\}$. Then $\eta_{\pi}(z)$ is a cusp form or an Eisenstein series of level N and weight k with some character, according as $r_t \geq 0$ for any t or not (cf. [3], [5] and [8]).

The following theorem is one of the main results of this paper:

THEOREM 3.2. Let $\pi = \prod_t t^{r_t}$ be a Frame shape of $\cdot 0$ and r > 1 be an integer with r-1 | 24 and r-1 | r_t for any t. Then we have

(3.1) $\eta_{\pi \circ (r/1)}(z)^{-1} \in \mathcal{F}$ $(\pi \circ (r/1) = (r/1) - transformation of \pi (§ 1.1)),$ except for the following cases:

In these exceptional cases, we have $\operatorname{sgn}(\pi^{1/(r-1)}) = -1$, where $\pi^{1/(r-1)} = \prod_t t^{r_t/(r-1)}$.

REMARK 3.2. The case r=2 of Th. 3.2 is a part of a theorem of Conway-Norton-Queen [2], [10] which says that a mapping

$$\cdot 0 \ni \sigma \longmapsto \eta_{\sigma \circ (2/1)}(z)^{-1} = q^{-1} \prod_{n=0}^{\infty} \prod_{i=1}^{24} (1 - \varepsilon_i(\sigma) q^{2n-1})$$

is a moonshine of $\cdot 0$, where $\varepsilon_i(\sigma)$ $(1 \le i \le 24)$ are eigenvalues of $\rho_0(\sigma)$. In Table II of Appendix, we will give $\sigma \circ (2/1)$ and a group for $\eta_{\sigma \circ (2/1)}(z)^{-1}$ for each σ . This table can be also found in Queen [10; Table 1], but, in Queen's table, some conjugacy classes of $\cdot 0$ are missing and, in our table, a group for $\eta_{\sigma \circ (2/1)}(z)^{-1}$ $(\sigma \in \cdot 0)$ is described more explicitly than in Queen's table.

REMARK 3.3. Notations being as in Th. 3.2, let G be a finite group with no subgroup of index 2 and ρ be a 24/(r-1)-dimensional representation over Q. If $\operatorname{sgn}(\pi^{1/(r-1)})=-1$, $\pi^{1/(r-1)}$ is not a Frame shape of G w.r.t. ρ , because $\operatorname{sgn}(\pi^{1/(r-1)})=-1$ means that the determinant of a linear transformation with Frame shape $\pi^{1/(r-1)}$ is -1.

PROOF OF THEOREM 3.2. This is done by using Table I of Appendix and examining (3.1) in case by case for each conjugacy class of $\cdot 0$. Here we will give a proof of the case r=3. (Also the case r=2 (cf. Remark 3.2) can be dealt with quite similarly, and other cases r>3 are rather easy to be examined.)

First of all, we see from Table I of Appendix that, if π is a Frame shape of $\cdot 0$, $\pi \cdot (3/1)$ is

- (1) a Frame shape of $\cdot 0$,
- (2) for some r, the r-th harmonic of a Frame shape $\prod_t t^{r_t}$ of $\cdot 0$ such that $\sum_t r_t = 0$ and $\prod_t t^{r_t/r}$ is a rational square, or
 - (3) one of the following generalized permutations:

```
classes of \pi
                                   \pi \circ (3/1)
    \pm 3A
                       9^{6}1^{6}/3^{12},
                                                 2^63^{12}18^6/1^66^{12}9^6
    \pm 4C
                                                 1^26^312^2/2^33^24^2
                       3^26.12^2/1^22.4^2
      4F
                                  12^3/4^3
                       1^22^29^218^2/3^46^4,
    \pm 6A
                                                 2434184/126892
      6B
                                  4^36^636^3/2^312^618^3
      8D
                                  4.24^{2}/8^{2}12
                       3^44^236^2/1^29^212^4,
                                                 12426492362/2234124182
   \pm 12A
     12B
                                  4^{2}6^{2}36^{2}/2.12^{4}18
     12C
                                  2.4.18.36/6^212^2
     12M
                                  36/12
                       1.5.9.45/3^215^2,
   \pm 15B
                                                 2.3^{2}10^{2}15.18.90/1.5.6^{2}9.30^{2}45
   \pm 21A
                       3^{2}7.63/1.3.21^{2}
                                                 1. 629. 14. 212126/2. 327. 18. 42263
     24A
                                  6^28.72/2.18.24^2
```

If we have the case (1) or (2), we can conclude from Th. 3.1 and Lemma 2.3 that $\eta_{\pi \circ (3/1)}(z)^{-1} \in \mathcal{F}$. So suppose we have the case (3).

Classes $\pm 4C$, 4F, 8D, 12M; These classes are exceptional ones in Th. 3.2 and then we have $\text{sgn}(\pi^{1/(r-1)})=-1$.

Classes $\pm 6A$; We see from Table 3 of [2] that $\pi \circ (3/1)$ is a Hauptmodule for 18+ or 18+9.

Classes 12B or 12C; By Table 3 of [2], $\pi \circ (3/1)$ is the 2nd-harmonic of a Hauptmodule for 18+9 or 18+. Then (3.1) follows from Lemma 2.3.

Classes +3A, -12A or +15B; $\pi \circ (3/1)$ is a Hauptmodule for 9+, 36+ or 45+ respectively by Table 3 of [2].

Now conjugacy classes -3A, 6B, +12A, -15B, $\pm 21A$ and 24A remain to be examined. Since $\pi \circ (3/1)$ for 6B or 24A is the 2nd-harmonic of -3A or +12A respectively, it is sufficient to see (Lemma 2.3) that, for five classes -3A, +12A, -5A and $\pm 21A$, $\eta_{\pi \circ (3/1)}(z)^{-1} \in \mathcal{G}$. Among these classes, we will prove (3.1) for the class -3A, as other classes can be also dealt with quite similarly.

Let π be the Frame shape of the class -3A and let

$$f(z) = \eta_{\pi \circ (3/1)}(z)^{-1}$$
, $M = W_2 \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1/3 \\ 0 & 1 \end{pmatrix}$ and $\Gamma = \langle \Gamma_0(18), M \rangle$,

where $W_2 = \begin{pmatrix} 18 & 1 \\ 18 & 2 \end{pmatrix}$ is an Atkin-Lehner's involution of $\Gamma_0(18)$ (cf. § 2.2). Firstly it follows from Lemma 2.2 that f(z) is a modular function w.r.t. $\Gamma_0(18)$ and then we see that, by using (2.2), (2.4), (2.6) and (2.7), f(Mz) = f(z). Thus f(z) is a modular function w.r.t. Γ . Now we will apply Lemma 2.1 to show that $f(z) \in \mathcal{F}$ and Γ is a group for f(z). A representative of inequivalent cusps of $\Gamma_0(18)$ is

$$0, 1/2, \pm 1/3, \pm 1/6, 1/9, 1/18$$

and these cusps are divided into two classes under Γ :

$$0 \sim -1/6 \sim 1/6 \sim 1/9$$
 and $1/3 \sim -1/3 \sim 1/2 \sim 1/18 \sim i \infty$.

Since, by (2.7), $f(W_{18}(z))=c/f(z)$ (c=constant and $W_{18}=\begin{pmatrix} 0 & -1 \\ 18 & 0 \end{pmatrix}$, an Atkin-Lehner's involution of $\Gamma_0(18)$), we have $f(1/18)=f(i\infty)=\infty$ and f(0)=0. Thus $z=i\infty$ is the unique pole of f(z) among inequivalent cusps of Γ . Then Lemma 2.1 yields that $f(z)\in \mathcal{F}$ and Γ is a group for f(z). This completes the proof of Th. 3.2.

In Table III of Appendix, we will give the list of $\pi \circ (3/1)$ and groups for

 $\eta_{\pi \circ (3/1)}(z)^{-1} \in \mathcal{G}$. Also we will give the list of $\pi \circ (r/1)$ (r>3) in Table IV, together with the list of $\pi \circ s$, s-transformations of π .

3.2. In this paragraph, we give theorems analogous to Th. 3.2 for r-th harmonics and r-transformations. For that purpose, it is convenient to introduce the "ghost classes" of $\cdot 0$. We call the following generalized permutations "ghost classes" of $\cdot 0$:

Name of classes	Frame	e shapes
$\pm 9Z$	3^29^2 ,	$6^218^2/3^29^2$
16 Z	8.1	.6
18 <i>Z</i>	6.1	8
$\pm 25 Z$	25/1,	1.50/2.25

We refer to [2],[3] and [8] for these classes. In [2], the class -25Z is denoted by 50Z. It is easy to see the following

THEOREM 3.3. For all Frame shapes π of the ghost classes of $\cdot 0$, we have $\eta_{\pi \circ (2/1)}(z)^{-1} \in \mathcal{F}$. Also we have $\eta_{\pi \circ (8/1)}(z)^{-1} \in \mathcal{F}$ for Frame shapes of the classes $\pm 9Z$.

Theorem 3.4. Let s>1 be an integer with s+1|24. For each Frame shape $\pi=\prod_t t^{r_t}$ of $\cdot 0$ with $s+1|r_t$ for any t, the s-transformation $\pi \circ s$ of π is a Frame shape of $\cdot 0$ or that of a ghost class of $\cdot 0$ except for the following cases:

For these exceptional classes, $\pi \circ s$ is an r-th harmonic of a Frame shape of $\cdot 0$ for some $r \mid 24$ and also we have $\eta_{\pi \circ s}(z)^{-1} \in \mathfrak{F}$ and $\eta_{\pi \circ s \circ (2/1)}(z)^{-1} \in \mathfrak{F}$.

The proof of this theorem is done just by inspection of Table I of Appendix and we don't need any facts from the theory of elliptic modular functions other than Lemma 2.3 (cf. Table IV of Appendix). Finally we have the following theorem for r-th harmonics of Frame shapes of $\cdot 0$:

THEOREM 3.5. Let r>1 be an integer and $\pi=\prod_t t^{r_t}$ be a Frame shape of $\cdot 0$ with $r|_{T_t}$ for any t.

- (1) Let $\sum_t r_t = 0$. If $\prod_t t^{r_t/r}$ is a rational square, we have $\eta_{\pi/r}(z)^{-1} \in \mathcal{F}$.
- (2) Let $\sum_{t} r_{t} \neq 0$. Then one of the following holds:
 - (i) π/r is a Frame shape of a conjugacy class or ghost class of $\cdot 0$,
 - (ii) $(\sum_t r_t)/r$ is odd, or
 - (iii) r=4 and $\pi=1^84^8/2^8$, a Frame shape of the class -4A.

Also the proof of this theorem is obtained by inspection of Table I of Ap-

pendix and Lemma 2.3.

§ 4. Some examples of moonshines for finite groups.

4.1. In this paragraph, we collect some lemmas on group characters.

LEMMA 4.1. Let G be a finite group and $\sigma \mapsto \rho(\sigma)$ ($\sigma \in G$) be an n-dimensional representation of G over the complex number field. Let $\varepsilon_1(\sigma)$, $\varepsilon_2(\sigma)$, \cdots , $\varepsilon_n(\sigma)$ be eigenvalues of $\rho(\sigma)$. Define functions $a_k(\sigma)$ ($1 \le k < \infty$) and $b_k(\sigma)$ ($1 \le k \le n$) as follows:

$$\{(1-\varepsilon_1(\sigma)q)\cdots(1-\varepsilon_n(\sigma)q)\}^{-1}=\sum_{k=0}^{\infty}a_k(\sigma)q^k$$
,

$$(1+\varepsilon_1(\sigma)q)\cdots(1+\varepsilon_n(\sigma)q)=\sum_{k=0}^n b_k(\sigma)q^k$$

where q is a variable. Then $a_k(\sigma)$ and $b_k(\sigma)$ are characters of G.

PROOF. It can be easily seen that, if V is a representation space of G, $a_k(\sigma)$ (resp. $b_k(\sigma)$) is a character of the representation which ρ induces on the space of symmetric (resp. anti-symmetric) tensors of V of degree k, q.e.d.

LEMMA 4.2. Let G be a finite group and $\sigma \mapsto \rho(\sigma)$ ($\sigma \in G$) be a representation of G over Q. For an element σ of G with Frame shape $\prod_t t^{r_t}$, define a function $\chi_k(\sigma)$ as follows:

$$\eta_{\sigma}(z)^{-1} = q^{-m/24} \left(\sum_{k=0}^{\infty} \chi_k(\sigma) q^k \right),$$

where $m = \sum_t r_t t$ is the degree of ρ and $\eta_{\sigma}(z)$ is a function defined by (1.1). Then $\chi_k(\sigma)$ is an ordinary character of G.

Proof. Let

$$\xi(q) = (\prod_{t} (1-q^t)^{r_t})^{-1} = \sum_{k} a_k(\sigma) q^k$$
.

Then, by Lemma 4.1, $a_k(\sigma)$ is an ordinary character of G, as we have clearly

$$\prod_{t} (1-q^t)^{r_t} = (1-\varepsilon_1(\sigma)q) \cdots (1-\varepsilon_m(\sigma)q)$$

where $\varepsilon_1(\sigma)$, \cdots , $\varepsilon_m(\sigma)$ are eigenvalues of $\rho(\sigma)$. Then it follows from $\eta_{\sigma}(z)^{-1} = \prod_{n=1}^{\infty} \xi(q^n)$ that the coefficients $\chi_k(\sigma)$ of $\eta_{\sigma}(z)^{-1}$ are ordinary characters, q. e. d.

LEMMA 4.3. Let \mathfrak{S}_n be the symmetric group of degree n and $\xi(q) = \sum_{k=0}^{\infty} c_k q^k$ $(c_0=1)$ be a formal power series of q with non-negative integral coefficients, i.e. $0 \le c_k \in \mathbb{Z}$ $(k=1, 2, 3, \cdots)$. For an element σ of \mathfrak{S}_n with a cycle decomposition $\prod_t t^{r_t}$, define functions $d_k(\sigma)$ as follows:

$$\prod_t \xi(q^t)^{r_t} = \sum_{k=0}^{\infty} d_k(\sigma) q^k$$
 .

Then $d_k(\sigma)$ are characters of \mathfrak{S}_n .

PROOF. We may assume that $\xi(q)$ is a polynomial, as $d_k(\sigma)$ $(1 \le k \le n)$ are clearly the same as the ones which are obtained from a polynomial $\sum_{k=0}^n c_k q^k$. Thus we may assume $\xi(q) = 1 + c_1 q + \cdots + c_n q^n$. Let

$$m=c_1+c_2+\cdots+c_n$$

and x_0, x_1, \dots, x_m be m+1 independent variables. For $\sigma = \prod_t t^r t \in \mathfrak{S}_n$, define a function $\chi_{k_0 k_1 \dots k_m}(\sigma)$ on \mathfrak{S}_n as follows:

$$\prod_{t} (x_0^t + \cdots + x_m^t)^{r_t} = \sum_{k_0 + \cdots + k_m = n} \chi_{k_0 k_1 \cdots k_m} (\sigma) x_0^{k_0} x_1^{k_1} \cdots x_m^{k_m}.$$

It is well known [5; § 5.2] that $\chi_{k_0\cdots k_m}(\sigma)$ is a character of \mathfrak{S}_n which is induced from the principal character of the subgroup $\mathfrak{S}_{k_0}\times\mathfrak{S}_{k_1}\times\cdots\times\mathfrak{S}_{k_m}$ of \mathfrak{S}_n . Now, by putting,

$$x_0=1,$$
 $x_1=\cdots=x_{c_1}=q$,
 $x_{c_1+1}=\cdots=x_{c_1+c_2}=q^2$,
 \cdots
 $x_{c_1+\cdots+c_{n-1}}=\cdots=x_m=q^n$,

we see that $d_k(\sigma)$ is a linear combination of several induced characters $\chi_{k_0\cdots k_m}(\sigma)$ with non-negative coefficients. Thus $d_k(\sigma)$ is a character of \mathfrak{S}_n , q.e.d.

LEMMA 4.4. Let d>1 be an integer and let

$$\eta(2z)\eta(dz)/\eta(z)\eta(2dz) = q^{(1-d)/24}(1+\sum_{k} c_{k}q^{k})$$
.

Then we have $c_k \ge 0$ $(1 \le k < \infty)$.

PROOF. If $k \leq 2dn$, the c_k are the same as the coefficients of q-expansion of

$$\prod_{h=1}^{dn} (1-q^{2h}) \prod_{h=1}^{2n} (1-q^{dh}) / \prod_{h=1}^{2dn} (1-q^h) \prod_{h=1}^{n} (1-q^{2dh})$$

$$= \left(\prod_{h=1}^{n} (1 - q^{d(2h-1)}) / (1 - q^{2h-1}) \right) \prod_{h=1}^{d(n-1)} (1 - q^{2h+1})^{-1}.$$

Clearly all coefficients of q-expansion of the right hand side are non-negative.

4.2. Let G be a finite group and \mathcal{F} be a class of elliptic modular functions defined in the introduction. A mapping from G to \mathcal{F}

$$G \ni \sigma \longmapsto i_{\sigma}(z) \in \mathcal{G}$$

is said to satisfy *Moonshine condition* or simply to be a *moonshine* if every coefficient $a_k(\sigma)$ $(k \ge 1)$ of a Fourier expansion of $j_{\sigma}(z) = 1/q + \sum_{k=0}^{\infty} a_k(\sigma)q^k$ is a generalized character of G. Furthermore, if every coefficient $a_k(\sigma)$ $(k \ge 1)$ of $j_{\sigma}(z)$ is an ordinary character of G, this moonshine is called *proper*.

REMARK 4.1. In the above moonshine condition, the constant term $a_0(\sigma)$ of a Fourier expansion of $j_{\sigma}(z)$ need not necessarily to be any generalized character. But, in all moonshines which appear in this paper, $a_0(\sigma)$ will be also a generalized character.

Let d>1 be a divisor of 24 and $\sigma\mapsto\rho(\sigma)$ $(\sigma\in G)$ be a d-dimensional representation of G over Q.

LEMMA 4.5. Let G, ρ and d be as above and $\pi = \prod_h h^{d_h}$ be a generalized permutation of degree 24/d. For every element σ of G with Frame shape $\sigma = \prod_t t^{r_t}$, we put

$$j_{\sigma}^{\pi}(z) = \prod_{t} (\prod_{h} \eta(htz)^{d_h})^{-r_t}$$
.

Then $j_{\sigma}^{\pi}(z)$ has a Fourier expansion of the form

(*)
$$j_{\sigma}^{\pi}(z) = \frac{1}{q} + \sum_{k=0}^{\infty} a_k(\sigma) q^k$$

and $a_k(\sigma)$ (k=0, 1, 2, ...) are generalized characters of G.

PROOF. It is clear that $j_{\sigma}^{\pi}(z)$ has a Fourier expansion of the form (*). For each h, the coefficients of $\prod_{t} \eta(htz)^{r_{t}}$ are generalized characters of G by Lemma 4.2. From this, the second statement follows, q.e.d.

Now we ask when we have $j_{\sigma}^{\pi}(z) \in \mathcal{F}$, i. e. a mapping $\sigma \mapsto j_{\sigma}^{\pi}(z)$ is a moonshine.

THEOREM 4.6. Let G, ρ and d be as above. Assume that,

- (#) for any element σ of G with a Frame shape $\prod_t t^{r_t}$, a generalized permutation $\prod_t t^{24r_t/d}$ of degree 24 is a Frame shape of $\cdot 0$.
 - (1) Let $d^+=1+(24/d)$. Then a mapping

$$G \ni \sigma \longmapsto j_{d,\sigma}^+(z) = (\prod_t (\eta(d^+tz)/\eta(tz))^{r_t})^{-1}$$

is a moonshine of G, where $\prod_t t^{r_t}$ is a Frame shape of σ .

(2) Let $d^-=(24/d)-1$. Then a mapping

$$G\ni \sigma\longmapsto j_{d,\sigma}^-(z)=(\prod_t(\eta(2tz)\eta(2d^-tz)/\eta(tz)\eta(d^-tz))^{r_t})^{-1}$$

is also a moonshine of G, where $\prod_t t^{r_t}$ is a Frame shape of σ .

PROOF. (1) Let π^+ be a generalized permutation $d^+/1$. Then we have $j^+_{d,\sigma}(z)=j^{\pi^+}_{\sigma}(z)$ in the notation of Lemma 4.5. Thus the coefficients of a Fourier expansion of $j^+_{d,\sigma}(z)$ are generalized characters by Lemma 4.5. On the other hand, we have

$$j_{d,\sigma}^+(z) = \eta_{\sigma' \circ (d^+/1)}(z)^{-1}$$

where $\sigma' = \prod_{t} t^{24r_t/d}$ and $\sigma' \circ (d^+/1)$ is a $(d^+/1)$ -transformation of σ' . Then it follows from (#) and Th. 3.2 that $j_{d,\sigma}^+(z) \in \mathcal{F}$.

(2) Let π^- be a generalized permutation $(2.2d^-)/(1.d^-)$. Then we have, in

the notation of Lemma 4.5,

$$j_{d,\sigma}^{-}(z)=j_{\sigma}^{\pi^{-}}(z)$$
,

and also

$$j_{d,\sigma}^-(z) = \eta_{\sigma' \circ d^- \circ (2/1)}(z)^{-1}$$
.

Then (2) follows from Lemma 4.5, (#) and Th. 3.3, q.e.d.

REMARK 4.2. Moonshines in Th. 4.6 are not proper, i.e. Fourier coefficients of $j_{d,\sigma}^+(z)$ and $j_{d,\sigma}^-(z)$ are not necessarily ordinary characters. Some examples of proper moonshines will be given in the next paragraph § 4.3.

Let p be a prime with p+1|24 and d>1 be an integer with d|24. Many d-dimensional rational representations of SL(2, p) satisfy the condition (#) of Th. 4.6. In the following, we will give examples of such representations and Frame shapes w.r.t. them for p=5, 7.

SL(2,5)						
	$\pm 1A$	2A	$\pm 3A$	$\pm 5A$		
	14	2^2	1.3	5/1		absolutely irreducible
	1^6	1^22^2	3^2	1.5		a permutation representation
	1^6	$2^4/1^2$	3^{2}	1.5		absolutely irreducible
	14	49.409	1.3	5/1		
	$2^4/1^4$	$4^2/2^2$	2.6/1.3	1.10/2.5		absolutely irreducible
	[14	49 (09	$3^2/1^2$	5/1		
	${2^4/1^4}$	42/22	$1^26^2/2^23^2$	1.10/2.5		not absolutely irreducible
	$\{1^6$	49 409	3^2	1.5		
	${2^6/1^6}$	4°/2°	$6^2/3^2$	5/1 1. 10/2. 5 5/1 1. 10/2. 5 1. 5 2. 10/1. 5		not absolutely irreducible
SL(2,7)						
	$\pm 1A$	2A	$\pm 3AB$	4AB	$\pm 7AB$	
	1^6			2.4		absolutely irreducible
	1^6	$2^4/1^2$	3^2	$1^24^2/2^2$	7/1	not absolutely irreducible
	18	2^4		4^2	1.7	permutation representation
	18	2^4	$3^{3}/1$	4^2	1.7	absolutely irreducible
	$\int 1^8$	14 /94	$3^{3}/1$	02/42	1.7	about the land to the
	$2^8/1^8$	4-/4-	$1.6^{3}/2.3$	33	2.14/1.7	absolutely irreducible
	$[1^8]$	44.04	1^23^2	09 / 49	1.7	
	$2^{8}/1^{8}$	4*/Z*	$2^26^2/1^2/$	$\frac{8^2}{4^2}$	2. 14/1. 7	not absolutely irreducible
	$[1^{12}]$	08.448	3^{4}	10.100	$7^2/1^2$	
	$\left\{2^{12}/1^{12}\right\}$	83/43	$6^4/3^4$	4^{2} $8^{2}/4^{2}$ 3^{2} $4^{6}/2^{6}$	$1^214^2/2^27$	not absolutely irreduoible

Notations: For $SL(2,p) \ni \sigma$, if homomorphic image of σ in PSL(2,p) is of order n, conjugate class of σ is denoted by nA or $\pm nA$, according as σ and $-\sigma$ are conjugate in SL(2,p) or not. And nAB (resp. $\pm nAB$) expresses that there exist two conjugate classes nA and nB (resp. $\pm nA$ and $\pm nB$) of PSL(2,p) of order n with the same Frame shapes.

REMARK 4.3. Let ρ be one of representations of SL(2,5) of degree 6 in the above table. Then if σ is a class of order 5 and so its Frame shape is 1.5, we have $j_{6,\sigma}^+(z) = \eta(z)/\eta(25z)$ which is a ghost element of Monster's moonshine. Similarly another ghost element $\eta(2z)\eta(25z)/\eta(z)\eta(50z)$ of Monster's moonshine [2] also appears in the moonshines $\sigma \mapsto j_{4,\sigma}^-(z)$ which are obtained from any one of 4-dimensional representations of SL(2,5).

REMARK 4.4. SL(2, 9) has representations of degree 4 and 6 with the following Frame shapes:

The one of degree 6 is a natural permutation representation of $PSL(2, 9) \simeq \mathfrak{A}_6$ (=the Alternating group of degree 6). The representation of degree 4 satisfies the condition (#) of Th. 4.6, while the one of degree 6 does not, as $(1^33)^4 = 1^{12}3^4$ is not a Frame shape of $\cdot 0$. It is easy to see that, if $\sigma = (1^33)^4$, $\eta_{\sigma \circ (5/1)}(z)^{-1}$ does not satisfy the second condition in the definition of \mathcal{F} . Thus the representation of degree 6 does not yield a moonshine. Similarly the permutation representation of Mathieu group M_{12} of degree 12 also does not yield a moonshine. In fact, there are elements of M_{12} with cycle decompositions 1^44^2 and $1^22.8$. These permutations do not satisfy (#) of Th. 4.6 and it can be shown that, if σ is one of these permutations, $\eta_{\sigma^2 \circ (3/1)}(z)^{-1} \notin \mathcal{F}$, where $\sigma^2 = 1^84^4$ or $1^42^28^2$.

4.3. In this paragraph, we give some examples of proper moonshines for Mathieu group M_{24} and PSL(2, p) (p+1|24).

LEMMA 4.7. Let $\sigma = \prod_t t^{r_t}$ be a cycle decomposition (=Frame shape) of an element σ of M_{24} w.r.t. the natural permutation representation of M_{24} . Then (2/1)-transformation of σ is a Frame shape of $\cdot 0$. More explicitly, we have the following table:

where the second line denotes conjugacy classes of $\cdot 0$ with Frame shapes $\sigma \cdot (2/1)$. PROOF. This can be seen immediately from Table I of Appendix.

Theorem 4.8. For an element σ of M_{24} with a cycle decomposition $\prod_t t^{r_t}$, we put

$$j_{\sigma}(z) = \prod_{t} (\eta(2tz)^2/\eta(tz)\eta(4tz))^{\tau_t}$$
.

Then a mapping

$$M_{24} \ni \sigma \longmapsto j_{\sigma}(z)$$

is a proper moonshine of M_{24} .

Proof. Let $\sigma' = \sigma \circ (2/1) \circ (2/1)$. Then we have

$$\sigma' = \prod_t t^{r_t} (4t)^{r_t} (2t)^{-2r_t}$$

and

$$j_{\sigma}(z) = \eta_{\sigma'}(z)^{-1}$$
.

Then it follows from Lemma 4.7 and Th. 3.2 that $j_{\sigma}(z) \in \mathcal{F}$. Furthermore, we see from Lemma 4.3 and 4.4 that this moonshine is proper, q.e.d.

LEMMA 4.9. Let p be a prime with p+1|24 and ρ_p be a permutation representation of PSL(2, p) of degree p+1 on a projective line over F_p , a finite field of p elements. For an element σ of PSL(2, p), let $\sigma = \prod_t t^{r_t}$ be a Frame shape of σ w.r.t. ρ_p . Then a generalized permutation $\prod_t t^{24r_t/(p+1)}$ of degree 24 is a Frame shape of M_{24} .

PROOF. It is easy to check this for each p=2, 3, 5, 7, 11 and 23. See the table in § 4.2 for p=5, 7.

THEOREM 4.10. Notations being as in Lemma 4.9, we put, for $PSL(2, p) \ni \sigma$,

$$j_{p,\sigma}(z) = \prod_{\cdot} (\eta(2tz)\eta(dtz)/\eta(2dtz)\eta(tz))^{r_t}$$

where d=24/(p+1)+1 and $\prod_t t^r t$ is a Frame shape of σ . Then a mapping

$$\sigma \longmapsto j_{p,\sigma}(z)$$

is a proper moonshine of PSL(2, p).

PROOF. Let $\sigma' = \prod_t t^{24r} t^{t/(p+1)}$. Then we have

$$\sigma' \! \circ \! (d/1) \! \circ \! (2/1) \! = \! \prod_{t} (2dt)^{r_{t}} t^{r_{t}} (2t)^{-r_{t}} (dt)^{-r_{t}}$$

and so

$$j_{p,\sigma}(z) = \eta_{\sigma' \circ (d/1) \circ (2/1)}(z)^{-1}$$
.

By Lemma 4.9, σ' is a Frame shape of M_{24} and then, by Lemma 4.7 and Th. 3.2, $j_{p,\sigma}(z) \in \mathcal{F}$. By Lemma 4.3 and 4.4, this moonshine is proper, q.e.d.

REMARK 4.5. $j_{\sigma}(z)$ and $j_{23,\sigma}(z)$ being in Th. 4.8 and 4.10 respectively, we have $j_{\sigma}(z)=j_{23,\sigma}(z)$. Since PSL(2,23) is a subgroup of M_{24} and the embedding is unique up to conjugation, a moonshine $\sigma\mapsto j_{23,\sigma}(z)$ of PSL(2,23) is a restriction of a moonshine $\sigma\mapsto j_{\sigma}(z)$ of M_{24} .

4.4. Here we will make two remarks on Th. 4.6, 4.8 and 4.10. In these theorems, we constructed moonshine of a finite group G by using a representation of G of degree d satisfying the condition (\sharp) of Th. 4.6 and one of transformations $d^+/1$, $d^-\circ(2/1)$ and $(2/1)\circ(2/1)$ (in this case, d=24) of "degree" 24/d. These are, however, not all transformations we can use to construct moonshines. In fact, for d=4 or 6, we can also use the following transformations of "degree" 24/d:

$$d=4$$
 $5 \cdot (2/1) \cdot (2/1)$, $(3/1) \cdot (4/1)$
 $d=6$ $3 \cdot (2/1) \cdot (2/1)$, $(3/1) \cdot (3/1)$.

But these transformations do not always yield a moonshine. For example, for a representation of SL(2,5) or SL(2,7) in which a Frame shape $2^4/1^2$ appears (§ 4.2), a transformation $3 \cdot (2/1) \cdot (2/1)$ does not yield a moonshine, because we can easily see that $\pi = (2^{16}/1^8) \cdot 3 \cdot (2/1) \cdot (2/1) = 2^8 6^8 8^4 24^4/1^2 3^2 4^{10} 12^{10}$ but $\eta_{\pi}(z)^{-1} \notin \mathcal{F}$.

The second remark is that $j_{\sigma}(z)$ in Th. 4.8 can be related to some even lattice.

Let V be a 24-dimensional vector space over \mathbf{Q} and e_i $(1 \le i \le 24)$ be a basis of V. Furthermore let (u, v) $(u, v \in V)$ be an inner product of V with $(e_i, e_j) = 2\delta_{ij}$. Set $L = \sum_{i=1}^{24} \mathbf{Z} e_i \in V$. Then L is an even lattice of V on which the Mathieu group M_{24} acts in such a way that $e_i^{\sigma} = e_{\sigma(i)}$ $(\sigma \in M_{24})$. For each $\sigma \in M_{24}$, we put

$$L_{\sigma} = \{ v \in L \mid v^{\sigma} = v \}$$

and

$$\Theta_{\sigma}(z) = \sum_{v \in L_{\sigma}} e^{\pi i (v, v) z}$$
 (Θ -series of L_{σ}).

THEOREM 4.11. $j_{\sigma}(z)$ being as in Th. 4.8, we have

(*)
$$\Theta_{\sigma}(z) = j_{\sigma}(z)^2 \eta_{\sigma}(2z)$$

where $\prod_t t^{r_t}$ is a cycle decomposition of σ and $\eta_{\sigma}(z) = \prod_t \eta(tz)^{r_t}$.

PROOF. Let $\theta(z) = \sum_{x \in \mathbb{Z}} e^{2\pi i x^2 z}$. It is easy to see that $\Theta_{\sigma}(z) = \prod_t \theta(tz)^{r_t}$. Then (*) follows from the identity $\theta(z) = \eta(2z)^5/\eta(z)^2\eta(4z)^2$, q. e. d.

Appendix. Table I \sim IV.

For conjugacy classes of $\cdot 0$, we use the following notations in § $3\sim$ § 4 and Table I \sim IV. The heading column nA, nB, \cdots of Table I are the Atlas names of conjugacy classes of the Conway's simple group $\cdot 1$ (=the factor group of $\cdot 0$ by its center $\langle \pm 1 \rangle$) [11; Table 1], i.e. conjugacy classes of $\cdot 1$ of order n are named nA, nB, \cdots in descending order of their centralizer sizes.

Case (1). If the inverse image in $\cdot 0$ of a class nX ($X=A, B, \cdots$) of $\cdot 1$ is a conjugacy class of $\cdot 0$, this class is also denoted by nX.

Case (2). If the inverse image in $\cdot 0$ of a class nX of $\cdot 1$ consists of two conjugacy classes of $\cdot 0$, these classes are denoted by +nX and -nX.

Table I; In case (1), Frame shape of a class nX is written after the heading column and in case (2), firstly Frame shape of +nX and then that of -nXare written. For a Frame shape $\pi = \prod_t t^{r_t}$ with $\sum_t r_t = 0$, a group for $\eta_{\pi}(z)^{-1}$ is given in parenthesis after the Frame shape by using notations of Table 2 and 3 of [2] (cf. also § 2.1 of this paper).

Table II \sim IV; Let π be a Frame shape of $\cdot 0$. If $\pi \circ (r/1)$ (resp. $\pi \circ s$) is a Frame shape of a conjugacy class nX (+nX or -nX) of $\cdot 0$, $\pi \cdot (r/1)$ (resp. $\pi \cdot s$) is also denoted by nX (nX or -nX). Note that + of +nX is omitted. And if $\pi \circ (r/1)$ (resp. $\pi \circ s$) is the m-th harmonic of a Frame shape of a class nX (+nX) or -nX), $\pi \circ (r/1)$ (resp. $\pi \circ s$) is denoted by nX/m(nX/m) or -nX/m).

Some of (r/1)-transformations are expressed by generalized permutations with symbols (?). These are exceptional classes in Th. 3.2.

In Table II and III, groups for $\eta_{\pi_{\circ}(2/1)}(z)^{-1}$ or $\eta_{\pi_{\circ}(3/1)}(z)^{-1}$ are given in parenthesis after $\pi \circ (2/1)$ or $\pi \circ (3/1)$. Then the following notations are used:

$$T = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad T_n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix},$$
$$\left(\frac{1}{h}n\right) = \begin{pmatrix} 1 & 1/h \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}, \quad \left(n\frac{1}{h}\right) = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \begin{pmatrix} 1 & 1/h \\ 0 & 1 \end{pmatrix},$$

 W_{ϱ} =an Atkin-Lehner's involution of $\Gamma_{\varrho}(N)$ for some N.

A notation like "N+Q, $\left(h\frac{1}{n}\right)$, ..." denotes $\langle \Gamma_0(N), W_Q, \begin{pmatrix} 1 & 1/h \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$, ...>.

References

- [1] J. H. Conway, Three Lectures on Exceptional Groups (Chap. VII of Finite Simple Groups, edited by M. B. Powell and G. Higman), Academic Press, London and New York, 1971.
- [2] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308-339.
 [3] M. Koike, On Mackay's conjecture, Nagoya Math. J., 95 (1984), 85-90.
- M. Koike, Moonshine for $PSL_2(p)$, preprint.
- M. Koike, a personal communication (a table of explicit expressions of $\eta_{\pi}(z)$ as Eisenstein series).
- [6] M. I. Knopp, Modular Functions in Analytic Number Theory, Markham Mathematics Series, 1970.
- D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd Edition, Oxford Univ. Press, 1950.
- G. Mason, M_{24} and certain automorphic forms, preprint.
- M. Newmann, Construction and application of a class of modular functions II, Proc. [9] London Math. Soc. (3), 9 (1959), 373-387.
- [10] L. Queen, Modular functions arising from some finite groups, Math. Comp., 37 (1981), 547-580.
- [11] R.A. Wilson, The maximal subgroups of Conway's group Co₁, J. Algebra, 85 (1983), 144-165.

Table I. Frame shapes of conjugacy classes of $\cdot 0$.

```
Table I (continued)
                                                                1<sup>3</sup>18<sup>3</sup>/2<sup>3</sup>9<sup>3</sup> (18+18)
         9^3/1^3 (9-),
                                                                3.18^3/6.9^3 (18-)
         9^3/3,
                                                                2^{3}3^{2}18^{3}/1^{3}6^{2}9^{3} (18+9)
         1^{3}9^{3}/3^{2},
         5^210^2/1^22^2 (10+2),
                                                                1^{2}10^{4}/2^{4}5^{2} (10-)
10A
                                     2^{3}20^{3}/4^{3}10^{3} (20/2+10)
10B
                                     4^{2}20^{2}/2^{2}10^{2} (20/2+5)
10C
         1^{2}2.10^{3}/5^{2}.
                                                                2^{3}5^{2}10/1^{2}
10D
         2.10^3/1^35 (10-),
                                                                 1^{3}5.10^{2}/2^{2}
10E
10F
                                                                 2^{2}22^{2}/1^{2}11^{2} (22+11)
        1<sup>2</sup>11<sup>2</sup>,
11A
        1<sup>4</sup>12<sup>4</sup>/3<sup>4</sup>4<sup>4</sup> (12+12),
                                                                2<sup>4</sup>3<sup>4</sup>12<sup>4</sup>/1<sup>4</sup>4<sup>4</sup>6<sup>4</sup> (12+4)
                                     2^{2}12^{4}/4^{4}6^{2} (12-)
12B
                                     6^{2}12^{2}/2^{2}4^{2} (12/2+2)
12C
                                                                 2.3^{3}12^{3}/1.4.6^{3}
         1.12^3/3^34 (12-),
12D
         4^{2}12^{2}/1^{2}3^{2} (12+3),
                                                                 1^{2}3^{2}4^{2}12^{2}/2^{2}6^{2}
12E
                                     4^{3}24^{3}/8^{3}12^{3} (24/4+6)
12F
                                     4^{2}12^{2}/2.6
12G
         2^{3}6.12^{2}/1.3.4^{2}
                                                                 1.2^2 3.12^2 / 4^2
12H
                                                                2^{2}3^{2}4.12/1^{2}
         1^{2}4.6^{2}12/3^{2},
12I
12J
         2^23.12^3/1^34.6^2 (12-),
                                                                 1^{3}12^{3}/2, 3, 4, 6
12K
                                     24<sup>2</sup>12<sup>2</sup> (24/12-)
12L
12M
        13^2/1^2 (13-),
                                                                 1^{2}26^{2}/2^{2}13^{2} (26+26)
13A
                                     2^{2}28^{2}/4^{2}14^{2} (28/2+14)
14A
                                                                 2^{2}14^{2}/1.7
14B
        1.2.7.14,
                                                                 2^{3}3^{3}5^{3}30^{3}/1^{3}6^{3}10^{3}15^{3} (30+6,10)
       1^{3}15^{3}/3^{3}5^{3} (15+15),
15A
        3^{2}15^{2}/1^{2}5^{2} (15+5).
                                                                 1^{2}5^{2}6^{2}30^{2}/2^{2}3^{2}10^{2}15^{2} (30+5.6)
                                                                 3^230^2/6^215^2 (30/3+10)
        15^23^2 (15/3-),
15C
                                                                 2.6.10.30/1.3.5.15 (30+3,5) 2^23.5.30^2/1^26.10.15^2 (30+15)
        1.3.5.15,
15D
        1^{2}15^{2}/3.5.
15E
                                     2^{2}16^{2}/4.8
16A
       2.16^2/1^28 (16-),
                                                                 1<sup>2</sup>16<sup>2</sup>/2.8
16B
                                                                 1.18^2/2^29 (18-)
        9.18/1.2 (18+2),
18A
       2.3.18^2/1^26.9 (18-),
                                                                 1^29.18/2.3
18B
18C 1.2.18<sup>2</sup>/6.9.
                                                                 2^{2}9.18/1.6
```

```
Table I (continued)
20A 1^2 20^2 / 4^2 5^2 (20+20),
                                      2^{2}5^{2}20^{2}/1^{2}4^{2}10^{2} (20+4)
20B
              4.20
                                       2^{2}5.20/1.4
200 1.2.10.20/4.5,
21A 1^2 21^2 / 3^2 7^2 (21+21),
                                       2^{2}3^{2}7^{2}42^{2}/1^{2}6^{2}14^{2}21^{2} (42+6,14)
21B 7.21/1.3 (21+3),
                                       1.3.14.42/2.6.7.21 (42+3,14)
21C 3.21
                                        6.42/3.21 (42/3+7)
                      2.22
22A
                                        2.46/1.23 (46+23)
23A 1.23,
                                        2.46/1.23 (46+23)
23B 1.23,
                      2^{2}24^{2}/6^{2}8^{2} (24/2+12)
24A
      1^{2}4.6.24^{2}/2.3^{2}8^{2}12 (24+24),
                                        2.3^{2}4.24^{2}/1^{2}6.8^{2}12 (24+8)
24B
                      8.24/2.6 (24/2+3)
24D
                      12.24/4.8 (24/4+2)
24E
                      2.6.8.24/4.12
24F 1.4.6.24/3.8,
                                        2.3.4.24/1.8
                      2.52/4.26 (52/2+26)
26A
28A 4.28/1.7 (28+7),
                                        1.4.7.28/2.14
                      4.56/8.28 (56/4+14)
28B
      1.2.15.30/3.5.6.10 (30+2,15), 2^23.5.30^2/1.6^210^215 (30+15)
30A
                      2.10.12.60/4.6.20.30 (60/2+5,6)
30B
                      6.60/12.30 (60/6+10)
30C
                                       2.3.5.30/1.15
30D
      1.6.10.15/3.5,
30E
      2.30/3.5 (30+15),
                                       2.3.5.30/6.10
33A 3.33/1.11 (33+11),
                                       1.6.11.66/2.3.22.33 (66+6,11)
35A 1.35/5.7 (35+35),
                                       2.5.7.70/1.10.14.35 (70+10,14)
36A 1.36/4.9 (36+36),
                                       2.9.36/1.4.18 (36+4)
39A 1.39/3.13 (39+39),
                                       2.3.13.78/1.6.26.39 (78+6,26)
39B 1.39/3.13 (39+39),
                                       2.3.13.78/1.6.26.39 (78+6,26)
40A
                2.40/8.10 (40/2+20)
                4.6.14.84/2.12.28.42 (84/2+6,14)
42A
60A 3.4.5.60/1.12.15.20 (60+12,15), 1.4.6.10.15.60/2.3.5.12.20.30 (60+4,15)
```

```
Table II. (2/1)-transformations of Frame shapes of \cdot 0.
```

```
-1A (2-), 1^{24}4^{24}/2^{48} (4+)
1A
                                      1^{8}4^{16}/2^{24} (4-)
           4A (4-),
2A
                     -1A^{\circ}(2/1)/2 (16+16,(\frac{1}{2}8))
2B
                          2B (8+(\frac{1}{5}4))
3A -3A (6+6), 2^{24}3^{12}12^{12}/1^{12}4^{12}6^{24} ((6+6)<sup>T</sup>)

3B -3B (6+3), 1^{6}3^{6}4^{6}12^{6}/2^{12}6^{12} (12+)

3C -3C (6-), 2^{6}3^{9}12^{9}/1^{3}4^{3}6^{18} (12+4)

3D -3D (18+9,(-\frac{1}{3}6)), -1A \cdot (2/1)/3 (36+4,9,(\frac{1}{3}12))
         1^{8}8^{8}/2^{8}4^{8} (8+), 2^{16}8^{8}/1^{8}4^{16} (8+8<sup>T</sup>)
           -2A \circ (2/1)/2 (8-)
8C (8-), 1^4 4^2 8^4/2^{10} (8-)
4B
                          8A (16+(\frac{1}{2}8))
                          -1A \circ (2/1)/4 (64+64, (\frac{1}{4}16))
                           4E (32+(-\frac{1}{4}8),(\frac{1}{2}16))
        -5A (10+10), 2^{12}5^{6}20^{6}/1^{6}4^{6}10^{12} ((10+10)<sup>T</sup>)
-5B (10+5), 1^{4}4^{4}5^{4}20^{4}/2^{8}10^{8} (20+)
5A
5B -5B (10+5),
                                                  2^{2}5^{5}20^{5}/1.4.10^{10} (20+4)
          -5C (10-),
5C
                                                2^{4}3^{4}12^{4}/1^{4}4^{4}6^{4} (12+12<sup>T</sup>)
           12A (12+12),
           \begin{array}{c} -3\text{A} \circ (2/1)/2 \ (24+24, (\frac{1}{2}12))^{\text{ST}} 12 \\ 2^3 3^{\cancel{4}} 4 \cdot 12^5 / 1^4 6^9 \ (12+12^{\text{TW}} 4), \quad 1^4 4^5 6^3 12 / 2^9 3^4 \ (12+12^{\text{TW}} 4) \end{array}
 6B
        1^{5}3.4.12^{5}/2^{6}6^{6} (12+12),
                                                                   2^{9}12^{4}/1^{5}3.4^{4}6^{3} (12+12<sup>T</sup>)

1^{2}3^{2}4^{4}12^{4}/2^{6}6^{6} (12+3)
           12E (12+3),
                                                                    2^{3}3^{3}12^{6}/1.4^{2}6^{9} (12-)
           12D (12-),
 6F
                           -3B/2 (24+3, (\frac{1}{2}12))
 6G
                          -1A° (2/1)/6 (144+144, (\frac{1}{6}24), (\frac{1}{3}48))
6H (72+9, (-\frac{1}{6}12), (-\frac{1}{3}24))
 6Н
                                                                     2^{8}7^{4}28^{4}/1^{4}4^{4}14^{8} ((14+14)<sup>T</sup>)
          -7A (14+14),
 7A
                                                                     1^{3}4^{3}7^{3}28^{3}/2^{6}14^{6} (28+)
 7B
          -7B (14+7),
                             4A\circ(2/1)/2 (32+32,(\frac{1}{2}16))
                          -4A^{\circ}(2/1)/2 (32+32<sup>T8</sup>, (\frac{1}{2}16))

2^{6} (16+) 2^{6} (16+16<sup>T</sup>)
            1^{4}4^{4}16^{4}/2^{6}8^{6} (16+),
 8C
                           -2A · (2/1)/2 (16-)
 8D
                                                                     1^{2}4^{2}16^{2}/2^{5}8 (16-)
            16B (16-),
 8E
                            4A/4 (64+(-\frac{1}{4}16))
 8F
                                                                     2^{6}9^{3}36^{3}/1^{3}4^{3}18^{6} ((18+18)<sup>T</sup>)
 9A -9A (18+18),
                                                                     6^{3}9^{3}36^{3}/3.12.18^{6} (36+4)
 9B -9B (18-),
                                                                     1^{3}4^{3}6^{4}9^{3}36^{3}/2^{6}3^{2}12^{2}18^{6} (36+)
 9C -9C (18+9),
```

```
Table II (continued)
                                                                     2^{6}5^{2}20^{4}/1^{2}4^{4}10^{6} (20+20<sup>T</sup>)
10A
             20A (20+20),
                             -5A \circ (2/1)/2 ((40+40, (\frac{1}{2}20))^{ST}20)
10B
                             -5B \circ (2/1)/2 (80+5,16,(\frac{1}{2}40))
10C
             10D
10E
                               10C (40+5, (\frac{1}{2}20))
10F
                                                                   1^{2}4^{2}11^{2}44^{2}/2^{4}22^{4} (44+)
11A
          -11A (22+11),
            2^{4}3^{4}4^{4}24^{4}/1^{4}6^{4}8^{4}12^{4} (24+8, W_{3}(\frac{1}{2}12)), \quad 1^{4}4^{8}6^{8}24^{4}/2^{8}3^{4}8^{4}12^{8} (24+24, W_{3}(\frac{1}{2}12))
12A
            \begin{array}{c} -6 \text{A} \circ (2/1)/2 & (24 + \text{W}_3 \text{T}_{12}) \\ 24 \text{A} & (48 + 48, (\frac{1}{2}24)) \\ 2.3^3 4.24^3/1.6^3 8.12^3 & (24 + 8), & 1.4^2 6^6 24^3/2^2 3^3 8.12^6 & (24 + 8^\text{T}) \\ 1^2 3^2 8^2 24^2/2^2 4^2 6^2 12^2 & (24 + 1), & 2^4 6^4 8^2 24^2/1^2 3^2 4^4 12^4 & (24 + 3^\text{T}, 8^\text{T}) \end{array}
12B
12C
12D
12E
                          -3A^{\circ}(2/1)/4 (96+96,(\frac{1}{4}24),(\frac{1}{2}48))
12F
            \begin{array}{c} -6\text{E} \cdot (2/1)/2 & (24+\text{W}_3\text{T}) \\ 1.3.4^524^2/2^46^28^212 & (24+\text{W}_3\text{T}_{12}), \\ 2^28.3^212.24/1^24.6^4 & (24+\text{W}_3\text{T}), \end{array} \quad \begin{array}{c} 4^46.24^2/1.2.3.8^212^2 & (24+\text{W}_3\text{T}_{12}) \\ 1^24.8.6^224/2^43^212 & (24+\text{W}_3\text{T}) \end{array}
12G
12H
121
             24c (48+3, (\frac{1}{2}24))
1^{3}4^{3}6^{3}24^{3}/2^{5}3.8.12^{5} (24+24),
12.T
                                                                     2^4 3.24^3 / 1^3 8.12^4 (24 + 24^T)
12K
                            12L
12M
                                                                         2^{4}13^{2}52^{2}/1^{2}4^{2}26^{4} ((26+26)<sup>T</sup>)
           -13A (26+26),
13A
                             -7A \circ (2/1)/2 \ ((56+56,(\frac{1}{2}/2))^{ST_{28}})
14A
                                                                         1.4^{2}7.28^{2}/2^{3}14^{3} (28+7)
14B
             28A (28+7),
                                                                     1^{3}4^{3}6^{6}10^{6}15^{3}60^{3}/2^{6}3^{3}5^{3}12^{3}20^{3}30^{6} ((30+6,10)<sup>T</sup>)
          -15A (30+6,10),
15A
                                                                    2^{4}3^{2}10^{4}12^{2}15^{2}60^{2}/1^{2}4^{2}5^{2}6^{4}20^{2}30^{4} ((30+5,6)<sup>T</sup>)
           -15B (30+5,6),
15B
                                                                    -5A \circ (2/1)/3 \quad ((90+9,10,(-\frac{1}{3}30))^{T})
1.3.4.5.12.15.20.60/2^{2}6^{2}10^{2}30^{2} \quad (60+)
           -15C (90+9,10,(-\frac{1}{3}30)),
15C
           -15D (30+3,5),
15D
                                                                     1^{2}4^{2}6^{2}10^{2}15^{2}60^{2}/2^{4}3.5.12.20.30^{4} ((30+15)<sup>T</sup>)
           -15E (30+15),
15E
                             -8C \circ (2/1)/2 (64+(\frac{1}{2}32),64^{T}16)
16A
             1^{2}4.8.32^{2}/2^{3}16^{3} (32+),
                                                                   2^{3}8.32^{2}/1^{2}4.16^{3} (32+32<sup>T</sup>)
16B
                                                                     2^{3}9.36^{2}/1.4^{2}18^{3} (36+36<sup>T</sup>)
            36A (36+36), 2^{3}9.36^{2}/1.4^{2}18^{3} (36+36<sup>1</sup>) 1^{2}4.6^{2}9.36^{2}/2^{3}3.12.18^{3} (36+36), 2^{3}3.36/1^{2}4.6.9 (36+36<sup>T</sup>)
18B
             4.6.9.36^2/1.12.18^3 (36+36<sup>W4T</sup>), 1.4^26.36/2^39.12 (36+36<sup>W4T</sup>)
18C
            20A
20B
20C
```

```
Table II (continued)
                                                    1^{2}4^{2}6^{4}14^{4}21^{2}84^{2}/2^{4}3^{2}7^{2}12^{2}28^{2}42^{4} ((42+6.14)<sup>T</sup>)
         -21A (42+6,14),
       \begin{array}{lll} -21\text{A} & (42+6,14), & 1^24^26^{-1}4^{-2}1^{-2}84^{2}/2^{-3}2^{-7}12^{-2}28^{-4}2^{-7} & ((42+6,14)^{-7}) \\ -21\text{B} & (42+3,14), & 2^26^27.21.28.84/1.3.4.12.14^242^2 & ((42+3,14)^{-7}) \\ -21\text{C} & (126+7,9,(-\frac{1}{3}42)), & 3.12.21.84/6^242^2 & (252+4,9,7,(\frac{1}{3}84)) \end{array}
21B
                                -11A/2 (88+11, (\frac{1}{2}44))
22A
                                                    1.4.23.92/2<sup>2</sup>46<sup>2</sup> (92+)
23AB -23A (46+23),
                                12A \circ (2/1)/2 (96+32,96^{T_{24}},(\frac{1}{2}48))
         2^{3}3^{2}8^{3}12^{2}48^{2}/1^{2}4^{2}6^{3}16^{2}24^{3} (48+43,16<sup>T</sup>), 1^{2}6^{3}8^{3}48^{2}/2^{3}3^{2}16^{2}24^{3} (48+16,48<sup>T</sup>)
24B
                                 12E \circ (2/1)/2 (96+3,32,(\frac{1}{2}48))
                                 12A/4 (192+192, (\frac{1}{4}48); D_8)
         24E
24F
                                -13A^{\circ}(2/1)/2 ((104+104,(\frac{1}{2}52))^{ST}52)
'26A
         1.7.8.56/2.4.14.28 (56+), 2^2 8.14^2 56/1.4^2 7.28^2 (56+7<sup>T</sup>,8<sup>T</sup>) -7 A^{\circ} (2/1)/4 ((224+224,(\frac{1}{6}56),(\frac{1}{2}112)) ST112)
28A
28B
                                                      1.4^46^310^315.60^2/2^33.5.12^220^230^3 (60+12<sup>T</sup>,15<sup>T</sup>)
        60A (60+12,15),
30A
                                -15B \circ (2/1)/2 ((120+5,24,(\frac{1}{2}60))^{ST60})
30B
       -5\text{A} \circ (2/1)/6 \quad ((360+360, (\frac{1}{6}60), (\frac{1}{2}120), (\frac{1}{2}180))^{\text{ST}}60)
3.4.5.60/2.6.10.30 \quad (60+12,15), \quad 4.6^210^260/2.3.5.12.20.30 \quad (60+12^{\text{T}},15^{\text{T}})
30C
30D
         2.3.5.12.20.30/1.6^210^215 (60+15,TW<sub>5</sub>), 1.4.6.10.15.60/2^23.5.30^2 (60+15,TW<sub>5</sub>)
                                                      2^{2}3.12.22^{2}33.136/1.4.6^{2}11.44.66^{2} ((66+6,11)<sup>T</sup>)
         -33A (66+6,11),
                                                       1.4.10^2 14^2 35.140/2^2 5.7.20.28.70^2 ((70+10,14)^T)
        -35A (70+10,14),
35A
         2.4.9.72/1.8.18.36 (72+72,W_{9}(\frac{1}{2}36)), 1.4<sup>2</sup>18<sup>2</sup>72/2<sup>2</sup>8.9.36<sup>2</sup> (72+8,W_{9}(\frac{1}{2}36))
                                                      1.4.6^226^239.156/2^23.12.13.52.78^2 ((78+6,26)<sup>T</sup>)
39AB -39A (78+6,26),
                                  20A \circ (2/1)/2 (160+32,160^{T_{40}},(\frac{1}{2}40))
40A
                                -21A \circ (2/1)/2 ((168+21,56,(\frac{1}{2}84))^{ST}84)
42A
       1.6.8.10.15.20.48.120/2.3.4.5.24.30.40.60 (120+15,120,w_3(\frac{1}{2}60)), 2^23.5.8.12.20^230^248.120/1.4^26^210^215.24.40.60^2(120+15,24,w_3(\frac{1}{2}60))
Table III. (3/1)-transformations of Frame shapes of \cdot 0.
        3A (3-),
                                      -3A (6+6)
1A
        6A (6+2),
2A
                      6B (12/2+6)
                      3A/2 (6/2-)
2C
       1^{6}9^{6}/3^{12} (9+), 2^{6}3^{12}18^{6}/1^{6}6^{12}9^{6} (18+W<sub>2</sub>(6(-\frac{1}{3})))
3A
3B 9A (9-),
                                    -9A (18+18)
3D 3A/3 (9/3-), -3A/3 (18/3+6)
```

```
Table III (continued)
     12A (12+12),
                        -12A (12+4)
               12B (12-)
4B
     3^{2}6.12^{2}/1^{2}2.4^{2} (?), 1^{2}6^{3}12^{2}/2^{3}3^{2}4^{2} (?)
4C
               12C (12/2+2)
4D
              12F (24/4+6)
4E
               12^3/4^3 (?)
4F
     15A (15+15), -15A (30+6,10)
5A
                        -15B (30+5,6)
     15B (15+5),
5B
     1^{2}2^{2}9^{2}18^{2}/3^{4}6^{4} (18+), 2^{4}3^{4}18^{4}/1^{2}6^{8}9^{2} (18+9)
               -3A \circ (3/1)/2 (72+(\frac{1}{2}36), W_{72}(-\frac{1}{3}24); D_8)
      18A (18+2), -18A (18-)
6E
            -3A/6 (36/6+6)
6Н
                3A/6 (18/6-)
6I
      21A (21+21), -21A (42+6,14)
               24A (24/2+12)
8A
               -12A/2 (24/2+4)
      24B (24+24), -24B (24+8)
8C
                4.24^2/8^212 (?)
                 24D (24/4+2)
8F
       30A (30+2,15), -30A (30+15)
10A
10C
               30B (60/2+5,6)
                15B (30/2+5)
10F
       33A (33+11),
                          -33A (66+6,11)
11A
      3^{4}4^{2}36^{2}/1^{2}9^{2}12^{4} (36+9, W_{36}(12(\frac{1}{3})), 1^{2}4^{2}6^{4}9^{2}36^{2}/2^{2}3^{4}12^{4}18^{2} (36+)
                  (-6A) • (2/1)/2 (36/2+9)
12B
12C
                    6A°(2/1)/2 (36/2+)
       36A (36+36), -36A (36+4)
12E
12L
               -3A/12 (72/12+6)
12M
                  36/12 (?)
       39AB (39+39), -39AB (78+6,26)
13A
                  42A (84/2+6,14)
14A
      1.5.9.45/3<sup>2</sup>15<sup>2</sup> (45+), 2.3<sup>2</sup>10.15<sup>2</sup>18.90/1.5.6<sup>2</sup>9.30<sup>2</sup>45 (90+5, W_2(30(\frac{1}{3}); D_8)
15B
      15A/3 (45/3+15), -15A/3 (90/3+6,10)
15C
      60A (60+12,15),
                                 -60A (60+4,15)
20A
      3^{2}7.63/1.9.21^{2} (63+9,W_{7}(21(\frac{1}{3}))),
                          1.6^29.14.21^2126/2.3^27.18.42^263 (126+9,126,W_7(42(\frac{1}{3})))
                  12A\circ(3/1)/2 (144+9, W_{16}(48(\frac{1}{3})), (\frac{1}{2}36); Z_2xZ_2xZ_2)
24A
```

Table IV. Other transformations of Frame shapes of $\cdot 0$.

	2-transf. (4/1)-transf.		5-transf.			(7/1)-transf.			
1A	2A,	4A	4A,	4A°(2/1)	1A	5B,	-5B	7A,	-7A
2B	8A		4Ao(2/1)/2		2B	10C		14A	
2C	4D		8A		2C	10F		7A/2	
3 A	6A,	12A	12A,	12A o (2/1)	ЗА	15B,	-15B	21A,	-21A
3B	6E,	12E	12E,	12E • (2/1)	3B	15D,	-15D	21B,	-21B
3C	6F,		12D,	12D°(2/1)	4E	-5B/4		28B	
4E 4A/4		4Ao(2/1)		4F	20B		28/4 (?)		
4F	4F 8F		4A,	4A/4		25Z, - 25Z		35A,	-35A
5A	10A,	20A	20A,	20A o (2/1)	6B	301	В	42A	
6B	24/	1	12A • (2/1)/2			7-transf.		(9/1)-transf.	
6G	6G 12J		240	24C					
7B	14B,	28A	28A,	28A o (2/1)	1A	7B,		9A,	
9A	18A,	36A	36A,	36A o (2/1)	2A		-14B	18A,	-18A
10B	404	1	20A o (2/1)/2		3D		-21C		-9A/3
12F	124	1/4	12A o (2/1)/4		4A	28A,	-28A	36A,	-36A
15A	30A,	60A	60A, 60A · (2/1)			ll-transf.		(13/1)-transf.	
	2 .	c	(5 (2)		1 A	11A,	-11A	13A,	-13A
	3-tran			-transf.	2B	-1	1A/2	26A	
1A	3B,		5A,		2C	22.	A	26/	2 (?)
2A	6E,			-10A	3A	33A,	-33A	39A,	-39A
2B -3B/2		10B 10 ³ /2 ³ (?)			23-transf,		(25/1)-transf.		
2C	6G			, , ,	1.4				
3A	9A, 9Z,			-15A	1A	23A,	-23A	25Z,	-25Z
3D	-			-15C -20A					
4A	•	-12E	-						
4B 12G		2.20 ² /4 ² 10 (?) 10A/2							
4D	12.			•					
5B		-15D		-25Z					
6A		~18A		-30A					
6H -3B/6		~5A/6							
6I	182		30/6 (?)						
7A		-21B	-	-35A					
8A	•								
8B	241			4.10.40/2.8.20 (?)					
12A	36A,	-36A	60A,	-60A					

Takeshi Kondo

Department of Mathematics College of Arts and Sciences University of Tokyo Komaba, Meguro-ku Tokyo 153, Japan