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Abstract. Affine-invariant codes are extended cyclic codes of lengthpm invariant under the affine-group acting
on Fpm . This class of codes includes codes of great interest such as extended narrow-sense BCH codes. In
recent papers, we classified the automorphism groups of affine-invariant codes [2], [5]. We derive here new
results, especially when the alphabet field is an extension field, by expanding our previous tools. In particular
we complete our results on BCH codes, giving the automorphism groups of extended narrow-sense BCH codes
defined over any extension field.
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1. Introduction

In a recent paper we gave a classification of permutation groups of affine-invariant codes
[5]. We developed several tools designed for the effective characterization of these groups
and presented some examples, mainly on codes defined on a prime field. In particular we
described precisely the permutation groups of extended narrow-sense BCH codes defined
over any prime field. Berger proved later that the automorphism group of any affine-
invariant code is simply deduced from its permutation group [3]. The aim of this paper is
to give more applications of our previous work, especially when the alphabet field is an
extension field.

We first recall the terminology and the main results that are presented in [5] and [3]. We
recall that two affine-invariant codes are generally not equivalent. We notice that affine-
invariant codes with large automorphism group can be easily constructed.

Our main results are presented in Section 4 which is devoted to the effective determination
of some automorphism groups. We begin (in Section 4.2) by giving an improvement of
our previous result about the link between the BCH bound of a given affine-invariant code
and its permutation group. Theorem 8 is a generalization of [5, Corollary 5]. Its main
consequence is Corollary 1 which will be of most interest later for the determination of the
automorphism groups of BCH codes. In Section 4.3 we describe the automorphism groups
of affine-invariant codes which are extensions of cyclic codes with few zeros. Proposition 1
is an immediate generalizations of [5, Proposition 5]. Thus the most important results are
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given by Theorem 9: we determine the automorphism groups of some extended cyclic
codes whose generator polynomial is the product of three cyclotomic classes.

The last section is devoted to automorphism groups of extended BCH codes whose alpha-
bet field is any extension field. The main result of this paper is the determination of these
groups (Theorem 10). Although we here generalize [5, Theorem 8] the proof necessitates
new tools especially those presented in Section 4.2.

The proofs of Section 4 are technical and special notation is necessary, which is presented
in Section 4.1. Main notation of the paper is listed at the end, in the Annex.

2. Preliminaries

We will use the following terminology throughout. The alphabet fieldFq, q = pr andp is
any prime, will be denoted byk. Let G be an extension field ofk of degreem′; the field
G will generally be identified withFpm, m = rm′. We consider linear codes of lengthpm

overk. SoG is viewed as thesupport-fieldand the coordinate positions of the codewords
are labelled by the elements ofG.

LetA = k[(G,+)] be the group algebra of the additive group ofG over the fieldk. An
element x ofA is a formal sum:

x =
∑
g∈G

xgXg, xg ∈ k .

Addition and multiplication are as follows:∑
g∈G

xgXg +
∑
g∈G

ygXg =
∑
g∈G

(xg + yg)X
g,

and ∑
g∈G

xgXg ×
∑
g∈G

ygXg =
∑
g∈G

( ∑
h+k=g

xhyk

)
Xg .

In this paperA is the ambient space. Codes are subspaces ofA and codewords are
elements ofA. An extensive study of codes ofA is to be found in [1] and [7].

Let Sym(G) be the symmetric group acting onG. Any permutationσ in Sym(G) acts
naturally on the elements ofA,

σ

(∑
g∈G

xgXg

)
=
∑
g∈G

xgXσ(g).

DEFINITION 1 The permutation group Per(C) of any code C is the subgroup of Sym(G)
which leaves the code globally invariant. More precisely, in the ambient spaceA, it is the
subgroup of thoseσ satisfying∑

g∈G

xgXσ(g) ∈ C for all x =
∑
g∈G

xgXg, x ∈ C .



THE AUTOMORPHISM GROUPS OF BCH CODES 31

DEFINITION 2 Let n = pm − 1. Let us denote bya = (ag)g∈G any element of(k∗)pm
,

wherek∗ = k \ {0}. The monomial groupMn(k) = (k∗)pm × Sym(G) is the set of
transformations(a; σ) which acts onA as follows:

(a; σ)
(∑

g∈G

xgXg

)
=
∑
g∈G

agxgXσ(g),

The automorphism group Aut(C) of a code C is then the subgroup ofMn(k) which leaves
the code globally invariant.

2.1. Affine-Invariant Codes

For any divisore of m, we can considerG as a vector-space of dimensionm/e over the
subfieldFpe. Then we have the following subgroups of the symmetric groupSym(G):

• The group of the Frobenius mappings

γpk : g 7−→ gpk
.

• The linear group GL(m/e, pe), which is the group ofFpe-linear permutations ofG.

• The affine group AGL(m/e, pe), which is the group generated by the linear group
GL(m/e, pe) and by thetranslationsof G—i.e. those mappingsg → g+ b, b ∈ G.
In particular

AGL(1, pm) = {σa,b : g 7−→ ag+ b, a ∈ G∗, b ∈ G},

whereG∗ = G \ {0}.
• Thesemi-linear group0L(m/e, pe), which is the group generated by the linear group

GL(m/e, pe) and by the Frobenius mappingγp.

• Thesemi-affine group A0L(m/e, pe), which is the group generated by the affine group
AGL(m/e, pe) and by the Frobenius mappingγp.

DEFINITION 3 An affine-invariant code is a proper subspace ofA invariant under the affine
permutations acting on G. In other words it is a code ofA whose automorphism group
contains AGL(1, pm).

Let σa,b ∈ AGL(1, pm). Then for any x∈ A
σa,b(x) =

∑
g∈G

xgXag+b = Xb
∑
g∈G

xgXag .

One can say that x isshiftedby a andtranslatedby b. The definition of theextensionof
codes here is the usual one: an overall parity-check symbol is added to each codeword; it
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is labelled by “0” and is such that the sum of all symbols of the extended codeword is zero.
Translation corresponds to multiplication byXb in A.

The algebraA has only one maximal ideal, called itsradical, which is the set of all
codewords x satisfying

∑
g∈G xg = 0. So it is clear that a codeC, which is a proper

subspace invariant underAGL(1, pm), is an ideal ofA and is an extended cyclic code.
On the other hand, Kasami, Lin, and Peterson characterized affine-invariant codes by a
combinatorial property of their defining sets [12]. We will define a partial order, on the set
Z/nZ of integers modulon, and present their result in this context. This point of view was
first developed by Charpin in [6].

We first state the definition of extended cyclic codes inA. A complete description of
cyclic codes and of their extension can be found in [7].

DEFINITION 4 Let n= pm− 1 and let us define, for any s∈ [0,n], thek-linear maps ofA
into G:

φs

(∑
g∈G

xgXg

)
=
∑
g∈G

xggs, (1)

where, by convention,0s = 0 for s> 0 and00 = 1; note thatφ0(x) =
∑

g∈G xg.
Let T be a subset of[0,n], containing0 and invariant under multiplication by q (mod n).

The extended cyclic code C with defining set T is defined as follows:

C = {x ∈ A | φs(x) = 0, ∀s ∈ T } .

Denoting byS the setZ/nZ of integers modulon, the defining set of any extended cyclic
code is a subset ofS. Any s ∈ Swill often be identified with itsp-ary expansion

s=
m−1∑
i=0

si pi , si ∈ [0, p− 1] .

We then define a partial order onSas follows:

∀s, t ∈ S, s ¹ t ⇐⇒ si ≤ ti , i ∈ [0,m− 1] (2)

(s ≺ t meanss ¹ t ands 6= t).

THEOREM1 [Kasami, Lin and Peterson [12]]An extended cyclic code C ofAwith defining
set T is affine-invariant if and only if T satisfies

t ∈ T and s¹ t ⇒ s ∈ T .

Note that the only affine-invariant code containingn in its defining set is the trivial code
{0}.
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More generally, for each divisore of m, we can define thev-ary expansion and the
v-weight of anys ∈ S:

s=
m′′−1∑
i=0

si v
i and wtv(s) =

m′′−1∑
i=0

si , vi ∈ [0, v − 1], (3)

wherev = pe andm′′ = m/e. In [9], Delsarte gave a necessary and sufficient condition
for a code to be invariant underAGL(m′′, pe) which can also be formulated in terms of a
partial order. Let us define, for alls, t ∈ S:

s¿e t ⇐⇒ wtv(p
ks) ≤ wtv(p

kt), ∀k ∈ [0,e− 1]. (4)

THEOREM2 [Delsarte [9]]An extended cyclic code C ofA with defining set T is invariant
under AGL(m′′, pe) if and only if T satisfies

t ∈ T and s¿e t ⇒ s ∈ T.

The most important classes of affine-invariant codes are the primitive extended narrow-
sense BCH codes and the generalized Reed-Muller (GRM) codes. We now give their
definitions.

DEFINITION 5 Recall thatk = Fq, q = pr and m= rm′. The extended primitive BCH
code overk of length pm and designed distanceδ will be denoted by Bq(δ); it is the code
with defining set

Tδ =
δ−1⋃
j=0

clq( j ),

where clq( j ), 1 ≤ j ≤ pm − 1, is the orbit of j under multiplication by q—by convention
we suppose thatδ is the smallest element of clq(δ).

The primitive BCH code of length pm−1and designed distanceδ overk (whose extension
is Bq(δ)) will be denoted by B∗q(δ).

DEFINITION 6 For anyµ, 1 ≤ µ ≤ m′(q − 1), the GRM-code of length pm overk and of
indexµ is the code G RMq(µ) ofA with defining set

L(µ) = {t ∈ S | 0≤ wtq(t) < µ} .
The integerν = m′(q − 1)− µ is the order of G RMq(µ).

Remark.By applying Theorem 1, one deduces immediately that the definitions above give
affine invariant codes.

For instance, consider the codeBq(δ) with defining setTδ. Let t ∈ Tδ ands ≺ t . By
definition of Tδ, there ist ′ ∈ clq(t) such thatt ′ < δ. Sinces ≺ t meansqs ≺ qt—by
definition, see (2)—, there iss′ ∈ clq(s) such thats′ ≺ t ′. Moreover it is clear thats′ ≺ t ′

impliess′ < t ′; sos′ < δ which yieldss ∈ Tδ. In the same way, it is easy to prove that
G RMq(µ) is affine invariant by noticing thats ≺ t implieswtq(s) < wtq(t).
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We determined in [4] the automorphism groups of GRM codes. We state our result for the
permutation groups in the next theorem; according to Theorem 5 below, the automorphism
group is simply deduced from this.

THEOREM3 (Berger and Charpin [4])The permutation group of G RMq(µ) is AGL(m′,q),
when1 < µ < m′(q − 1). If µ = 1 or µ = m′(q − 1) then G RMq(µ) is a trivial code
whose permutation group is the symmetric group over G.

2.2. The Automorphism Groups of Affine-Invariant Codes

The aim of this section is to recall the main tools that we introduced for the classification of
the permutation groups of affine-invariant codes. The proofs are to be found in [5, Section
II-B]. Our notation is as introduced before.

THEOREM4 (Berger and Charpin [5, Sect. II-B])LetC be a nontrivial affine-invariant code
ofA of length pm overFq, q = pr , m= rm′.

Then there exist a divisor e of m and a divisor` of e such that the permutation group
Per(C) of C is generated by AGL(m/e, pe) together with the Frobenius mappingγp` .

Let T be the defining set of C. Then` is the smallest integer such that T is invariant
under multiplication by p`. Moreover r divides e and̀ divides r.

Berger [2] proved later that the full automorphism group of any affine-invariant code is
easily deduced from its permutation group:

THEOREM5 ([2]) IfC is a non-trivial affine-invariant code, with permutation group Per(C),
then

Aut(C) = k∗ × Per(C) .

More precisely, the elements of Aut(C) are of the form∑
g∈G

xgXg 7→ a
∑
g∈G

xgXσ(g), a ∈ k∗, σ ∈ Per(C) .

Thus knowledge of the permutation group is sufficient for the complete description of the
automorphism group of any affine-invariant code. In accordance with Theorem 4, this is
achieved as soon as we know the values of the two parameters,` ande.

Remark.An affine-invariant codeC is an extended cyclic code. The permutation group of
the corresponding cyclic codesC∗ is the stabilizer of 0 in the permutation group ofC. It is
not so easy to determine the full automorphism group ofC∗ from the automorphism group
of C. For instance, it is easy to prove that the automorphism group of any Reed-Solomon
codeC∗ contains an element which is not in the direct productk∗ × Per(C) (see [10]).

In a certain sense, Theorem 4 is only an algorithm. For a large class of affine-invariant
codes the permutation group is immediately deduced, especially whenm is prime. But
generally, and always when the alphabet field is an extension field, the following question
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remains open: for a given affine-invariant codeC with defining setT , how does one compute
its permutation group? Some tools were developed in [5] among which is the next theorem.

For some particular values ofm or `, the determination ofe is easy: ifm is a prime, it
is sufficient to verify that the code is not ap-ary Reed-Muller code. If̀ = m, the only
possibility ise= m and the permutation group isAGL(1, pm). For the general case, the
determination ofe is more difficult. There are many situations and then we need several
different tools. In particular we state a condition which is equivalent to those of Delsarte
[9] and is more efficient (or more easy to handle) in some situations.

THEOREM6 (Berger and Charpin [5])Let C be an affine-invariant code with defining set
T . Let e be a divisor of m. Then the code C is invariant under AGL(m/e, pe) if and only
if

t ∈ T and j¹ t H⇒ t + j (pe− 1) ∈ T.

2.3. Equivalent Affine-Invariant Codes

To conclude this section, we want to point out that two distinct affine-invariant codes are
generally not equivalent. This was shown recently by Berger [2] to be a consequence
of Theorem 5. By sayingtwo codes are equivalentwe mean that there is a monomial
transformation from one code to the other.

THEOREM7 (Berger [2]) Two distinct affine-invariant codes, say C and C′, are equivalent
if and only if C is the image of C′ by some Frobenius mapping—i.e.γpk(C) = C′ for some k.

Any affine-invariant code C and any extended cyclic code C′ are equivalent if and only if
C is the image of C′ by a multiplier—i.e. by g7→ gt for some t prime to pm − 1.

Consider two cyclic codes of lengthn overk, sayC andC′. Assume that gcd(n, ϕ(n)) = 1
whereϕ is the Eulerϕ-function. It is well-known thatC andC′ are equivalent if and only if
C is the image ofC′ by a multiplier (see [11]). Note that Theorem 7 provides a necessary and
sufficient condition, without the hypothesis onn, when at least one code is affine-invariant.

Actually Theorem 7 provides important applications. For instancetwo self-dual affine-
invariant codes can be equivalentunder a Frobenius mapping only. These codes were
studied in [8], for characteristic 2 only. In particular, an effective method for constructing
several classes of such codes was given.

In general, two distinct affine-invariant binary codes are not equivalent. As an example
consider the binary extended cyclic codes which contain the Reed-Muller code of order 1 and
are contained in the Reed-Muller code of order 2. All these codes are affine-invariant and
we know that there are several pairs of such codes which have the same weight polynomial
(see [13]). According to Theorem 7 they are not equivalent.

3. Affine-Invariant Codes with Large Automorphism Groups

In this section we point out that affine-invariant codes, whose permutation group is larger
thanAGL(1, pm), exist and can be easily constructed.
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If we choose randomly an affine-invariant code defined overFq, its permutation group
will probably be the group generated byγq andAGL(1, pm). The exceptional codes to be
presented in Section 4.3 are very particular because their defining sets are very small (two
or three cyclotomic cosets). The main family of codes with a large permutation group is
that of GRM codes. We will show that exceptional BCH codes over an extension field are
essentially GRM codes.

However, there exist a lot of affine-invariant codes with larger permutation groups. For
instance, by using either Theorem 2 or Theorem 6, we can construct for eachs ∈ S and
each divisoreof m the smallest code containings in its defining set which is invariant under
AGL(m/e, pe). Generally the codes obtained in this way are not GRM codes.

More preciselymany affine-invariant codes have a permutation group which contains
AGL(m/r, pr ) for some non trivial divisor r of m.

Example 1. Assume thatm has a non-trivial divisorr and consider the poset(S,¿r ),
defined by (4). LetM(r ) be an antichain of this poset—i.e. a subset of non-related elements.
Let us define

T =
⋃

t∈M(r )

{ s ∈ S | s¿r t } .

By definition of¿r , we haveqT = T , q = pr . Moreover the extended cyclic code over
Fq, whose defining set isT , is invariant underAGL(m/r,q). This is an obvious corollary
of Theorem 2.

Our purpose here is to suggest the characterization of special classes of affine-invariant
codes with large permutation groups. For instance, we conjecture that such classes can be
found in the set of affine-invariant codes whose defining setT is such thatM(r ) (see the
example above) consists of only one cyclotomic coset. Another question is to determine
the smallest defining setT such that the corresponding code is invariant under a given
subgroup.

The classification induced by Theorem 4 is complete for binary codes of length 2m where
m is a prime, becausee is either 1 orm. In the same way the next class which will probably
be easy to study is the class of codes overF4 whose length is 2m wherem = 2k andk is
prime.

4. Automorphism Groups of Some Infinite Classes of Codes

In our previous paper [5], we described the automorphism groups of a number of affine-
invariant codes. In this section, we generalize our results on codes with few zeros and
on primitive BCH codes in the case where the alphabet field is an extension field. Since
the proofs are most technical, we need some precise notation and definitions. We use the
terminology of Huffman who presented our work in his chapter for the Handbook of Coding
Theory [10].
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4.1. Notation

Recall thatn = qm′ − 1, q = pr andm′ = m/r . SetS= [0,n] and lete be any divisor of
m; setm′′ = m/e. To any elements ∈ Sassociate anm′′-tuple

s ←→ (s0, s1, . . . , sm′′−1)pe

wheres = ∑m′′−1
i=0 si pei is the pe-adic expansion ofs. When necessary, we will indicate

the length of a string within the associatedm′′-tuple by a brace beneath the string or the
position of an entry (counting from the left starting with 0) by a value above the position
in them′′-tuple. For example, ife = r andm′′ = m′ = m/r , for s = qm′ − q2 − 1, the
associatedm′-tuple is

(q − 1,q − 1,
2

q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
m′−3

)q

A crucial problem in our proofs is to determine if some elements ∈ S is the smallest
element in itspe-cyclotomic coset. Notice that the elements of thepe-cyclotomic coset
of s are precisely the elements with associatedm′′-tuple a cyclic shift of them′′-tuple for
s. Notice also that the smallest element of itspe-cyclotomic coset must have its longest
string of 0’s (counting cyclic shifts) at the right end of them′′-tuple; if the longest string
of 0’s is unique, by placing it at the right end of them′′-tuple, we will have the smallest
element of itspe-cyclotomic coset. For example, ifq = 22, r = e= 2, m′′ = m′ = 5 and
s= 1+2q3+3q4, the 4-adic expansion ofs and of the smallest element of its 4-cyclotomic
cosett are:

s= (1,0,0,2,3)4 and t = (2,3,1,0,0)4 . (5)

Generally in this section, we will identifys and itspe-adic expansion:

s= (s0, s1, . . . , sm′′−1)pe.

Using the relation¹, defined by (2), we need not only thepe-adic expansion ofs but
also its p-adic expansion. Thep-adic expansion will be placed between brackets; for
example, ifs=∑m−1

i=0 s′i pi , thens= [s′0, s
′
1, . . . , s

′
m−1]. Moreover, we will simultaneously

use both notation: ifs = (s0, s1, . . . , sm′′−1)pe ands0 =
∑e−1

i=0 s0,i pi , then we writes0 =
[s0,0, s0,1, . . . , s0,e−1] and

s= ([s0,0, s0,1, . . . , s0,e−1], s1, . . . , sm′′−1)pe.

In (5), we haves= ([1,0],0,0, [0,1], [1,1])4.

DEFINITION 7 Let C be an affine-invariant code with defining set T . Let e be a divisor of m.
A disqualifying pair(s, t) for e is a pair such that s∈ T , t ¹ s, but s′ = s+ t (pe−1) 6∈ T .

According to Theorem 6, a codeC is not invariant underAGL(m/e, pe) if and only if a
disqualifying pair fore exists.



38 BERGER AND CHARPIN

4.2. BCH-Bounds and Permutation Groups of Affine-Invariant Codes

DEFINITION 8 The BCH-bound of an affine-invariant code C with defining set T is the
smallest integerδ ∈ [0,n] such thatδ is not in T .

Denote byT⊥ the defining set ofC⊥—the dual ofC. Note thatC⊥ is clearly affine-
invariant. The next result is easily deduced from the relation

T⊥ = {n− s|s 6∈ T}.

LEMMA 1 If δ′ is the biggest element of the defining set of an affine-invariant code C, then
n− δ′ is the BCH-bound of C⊥.

THEOREM8 Let C be an affine-invariant code with defining set T and BCH-boundδ. Let
e be a divisor of m and m′′ = m/e. If C is invariant under AGL(m′′, pe), then

δm′′−1 ¹ δm′′−2 ¹ · · · ¹ δ1 ¹ δ0, (6)

whereδ = (δ0, . . . , δm′′−1)pe is the pe-adic expansion ofδ.
More precisely, ifδi ≥ pj for some j, then pj+1− 1¹ δi−1.

Proof. Note, for clarity, that

pj+1− 1= [ p− 1, p− 1, . . . ,
j

p− 1,0, . . . ,0] .

Let 0< i ≤ m′′ − 1. To prove our theorem, it is sufficient to prove that(p− 1)pj ¹ δi−1

for all j such thatδi ≥ pj . Indeed, assuming that this property is satisfied, leti be given
and denote byj0 the greatest integerj such thatδi ≥ pj . Then we clearly have

δi = [δi,0, . . . , δi, j0,0, . . . ,0] ¹ [ p− 1, . . . ,
j0

p− 1,0, . . . ,0] = pj0+1− 1 .

But, by hypothesis,(p− 1)pj ¹ δi−1, for all j ≤ j0. So

pj0+1− 1= [ p− 1, . . . ,
j0

p− 1,0, . . . ,0] ¹ δi−1,

implying δi ¹ δi−1 (for any i ).

Let s = (pe − 1, . . . , pe − 1,
i

δi − pj , δi+1, . . . , δm′′−1)pe, for any j such thatδi ≥ pj .
By construction,s< δ, and thuss is in the defining setT . Note that

si−1 = [ p− 1, . . . , p− 1︸ ︷︷ ︸
e

] wheres= (s0, s1, . . . , sm′′−1)pe .

Now sett = pe(i−1)+ j . Sincepj ¹ si−1, thent satisfiest ¹ s. The pair(s, t) cannot be
a disqualifying pair fore, since the codeC is invariant underAGL(m′′, pe) (see Definition
7). Sos′ = s+ t (pe− 1) is in T , from Theorem 6. Note thats′ = s+ (pei+ j − pe(i−1)+ j );
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more preciselys ands′ differ only in the(i − 1)th and thei th symbols. We have

s′i−1 = [ p− 1, . . . , p− 1,
j

p− 2, p− 1, . . . , p− 1] = pe− 1− pj

ands′i = si + pj = δi .
Sinces′ ∈ T andδ 6∈ T , it is impossible to haveδ ¹ s′ (see Theorem 1). Butδ 6¹ s′ if and

only if δi−1 6¹ s′i−1. Indeed,δk ¹ s′k, for k < i − 1, becauses′k = pe− 1; moreoverδk = s′k
for k ≥ i . The conditionδi−1 6¹ s′i−1 implies clearlyδi−1, j = p− 1, i.e.(p− 1)pj ¹ δi−1,
completing the proof of (6).

Suppose thatδi ≥ pj for somej . We have proved that for anyk ≤ j we have(p−1)pk ¹
δi−1. This meanspj+1− 1¹ δi−1 completing the proof.

Example 2.Suppose thatm is even,m≥ 6. Consider an affine-invariant codeC onFq with
BCH-boundδ = pm/2+2+ pm/2+1+ p2+ 1. Then thep-adic expansion ofδ is

δ = [1,0,1,0, . . . ,0︸ ︷︷ ︸
m/2−2

,1,1 0, . . . ,0︸ ︷︷ ︸
m/2−3

] .

Let e be a divisor ofm, e > 1. It is clear that ife 6= m, then there is ani > 0 such that
δi > p. If C satisfies the hypothesis of Theorem 8, this impliesp2− 1¹ δi−1 ¹ δ0 which
is impossible. Soe= m, implying that the permutation group ofC is 〈AGL(1, pm), γq〉.

Suppose that the codeC is any extended BCH code of designed distanceδ overFq—i.e.
the codeBq(δ). We are going to prove that, according to the hypothesis of Theorem 8,
we obtain the precise form ofδ for a large set of values ofδ. In the sequelT denotes the
defining set ofBq(δ) andT⊥ the defining set ofB⊥q (δ). We do not treat binary codes, whose
automorphism groups are known (see our previous paper [5]).

COROLLARY 1 Using notation as before, suppose that the code Bq(δ) is invariant under
AGL(m′′, pe). Moreover we suppose thatδ, q and e are such that

q 6= 2, pe ≤ δ and δ 6= pm − 1

(whereδ is the smallest element of its q-cyclotomic coset).
Then the q-adic expansion ofδ, say(d0, . . . ,dm′−1)q, is

δ = (q − 1, . . . ,q − 1︸ ︷︷ ︸
κ

, dκ ,0, . . . ,0︸ ︷︷ ︸
λ

)q, (7)

whereκ denotes the biggest i such that di 6= 0 and λ = m′ − (κ + 1). Moreover, if
δ ≤ pm−e− 1 then dκ = 1.

Proof. Recall thatm′′ = m/e, m′ = m/r , with q = pr . SinceBq(δ) is invariant under
AGL(m′′, pe), r must dividee (see Theorem 4). Sete = r v (note thatpe = qv and
m′ = vm′′). We take the following pair(s, t):

s= (q − 1, . . . ,q − 1,
κ

dκ − 1,0, . . . ,0︸ ︷︷ ︸
λ

)q and t = qκ−v .
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We have clearlys < δ, implying s ∈ T ; moreovert ≺ s, sincev ≤ κ by hypothesis. If
Bq(δ) is invariant underAGL(m′′, pe) then(s, t) cannot be a disqualifying pair fore (see
Definition 7). Sos′ = s+ t (pe− 1) is in T , where

s′ = (dκ − 1)qκ + (qκ − 1)+ qκ−v(qv − 1) = dκq
κ + (qκ − 1)− qκ−v,

with q-adic expansion

s′ = (q − 1, . . . ,q − 1︸ ︷︷ ︸
κ−v

,
κ−v

q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
v−1

,
κ

dκ ,0, . . . ,0︸ ︷︷ ︸
λ

)q .

Whenλ > 0, s′ is the smallest element of itsq-cyclotomic coset, sinceq > 2. Assume
thatλ = 0, i.e.κ = m′ − 1. Asδ < pm− 1, it follows thatdκ < q− 1. Moreover we have
v ≤ m′/2 ≤ κ + 1− v, sinceκ = m′ − 1 andv dividesm′. This impliesκ − v ≥ v − 1,
which means thats′ is the smallest element of itsq-cyclotomic coset. Note thatκ = v

providesv = 1, m′ = 2 and thens′ = (q − 2,dk)q.
Sinces′ is thus the smallest member of itsq-cyclotomic coset in any case, ands′ ∈ T ,

Definition 5 implies thats′ < δ. Thereforedj = q − 1 for v consecutive values ofj ,
j = κ − v, . . . , κ − 1.

First note thatv = 1 meanse= r . In this caseδ has the form (7), by applying Theorem 8
with dκ−1 = δκ−1 = q − 1. Suppose now thatv > 1. We have proved that thepe-adic
expansion ofδ satisfies:

δ = (δ0, . . . , δξ−1, δξ , 0, . . . ,0︸ ︷︷ ︸
λ′

)pe

whereqv − q j ≤ δξ−1, j being the biggest integer such thatq j − 1 ≤ δξ , noticing thatλ′

might be equal to 0. To prove thatδ has the form (7) is to prove thatδi = pe − 1 for all
i < ξ . We apply Theorem 8.

• If j = 0 thenδξ−1 = pe−1 implyingδi = pe−1 for all i < ξ −1, becauseδξ−1 ¹ δi .

• Assuming j > 0, thenq j − 1¹ δξ−1, sinceq j /p ≤ δξ . We have

δξ = (q − 1, . . . ,
j−1

q − 1, dκ , 0, . . . , 0)q

and

δξ−1 = (. . . ,
j

q − 1, . . . , q − 1)q .

Thenδξ ¹ δξ−1 implies that the firstj digits of δξ−1 (baseq) must also beq − 1. So
δξ−1 = pe− 1. Thereforeδi = pe− 1 for all i < ξ − 1.

In any case, we obtaindi = q − 1 for i = 1, . . . , κ − 1, completing the proof of the first
part of the theorem.
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Now assume thatδ ≤ pm−e−1, i.e.λ ≥ v in (7). Letu be the element of theq-cyclotomic
coset ofs whoseq-adic expansion is

u = (dκ − 1,0, . . . ,0︸ ︷︷ ︸
λ

,q − 1, . . . ,q − 1︸ ︷︷ ︸
κ

)q .

Thenu is the biggest element ofT . Indeed, anyu′ ∈ T such thatu < u′ has the form
(u′0, . . . ,u

′
λ,q − 1, . . . ,q − 1)q. The smallest element incl(u′) will be (q − 1, . . . ,q −

1,u′0, . . . ,u
′
λ)q, and this will be at leastδ, contradicting Definition 5.

We deduce thatδ⊥, the BCH-bound ofB⊥q (δ), is equal topm − 1− u and hasq-adic
expansion

(q − dκ ,q − 1, . . . ,q − 1︸ ︷︷ ︸
λ

,0, . . . ,0︸ ︷︷ ︸
κ

)q

(see Lemma 1). Consider thepe-adic expansion ofδ⊥, say(δ⊥0 , . . . , δ
⊥
m′′−1)pe. As λ ≥ v,

theq-adic expansion ofδ⊥1 has the form(q− 1, . . .)q. But δ⊥1 ¹ δ⊥0 yieldsq− dκ = q− 1.
Hencedκ = 1, completing the proof.

4.3. Codes with Few Zeros

In this section we apply Theorem 4 to the study of automorphism groups of cyclic codes
with few zeros—i.e. of large dimension. Actually we give a precise description of the
automorphism group of some cyclic codes with two or three zeros.

DEFINITION 9 Recall that q= pr and m= rm′; clq( j ), 1 ≤ j ≤ n, is the q-cyclotomic
coset of j modulo n. Let a and b be two integers such that0< a < b ≤ m′/2. We denote
by Ca the extended cyclic code of length pm, overk = Fq whose defining set is

Ta = {0} ∪ clq(1) ∪ clq(1+ qa) .

We denote by Ca,b the extended cyclic code of length pm, overk = Fq whose defining set is

Ta,b = {0} ∪ clq(1) ∪ clq(1+ qa) ∪ clq(1+ qb) .

For the definition of the codes Ca, we suppose that m′ ≥ 2; for any code Ca,b, we suppose
m′ ≥ 4.

Remark. Clearly, the codesCa andCa,b are affine-invariant. By definition, 1+ qa and
1 + qb are in two differentq-cyclotomic cosets and each is the smallest element of its
p-cyclotomic coset. According to Theorem 4, the integer` of Theorem 4 is here equal to
r , whereq = pr : these codes are q-ary codes. So we have to determine the parameter
e only, i.e. the divisor ofm such that the permutation groupPer(C) of C is generated by
AGL(m/e, pe) together with the Frobenius mappingγpr (see § 2.2).
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PROPOSITION1 Assume a≤ m′/2. Then the permutation group of Ca is the group gener-
ated byγq and AGL(1, pm), except for the following cases:

1. q= 2, m′ = m even and a= m/2. The permutation group is
A0L(2,2m/2).

2. q= 2, m′ = m, m≡ 0 mod 3and a= m/3. The permutation group is A0L(3,2m/3).

3. m′ ≡ 0 mod 4and a= m′/4. The permutation group is
〈AGL(2,qm′/2), γq〉.

Proof. The proof is exactly the same as that of [5, Proposition 5] (where the alphabet field
is a prime field).

THEOREM9 Assume0< a < b ≤ m′/2. Then the permutation group of Ca,b is
〈AGL(1,qm′), γq〉, except for the following cases:

E1 : q = 2, m′ = 5a, b= 2a. The permutation group is〈AGL(5,2a), γq〉;
E2 : q = 2, m′ = 4a, b= 2a. The permutation group is〈AGL(4,2a), γq〉;
E3 : m′ = 6a, b= 3a. The permutation group is〈AGL(3,q2a), γq〉, for any q.

E4 : m′ even, a+ b = m′/2 and a< b (for any q):

• If m′ = 8a and b= 3a then the permutation group is〈AGL(4,q2a), γq〉
• otherwise the permutation group is〈AGL(2,qa+b), γq〉.

We begin by proving a simple lemma.

LEMMA 2 Let i and j be non-negative integers such that0≤ i < j < m′. Then qi + q j ∈
Ta,b if and only if

j − i is one of a, m′ − a, b or m′ − b .

Proof. Obviously,qi + q j is in Ta,b if and only if qi + q j is either inclq(1+ qa) or in
clq(1+ qb). Suppose first thatqi + q j is in clq(1+ qa). In other words, there isa′ in
[0,m′ − 1] such that

qi + q j = qa′ + qa+a′ (mod m′) .

So eitheri = a′, providing j = a+ i , or j = a′, providingi = a+ j −m′. In the same way
we can prove thatqi + q j ∈ clq(1+ qb) if and only if either j = b+ i or i = b+ j −m′,
completing the proof.

Proof of Theorem 9: For any divisore of m, our aim is to determine if a given codeCa,b

is invariant (or not) underAGL(m/e, pe). We know that the codeCa,b is invariant under



THE AUTOMORPHISM GROUPS OF BCH CODES 43

AGL(1, pm) since it is affine invariant. Recall that` = r andr must be a divisor ofe:
e= r v. Som/e= m′/v andqv = pe.

In accordance with Theorem 6,Ca,b is invariant underAGL(m/e, pe) if and only if Ta,b

satisfies

s ∈ Ta,b and j ¹ s H⇒ s+ j (qv − 1) ∈ Ta,b. (8)

Fors in clq(1), j ¹ s yields j = 0 ors; in both casess+ j (qv − 1) is in clq(1) and then in
Ta,b. Consider nows = 1+ qa and let j be such thatj ¹ 1+ qa. If j = 0 or j = s then
s+ j (qv − 1) is in the cyclotomic coset ofs. So we have to check (8) only whenj = 1
or qa. Similarly, if s = 1+ qb, we have to check (8) only whenj = 1 or qb. Thus (8) is
satisfied if and only if the following conditions are satisfied:

(i) qa + qv ∈ Ta,b ; (ii) 1+ qa+v ∈ Ta,b ;

(iii ) qb + qv ∈ Ta,b ; (iv) 1+ qb+v ∈ Ta,b .

We will determine the cases where(i), (ii) , (iii) and(iv) are satisfied. We remark that

0< a < b ≤ m′/2≤ m′ − b < m′ − a . (9)

We distinguish five cases:

1. Supposev < a. We have 0< a − v < a. From (9) and Lemma 2 we can deduce
qa + qv 6∈ Ta,b which contradicts(i).

2. Assume thata = v. Assuming(i) we have 2qa ∈ Ta,b which yieldsq = 2, m = m′

ande= v = a. Now the conditions(ii) , (iii) and(iv) become

1+ q2a ∈ Ta,b, qa + qb ∈ Ta,b, 1+ qa+b ∈ Ta,b .

From (9) and Lemma 2, we must haveb − a = a; thereforeb = 2a, which yields
1+ q2a ∈ Ta,b. Moreoverb+ a = 3a must be eitherm− a or m− 2a and we have:

• if m− 2a = 3a then we obtain the exceptionE1;

• if m− a = 3a then we obtain the exceptionE2.

3. Suppose thata < v < b. The relation 0< v − a < b and the condition(i) imply
v − a = a. On the other hand, 0< b− v < b and(iii) imply b− v = a; sob = 3a.
We deducea + v = b andb+ v = 5a. From Lemma 2 and(iv) we have these two
possible cases:

• if b+ v = m′ − a thenm′ = 6a and we obtain the exceptionE3;

• if b+ v = m′ − b thenm′ = 8a and we obtain the exceptionE4.

Note thatv = 2a and thene= 2ar ; m/e is either 3 or 4.
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4. Assume thatv = b. From (iii) , 2qb ∈ Ta,b implies q = 2, and thenm = m′ and
e= v = b. Now the other conditions become

qa + qb ∈ Ta,b, 1+ qa+b ∈ Ta,b, 1+ q2b ∈ Ta,b .

Since 0< b− a < b, thenb− a = a, i.e. b = 2a; note that we must have 4a ≤ m.
Moreover we obtaina+ b = 3a and 2b = 4a. So we must examine two cases.

• If m= 2b = 4a then 1+q2b = 2 is inclq(1) anda+b = m−a. This case corre-
sponds to the exceptionE2. Note thatm/e= 2; thus we have proved thatCa,2a is in-
variant under〈AGL(2,22a), γ2〉which is a subgroup of〈AGL(4,2a), γ2〉. We pre-
viously have proved (see 1. above) thatCa,2a is invariant under〈AGL(4,2a), γ2〉.

• If 2b = m− a thenm= 5a. Soe= 2a does not dividem, a contradiction.

5. The last case is whenb < v ≤ m′/2. Note that we have:

0< v − b < v − a < v + a < v + b < m′ .

According to Lemma 2, the conditions(i) to (iv) will be satisfied if and only if:

v − b = a, v − a = b, v + a = m′ − b andv + b = m′ − a .

This givesv = a+ b and thenm′ = 2v. This is the last exceptionE4.

4.4. The Automorphism Groups of Primitive Narrow-Sense BCH-Codes

In [5], we determined the permutation groups of primitive BCH codes over any prime
field. At the end of the paper, we noted the difficulties for generalizing our results when
the alphabet fieldk is an extension field. Now the problem is easier because of the new
tools presented in Section 4.2, especially the result given by Corollary 1. In this section we
complete our previous results by giving the automorphism groups of primitive narrow-sense
BCH codes defined on any extension field.

From now onk = Fq, with q = pr andr > 1. We will study the extension of BCH codes,
because we want to work in the ambient space of GRM-codes; our ambient space is the
algebraA = k[(Fqm′ ,+)]. So the length of any of the codes ispm = qm′ , m= m′r . Recall
that Bq(δ) denotes the extended BCH-code of lengthqm′ , overk, with designed distanceδ
and defining setTδ (see Definition 5).

In accordance with Theorem 4 we must determine for any codeBq(δ), a divisoreof mand
a divisor` of esuch that its permutation group is generated byAGL(m/e, pe) together with
the Frobenius mappingγp` . We begin by proving that generallỳ= r . We next examine
some particular cases, called “exceptional” (see Lemma 4). So the proof of Theorem 10
will consist of the determination ofe. Actually we will prove thate is equal tom when
Bq(δ) is not exceptional. Recall thatn = pm − 1.
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LEMMA 3 Let 1 ≤ δ ≤ n, whereδ is the smallest element of its q-cyclotomic coset. Let`

be the smallest integer such that Tδ is invariant under multiplication by p`. Then` = r ,
except whenδ = 1 or pm − 1, and whenδ = 3 for q = 4.

Proof. According to Theorem 4,̀ must divider . Recall thatclpu(s), for someu dividing
m, denotes the orbit ofs under the multiplication bypu modulon, i.e. thepu-cyclotomic
coset containings.

First consider some particular values ofδ. The casesδ = 1 andδ = pm − 1 are trivial
cases where obviouslỳ= 1. Suppose thatq = 4. We haveT2 = {0} ∪ cl4(1) where
clearly 2 6∈ T2 implying ` = 2= r . But

T3 = {0} ∪ cl4(1) ∪ cl4(2) = {0} ∪ cl2(1) .

So if δ = 3 andq = 4 then` = 1.
Denote byL the number ofq-cyclotomic cosets modulon. LetC be the following set of

coset representatives

C =
{
δi

∣∣∣∣ i ∈ [1, L], δi < δi+1

δi = min clq(δi )

}
(10)

Note thatTδi = clq(δi−1) ∪ Tδi−1, δ1 = 1 andδL = n = pm − 1. We are going to prove by
induction oni , 2≤ i < L, the following property:

(Hi ) Assume that 3< i whenq = 4. Then for anỳ dividing r , ` < r , there is
ans ∈ Tδi such thatp`s 6∈ Tδi .

We first prove that(Hi ) is true for the smallest value ofi . Suppose thatq > 4 andi = 2,
i.e. δ2 = 2. ThenT2 = {0} ∪ clq(1) and clearlyp` is not inT2 since 1≤ ` < r ; so(H2) is
true. If q = 4 andi = 4 we haveδ4 = 5 and

T5 = T3 ∪ cl4(3) = {0} ∪ cl2(1) ∪ cl4(3).

In this case, the only possible value for` is 1. (H4) is true because 6= 2× 3 is not inT5.
Now suppose that(Hi ) is true fori ∈ [3, j [ whenq > 4 and fori ∈ [4, j [ otherwise. We

are going to prove that(Hj ) is true. We have

Tδj = clq(δj−1) ∪ Tδj−1

and we assume that

∀ `, `|r, ∃s ∈ Tδj−1 such that p`s 6∈ Tδj−1 .

If p`s 6∈ clq(δj−1) then p`s 6∈ Tδj and (Hj ) is true. Assume thatp`s ∈ clq(δj−1); so
δj−1 ≡ qu p`s (mod n), for someu. Moreover we can suppose thats is the smallest
element of itsq-cyclotomic coset because the condition “s ∈ Tδj−1 and p`s 6∈ Tδj−1” is
satisfied forqks, for anyk.

So we have:δj−1 ≡ qu p`s (mod n) ands < δj−1. Considering thep-adic expansion
of s, s= [s0, . . . , sm−1], sett = s+ pi wherei is the smallest index such thatsi < p− 1.
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We remark that this impliess ≥ pi − 1. By construction we haves ≺ t , implying
qu p`s ≺ qu p`t (where≺ is defined by (2)). Note thatt is not inclp(s). In particular, this
impliest 6= δj−1.

SinceBq(δj−1) is affine-invariant thenqu p`t ∈ Tδj−1 would imply thatqu p`s (and any
element ofclq(p`s)) is in Tδj−1. So there is no element ofclq(p`t) in Tδj−1. If t < δj−1then
t ∈ Tδj−1 with p`t 6∈ Tδj−1, implying that(Hj ) is true.

Suppose thatt > δj−1. Since

δj−1− t = qu p`s− s− pi = s(qu p` − 1)− pi ,

we must have: 0< s(qu p` − 1) < pi . Whenp > 2 or p = 2 with qu p` 6= 2, this implies
s< pi − 1 which is not in accordance with the choice ofi . So we must havep = 2, u = 0
and` = 1. According to the choice ofi , one obtains

s= 2i − 1 and δj−1 = 2s= 2(2i − 1) . (11)

We are going to prove that(Hj ) is true forδj−1 = 2s, with s ∈ Tδj−1, andq = 2r . Note
thatcl2(s) has cardinalitym, because of the form ofs. Sinceδj−1 is the smallest element
of its q-cyclotomic coset, it is clear thati ≤ m− 2. Thus we haves< 2s and 2s is smaller
than anyt ∈ cl2(s) unlesst = s. Moreovercl2(s) is the union of ther classesclq(2`s),
0≤ ` ≤ r − 1. Each such class has cardinalitym/r .

Whenq = 2r with r > 2 we deduce thatclq(4s) is not contained inTδj ; in particular
4s 6∈ Tδj while 2s ∈ Tδj , i.e (Hj ) is true.

Suppose thatq = 4. By hypothesisδj−1 ≥ 5; so, according to (11),i ≥ 2, s ≥ 3 and
δj−1 ≥ 6. If s = 3, we have clearly 5∈ Tδj−1 and 106∈ Tδj . More generally, suppose that
s ≥ 7 and takeu = s+ 2i − 2i−1, i.e. u = 2i+1 − 1− 2i−1. The 2-adic expansions ofu
and 2u are respectively

[1, . . . ,1,0,
i
1,0, . . .] and [0,1, . . . ,1,0,

i+1
1 ,0, . . .]

(recall thati ≤ m− 2). We haves < u < 2s; moreover, even wheni = m− 2, it appears
that the smallest element ofcl4(2u) is strictly greater than 2s implying 2u 6∈ Tδj while
u ∈ Tδj , i.e (Hj ) is true.

We have proved that(Hi ) is true, for 2≤ i < L. Obviously(Hi )means that the defining
set of the BCH code of designed distanceδi , over the field of orderpr , is not invariant by
multiplication by p`, ` dividing r and` < r , completing the proof.

LEMMA 4 For the following values of q andδ, the code Bq(δ) has a permutation group
greater than〈AGL(1, pm), γpr 〉. These cases, listed below, will be called “exceptional”.

Some extended BCH codes are in fact GRM codes:

(E1) δ = 1 or δ = qm′ − 1, for any q. The codes Bq(δ) are the trivial GRM codes,
G RMq(1) and G RMq(m′(q − 1)), respectively. Their permutation group is the full
symmetric group Sym(G), G = Fpm.

(E2) δ = 2, for any q. The code Bq(2) is equal to G RMq(2); thus Per(Bq(2)) =
AGL(m′,q).
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(E3) δ = qm′−qm′−1−1, for any q. The code Bq(qm′−qm′−1−1) is equal to G RMq(m′(q−
1)− 1); thus Per(Bq(δ)) = AGL(m′,q).

(E4) m′ = 2, andδ = q2−2q−1. The code Bq(q2−2q−1) is equal to G RMq(2q−4);
thus Per(Bq(δ)) = AGL(2,q).

(E5) q = 4 andδ = 3. The code B4(3) is equal to G RM2(2), with scalars extended toF4,
and Per(B4(3)) = AGL(m,2).

There is one exception where Bq(δ) is not a GRM code:

(E6) q = 2r , with r > 2 (i.e. q even and q≥ 8), and δ = 3. Then Per(Bq(3)) =
AGL(m′,2r ).

Proof. Recall that the defining set ofG RMq(µ), the GRM code of indexµ and length
qm′ overFq is denoted byL(µ) (see Definition 6). The permutation group ofG RMq(µ) is
known to beAGL(m′,q) (see Theorem 3).

(E1) This case is obvious because the defining sets are

T1 = {0} and Tqm′−1 = {0,1, . . . , qm′ − 2} .

They correspond to the code containing any word for whom the sum of the coordinates is
zero and the code containing the constant vector only, respectively

(E2) It is easy to check that

T2 = {0} ∪ clq(1) = L(2) .

(E3) One checks easily thatTqm′−qm′−1−1 is the set of thoses, s ∈ [0,qm′ − 1] such
that 0≤ wtq(s) < m′(q − 1) − 1. This is exactly the defining setL(m′(q − 1) − 1) of
G RMq(m′(q − 1)− 1). These codes are the duals of those in (E2).

(E4) We remark thatδ = (q− 1,q− 3)q. Let s= (s1, s2)q. Thens is in Tq2−2q−1 if and
only if

• “s1 < q − 3 ors2 < q − 3”; or

• “s1 = q − 3 ands2 < q − 1”; or

• “s2 = q − 3 ands1 < q − 1”.

This occurs if and only ifwtq(s) < 2q−4. SoTq2−2q−1 is the defining set ofG RMq(2q−4).
(E5) We have seen in the proof of the previous lemma thatT3 = {0}∪cl2(1), whenq = 4.

ThusT3 is the defining set ofG RM2(2).
(E6) We have already proved that the value of` is alwaysr (cf. Lemma 3). We apply

Theorem 6 when the defining set is

T3 = {0} ∪ clq(1) ∪ clq(2), q = 2r , r > 2.
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We consider the pairs(s, t), such thats ∈ T3 andt ¹ s, and computes′ = s+ t (2r − 1):

• If (s, t) = (0,0) thens′ = 0.

• If s 6= 0 andt = 0, thens′ = s.

• If s 6= 0 andt 6= 0 the only possibility iss= t , implying s′ = s2r ; hences′ ∈ clq(s).

In any case we haves′ ∈ T3; so we have proved that the corresponding pair(s, t) cannot be
a disqualifying pair forr (see Definition 7). HenceBq(3) is invariant underAGL(m′,q).
Now for any e = r v the groupAGL(m/e, pe) is contained inAGL(m′,q). We can
conclude that the permutation group ofBq(3) is AGL(m′,q), the permutation group of the
non-trivial GRM codes overFq. Note thatT3 is not the defining set of a GRM code, since
wtq(1+ q) = 2= wtq(2) where 2∈ T3 and 1+ q 6∈ T3.

THEOREM10 Letk = Fq, q = pr , p a prime, r> 1. Let Bq(δ) be the extended BCH-code
of length pm, r dividing m, overk.

Then the permutation group of Bq(δ) is

〈 AGL(1, pm), γpr 〉
except when q,δ and m satisfy the hypothesis of one of the exceptions (E1) to (E6) listed in
Lemma 4.

When the permutation group of any Bq(δ) is generated by AGL(m/e, pe) andγp` , for
somè and some e, then the permutation group of the corresponding BCH code B∗

q(δ) is
generated by GL(m/e, pe) andγp` .

The automorphism group of Bq(δ) is k∗ × Per(Bq(δ)).

Proof. According to Theorem 4, it remains to determine the value ofe, since the value of
` is known to be generallyr (see Lemma 3). SoTδ is invariant under multiplication bypr ,
andr is the smallest integer such that this property holds. Recall thate= r v, for somev.

The difficulty of the proof comes from the number of particular cases forδ. We have
chosen to treat separately thesmallvalues ofδ, themediumvalues ofδ and thebig values
of δ. However the notion of “small”, or “big” is relative and depends on the value ofe.

Notation was stated in Section 4.1. In particularm = m′r = m′′vr = m′′e; note that
pe = qv. Recall thatq = pr with 1 < r < m, i.e. 4≤ q < pm, since the casesr = 1 and
r = m were already treated (see [5]).

From now on, we fixe < m, i.e. v < m′. This impliese ≤ m/2 sincee dividesm.
In order to determine ifBq(δ) is, or is not, invariant underAGL(m/e, pe), we will try
to produce a disqualifying pair fore, e = r v and 1< r < m (see Definition 7 and the
following remark). Generally, the defining pair will be(s, t) ands′ = s+ t (pe− 1).

We generally identifyδ with its q-adic expansion, which is denoted by(d0, . . . ,dm′−1)q.
In the proof,κ will be the biggest suffixj such thatdj 6= 0; settingλ = m′ − 1− κ, we
have:

δ = (d0, . . . ,
κ

dκ ,0, . . . ,0︸ ︷︷ ︸
λ

)q
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The pe-adic expansion ofδ will be denoted, as previously, by(δ0, . . . , δm′′−1)pe. Notice
thatδi = (dvi ,dvi+1, . . . ,dv(i+1)−1)q.

1) The first case:δ ≤ pe− 1. We haveκ < v implying

δ1 = . . . = δm′′−1 = 0 and λ ≥ m′ − v .

Suppose thatp = 2. We consider 3< δ, because the cases whereδ ∈ {1,2,3}were already
treated—see the exceptions (E1), (E2), (E5) and (E6) in Lemma 4. The pair(s, t) = (3,1)
is disqualifying fore. Indeed we have clearly 3∈ Tδ and 1≺ 3; moreovers′ is not inTδ.
Indeeds′ = s+ t (2e− 1) = 2e+ 2 has the following expansions:

s′ = (2,1,0, . . . ,0︸ ︷︷ ︸
m′′−2

)2e = (2,0, . . . ,0︸ ︷︷ ︸
v−1

,1,0, . . . ,0︸ ︷︷ ︸
m′−(v+1)

)2r .

Sincev ≤ m′/2 thenm′ − (v + 1) ≥ v − 1, implying thats′ is the smallest element of its
q-cyclotomic coset. Asδ ≤ pe− 1, δ < s′; sos′ is not inTδ.

Whenp > 2,δ = 1 andδ = 2 are exceptions. We supposeδ > 2. The pair(s, t) = (2,1)
is disqualifying fore, since 2∈ Tδ, 1≺ 2 ands′ = pe+ 1 has expansions

s′ = (1,1,0, . . . ,0︸ ︷︷ ︸
m′′−2

)pe = (1,0, . . . ,0︸ ︷︷ ︸
v−1

,1,0, . . . ,0︸ ︷︷ ︸
m′−(v+1)

)q .

As above, we have clearlys′ 6∈ Tδ.

2) The second case:pe− 1< δ ≤ pm−e− 1. Note thatpm−e− 1= qm′−v − 1. We have
v ≤ κ < m′ − v andδm′′−1 = 0. Moreover, according to Corollary 1, we have to treat those
δ whoseq-adic expansion has the form

δ = (q − 1, . . . ,q − 1︸ ︷︷ ︸
κ

,
κ

1,0, . . . ,0︸ ︷︷ ︸
λ≥v

)q,

i.e. δ = 2qκ − 1. Take(s, t) = (δ − 1,qκ−v). Clearlyδ − 1 ∈ Tδ and we have obviously
qκ−v ≺ δ−1 whenκ > v. If κ = v thent = 1 and we havet ≺ sunlessp = 2. We will treat
later the case wherep = 2 andκ = v. We haves′ = s+ t (qv−1) = 2qκ+(qκ−qκ−v−2)
whoseq-adic expansion is

s′ = (q − 2,q − 1, . . . ,q − 1,
κ−v

q − 2,q − 1, . . . ,q − 1,
κ

2,0, . . . ,0︸ ︷︷ ︸
λ≥v

)q,

whenκ > v. If κ = v thens′ = 2qv + qv − 3, which yields

s′ = (q − 3,q − 1, . . . ,q − 1,
v

2,0, . . . ,0︸ ︷︷ ︸
λ≥v

)q . (12)
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In any cases′ is the smallest element of itsq-cyclotomic coset andδ < s′, implyings′ 6∈ Tδ.
So(s, t) is disqualifying fore.

If p = 2 andκ = v, we choose(s, t) = (δ − qv,2). We haves = qv − 1, 2≺ s and
s′ = 2qv + (qv − 3). Sinces′ has theq-adic expansion (12), we conclude that(s, t) is
disqualifying fore.

3) The third case: pm−e − 1 < δ We haveκ ≥ m′ − v; thus δm′′−1 6= 0 andλ < v

(λ = m′ − 1− κ). Moreover, according to Corollary 1, we have to treat thoseδ whose
q-adic expansion has the form

δ = (q − 1, . . . ,q − 1︸ ︷︷ ︸
κ

, dκ ,0, . . . ,0︸ ︷︷ ︸
λ<v

)q .

Recall thatm′ = vm′′, m′′ > 1; som′ = v + 1 if and only ifm′ = 2 (andv = 1).

3.1) We first suppose thatm′ > 2 (thenm′ > v + 1) and consider the pair(s, t) =
(δ − 1,qm′−v−1), where clearlyδ − 1 ∈ Tδ. Sinceκ > m′ − (v + 1), we have obviously
t ≺ s and

s′ = s+ t (pe− 1) = dκq
κ + qκ − 2+ qm′−v−1(qv − 1)

= qm′−1+ dκq
κ + (qκ − qm′−v−1− 2) .

Whenevers′ 6∈ Tδ, we can conclude that the pair(s, t) is a disqualifying pair fore. We
distinguish three cases:

• If λ ≥ 2, we have

s′ = (q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
m′−v−2

,
m′−v−1
q − 2,q − 1, . . . ,q − 1,

κ

dκ ,0, . . . ,0︸ ︷︷ ︸
λ−1

,1)q .

The smallest element of theq-cyclotomic coset ofs′ is

(1,q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
m′−v−2

,
m′−v

q − 2,q − 1, . . . ,q − 1,
κ+1
dκ ,0, . . . ,0︸ ︷︷ ︸

λ−1

)q,

which is greater thanδ, implying s′ 6∈ Tδ.

• If λ = 1, then

s′ = (q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
m′−v−2

,
m′−v−1
q − 2,q − 1, . . . ,q − 1,

κ

dκ ,1)q .

Clearly, s′ is the smallest element of its theq-cyclotomic coset, sinceq = pr with
r > 1. Thens′ is greater thanδ which yieldss′ 6∈ Tδ.
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• If λ = 0, then

s′ = (q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸
m′−v−2

,
m′−v−1
q − 2,q − 1, . . . ,q − 1︸ ︷︷ ︸

v−1

,dκ + 1)q .

Whendκ < q − 3, it is clear thats′ 6∈ Tδ, becauses′ is the smallest member of its
q-cyclotomic coset.

If dκ = q − 3, s′ is not inTδ because the coefficients of itsq-adic expansion areq − 1
or q − 2, implying that any element of itsq-cyclotomic coset is greater thanδ.
If dκ = q− 2 thenδ = qm′ − qm′−1− 1; we obtain the exception (E3) (see Lemma 4).

3.2)We now treat the particular case wherem′ = 2. Thene= r ,v = 1 andδ = (q−1)+d1q,
i.e. δ = (q − 1,d1)q.

We remark thatd1 = q − 2 corresponds to the exception (E3) (δ = q2 − q − 1) and
d1 = q−3 to the exception (E4) (δ = q2−2q−1). Thus we assume thatd1 ≤ q−4; since
d1 6= 0 we then assumeq > 4. We will distinguish when the characteristic is 2 or odd.

• If p > 2, we choose(s, t) = (δ − 1,1). We have clearlyδ − 1 ∈ Tδ and 1≺ δ − 1.
Moreover

s′ = s+ t (q − 1) = d1q + 2q − 3 —i.e s′ = (q − 3,d1+ 1)q .

Sinced1 ≤ q − 4, it follows thats′ is the smallest member of itsq-cyclotomic coset.
As s′ > δ, s′ 6∈ Tδ. Thus(s, t) is a disqualifying pair forr .

• Assume thatp = 2. Whend1 ≤ q− 5 we choose the pair(s, t) = (δ− 2,1). We have
δ − 2 ∈ Tδ, 1≺ (δ − 2) and

s′ = s+ t (q − 1) = d1q + 2q − 4 —i.e. s′ = (q − 4,d1+ 1)q .

Again, s′ is the smallest member of itsq-cyclotomic coset ands′ > δ; i.e. (s, t) is a
disqualifying pair forr .

Whend1 = q− 4, thenδ = q2− 3q− 1, i.e.δ = (q− 1,q− 4)q. We choose the pair
(s, t) = (q2 − 4q − 1,2). Sinces= (q − 1,q − 5)q, it is clear thats ∈ Tδ andt ≺ s.
Moreover

s′ = s+ t (q − 1) = q2− 2q − 3 —i.e. s′ = (q − 3,q − 3)q ;

s′ is the only element of itsq-cyclotomic coset and is greater thanδ; so (s, t) is a
disqualifying pair forr .

We have proved that anyBq(δ) which is not exceptional cannot be invariant under
AGL(m/e, pe), for anye such thate = r v, 1 ≤ v < m′. We conclude thate = m is the
only possibility, implying that the permutation group ofBq(δ) is generated byAGL(1, pm)
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andγq. Then the permutation group ofB∗q(δ) is 〈GL(1, pm), γq〉. The automorphism group
of Bq(δ) is immediately deduced, according to Theorem 5.

Remark.At the end of our previous paper [5], we noted that the complete description of
the automorphism group of BCH codes, defined on any extension field, could be difficult
because of the number of different ambient spaces (the value ofp, the number of subfields
of Fpm and so on). Corollary 1 was decisive and there are probably other corollaries of
Theorem 8 which can be stated for other specific classes.

On the other hand we expected other results, similar to our results concerning BCH codes
defined on any prime field. We were surprised to find only one more exceptional class of
BCH codes which are not GRM codes. This comes from the form of the designed distance.
As we noted in Section 3 it is, however, easy to construct affine-invariant codes with large
automorphism group.

Annex: Main notation

• k is the alphabet fieldFq, q = pr , p a prime.

• n = qm′ − 1= pm − 1, m= rm′.

• S is the setZ/nZ of integers modulon; S= [0, pm − 1].

• wtv(s), v = pu with u dividing m, is thev-weight ofs ∈ [0,n] (see (3)).

• G is the fieldFqm′ , generally identified withFpm.

• G∗ = G\{0}; it is the multiplicative group of the fieldG.

• A is the group algebrak[{G,+}] (Section 2).

• If C is an extended cyclic code, it is the extension of the cyclic codeC∗.

• Sym(G) is the symmetric group acting onG.

• Per(D) is the permutation group of the codeD (Definition 1).

• Aut(D) is the automorphism group of the codeD (Definition 2).

• γpk is thekth-power of the Frobenius mapping onG.

• GL(m/e, pe) is the linear group, the group ofFpe-linear permutations ofG.

• AGL(m/e, pe) is the affine group.

• 0L(m/e, pe) is the semi-linear group.

• A0L(m/e, pe) is the semi-affine group (for all these groups see Section 2.1).

• m′′: m/e is often denoted bym′′.
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• (S,¹) is the poset defined by (2).

• (S,¿e), e dividing m, is a poset defined by (4).

• clpu( j ), j ∈ S, is the orbit of j under the multiplication bypu modulon.
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