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Abstract. Affine-invariant codes are extended cyclic codes of lergjthinvariant under the affine-group acting
onFym. This class of codes includes codes of great interest such as extended narrow-sense BCH codes. In
recent papers, we classified the automorphism groups of affine-invariant codes [2], [5]. We derive here new
results, especially when the alphabet field is an extension field, by expanding our previous tools. In particular
we complete our results on BCH codes, giving the automorphism groups of extended narrow-sense BCH codes
defined over any extension field.

Keywords: cyclic code, extended cyclic code, affine-invariant codes, BCH codes, GRM codes, permutation
group, automorphism group.

1. Introduction

In a recent paper we gave a classification of permutation groups of affine-invariant codes
[5]. We developed several tools designed for the effective characterization of these groups
and presented some examples, mainly on codes defined on a prime field. In particular we
described precisely the permutation groups of extended narrow-sense BCH codes defined
over any prime field. Berger proved later that the automorphism group of any affine-
invariant code is simply deduced from its permutation group [3]. The aim of this paper is
to give more applications of our previous work, especially when the alphabet field is an
extension field.

We first recall the terminology and the main results that are presented in [5] and [3]. We
recall that two affine-invariant codes are generally not equivalent. We notice that affine-
invariant codes with large automorphism group can be easily constructed.

Our mainresults are presented in Section 4 which is devoted to the effective determination
of some automorphism groups. We begin (in Section 4.2) by giving an improvement of
our previous result about the link between the BCH bound of a given affine-invariant code
and its permutation group. Theorem 8 is a generalization of [5, Corollary 5]. Its main
consequence is Corollary 1 which will be of most interest later for the determination of the
automorphism groups of BCH codes. In Section 4.3 we describe the automorphism groups
of affine-invariant codes which are extensions of cyclic codes with few zeros. Proposition 1
is an immediate generalizations of [5, Proposition 5]. Thus the most important results are
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given by Theorem 9: we determine the automorphism groups of some extended cyclic
codes whose generator polynomial is the product of three cyclotomic classes.

The last section is devoted to automorphism groups of extended BCH codes whose alpha-
bet field is any extension field. The main result of this paper is the determination of these
groups (Theorem 10). Although we here generalize [5, Theorem 8] the proof necessitates
new tools especially those presented in Section 4.2.

The proofs of Section 4 are technical and special notation is necessary, which is presented
in Section 4.1. Main notation of the paper is listed at the end, in the Annex.

2. Preliminaries

We will use the following terminology throughout. The alphabet figjdq = p" andp is
any prime, will be denoted bl. Let G be an extension field df of degreen; the field
G will generally be identified witl¥ym, m = rm’. We consider linear codes of lengglf’
overk. SoG is viewed as theupport-fieldand the coordinate positions of the codewords
are labelled by the elements Gf

Let A = K[(G, +)] be the group algebra of the additive group®bver the fieldk. An
element x ofA is a formal sum:

Xx=) XX xgek.
geG
Addition and multiplication are as follows:
D xgXI+ Y T ygX9 = (g + Yg) XO,
geG geG geG

and

ngxg X X:ygxgl = Z < Z xhyk> X9,
geG geG geG \h+k=g
In this paperA is the ambient space. Codes are subspace4 ahd codewords are
elements ofd. An extensive study of codes gf is to be found in [1] and [7].
Let SymG) be the symmetric group acting @ Any permutations in SymG) acts
naturally on the elements of,

o (Z xgxg) = xgX79.

geG geG

DEFINITION 1 The permutation group P€€) of any code C is the subgroup of S¢@&)
which leaves the code globally invariant. More precisely, in the ambient sgaités the
subgroup of those satisfying

Y xgX7@ eC forall x=) xX% xeC.
geG geG
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DEFINITION 2 Let n = p™ — 1. Let us denote by = (ag)gec any element ofk*)P",
wherek* = k \ {0}. The monomial group\,(k) = (k*)P" x SymG) is the set of
transformationga; o) which acts on4 as follows:

(& 0) (Z xgxg> = agxgX’ 9,
geG geG

The automorphism group A(®) of a code C is then the subgroup.bt, (k) which leaves
the code globally invariant.

2.1. Affine-Invariant Codes

For any divisore of m, we can conside6 as a vector-space of dimensione over the
subfieldFge. Then we have the following subgroups of the symmetric grdyp(G):

e The group of the Frobenius mappings
Yok 1 Q9 —> g .

e Thelinear group GL(m/e, p®), which is the group oF s-linear permutations o&.

e The affine group AGIm/e, p®), which is the group generated by the linear group
GL(m/e, p®) and by thdranslationsof G—i.e. those mappingg — g+b,b e G.
In particular

AGLL p™ ={oap : g — ag+b, ac G*, be G},

whereG* = G \ {0}.

e Thesemi-linear groud"L(m/e, p®), which is the group generated by the linear group
GL(m/e, p° and by the Frobenius mapping.

e Thesemi-affine group BL (m/e, p®), which is the group generated by the affine group
AGL(m/e, p®) and by the Frobenius mapping.

DerINITION 3 An affine-invariant code is a proper subspaceddfivariant under the affine
permutations acting on G. In other words it is a codedbfvhose automorphism group
contains AGI(1, p™).

Letoap € AGL(L, p™). Then for any xe A
geG geG

One can say that x ishiftedby a andtranslatedby b. The definition of theextensiorof
codes here is the usual one: an overall parity-check symbol is added to each codeword; it
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is labelled by “0” and is such that the sum of all symbols of the extended codeword is zero.
Translation corresponds to multiplication B in A.

The algebrad has only one maximal ideal, called itadical, which is the set of all
codewords X satisfying_ ;. Xg = 0. So it is clear that a cod€, which is a proper
subspace invariant undé&GL(1, p™), is an ideal of4 and is an extended cyclic code.

On the other hand, Kasami, Lin, and Peterson characterized affine-invariant codes by a
combinatorial property of their defining sets [12]. We will define a partial order, on the set
Z./nZ of integers modulm, and present their result in this context. This point of view was
first developed by Charpin in [6].

We first state the definition of extended cyclic codesdin A complete description of
cyclic codes and of their extension can be found in [7].

DEFINITION 4 Letn= p™ — 1 and let us define, for anys [0, n], thek-linear maps of4
into G:

@s (Z ngg) = Z ngss 1)

geG geG
where, by conventiof}® = 0for s > 0and0® = 1; note thatgo(X) = Y . Xg-
Let T be a subset ¢d, n], containing0 and invariant under multiplication by g (mod n).
The extended cyclic code C with defining set T is defined as follows:

C={XxeA|ps(x) =0, VseT}.

Denoting bySthe sefZ/nZ of integers modulm, the defining set of any extended cyclic
code is a subset &. Any s € Swill often be identified with itsp-ary expansion

m—1
s=Y sp, se0p-1].
i=0

We then define a partial order @as follows:
Vs,teS s=<t < s <t,iel0,m-1] (2)
(s <t meanss < t ands # t).

THEOREM1 [Kasami, Lin and Peterson [12}]n extended cyclic code C dfwith defining
set T is affine-invariant if and only if T satisfies

teT and s<xt = seT.

Note that the only affine-invariant code containmg its defining set is the trivial code
{0}
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More generally, for each divisoz of m, we can define the-ary expansion and the
v-weight of anys € S:

m’'—1 m’'—1

s= sv' and wt,(s) = Z s, v €[0,v—1], ©)
i=0 i=0

wherev = p® andm” = m/e. In [9], Delsarte gave a necessary and sufficient condition
for a code to be invariant und&G L(m”, p€) which can also be formulated in terms of a
partial order. Let us define, foralt € S:

S Ket < wt,(p*s) < wt,(pt), Vk € [0, e—1]. (4)

THEOREM?2 [Delsarte [9]]JAn extended cyclic code C dfwith defining set T is invariant
under AGLmM”, p®) if and only if T satisfies

teT and skt = seT.

The most important classes of affine-invariant codes are the primitive extended narrow-
sense BCH codes and the generalized Reed-Muller (GRM) codes. We now give their
definitions.

DErINITION 5 Recall thatk = Fq, g = p" and m= rm’. The extended primitive BCH
code ovek of length " and designed distancewill be denoted by B9); it is the code
with defining set

§—1
T = Jcla(h),
j=0

where ch(j), 1 < j < p™ — 1, is the orbit of j under multiplication by g—by convention
we suppose thatis the smallest element of,¢5).

The primitive BCH code of lengtH"p- 1 and designed distandeoverk (whose extension
is By(8)) will be denoted by B(&).

DEFINITION6 Foranyu,1 < u < m(q — 1), the GRM-code of length"poverk and of
indexy is the code G RIy() of A with defining set

L(u) ={t e S|0 < wty(t) < u}.

The integen = m'(q — 1) — p is the order of GRM(w).

Remark.By applying Theorem 1, one deduces immediately that the definitions above give
affine invariant codes.

For instance, consider the cofg(s) with defining sefTs. Lett € T; ands < t. By
definition of T, there ist’ € cly(t) such that’ < §. Sinces < t meansgs < qt—by
definition, see (2)—, there & € cly(s) such thas’ < t’. Moreover it is clear that’ < t’
impliess’ < t’; sos’ < § which yieldss € T;s. In the same way, it is easy to prove that
G RM,(w) is affine invariant by noticing that < t implieswty(s) < wtgy(t).
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We determined in [4] the automorphism groups of GRM codes. We state our result for the
permutation groups in the next theorem; according to Theorem 5 below, the automorphism
group is simply deduced from this.

THEOREM3 (Berger and Charpin [4])The permutation group of G R)Mw) is AG L(m, ),
whenl < p <m(q—1). If u =1o0r u =m(q—1) then GRM(w) is a trivial code
whose permutation group is the symmetric group over G.

2.2. The Automorphism Groups of Affine-Invariant Codes

The aim of this section is to recall the main tools that we introduced for the classification of
the permutation groups of affine-invariant codes. The proofs are to be found in [5, Section
[I-B]. Our notation is as introduced before.

THEOREM4 (Berger and Charpin [5, Sect. 1I-B]let C be a nontrivial affine-invariant code
of A of length g" overFq, g = p", m=rm'.

Then there exist a divisor e of m and a divigoof e such that the permutation group
Per(C) of C is generated by AG(m/e, p°) together with the Frobenius mapping: .

Let T be the defining set of C. Théns the smallest integer such that T is invariant
under multiplication by p. Moreover r divides e and divides .

Berger [2] proved later that the full automorphism group of any affine-invariant code is
easily deduced from its permutation group:

THEOREMS ([2]) If C isanon-trivial affine-invariant code, with permutation group REp,
then

Aut(C) =k*x Per(C) .
More precisely, the elements of A@) are of the form

ngxg N angX“@, ack*, oePerC).
geG geG

Thus knowledge of the permutation group is sufficient for the complete description of the
automorphism group of any affine-invariant code. In accordance with Theorem 4, this is
achieved as soon as we know the values of the two paramétense.

Remark.An affine-invariant cod€ is an extended cyclic code. The permutation group of
the corresponding cyclic cod€s' is the stabilizer of 0 in the permutation group®f It is

not so easy to determine the full automorphism grou@ofrom the automorphism group

of C. Forinstance, it is easy to prove that the automorphism group of any Reed-Solomon
codeC* contains an element which is not in the direct proddck Per(C) (see [10]).

In a certain sense, Theorem 4 is only an algorithm. For a large class of affine-invariant
codes the permutation group is immediately deduced, especially mhsmrime. But
generally, and always when the alphabet field is an extension field, the following question
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remains open: for a given affine-invariant c&leith defining sef, how does one compute

its permutation group? Some tools were developed in [5] among which is the next theorem.
For some particular values af or ¢, the determination of is easy: ifm is a prime, it

is sufficient to verify that the code is not@mary Reed-Muller code. I = m, the only

possibility ise = m and the permutation group BGL(1, p™). For the general case, the

determination ok is more difficult. There are many situations and then we need several

different tools. In particular we state a condition which is equivalent to those of Delsarte

[9] and is more efficient (or more easy to handle) in some situations.

THEOREM 6 (Berger and Charpin [5]Let C be an affine-invariant code with defining set
T. Let e be a divisor of m. Then the code C is invariant under A&/, p€) if and only
if

teT and j<t = t+j(p°—1) €eT.

2.3. Equivalent Affine-Invariant Codes

To conclude this section, we want to point out that two distinct affine-invariant codes are
generally not equivalent. This was shown recently by Berger [2] to be a consequence
of Theorem 5. By sayingwo codes are equivalente mean that there is a monomial
transformation from one code to the other.

THEOREM7 (Berger [2]) Two distinct affine-invariant codes, say C an( &e equivalent
ifand only if C is the image of by some Frobenius mapping—iyg« (C) = C’ for some k.

Any affine-invariant code C and any extended cyclic coda€equivalent if and only if
C is the image of Cby a multiplier—i.e. by g— g' for some t prime to p — 1.

Consider two cyclic codes of lengtioverk, sayC andC’. Assume that gagh, ¢(n)) = 1
wherey is the Eulerp-function. Itis well-known thaC andC’ are equivalent if and only if
Cistheimage o€’ by a multiplier (see [11]). Note that Theorem 7 provides a necessary and
sufficient condition, without the hypothesis npwhen at least one code is affine-invariant.

Actually Theorem 7 provides important applications. For instanaeself-dual affine-
invariant codes can be equivalenhder a Frobenius mapping only. These codes were
studied in [8], for characteristic 2 only. In particular, an effective method for constructing
several classes of such codes was given.

In general, two distinct affine-invariant binary codes are not equivalent. As an example
consider the binary extended cyclic codes which contain the Reed-Muller code of order 1 and
are contained in the Reed-Muller code of order 2. All these codes are affine-invariant and
we know that there are several pairs of such codes which have the same weight polynomial
(see [13]). According to Theorem 7 they are not equivalent.

3. Affine-Invariant Codes with Large Automorphism Groups

In this section we point out that affine-invariant codes, whose permutation group is larger
thanAGL(1, p™), exist and can be easily constructed.
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If we choose randomly an affine-invariant code defined @rits permutation group
will probably be the group generated pyandAGL(1, p™). The exceptional codes to be
presented in Section 4.3 are very particular because their defining sets are very small (two
or three cyclotomic cosets). The main family of codes with a large permutation group is
that of GRM codes. We will show that exceptional BCH codes over an extension field are
essentially GRM codes.

However, there exist a lot of affine-invariant codes with larger permutation groups. For
instance, by using either Theorem 2 or Theorem 6, we can construct foseachand
each divisoe of mthe smallest code containisgn its defining set which is invariant under
AGL(m/e, p®). Generally the codes obtained in this way are not GRM codes.

More preciselymany affine-invariant codes have a permutation group which contains
AGL(m/r, p) for some non trivial divisor r of m

Example 1. Assume thain has a non-trivial divisor and consider the pose€§, <),
defined by (4). LeM (r) be an antichain of this poset—i.e. a subset of non-related elements.
Let us define

T=|J{seSIs«t}.
teM(r)

By definition of «;, we haveqT = T, q = p". Moreover the extended cyclic code over
Fq, whose defining set i$, is invariant undeAG L(m/r, ¢). This is an obvious corollary
of Theorem 2.

Our purpose here is to suggest the characterization of special classes of affine-invariant
codes with large permutation groups. For instance, we conjecture that such classes can be
found in the set of affine-invariant codes whose definingls&t such thatM (r) (see the
example above) consists of only one cyclotomic coset. Another question is to determine
the smallest defining sét such that the corresponding code is invariant under a given
subgroup.

The classification induced by Theorem 4 is complete for binary codes of lefigthere
mis a prime, becauseis either 1 om. In the same way the next class which will probably
be easy to study is the class of codes dugwhose length is 2 wherem = 2k andk is
prime.

4. Automorphism Groups of Some Infinite Classes of Codes

In our previous paper [5], we described the automorphism groups of a number of affine-
invariant codes. In this section, we generalize our results on codes with few zeros and
on primitive BCH codes in the case where the alphabet field is an extension field. Since
the proofs are most technical, we need some precise notation and definitions. We use the
terminology of Huffman who presented our work in his chapter for the Handbook of Coding
Theory [10].
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4.1. Notation

Recall thain = q™ — 1,q = p’ andm’ = m/r. SetS = [0, n] and lete be any divisor of
m; setm” = m/e. To any elemens € Sassociate am”-tuple

S «— (S0,S1,---5Sw—1)pe

wheres = Zi'“:"gl 5 p® is the p®-adic expansion of. When necessary, we will indicate
the length of a string within the associated-tuple by a brace beneath the string or the
position of an entry (counting from the left starting with 0) by a value above the position
in them’-tuple. For example, i€ = r andm” = m' = m/r, fors = g™ — g% — 1, the
associatedn’-tuple is

2
q-1L9-1,9-2,9g-1,...,9— 1y
—  ———

m'-3

A crucial problem in our proofs is to determine if some elemeit Sis the smallest
element in itsp®-cyclotomic coset. Notice that the elements of {ifecyclotomic coset
of s are precisely the elements with associat®dtuple a cyclic shift of then”-tuple for
s. Notice also that the smallest element of jfscyclotomic coset must have its longest
string of 0’s (counting cyclic shifts) at the right end of thé-tuple; if the longest string
of 0’s is unique, by placing it at the right end of th#-tuple, we will have the smallest
element of itspe-cyclotomic coset. For example,df=2%,r =e=2,m’"=m =5 and
s = 142934 3g*, the 4-adic expansion sfand of the smallest element of its 4-cyclotomic
cosett are:

$s=(1,0,0,2,3), and t =(2,3,1,0,0)4. (5)
Generally in this section, we will identify and its p®-adic expansion:

S=(S0,S1, .-, Sw-1)pe-

Using the relationx, defined by (2), we need not only thgf-adic expansion o$ but
also its p-adic expansion. The-adic expansion will be placed between brackets; for
example, is = Y 's'p', thens = [s), s}, ..., §,_,]. Moreover, we will simultaneously
use both notation: i§ = (s, S1. ..., Sw_1)pe andsy = Y50 S0 p', then we writesy =
[0.0: 015 - - - > Soe-1] @nd

S = ([S.0. %01, ---»S0.e-1] St - -+ » Sw—1)pe-
In (5), we haves = ([1, 0], 0, 0, [0, 1], [1, 1])4.

DEFINITION 7 Let C be an affine-invariant code with defining set T. Let e be a divisor of m.
A disqualifying pair(s, t) fore isa pairsuchthats T,t < s,but$=s+t(pc—1) ¢ T.

According to Theorem 6, a codgis not invariant undeAG L(m/e, p®) if and only if a
disqualifying pair fore exists.
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4.2. BCH-Bounds and Permutation Groups of Affine-Invariant Codes
DerINITION 8 The BCH-bound of an affine-invariant code C with defining set T is the
smallest integeé < [0, n] such that is notin T.

Denote byT+ the defining set oC1—the dual ofC. Note thatC* is clearly affine-
invariant. The next result is easily deduced from the relation

Tt={n—sls¢gT}.

LEMMA 1 If § is the biggest element of the defining set of an affine-invariant code C, then
n — & is the BCH-bound of €.

THEOREM8 Let C be an affine-invariant code with defining set T and BCH-bdurigkt
e be a divisor of m and fn= m/e. If C is invariant under AGm’, p®), then

Sm—1 X 82 X -+ - 281 X do, (6)

wheres = (8, ..., Smr—1)pe is the fF-adic expansion of.
More precisely, i5; > p! for some j, then prt — 1 < §_;.
Proof. Note, for clarity, that

. i
pft-1=[p-1,p—-1....,p—10,...,0].

LetO<i <m” — 1. To prove our theorem, it is sufficient to prove tpat— 1) pl <&8i_1
forall j such that; > p'. Indeed, assuming that this property is satisfiedi I given
and denote by, the greatest integgrsuch that; > p!. Then we clearly have

j .
8 = [81.0. .2 8.1.0,....0] <[p—1....p~1,0,....0] = plo+t — 1.

But, by hypothesis(p — 1)p} < & _1, forall j < jo. So

p]0+1_1:[p—1,...,p—l,o,...,0]§5i71,

implying & < 8i_; (for anyi).
i
Lets=(p®—1,...,p°— 1,8 — p), 841, ..., dm_1)pe, fOr any j such thaws; > p’.
By constructions < §, and thuss is in the defining seT. Note that

S_1=[p—1...,p—1]wheres= (S, S, ..., Sw—1)pe -
—,__/

e
Now sett = p®—D+i, Sincep! < s_3, thent satisfies < s. The pair(s, t) cannot be

a disqualifying pair foe, since the cod€ is invariant undeAG L(m", p®) (see Definition
7). Sos' = s+t(p®—1)isin T, from Theorem 6. Note that = s+ (p&'+) — pei-D+y;
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more precisely ands’ differ only in the(i — 1)th and thd th symbols. We have

j .
s,=[p-1....p—1Lp—-2p-1,....,p=-1]=p°-1-p

ands =s + pl = 4.

Sinces' € T ands ¢ T, itisimpossible to havé < s’ (see Theorem 1). Bt £ s if and
onlyif §i_1 £5_,. Indeedjy < 5, fork < i — 1, becausg, = p®— 1; moreovepy = s,
fork > i. The conditiori_; £ §_, implies clearlysi_, ; = p—1,i.e.(p—1) pl < &_1,
completing the proof of (6).

Suppose that > p! for somej. We have proved that for atky< j we have(p—1) p* <
8i_1. This meang!*! — 1 < §;_; completing the proof. [ |

Example 2.Suppose thahis evenm > 6. Consider an affine-invariant co@eonF with
BCH-bounds = p™?+2 4 p™2+1 4 p2 4 1. Then thep-adic expansion of is

§=1[1,0,1,0,...,0,1,10,...,0].
—— N— —
m/2-2 m/2-3
Let e be a divisor ofm, e > 1. Itis clear that ife # m, then there is an > 0 such that

8 > p. If C satisfies the hypothesis of Theorem 8, this imp[iés- 1 < & _1 < 8o which
is impossible. S@ = m, implying that the permutation group Gfis (AGL(1, p™), yq)-

Suppose that the cod@is any extended BCH code of designed distahogerFq—i.e.
the codeB,(6). We are going to prove that, according to the hypothesis of Theorem 8,
we obtain the precise form éffor a large set of values @f. In the sequeTl denotes the
defining set 0B, (8) andT+ the defining set quL (8). We do not treat binary codes, whose
automorphism groups are known (see our previous paper [5]).

CoROLLARY 1 Using notation as before, suppose that the cod€ Bis invariant under
AGL(mM’, p®). Moreover we suppose thétg and e are such that

g#2 p*<86 and §#£p"-1

(whereé is the smallest element of its g-cyclotomic coset).

Then the g-adic expansion &fsay(do, . .., dw—1)q, IS
§=@-1,....9-1, d.0,...,0), (7)
— ~——
K s

wherex denotes the biggest i such that ¢ 0 andA = m’ — (x + 1). Moreover, if
§<p™€—1thenq =1.

Proof. Recall thatm” = m/e, m" = m/r, with g = p". SinceBqy(d) is invariant under
AGL(mM’, p®), r must dividee (see Theorem 4). Se&t = rv (note thatp® = g’ and
m = vm”). We take the following paits, t):

S=@-1....q-10d —1,0,....,0q and t = g*" .

A



40 BERGER AND CHARPIN

We have clearlys < §, implyings € T; moreovert < s, sincev < « by hypothesis. If
By () is invariant underAG L(m”, p®) then(s, t) cannot be a disqualifying pair far(see
Definition 7). Sos’ = s+ t(p®—1)isin T, where

S=0W-DJd+@ -D+9"Q" - =dg“+@Q -1 —-qg",

with g-adic expansion

s’:(q—1,...,q—1,q:Z,q—l,...,q—l,éK,O,...,O)q.
—_— —— [ — —

N —
K—v v—1 A

Wheni > 0, §' is the smallest element of itgcyclotomic coset, sincq > 2. Assume
thatA = 0,i.e.c =m' — 1. Asé < p™ — 1, it follows thatd, < q — 1. Moreover we have
v<m/2<k+1-—v,sincexk =m — 1 andv dividesm'’. This impliesk — v > v — 1,
which means thas' is the smallest element of its-cyclotomic coset. Note that = v
providesv = 1, = 2 and thers’ = (q — 2, dy)g.

Sinces' is thus the smallest member of giscyclotomic coset in any case, asde T,
Definition 5 implies thats’ < §. Therefored; = q — 1 for v consecutive values of,
j=k—v,...,k—1.

First note that = 1 mean® = r. In this casé has the form (7), by applying Theorem 8
withd,_; = 6,1 = q — 1. Suppose now that > 1. We have proved that thg®-adic
expansion of satisfies:

8= (80, ..., 81, 8, 0,...,0)pe

W

whereq® — q! < 8;_1, j being the biggest integer such tlidt— 1 < &, noticing that’
might be equal to 0. To prove théathas the form (7) is to prove that = p® — 1 for all
i < &. We apply Theorem 8.

e If j =0thenss_1 = p®—1limplyings = p®—1foralli < & —1, becausé;_; < §;.
e Assumingj > 0, theng! — 1 < §;_4, sinceq!/p < 8. We have

ji—1
s=@-1,....,9-1d,0, ..., 0)q

and

i
Se—1=(..,0-1 ..., 0—1)yq.

Thenés < 8:_1 implies that the firsj digits of :_; (baseq) must also be — 1. So
8¢—1 = p®— 1. Therefores; = p*—1foralli <& — 1.

In any case, we obtaidh = q— 1fori =1,...,«x — 1, completing the proof of the first
part of the theorem.
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Now assumethat < p™€—1,i.e.x > vin (7). Letu be the element of thg-cyclotomic
coset ofs whoseg-adic expansion is

u=(d.—-10,...,000g-1,...,9— 1.
—_—— —m —_—

A K

Thenu is the biggest element af. Indeed, any’ € T such thatu < u’ has the form
(Ug, ..., U, q—1,...,9 — 1gq. The smallest element ici (u’) willbe (q —1,...,9—
1, ug, ..., u})q, and this will be at least, contradicting Definition 5.

We deduce thai*, the BCH-bound ofB;(3), is equal top™ — 1 — u and hasy-adic
expansion

-de.g—1,...,9-10,...,0)
\/_J&—.\/——/

A K
(see Lemma 1). Consider thgg-adic expansion of*, say(dy, ..., 8 _)pe. ASA > v,
theq-adic expansion of;- has the form(q — 1, .. .)q. Buts; < 83 yieldsq —d, = q—1.
Henced, = 1, completing the proof. ]

4.3. Codes with Few Zeros

In this section we apply Theorem 4 to the study of automorphism groups of cyclic codes
with few zeros—i.e. of large dimension. Actually we give a precise description of the
automorphism group of some cyclic codes with two or three zeros.

DEFINITION 9 Recall that g= p" and m= rm’; clq(j), 1 < j < n, is the g-cyclotomic
coset of | modulo n. Leta and b be two integers such@hata < b < m’/2. We denote
by C, the extended cyclic code of lengtf,mverk = [Fy whose defining set is

Ta={0}Uclg(D) Uclq(l+g?).
We denote by £, the extended cyclic code of lengtR,mverk = Fy whose defining set is
Tap = {0} Uclq(1) Uclg(1 4 g®) Uclg(1+q°) .

For the definition of the codes,Cwe suppose that'm> 2; for any code G p, we suppose
m > 4.

Remark. Clearly, the code€, andC,;, are affine-invariant. By definition, + g and

1+ g are in two differentg-cyclotomic cosets and each is the smallest element of its
p-cyclotomic coset. According to Theorem 4, the integef Theorem 4 is here equal to

r, whereq = p": these codes are g-ary codeSo we have to determine the parameter
eonly, i.e. the divisor oim such that the permutation grodjer(C) of C is generated by
AGL(m/e, p®) together with the Frobenius mapping (see § 2.2).
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PrROPOSITION1 Assume a< m'/2. Then the permutation group of,@s the group gener-
ated byyy and AG L(1, p™), except for the following cases:

1. =2, mM =mevenand a m/2. The permutation group is
AT'L (2, 2M?),

2. g=2,m =m, m= 0 mod 3and a= m/3. The permutation group isIAL (3, 2"/3).
3. m = 0 mod 4and a= m'/4. The permutation group is
(AGL2 q™/2), yq).

Proof. The proof is exactly the same as that of [5, Proposition 5] (where the alphabet field
is a prime field). ]

THEOREM9 Assumd < a < b < m'/2. Then the permutation group of,g is
(AGL(1,9™M), yq), except for the following cases:

E: : g =2 m =5a, b= 2a. The permutation group iSAG L(5, 2%), yq);
E; : g =2 m =4a, b= 2a. The permutation group iISAG L(4, 2%), yq);
Es : m' = 6a, b= 3a. The permutation group iAGL(3, %), y4), for any q.
Es : meven,at b=m'/2and a< b (for any q):
e If m' = 8a and b= 3a then the permutation group {AGL(4, 4%), yq)
e otherwise the permutation group (&G L(2, g2t?), Ya)-
We begin by proving a simple lemma.

LEMMA 2 Leti and j be non-negative integers suchthat i < j <m'. Thend+ql €
Tap if and only if

j—1i isoneofam —a, borm-—b.

Proof. Obviously,g' + g is in Tap if and only if g' + g/ is either inclq(1 + g?) or in
clg(1 + g°). Suppose first thag' + g/ is in clq(1 + g®). In other words, there i’ in
[0, m" — 1] such that

qi + qj — qa’ + qa+a’ (mod m') )
Soeithei = @', providingj = a+i,orj = &, providingi = a+ j —m'. Inthe same way

we can prove that' +q’ € clq(1+ g°) if and only if eitherj = b+i ori = b+ j —m,
completing the proof. [ ]

Proof of Theorem 9: For any divisore of m, our aim is to determine if a given co@® p
is invariant (or not) undeAG L(m/e, p®). We know that the cod€,, is invariant under
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AGL(1, p™ since it is affine invariant. Recall thét= r andr must be a divisor oé&:
e=rv. Som/e=m/v andq’ = p°.

In accordance with Theorem 6, , is invariant unde®AG L(m/e, p®) if and only if T, ,
satisfies

seTapand j <s = s+ Q" —1) € Tap. (8)

Forsincly(1), j < syieldsj = 0 ors;in both cases+ j(q" — 1) isincly(1) and then in
Tap. Consider novs = 1+ g2 and letj be suchthaf <1+ g2 If j =0orj = sthen
S+ j(g® — 1) is in the cyclotomic coset of. So we have to check (8) only whgn= 1
org?. Similarly, if s = 1+ g, we have to check (8) only whejn= 1 org°. Thus (8) is
satisfied if and only if the following conditions are satisfied:

(i) 9*+9"€Tap; (i) 14+9*" € Tap;

(i) @°+0"€Tap: (V) 140" €Tap.
We will determine the cases whd(i, (i), (i) and(iv) are satisfied. We remark that
O<a<b=<m/2<m-b<m-a. (9)
We distinguish five cases:

1. Suppose < a. We have O< a— v < a. From (9) and Lemma 2 we can deduce
g% + q¥ ¢ Tap Which contradictgi).

2. Assume thah = v. Assuming(i) we have B2 € T, which yieldsg = 2, m = m'’
ande = v = a. Now the conditiongii), (iii) and(iv) become

14+0% € Tap, ®+0° € Tap, 14+0*P e Tap .

From (9) and Lemma 2, we must habbe- a = a; thereforeb = 2a, which yields
1+9%2 ¢ Tab- Moreoverb + a = 3a must be eithem — a or m — 2a and we have:
e if m— 2a = 3athen we obtain the exceptidty;

e if m— a = 3athen we obtain the exceptidsy.

3. Suppose thaa < v < b. The relation O< v — a < b and the conditior(i) imply
v —a = a. On the other hand, & b — v < b and(iii) imply b — v = a; sob = 3a.
We deducea + v = b andb + v = 5a. From Lemma 2 andiv) we have these two
possible cases:

e if b+v=m —athenm = 6a and we obtain the exceptidfs;
e if b+v=m —bthenm = 8a and we obtain the exceptidiy.

Note thatv = 2a and there = 2ar; m/eis either 3 or 4.
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4. Assume thab = b. From(iii), 20° € T,p impliesq = 2, and therm = m’ and
e = v = b. Now the other conditions become

qa + qb € Tap, 1+ qa+b € Tap, 1+ q2b € Tap .

Since O< b — a < b, thenb — a = a, i.e.b = 2a; note that we must havead< m.
Moreover we obtaira + b = 3a and D = 4a. So we must examine two cases.

e Ifm=2b=4athen1+qg® =2isin cly(1) anda+b = m—a. This case corre-
sponds to the exceptidfp. Note thaim/e = 2; thus we have proved th@t, 2, isin-
variantundet AG L(2, 2%2), ) which is a subgroup dfAG L(4, 22), y»). We pre-
viously have proved (see 1. above) tRat, is invariant undefAG L(4, 22), y»).

e If2b=m—athenm = 5a. Soe = 2a does not dividan, a contradiction.

5. The last case is whdn< v < m'/2. Note that we have:

O<v—b<v—a<v+a<v+b<m.

According to Lemma 2, the conditiorig to (iv) will be satisfied if and only if:
v—b=a v—a=b v+a=m—-bandv+b=m—-a.

This givesv = a + b and thenrm’ = 2v. This is the last exceptioR,.

4.4. The Automorphism Groups of Primitive Narrow-Sense BCH-Codes

In [5], we determined the permutation groups of primitive BCH codes over any prime
field. At the end of the paper, we noted the difficulties for generalizing our results when
the alphabet field is an extension field. Now the problem is easier because of the new
tools presented in Section 4.2, especially the result given by Corollary 1. In this section we
complete our previous results by giving the automorphism groups of primitive narrow-sense
BCH codes defined on any extension field.

From now ork = Fq, withq = p" andr > 1. We will study the extension of BCH codes,
because we want to work in the ambient space of GRM-codes; our ambient space is the
algebrad = k[(Fyw, +)]. So the length of any of the codespé' = g™, m=mr. Recall
that B, () denotes the extended BCH-code of length, overk, with designed distance
and defining seT; (see Definition 5).

Inaccordance with Theorem 4 we must determine for any 83d#), a divisore of mand
a divisor? of e such that its permutation group is generated@&L(m/e, p€) together with
the Frobenius mapping,. We begin by proving that generally= r. We next examine
some particular cases, called “exceptional” (see Lemma 4). So the proof of Theorem 10
will consist of the determination af. Actually we will prove thate is equal tom when
By () is not exceptional. Recall that= p™ — 1.
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LEMMA 3 Letl < § < n, wheres is the smallest element of its g-cyclotomic coset.¢Let
be the smallest integer such thati¥ invariant under multiplication by p Then¢ =,
except whed = 1 or p™ — 1, and whers = 3forq = 4.

Proof. According to Theorem 4, must divider. Recall thatl«(s), for someu dividing
m, denotes the orbit of under the multiplication by" modulon, i.e. thep“-cyclotomic
coset containing.

First consider some particular valuessofThe caseg = 1 ands = p™ — 1 are trivial
cases where obviousl/ = 1. Suppose thay = 4. We haveT, = {0} U cls(1) where
clearly 2¢ T, implying ¢ = 2 =r. But

T3 = {0} U cly(1) Ucly(2) = {0} U cly() .

Soifé = 3 andq = 4 thent = 1.
Denote byL the number ofj-cyclotomic cosets module. LetC be the following set of
coset representatives

_ ) iE[l,L],5i<8i1
C= {8' ’ 8§ = minclq(8i) " } (10)

Note thatT; = clg(§i_1) U T5_,, 81 = Lands. = n= p™ — 1. We are going to prove by
induction oni, 2 <i < L, the following property:

(Hi) Assume that 3< i whenq = 4. Then for any dividingr, ¢ < r, there is
ans € T, such thatp’s ¢ T;,.

We first prove thatH;) is true for the smallest value of Suppose thay > 4 andi = 2,
i.e.8> = 2. ThenT, = {0} U clq(1) and clearlyp® is notinT, since 1< ¢ < r; so(Hy) is
true. Ifg = 4 andi = 4 we haves; = 5 and

Ts = Ta U cly(3) = {0} U cla(1) U cla(3).

In this case, the only possible value fois 1. (Hy) is true because & 2 x 3 is notinTs.
Now suppose thatH,) is true fori € [3, j[whenq > 4 and fori € [4, j[ otherwise. We
are going to prove thatH;) is true. We have

ng = Clq((sl'_]_) U T5j71
and we assume that
Ve, €r, 3se Ty, suchthatp’s ¢ Ty, .

If p's ¢ clq(3j—1) thenp’s ¢ Ty and(H;) is true. Assume thap‘s € clq(8j-1); SO
§—1 = q“p’s (modn), for someu. Moreover we can suppose thats the smallest
element of itsg-cyclotomic coset because the conditicm € T;_, and p's ¢ Ts.," is
satisfied forg¥s, for anyk.

So we havesj_; = g'p‘s (modn) ands < §;_1. Considering thep-adic expansion
ofs,s=[s, ..., Sn_1], Sett = s+ p' wherei is the smallest index such that< p — 1.
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We remark that this implies > p' — 1. By construction we have < t, implying
q"p‘s < g"p‘t (where< is defined by (2)). Note thatis not incl,(s). In particular, this
impliest # §;_1.

Since By (8j-1) is affine-invariant them" p‘t € Ts;_, would imply thatq¥ p‘s (and any
element ofclq(p‘s)) isinT_,. So there is no element ofq(pzt) inTs_,. Ift < §;_sthen
t € Ty, with p‘t ¢ T;,_,, implying that(H;) is true.

Suppose thédt > §;_;. Since

Sioi—t=q'p's—s—p =s@"'p' -1 - p,

we must have: G s(g"p‘ — 1) < p'. Whenp > 2 or p = 2 with g“p* # 2, this implies
s < p' — 1 which is not in accordance with the choicd oSo we musthave = 2,u =20
and¢ = 1. According to the choice dof one obtains

s=2 -1 and §_1=2s=2(2 —1). (11)

We are going to prove that;) is true fors; 1 = 2s, with s € Ty, _,, andq = 2. Note
thatcl,(s) has cardinalityn, because of the form «f. Sinces;_; is the smallest element
of its g-cyclotomic coset, it is clear that< m — 2. Thus we have < 2sand & is smaller
than anyt € cly(s) unlesst = s. Moreovercly(s) is the union of the classe$lq(2‘s),

0 < ¢ <r — 1. Each such class has cardinalityr .

Wheng = 2" with r > 2 we deduce thatly(4s) is not contained irl; in particular
4s ¢ Ts, while 2s € Ty, i.e (Hj) is true.

Suppose thay = 4. By hypothesis$j_1 > 5; so, according to (11), > 2,s > 3 and
§j-1 > 6. If s = 3, we have clearly & T, , and 10¢ Ts. More generally, suppose that
s>7andtakes = s+ 2 — 271 je.u=2*% —1- 21 The 2-adic expansions of
and 21 are respectively

i i+1
[1,...,1,0,1,0,..] and [01,...,1,0, 1.0,..]

(recall that < m — 2). We haves < u < 2s; moreover, even whein=m — 2, it appears
that the smallest element of,(2u) is strictly greater thanimplying 2u ¢ Ts while
ue Ty, i.e(H)istrue.

We have proved thatH;) is true, for 2< i < L. Obviously(H;) means that the defining
set of the BCH code of designed distardgeover the field of ordep’, is not invariant by
multiplication by p?, ¢ dividingr and¢ < r, completing the proof. [ |

LEMMA 4 For the following values of g and, the code B(8) has a permutation group
greater thanfAG L(1, p™), yy ). These cases, listed below, will be called “exceptional”.
Some extended BCH codes are in fact GRM codes:

(E1) § = 1oré = g™ — 1, for any gq. The codes 85) are the trivial GRM codes,
GRM,(1) and GRM,(m'(g — 1)), respectively. Their permutation group is the full
symmetric group Sy(®), G = Fpn.

(E2) 6 = 2, for any q. The code #2) is equal to GRM(2); thus PerBy(2) =
AGL(mM, Q).
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(E3) § =q™—q™~1-1,foranyq. Thecodefq™ —q™~1-1)isequalto GRM(mM (q—
1) — 1); thus PerBy(8)) = AGL(M, ).

(E4) m' = 2,ands = q?>—2q — 1. The code B(g?> — 29 — 1) is equal to GRM(2q — 4);
thus Per(Bq(6)) = AGL(2, ).

(E5) g =4ands = 3. The code B3) is equal to G RM(2), with scalars extended fify,
and PenBs(3)) = AGL(m, 2).

There is one exception wherg ®) is not a GRM code:

(E6) g = 2, withr > 2 (i.e. g even and ¢ 8), and§ = 3. Then PerBy(3)) =
AGL(n, 2").

Proof. Recall that the defining set @ R M, (1), the GRM code of index and length
g™ overF, is denoted by (1) (see Definition 6). The permutation group®R M, (1) is
known to beAGL(m', q) (see Theorem 3).

(E1) This case is obvious because the defining sets are

T1={0} and Tw ;={0.1,..., q" —2}.

They correspond to the code containing any word for whom the sum of the coordinates is
zero and the code containing the constant vector only, respectively
(E2) It is easy to check that

T, ={0} Ucly(1) = L(2).

(E3) One checks easily thd}w_qw-:_, is the set of thoss, s € [0, g™ — 1] such
that 0 < wty(s) < m'(q — 1) — 1. This is exactly the defining s&t(m'(q — 1) — 1) of
GRM,(m'(g — 1) — 1). These codes are the duals of those in (E2).

(E4) We remark that = (9 — 1, — 3)q. Lets = (s, S)q. Thensisin Tye_oq_1 if and
only if

o “ss<gq—-30rs,<q-—3"0r
e “sg=qg-—3ands, <gq-—1"0r
e “s;=g—3ands; <q-—1"

This occursifand only ifvtg(S) < 20—4. SoTg2_»q—1 isthe defining set d& R M, (20 —4).
(E5) We have seen in the proof of the previous lemmaThat {0} Ucl,(1), whenq = 4.
ThusT; is the defining set o6 R Mx(2).
(E6) We have already proved that the valuegfa$ alwaysr (cf. Lemma 3). We apply
Theorem 6 when the defining set is

Ts={0juclq(D) Ucly(2, q=2", 1 > 2.
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We consider the pair, t), such thas € Tz andt < s, and computs’ = s+ t(2" — 1):
o If (s,t) = (0,0) thens' = 0.

e Ifs#£0andt=0,thens =s.

e If s# 0 andt # 0 the only possibility is = t, implyings’ = s2'; hences’ € clq(9).

In any case we hav& e T3; so we have proved that the corresponding pait) cannot be

a disqualifying pair for (see Definition 7). Henc8q(3) is invariant undelAG L(n, q).
Now for anye = rv the groupAGL(m/e, p°) is contained inAGL(nY, q). We can
conclude that the permutation groupBf(3) is AG L(, g), the permutation group of the
non-trivial GRM codes oveF,. Note thatTs is not the defining set of a GRM code, since
wtqg(1+ ) = 2 = wty(2) where 2e Tand 1+ q ¢ Ts. [ |

THEOREM10 Letk =Fq, g = p', paprime, r> 1. Let B,(8) be the extended BCH-code
of length ", r dividing m, overk.
Then the permutation group of,B) is

(AGL(L p™). yp )

except when g5 and m satisfy the hypothesis of one of the exceptions (E1) to (E6) listed in
Lemma 4.

When the permutation group of any,®) is generated by AG(m/e, p®) and y,, for
somet and some e, then the permutation group of the corresponding BCH cp@de¢ iB
generated by Glm/e, p°) andy.

The automorphism group ofyB) is k* x Per(Bq(4)).

Proof. According to Theorem 4, it remains to determine the valug sfnce the value of
¢ is known to be generally (see Lemma 3). S@; is invariant under multiplication byp',
andr is the smallest integer such that this property holds. Recalktkat v, for somev.

The difficulty of the proof comes from the number of particular cases fole have
chosen to treat separately thmallvalues ofs, themediunmvalues ofs and thebig values
of §. However the notion of “small”, or “big” is relative and depends on the value of

Notation was stated in Section 4.1. In particular= mr = m’vr = m’e; note that
p€ = q". Recallthag = p" with1l <r <m,i.e.4<q < p™, since the casas= 1 and
r = mwere already treated (see [5]).

From now on, we fixe < m, i.e.v < m'. This impliese < m/2 sincee dividesm.
In order to determine iBy(8) is, or is not, invariant undeAG L(m/e, p®), we will try
to produce a disqualifying pair fax, e = rv and 1 < r < m (see Definition 7 and the
following remark). Generally, the defining pair will g, t) ands’ = s+ t(p® — 1).

We generally identifys with its q-adic expansion, which is denoted @, . . ., dw_1)q.
In the proof,« will be the biggest suffix such thai; # 0; settingh = m' — 1 — «, we
have:

5= (0o, ....d..0,....0)q
——
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The p®-adic expansion o will be denoted, as previously, ko, . .., m—1)pe. Notice
thatd; = (dyi, dyit1, - - -, yi+1)—1)g-
1) The first case:§ < p® — 1. We havec < v implying

81=...=8wy-1=0 and A>m' —v.
Suppose thgd = 2. We consider 3 §, because the cases whére {1, 2, 3} were already
treated—see the exceptions (E1), (E2), (E5) and (E6) in Lemma 4. Thespaie= (3, 1)

is disqualifying fore. Indeed we have clearly 8 T; and 1< 3; moreovers’ is not inT;.
Indeeds’ = s + t(2° — 1) = 2° + 2 has the following expansions:

§=(210,....,00=20,...,010,... 0.
—— —— ~——
m’'—2 v—1 m—(v+1)

Sincev < m'/2 thenm’ — (v + 1) > v — 1, implying thats’ is the smallest element of its
g-cyclotomic coset. Ag < p® — 1,8 < §; sos isnotinT;.

Whenp > 2,6 = 1ands = 2 are exceptions. We suppadse 2. The pairs, t) = (2,1)
is disqualifying fore, since 2 Ts, 1 < 2 ands’ = p® + 1 has expansions

s§=(110,...,0,=(0,...,0,1,0,...,0)q .
—— —— ——
m’'—2 v—1 m'—(v+1)

As above, we have clearly & T;.

2) The second casep® — 1 < § < p™ ¢ — 1. Note thatp™ € — 1 = g™ ¥ — 1. We have
v <k <m —vandsy _1; = 0. Moreover, according to Corollary 1, we have to treat those
8 whoseg-adic expansion has the form

8=(q_17"‘7q_l’ i,o,...,O)q,
—_— ——

K A>v

i.e.d =2q9¢ — 1. Take(s,t) = (§ — 1,g“7"). Clearlys — 1 € T; and we have obviously
g“~" < §—1wherk > v. If x = vthent = 1andwe have < sunlessp = 2. We will treat
later the case whene = 2 and« = v. We haves' = s+t(q"—1) =20+ (Q“*—q“ " —2)
whoseg-adic expansion is

s/:(q—2,q—1,...,q—1,q—2,q—1,...,q—1,%,0,...,0)(1,
ﬁ/_d

A>v

whenk > v. If k = v thens' = 2g” + ¥ — 3, which yields

s’:(q—S,q—l,...,q—l,i, b ..., 0)q . (12)
——

A>v
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In any casa’ is the smallest element of igscyclotomic coset andl < s/, implyings’ & T;.
So(s, t) is disqualifying fore.

If p =2 andx = v, we chooses,t) = (§ —g*,2). We haves=q" — 1,2 < sand
s = 29" + (9 — 3). Sinces has theg-adic expansion (12), we conclude thatt) is
disqualifying fore.

3) The third case: p™©¢ -1 < § We havex > m' — v; thuséy_1 # 0 andir < v
(A = m —1— k). Moreover, according to Corollary 1, we have to treat thbsehose
g-adic expansion has the form

§=@-1...,9-1 d.0,...,0)q.
—_— —
K A<v
Recall thatm' = vm”, m” > 1; som’ = v + 1 if and only ifm’ = 2 (andv = 1).
3.1) We first suppose thaty > 2 (thenm’ > v + 1) and consider the pais,t) =

(6 —1,9™v-1), where clearlys — 1 € Ts. Sincex > m' — (v + 1), we have obviously
t < sand

s = s+t(pP°-D=dq“+g°—2+9" Q" - 1)
— qm’—l + quK + (qx _ qm’—v—l _ 2) )

Whenevers' ¢ T;, we can conclude that the pas, t) is a disqualifying pair foe. We
distinguish three cases:

e If X >2,we have

m—-v—1 K
s=@-29g-1....-L,9g-2,9-1,...,9-14d,,0,...,0,1)q.
N—— ——
m—v—2 r—1

The smallest element of tlgecyclotomic coset of' is

k+1

m—v
1,9-29-1...,0-L9-29-1,...,9-1,d,,0,...,0),
[N ——; ——
m—v—2 A—1
which is greater tha#, implyings’ ¢ Ts.
e If A =1, then
, m—-v-1 K
S Z(q_zaq_la-~-7q_1vq_zvq_la--~7q_1»dk71)q-
— —o—

m-—-v-2

Clearly, s’ is the smallest element of its tliecyclotomic coset, sincg = p' with
r > 1. Thens' is greater thai which yieldss’ ¢ T;.
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e If A =0,then

m—-v-1

slz(q_zsq_la7q_17q_2’q_177q_13dk+1)q
—_— —_——
m—-v—-2 v—1

Whend, < q — 3, itis clear thats’ ¢ T;, becauses’ is the smallest member of its
g-cyclotomic coset.

If d. =q — 3,5 is notinTs; because the coefficients of fsadic expansion arg — 1
orq — 2, implying that any element of itg-cyclotomic coset is greater than
If d. = q — 2thens = g™ — g™~ — 1; we obtain the exception (E3) (see Lemma 4).

3.2)We now treatthe particular case whare= 2. There =r,v = land = (q—1)+d.q,
i.e.d =(q—1 dy)g.

We remark thatl, = q — 2 corresponds to the exception (E8)<£ g% — q — 1) and
di, = g —3to the exception (E4¥(= > — 2q — 1). Thus we assume tha¢ < q — 4; since
d; # 0 we then assumg > 4. We will distinguish when the characteristic is 2 or odd.

e If p> 2, wechoosds,t) = (§ —1,1). We have clearly —1 € Tsand 1< § — 1.
Moreover

sS=s+t(q—1)=diq+29—-3 —i.e S=(Q—3,d1+1yg.
Sinced; < g — 4, it follows thats’ is the smallest member of itscyclotomic coset.
Ass > 4,5 ¢ Ts. Thus(s, t) is a disqualifying pair for.
e Assumethap = 2. Whend; < g — 5 we choose the pais, t) = (§ — 2, 1). We have
§—2€T; 1< (5—2) and
sS=s+t(q-1)=dq+29—-4 —ie. S=(q—4,di+1y.
Again, s’ is the smallest member of itp-cyclotomic coset and’ > §; i.e. (s, t) isa

disqualifying pair forr.

Whend; = q — 4,thens = q? -39 — 1,i.e.§ = (q — 1, q — 4)q. We choose the pair
(s,t) = (g2 —4q — 1,2). Sinces = (q — 1,q — 5)q, itis clear thas € T; andt < s.
Moreover

§=s+t@-1)=9°-29-3 —ie. §=(q—-3,9-3)q;
s’ is the only element of itg}-cyclotomic coset and is greater thadnso (s, t) is a
disqualifying pair forr.

We have proved that anfy(§) which is not exceptional cannot be invariant under
AGL(m/e, p®), for anyesuch thae =rv, 1 < v < m’. We conclude tha¢ = mis the
only possibility, implying that the permutation group®B{(s) is generated bAG L(1, p™)
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andyg. Thenthe permutation group Bf;(8) is (GL(1, p™), yq). The automorphism group
of By(8) is immediately deduced, according to Theorem 5. ]

Remark. At the end of our previous paper [5], we noted that the complete description of
the automorphism group of BCH codes, defined on any extension field, could be difficult
because of the number of different ambient spaces (the valpgtbé number of subfields

of Fym and so on). Corollary 1 was decisive and there are probably other corollaries of
Theorem 8 which can be stated for other specific classes.

On the other hand we expected other results, similar to our results concerning BCH codes
defined on any prime field. We were surprised to find only one more exceptional class of
BCH codes which are not GRM codes. This comes from the form of the designed distance.
As we noted in Section 3 it is, however, easy to construct affine-invariant codes with large
automorphism group.

Annex: Main notation
e kisthe alphabet fieldfq, g = p', p a prime.
e N=gq"—-1=p"—1,m=rm.
e Sisthe se/nZ of integers modulm; S= [0, p™ — 1].
e wi,(s), v = p" with u dividing m, is thev-weight ofs € [0, n] (see (3)).
e Gisthe fieldFyw, generally identified withf pm.
e G* = G\{0}; itis the multiplicative group of the fiel.
e Aisthe group algebr&k[{G, +}] (Section 2).
e If Cis an extended cyclic code, it is the extension of the cyclic cde
e SymG) is the symmetric group acting da.
o Per(D) is the permutation group of the co@e(Definition 1).
e Aut(D) is the automorphism group of the coBe(Definition 2).
e yp« is thekth-power of the Frobenius mapping Gh
e GL(m/e, p®) is the linear group, the group &f.-linear permutations oB.
e AGL(m/e, p°) is the affine group.
e TI'L(m/e, p) is the semi-linear group.
e AI'L(m/e, p®) is the semi-affine group (for all these groups see Section 2.1).

e m’: m/eis often denoted by".
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e (S x)isthe poset defined by (2).
e (S <), edividingm, is a poset defined by (4).

e clp(j), j € S isthe orbit ofj under the multiplication by" modulon.
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