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Abstract

This paper provides a progress report of the LAAS-CNRS project of autonomous blimp robot de-

velopment, in the context of field robotics. Hardware developments aiming at designing a generic and

versatile experimental platform are first presented. On this base, the flight control and terrain mapping

issues, which constitute the main thrust of the research work, are presented in two parts. The first part

devoted to the automatic control study is based on a rigorous modeling of the airship dynamics. Con-

sidering the decoupling of the lateral and longitudinal dynamics, several flight phases are identified for

which appropriate control strategies are proposed. The description focuses on the lateral steady naviga-

tion. The second part of the paper presents work on terrain mapping with low altitude stereovision. A

simultaneous localization and map building approach based on an extended Kalman filter is depicted,

with details on the identification of the various errors involved in the process. Experimental results show

that positioning in the 3D space with a centimeter accuracy can be achieved, thus allowing the possibility

to build high resolution digital elevation maps.

1 Introduction

Our long term objectives in field robotics is to tackle the various issues raised by the deployment of hetero-

geneous autonomous systems, in the context of exploration, surveillance and intervention missions. Within

such contexts, aerial robots will undoubtly play a growing role in the near future, not only during the mis-

sion preparation phase (in which drones can already gather environment informations for instance), but also

on-line, during the mission execution. Aerial robots can then provide the rovers with telecommunications

support, as well as with up-to-date informations on the environment. They can also localize the rovers as

they evolve within this environment, achieve by themselves some of the mission goals, and even be implied

in tight cooperation schemes with ground rovers.

In this context, we initiated the development of an autonomous blimp project. The ever on-going

developments in a wide spectrum of technologies, ranging from actuator, sensors and computing devices to

energy and materials will ensure lighter than air machines a promising future. There is undoubtly a regain

of interest in this domain, as shown by the recent industrial developments on heavy loads transportation

projects (such as the ATG Skycats1, not to mention various other prospective transportation projects), and

on stratospheric telecommunication platforms. As for small-size unmanned radio-controlled models, which

size is of the order of a few tens of cubic meters, their domain of operation is currently essentially restrained

to advertising or aerial photography. But their properties makes them a very suitable support to develop

heterogeneous air/ground robotics systems: they are easy to operate, they can safely fly at very low altitudes

∗This work is partially supported by the COMETS IST project (# 34304) of the 5th european Framework Programme, and by the

Midi Pyrénées region.
1up-to-date informations on this projects www.airship.com

1



(down to a few meters), and especially their dynamics is comparable with the ground rovers dynamics, as

they can hover a long time over a particular area, while being able to fly at a few tens of kilometers per hour,

still consuming little energy. Their main and sole enemy is the wind (see [1] for a detailed and convincing

review of the pros and cons of small size airships with regards to helicopters and planes). Let’s also note

that some specific applications of unmanned blimps are more and more seriously considered throughout

the world, from planetary exploration to military applications, as shown by numerous contributions in the

AIAA Lighter Than Air conferences and European Airship Conventions for instance [2, 3].

The first mentions of the development of unmanned autonomous blimps can be found in the literature

of the late 80’s, but it’s only recently that various projects have reached effective achievements. One of

the most advanced is Aurora, a project held at the Information Technology Institute of Campinas, Brazil,

mainly devoted to flight control [4, 5], but within which other issues are also considered [6, 7]. Other

projects are also under development at the university of Virginia [8], at the university of Stuttgart [9, 10],

the university of Wales [11]. More recently, a project of autonomous blimp navigation has started at the

CEMIF Laboratory of the university of Evry, France. Their first results concern the system modeling and

the trajectory planning problem [12]. One of the interesting characteristics of such projects is that they mix

various innovative technological developments and fundamental research.

Besides long-term developments related to the coordination and cooperation of heterogeneous air/-

ground robots, our research work on autonomous blimps is currently twofold: we concentrate on the nav-

igation problem on the base of automatic control, and on environment modeling issues using low altitude

imagery.

This paper presents our current achievements in these two areas. It begins with the presentation of

Karma, the 15 m3 airship within which our work will eventually be integrated. Karma’s hardware and

software architectures are briefly presented, and the paper is then split in two parts. Part A presents the

developments related to flight control: The description of the complete model is first presented, and the

control strategy based on the decoupling of the longitudinal and lateral dynamics is then explained. The

description focuses on the steady lateral dynamics which consitutes the central navigation phase. Part B

is devoted to the terrain mapping issue: the various algorithms that allow terrain mapping on the basis of

non-registered images are sketched, and the application of a simultaneous localization and map building

approach (SLAM) is presented in details. Results are presented: they show the capacity of our approach to

allow the building of several thousands square meters very high resolution digital elevation maps, integrat-

ing hundreds of images taken at a few tens of meters altitude.

2 The blimp Karma

2.1 An Airspeed Airship AS-500

We acquired in the end of 2001 an “AS-500” radio-controlled airship from the English company Airspeed

Airship2. Criteria for this choice were the size of the blimp (which we wanted to be rather small, for

the ease of deployment and storing), its available payload and its possible operation modes. The main

characteristics of the airship as delivered by Airspeed Airship are the following:

• 8 m long, 1.90 m max diameter, giving a volume of about 15.0 m3, and a fitness ratio of 4.25.

• The hull is made of welded mylar, and equipped with 4 control rudders in a “X shape” configuration.

A ballonnet fed with air captured at the rear of the propellers maintains a constant hull pressure, and

a radio-controlled security valve, located on the top of the hull, allows to release helium in case of

emergency.

• The available payload of the AS-500 is around 3.5 kg.

2The company’s homepage is www.airship.demon.co.uk/airspeed.html - the platform used in the Aurora project is an AS-800, a

similar bigger model.
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Specific modifications. In collaboration with Airspeed Airships, we specified the following modifica-

tions for our purpose:

• Electric motors: to have a finer controllability, we preferred to opt for electric motors. They do not

weigh more than fuel engines nominally proposed for the AS-500, but are less powerful, thus reduc-

ing the maximum reachable speed and the possibility to fly in wind gusts. But the main drawback of

this choice is the payload loss due to the required batteries.

• Stern thruster: the rudder control surfaces require a certain speed to allow changes in both the altitude

and orientation of the blimp. In order to have the possibility to control the yaw angle while hovering,

we choose to add a stern thruster.

Figure 1: Karma during its maiden flight in November 2001 (left, no on-board instrument were installed at that time), and during

test flights in summer 2002 (right - the cameras and the Ethernet antenna are visible).

The various control parameters of the blimp are sketched in figure 2. Note that after a few flight tests,

it appeared that the blimp yaw angle can be controlled thanks to the rudders even at very low speeds: the

stern thruster appeared to be rather useless (see section 2.4).

Pich control (rudders)

Yaw control (rudders)

Security valve

Vertorization

Main thrusters

Stern thruster
(yaw control

at low speeds)

Figure 2: The various control parameters of Karma

2.2 Hardware architecture

To transform the blimp from a radio-controlled machine to a robot, we equipped it with a set of proprio-

ceptive and exteroceptive sensors, and with computing and communications capabilities.
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Stereovision. One of the advantage of blimps is that they can carry a wide base stereo bench, thus having

the possibility to directly gather 3D data on the overflown ground. We adapted 2 high resolution digital

B&W cameras on a rigid 2.4 m carbon profile that traverses the gondola.

Blimp state observation. In order to allow automatic flight control, we added the following sensors: a

differential GPS receiver, a flux-gate compass, a 2-axis inclinometer that provides the blimp pitch and roll

angles, two solid-states gyros that provide the pitch and yaw rates, and a wind sensor (sonar transducer

technology), that measures the speed and orientation of the relative wind in the lateral plane.

CPU. Since our objective is to achieve autonomous missions that includes environment perception and

mapping, we opted for a Pentium III motherboard, endowed with all the necessary communication ports

and a PC 104 slot, on which we added four additional RS232 ports and a PCMCIA interface to host a light

11 Mbits/s Ethernet modem card.

Actuator control. The control surfaces and motor servos of the blimp are usual PWM controlled modelist

devices. To ensure a precise and battery charge independent control, the thrusters are servoed on their speed

thanks to a micro-controller. For safety reasons, and to enable a mixed manual/automatic control (e.g

automatic lateral control, while the pilot maintains the altitude), we conceived and developed a “switch”

electronic module, that allows to select between CPU or RC control for each actuator.

The whole hardware architecture is sketched in figure 3. The total equipment weight is just less than

2.0 kg, and requires 40 W of power.

Figure 3: The hardware architecture of Karma, showing the various formats of information exchanges between the instruments.

Note that the GPS reference corrections are transmitted via the radio Ethernet link.

Energy. Energy is a critical issue for any flying device, mainly for safety considerations. In our case, the

few available payload strongly constrains the battery choices: we opted for Lithium/Ion batteries for the
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on-board instruments, as they provide a good power/weight ratio. But the maximum instantaneous power

such batteries can deliver is not sufficient for the thrusters, which are therefore fed by NiMh batteries.

Finally, the radio-control receiver and the various servos are independently powered.

Each battery is managed by a electronic module, that allows both the “intelligent” charge of the battery

and the dispatching of status informations to the CPU via a multiplexed serial link. The charging modules

are linked to a single connector, on which a power source is plugged while the blimp is on the ground

(which allows booting and debugging without any power loss). This very flexible structure also allows the

future use of an alternate or backup power source on flight, such as a Stirling engine of fuel cells.

2.3 Functional architecture

To allow the integration of the various functionalities, while keeping development and control flexibility,

all the flight control and terrain mapping algorithms are nested within the functional level of the LAAS

three-layer architecture [13]. This level is a network of modules. A module is an active software entity that

can encapsulate any kind of algorithm: it is a server that manages all the communications with the others

modules, that runs the algorithms when required, and that paces them using its own threads or processes.

The data-flow between the various modules is not fixed: it is dynamically controlled by the executive layer

of the architecture, depending on the plans provided by the decisional level [13].

Figure 4 presents the set of modules that are to be integrated on board Karma. Three modules manage

the blimp motions (namely State monitor, Flight control and Motion planner), while the other ones achieve

absolute positioning and terrain mapping (namely Stereovision, Motion estimation, Slam and Mapping).

Details on the algorithms embedded in these modules are given in the rest of the paper. Note that the

position provided by the SLAM module is communicated to the State monitor, to estimate the state with a

minimal variance. Also, the future development of an Exploration planner will exploit the results of the

Mapping module to determine goals for the Motion planner.

Figure 4: The functional architecture of Karma.

2.4 Current status

Several test flights have been performed on an airfield near Toulouse during summer 2002, using a prelim-

inary hardware integration of the cameras, compass/inclinometers and GPS, and all the actuators provided

by Airspeed Airships. The objective of these tests were to get piloting skills, to evaluate the blimp en-

durance and ability to cope with wind, and mainly to gather sensor data in order to evaluate the blimp

performances and to begin algorithm testing.
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Remotely piloting Karma appeared to be extremely easy, as long as the mean wind speed does not

exceed 10km/h. The rudders are very effective, even at low speed: the turning radius is about 15 m at

10km/h. We therefore decided to get rid of the stern thruster, which appeared not really necessary, and

whose control is rather difficult. Payload appeared to be a critical point: the flight autonomy with the

on-board batteries is no longer than 12 minutes, and there is not any payload left for additional batteries or

equipment. A second version of Karma is therefore currently being developed: the new envelope will be

3 m3 bigger, allowing more payload; the gondola is totally redesigned and the original motors are replaced

by brushless motors, allowing more thrust power. As the altitude estimate provided by the GPS receiver

is not precise enough to safely servo the taking-off and landing phases, we will add a downward oriented

sonar telemeter3, and we are investigating for 3D wind sensors.

Part A: Flight control

This part of the paper presents the different flight phases and gives an account of the associated control

strategies from takeoff to landing. The description mainly focuses on the lateral control phase which

constitutes the essential part of the steady state navigation. The flight control architecture is shown in

figure 5. It involves the following three functional modules:

Figure 5: Detailed architecture of the control modules (functional modules of the figure 4 are shown in blue).

• The motion planner, which contains the trajectory planner and the control planner. For each flight

phase, the trajectory planner provides a reference path (expected airship’s position) or a reference

trajectory (position, velocity and acceleration). A corresponding closed-loop control law is then

provided by the control planner to regulate the airship’s motion along the reference solution. The

reference trajectory and the control law are sent to the flight controller.

• The flight controller, which computes the control input to be sent to the airship actuators on the base

of the estimated state variables provided by the state monitoring module. These values are also sent

to a virtual airship (see figure 6) from which a predicted state is determined and sent to the state

monitor function.

3Fortunately, the main drawback of sonars in robotics, i.e. their wide perception cone which make their data interpretation so

tedious, will turn into an advantage in our case, as there will be no need to mechanically stabilize it along the vertical.
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• The state monitor, which allows to determine the current estimated state of the system from the

predicted state and the measure of the sensory output. This analysis is also used to detect abrupt

variations of data that may result from perturbations such as wind gusts, thermals, or model variations

(fault detection).
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Figure 6: Virtual airship block design

3 Flight control strategy

3.1 The complete model

C
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Figure 7: The different frames

Three frames are introduced to model the airship’s dynamics (see figure 7): R0 is a global frame fixed

to the earth, while the body fixed frame R(N, X, Y, Z) and the aeronautic frame Ra(N, Xa, Ya, Za) are

two local frames attached to the airship whose origin is at the nose of the hull N . The point N has been

chosen as the origin of these local frames for the following reasons: its position is precisely determined,

does not depend on parameter’s variations, and allows to model easily the airship rotations with respect

to its center of gravity G. Furthermore aerodynamic torques are usually expressed at this point and more

generally, external torques acting on the airship can easily be expressed with respect to this point. The Xa
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axis of Ra is directed along the airship’s aerodynamic velocity Va = V − Vw, where V and Vw represent

respectively the airship’s velocity and the wind’s velocity4 with respect to R0.

α is the angle of incidence within the XZ plane, while β is the skid angle within in the XY plane. To

describe the airship’s orientation with respect to R0, the three orientation angles are: the yaw ψ, the pitch

θ and the roll φ. The current configuration is then deduced from three elementary rotations (see [14]). The

following notations are used: η = [η1, η2]
T represents the configuration of R with respect to R0, where

η1 = [X0, Y0, Z0]
T and η2 = [φ, θ, ψ]T . ν = [ν1, ν2]

T describes the velocity screw of the blimp expressed

in the local frame R, where ν1 = [u, v, w]T and ν2 = [p, q, r]T .

The dynamic modeling is deduced from Newton’s laws of mechanics [15], while the aerodynamic

model [16] is derived from Kirshoff’s laws [17] completed with Bryson’s theory [18]. the modeling is

based on the following hypotheses:

• The equivalent density of the airship being close to the density of air, the time-varying phenomenon

of added fluid induces a variation of inertia and mass that cannot be neglected 5.

• In order to apply the mechanical theory of rigid body, aeroelastic phenomena are neglected; the hull

is considered as a solid.

• The mass of the airship and its volume are considered as constant. These strong hypothesis neglects

the variation of mass induced by the inflation of air ballonets, inside the hull, which are consecutive

to a variation of temperature or pressure. To reduce this error, the nominal mass is determined for an

average temperature of 15oC and a 50% inflation of air ballonets.

• The aerodynamic effects which are due to gravity (modeled by Froude’s number) can be decoupled

from the dynamics.

• The phenomenon of internal added fluid which are due to the motion of molecules of helium inside

the hull is also neglected.

• The center of buoyancy is supposed to be the hull’s center of volume.

• The volume of ballonets is supposed to be insufficient to modify significantly the position of the

center of buoyancy.

• As the the number of Mach is low for an airship, the fluid’s viscosity which depends on the tem-

perature can be considered constant. As a consequence Prandtl’s number (which is dependent on

the coupling dynamics/thermics) is neglected, and the density of air is not locally modified by the

airship’s motion (low Mach ⇒ ρ∞ = ρ).

Figure 8: Scale model of Karma in wind-tunnel

4Note that in case of no wind Va = V .
5These variation is proportional to the volume of air displaced by the hull
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Following the analysis presented in [14] [19], the model can be described by two equations. The first

one characterizes the system dynamics with respect to R, while second one represents the kinematic link

between the frames R and R0:

Mdν̇ + C(ν)ν + Ta(νA) + g(η) = Tp (1)

η̇ = J(η)ν (2)

where:

• the 6 × 6 symmetric matrix Md includes the parameters of mass, inertia with respect to N and the

coupling terms6),

• ν̇ = [ν̇1, ν̇2] is the time derivative of the airship’s velocity expressed in frame R,

• Td = C(ν)ν is the torque of centrifugal and Coriolis terms, C(ν) being a skew-symmetric matrix,

• Ta(νA) = Aν̇A + D1(ν2)νA + Tsta(ν2
a) is the torque of aerodynamic forces and moments, where:

– A is the 6× 6 symmetric matrix of added masses, inertia at N , and coupling terms of the fluid,

– νA = [νa, ν2]
T , where νa = ν1 − νw is the vector of aerodynamic translational velocity, with

νw = J1(η2)
−1~Vw the velocity of wind with respect to R0 expressed in R7

– Tda = D1(ν2)νA is the torque of added centrifugal, Coriolis and damping terms of the fluid,

where D1(ν2) is a matrix which is only dependent on the rotational velocity rotation ν2,

– Tsta(ν2
a) is the torque of stationary forces and moments at N , which is proportional to the

square of the aerodynamic velocity [20]. This torque contains the forces and moments produced

by the control surface. Each pair of diagonally opposed control surfaces is simultaneously

actuated. The resulting force increases linearly with the deflection angle. They give rise to a

rotational moment within the longitudinal or the lateral plane.

• g(η) is the torque of weight and buoyancy,

• Tp is the torque of the vectored thrust which is produced by two synchronized propellers fixed on

a rotational axis. The norm and the direction µ of this thrust are adjustable within the longitudinal

plane. This actuator is used as a upwards lift during take-off and as an horizontal thruster during the

lateral steady flight.

• J(η) is the transition matrix from R to R0.

In the nominal case, when the external wind is weak or null, the following approximation holds: νa =
ν1, that is νA = ν. Under this condition, the dynamical model can be written:

Mν̇ + C(ν)(ν) + Ta(ν) + g(η) = Tp

where M = Md + A is the matrix of inertia due to both the mass of the airship and the added mass of air

at N , expressed in R.

3.2 Decoupled model for control

Though the system described by equations (1) and (2) models rather precisely the complete blimp’s dy-

namics, it is hardly tractable for control. As the dynamics of the state parameters involved in longitudinal

and lateral motions turn out to be weakly dependent, the twelve state variables can be splitted into two

subsystems in the following way:

6i.e. terms issued from the coupling of translation and rotation.
7Note that νw is not constant

9



VERTICAL

TRANSITION PHASE 

TRANSITION PHASE

TRANSITION PHASE 

LANDING

NAVIGATION

LONGITUDINAL

TAKE OFF

LONGITUDINAL

NAVIGATION

LATERAL

Figure 9: The different flight phases

• ηlong = [X0, Z0, θ]
T and νlong = [u, w, q]T to describe the dynamics within the longitudinal plane.

• ηlat = [Y0, φ, ψ]T and νlat = [v, p, r]T to describe the dynamics within the lateral plane.

Remarks:

• Though the the state variable X0 and u are common to both planes, they do not appear explicitly in

the lateral dynamic as, according to the proposed control strategy, they are supposed to be stabilized

to a to a steady value during the lateral flight.

• The rolling dynamics does not appear in the proposed control sub-models. The reason of this choice

is that the corresponding mode is structurally stable and not controllable. Indeed as explained in the

description above, the pair of opposed control surface being simultaneously actuated cannot induce

a rolling torque. Such a torque can neither be produced by the vectored thrust which always provides

the same power to both propeller. The simulation results presented in the last section (which have

been done by considering the complete model) show that an effective rolling motion occurs during

lateral navigation but that the corresponding dynamics is stable, sufficiently fast, and quite well

damped.

The proposed navigation strategy consist of a separate longitudinal and lateral control on the base of

the sub-model described above. During each phase a part of the state variables needs to be stabilized to a

nominal value while the remaining part is controlled. This requires to consider transition phases between

each nominal phase.

The different flight phases and the transition between them are defined according to the scheme of

figure (9). Four flight phases are to be considered, takeoff, longitudinal navigation, lateral navigation and

landing.

3.3 The global control strategy

This section presents to a short description of the different control phases. The steady lateral control which

constitutes the main part of the navigation process is then detailed in section 4

3.3.1 Takeoff

Two control strategies are proposed to perform the takeoff phase. The first one aims at controlling the

airship longitudinally the same way as a plane, while the second involves first a vertical motion. In both

cases, as the lateral motion is not controlled during this phase, the airship must be directed so as to face the

wind.
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Longitudinal takeoff: In this approach the vectored thruster is initially directed horizontally and the

motors are supplied with maximum power. Initially maintained at a nonzero altitude, the action of elevator

becomes rapidly efficient to produce the pitching torque which is necessary to takeoff. A simultaneous

control of speed and altitude is then performed to control the rising motion.

Vertical takeoff: Another way to perform the takeoff phase is to apply the following three-step proce-

dure: First, the thrust is maintained almost vertically until the blimp has reached a reference altitude and

longitudinal position. An adaptive nonlinear backstepping-based controller is used to this end. Second, a

trajectory tracking involving a similar controller is used to drive longitudinally the airhip up to a threshold

velocity. Finally, the velocity and the altitude are simultaneously controlled to perform the rising motion.

3.3.2 Longitudinal and lateral navigation

According to the previous description, the last step of the takeoff phase allows to drive the airship to

a reference altitude and velocity. Stabilizing the longitudinal dynamics to a steady value constitutes a

necessary condition for starting the lateral control. Once this equilibrium has been reached, the navigation

is driven by two parallel regulations. A first control loop is used to regulate the velocity (bloc 2 in fig. 10)

with respect to the earth, in order to make the control matrix associated to the mobile surfaces stationary.

Another loop is used to control either the lateral motion by means of a path following procedure (bloc 3a
in fig. 10 ), or the altitude on the base of a backstepping regulation of the elevators angle [21] (bloc 3a
in fig. 10). While the velocity regulation is maintained during the whole steady navigation, the transition

between lateral and longitudinal control is determined by the motion planner. A necessary condition for

the control switch to be possible is that the corresponding sub-system be stabilized.

2

1

4

3b

(Power regulation)

Velocity control

Takeoff

Landing

Lateral control

(path−following)

Longitudinal control

(altitude regulation)

3a

+

Figure 10: The flight control diagram

3.3.3 Landing

As for the takeoff, the blimp needs to face the wind during the landing procedure. The reason of this

constraint is that the landing procedure aims at regulating the longitudinal dynamics only. Using the longi-

tudinal controller 3b, the altitude is reduced down to a security value, while the airship is driven to a target

position. The last step is done either by stopping the engine or even reversing the thrust direction for a

while to stop the velocity.

This paper focuses on the steady lateral navigation. The description of the controllers which allow to

perform this flight is detailed in the next section.

11



4 Steady lateral navigation

In the quest for elaborating of a complete autonomous navigation strategy, the first objective is to guarantee

the stability of the steady state motion within the lateral plane, and the robustness of the controller with

respect to wind perturbations. The closed-loop velocity regulation and the path following process which

are to be performed in parallel during this phase are detailed in the next section. Simulation results are

given in the last part.

4.1 Velocity regulation

Once the reference altitude has been reached the airship’s velocity is stabilized in order to start the lateral

steady navigation.

4.1.1 The embedded control structure

The velocity regulation is obtained by means of the embedded control structure described in figure 11. The

system input is the reference value ue of the longitudinal component of the airship’s velocity, that is the

component of the velocity along the X-axis of frame R. Indeed, once the vectored thrust angle µ is set to

zero, the sole component of the velocity which is controllable is u. As the remaining two components v and

w are very small with respect to u, the airship velocity can be approximated by its longitudinal component:

u ≈ V . From the difference between the current and the expected value of u the first control bloc is a

velocity controller which determines the reference thrust T to be provided by the propellers. On this base,

a converter computes the corresponding power which has to be sent to the motors. A PI controller is then

used to servo the motor. Finally, current value of the longitudinal component of the airship’s velocity is

deduced from the differential GPS measures and sent to the velocity controller, while the aerodynamic

velocity measured by the anemometer is sent to the converter. The successive blocs are presented with

more details in the sequel.

CONTROL

P

Ue

U

(T,V)−>P

Pd

T=Td
    PI   MOTOR Sensors

Va

Figure 11: The embedded velocity controller

4.1.2 The velocity controller

By considering only the tangential effort from the previous model, making the hypotheses that the aeronau-

tic angles are small and that the propulsion is horizontal (µ = 0), the dynamics of the longitudinal velocity

component u ≥ 0 can be expressed by the following differential equation:

mxu̇ = −FT u2 + T (3)

where mx is the inertia due to both the blimp’s mass and the added mass of air along the X-axis,

FT u2 is the normalized drag force, and T is the propellers’ thrust which is considered here as the input.

Introducing the notation, a = FT

mx

, b = 1

mx

, the following simpler expression of system 3 is considered:

u̇ = −au2 + bT

Denoting by ǫ = u − ue the velocity error, the following strictly positive storage function is introduced:

V =
1

2
ǫ2
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As the reference velocity ue is constant, the time derivative of V is:

V̇ = ǫ(−au2 + bT )

In order to get a definite negative expression of the form V̇ = −cz2, the following choice is made for the

controller [22]:

T = b−1(−cǫ + au2)

Figure 12 represents a result of simulation of this controller. The control objective was to stabilize the

system to the cruising speed of 5ms−1. Despite of the simulation of a strong frontal wind gust (3ms−1),

only a slight variation of the velocity occurs showing the robustness of the controller to external perturba-

tion.
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Figure 12: Velocity stabilization with frontal gust

4.1.3 Thrust converter

The propeller is characterized by its advance number J , the thrust coefficient CT and the power coefficient

CP . Two equations are usually used to describe the propeller’s model. The first one expresses the trust T ,

while the second one describes the absorbed power P .

T = ρD4CT (J)n2 n ≥ 0 (4)

P = ρD5CP (J)n3 (5)

In these relations J = Va

nD
, ρ is the air density, D is the diameter of the propeller, n = Ω

2π
is the number

of rotations per second (rps), Ω is the propeller’s rotation velocity, Va is the advance speed at the propeller

which is equal to the airship’s aerodynamics velocity. The thrust coefficient CT and the power coefficient

Cp which depend on the advance parameter can be written under the following form (see [23]):

CT = α1T + α2T J (6)

CP = α1P + α2P J + α3P J2 (7)

Karma’s propellers have been chosen on the base of a collaboration with the Laboratory of Aerody-

namics and Propulsion of the ENSAE8. They are made of plastic and the type is 12×8 “Master Airscrew”.

The curves represented in figure 13 describe experimental tests of traction and absorbed power, for various

values of the motor’s rotation velocity, and for different values of the airship’s velocity. The model equa-

tions (4) and (5) have been identified thanks to relations (6), (7), on the base of a polynomial approximation

of these curves.

T = T1 n2 + T2 n Va (8)

8Ecole Nationale Superieure de l’Aronautique et de l’Espace, Toulouse France, “www.supaero.fr”
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P = P1 n3 + P2 n2 Va + P3 n V 2
a (9)

As the propellers’thrust cannot be directly observed, this quantity has to be converted in another one

directly measurable. Two output functions can be measured to this end: the rotation velocity of the motors

and the power delivered by the batteries. For practical reasons, the successful solution was to servo the

motor on the base of the power delivered by the batteries. From the desired thrust T provided by the

velocity controller, the reference power P is determined by the converter as follows: the expected rotation

velocity n is first computed from equation 8 by replacing T and Va by their current values, P is then

deduced from 9. This value must then be augmented in order to compensate the power dissipated by the

system which has been experimentally evaluated to 40%.

4.1.4 Power control

The propellers are driven by two brushless motors equipped with a variator. The variator input is a PWM

signal which corresponds to a value ranging from 0 to 1023 for the micro-controller. Figures 14 represent

the power output and the intensity output to a step respectively, for various values of the tension. A residual

noise in steady state and a strong overshoot can be observed on both curves. As this overshoot does not

correspond to a rotation velocity increase it has to be filtered. To this end a first order filter has been used.

A discretized expression of this filter has been considered to a sampling period of 50Hz (see figure 15):

bZ−1

1 + aZ−1
(10)

In order to minimize the output error the control loop includes an integral action. The discrete expression

of the controller is then of the type:

(Kp +
Ki

1 − Z−1
)δP
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where Kp and Ki are the proportional and integral gains and δP is the power error. The control

diagram is represented in figure 16. Figure 16 show control experiments in which the power is successively

stabilized to follow a to a reference input step of 50 and 100 Watts.

4.2 Path following

This section presents the path following control loop which is to be executed in parallel to the velocity

regulation described in the previous section [24]. Making the hypothesis that the longitudinal component

of the airship velocity is stabilized to a reference value ue, the lateral blimp’s dynamics is described by the

system:

Ẋ0 = u cos ψ − v sin ψ = ue cos(ψ + β)

Ẏ0 = u sin ψ + v cos ψ = ue sin(ψ + β)

ψ̇ = r

β̇ = a11β + a12

ue

r + b1
ue

δr

ṙ = a21ueβ + a22r + b2δr

Where the aij coefficients i, j = 1, 2 are constant.

As the control objective is to regulate the blimp’s motion within the lateral plane while its velocity ue

is constant, a path-following strategy appears to be well appropriate. As we consider a planar motion, the

problem can be formulated as the regulation of the lateral distance and the orientation error with respect to

a mobile Frenet frame whose orientation is defined by projecting perpendicularly the point N on the path

(see figure 17). However, contrary to what is done for mobile robots [25], the frame to be stabilized along

the reference path is the aeronautic frame Ra instead of local frame R. The reason of this difference is that

the blimp is not constraint to move tangentially to its main axis as nonholonomic robots. Indeed, due to the

lateral slippage, the blimps’ velocity is directed along the Xa-axis which differs from the local X-axis by

the skid angle β. Let L be the lateral distance between N and the path, and ψ̃ the angular error between the
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blimp’s velocity ue and the mobile frame Xd-axis whose orientation is given by ψd. The error dynamics

reduces to:

L̇ = ue sin ψ̃
˙̃
ψ = ψ̇ + β̇ − ψ̇d

Under the hypothesis that the angular error ψ̃ remains small, a first order approximation can be consid-

ered: sin ψ̃ ≈ ψ̃. Finally, the lateral path following including the skid dynamics can be represented by the

following fourth-order linear system:0BBB@
L̇
˙̃
ψ

β̇

ṙ

1CCCA =

0BB@ 0 ue 0 0

0 0 a11
ue+a12

ue

0 0 a11
a12

ue

0 0 a21ue a22

1CCA
0BB@ L

ψ̃

β

r

1CCA

+

0BB@ 0
b1

ue
b1

ue

b2

1CCA δr +

0BB@ 0

−1

0

0

1CCA ψ̇d

Usually the reference path is determined by a sequence of passing through points. Using the on-board

GPS the distance L to the path and the orientation error with respect to it can be well approximated.

However, the term ψ̇d, which is proportional to the instantaneous path curvature, appears to be less easy

to determine. As the reference path curvature is supposed to be upper bounded, a practical way to solve

this problem is to consider ψ̇d as a piece-wise constant perturbation. Defining L as the system output and

introducing C = [1 0 0 0] and G = [0,−1, 0, 0]T , the path-following error dynamics can be written under

the classical form:
Ẋ = AX + Bδr + Gψ̇d

Y = C X
(11)

From the previous model, as L̇ = ueψ̃ and ue 6= 0, a sufficient condition to stabilize ψ̃ to zero is to

stabilize the lateral distance L to zero. The control objective can then be specified in terms of stabilizing

the perturbed system (11), while insuring a zero output error. To this end, a stabilizing state feedback with

integral control is applied.

Introducing the additional state variable

x0(t) =

∫ t

0

Y (τ)dτ
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A fifth order augmented linear system is defined as follows:�
ẋ0

Ẋ

�
=

�
0 C

04∗1 A

��
x0

X

�
+

�
0

B

�
δr +

�
0

G

�
ψ̇d

Let us denote by X̃ = (x0, X)T the augmented state, and Ã, B̃ G̃, Ẽ the augmented matrices. Using a

stabilizing controller u = −K̃X̃ = −k0x0 −KX , the closed-loop system can be stabilized while insuring

a zero output error: Indeed, as
˙̃X(t) = (Ã − B̃ K̃)X̃ + G̃ψ̇d + Ẽe converges asymptotically to zero,

ẋ0(t) = L converges to zero as well. The controller is presented in the bloc-diagram 18.

Remark 1 The path-following controller allows to stabilize asymptotically the aeronautic frame Xa-axis

along the reference path. The body-fixed frame R, which is tangent to the blimp’s main axis, will then make

a skid angle β with the reference frame. If the reference path is a circle, the skid angle β is then stabilized

to a constant value. This illustrates the necessary condition for the blimp’s dynamics to include a constant

lateral slippage to follow a circle. If the reference path becomes rectilinear, β converges to zero and the

blimp’s orientation changes progressively until being tangent to the path.

MODEL

Lateral Path Following

AIRSHIP

− Lδ r
K

0
+

X

− K

L

Figure 18: State feedback with integral control

4.3 Simulations

4.3.1 Introduction

A flight simulator involving the complete mathematical model of the airship has been developed by using

the Matlab/Simulink software. It allows to test the different controllers by taking into account the whole

dynamic and aerodynamic forces and torques which have been identified. Before starting the simulation

the following configuration parameters are to be set:

• the equilibrium parameters (relative position of the center of gravity),

• the payload (lighter than air, heavier or in aerostatic equilibrium),

• the limits on the actuator’s dynamics.

The environment can also be configured:

• density of air (which directly modifies the aerodynamic effects and the buoyancy),

• the external wind parameters: velocity and orientation angles (these parameters are then expressed

with respect to the body fixed frame),

Two simulations of the steady lateral control of Karma are presented. As explained in the previous

sections the lateral control involves the simultaneous regulation of the velocity and the path following

process. The modulus of the reference velocity ue with respect to the earth frame has been set to 5ms−1.

The path planning procedure is based on the definition of a sequence of reference geometric points

Pti(Xi, Yi) within the lateral plane. The reference trajectory is then defined as a broken line by considering
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Equilibrium null pitch angle at rest

Payload heavier than air +0.4kg
Maximal thrust 20 N

Maximal mobile parts angle |45|o

Table 1: Airship configuration

simulation A simulation B

Air density ρ 1.225kg/m3 1.225kg/m3

External wind null front, horizontal 2 m/s

Table 2: Environment configuration

successive pairs of points. The lateral error L is deduced from the measure of the current airship’s position

by means of the differential GPS or by using the stereo-vision. The angular error ψ̃ is deduced from the

absolute orientation angle given by the compass and the skid angle given by the anemometer. Note that

the trajectory can be progressively constructed by defining additional pairs of points during the motion.

Though this planning process aims at being directed by the motion planner it has been done manually for

the simulations.

For both simulation the takeoff phase has also been done manually. Once a security altitude is reached

the vectored thrust angle is turned to zero (horizontal propulsion). The velocity controller is activated until

the airship has reached the cruising speed. At this stage the first pair of point is defined and the autonomous

lateral control is initiated. The control objective was to follow four successive line segment to execute a

square trajectory. The first simulation has been done for the the nominal system, that is without wind

perturbations, while the second is performed with a constant horizontal wind to test the control robustness.

4.3.2 Simulation A : navigation without wind
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Figure 19: 3D trajectory without wind

Figure 19 describes the 3D airship’s trajectory while the projection of the motion in the lateral plane

and the time-variation of the altitude is described in figure 20. The airship follows closely the reference

trajectory segments and stay close to the reference points. This result is confirmed by figure 24 in which the

variation of the lateral position error L and of the orientation error ψ̃ are described. Three peaks correspond

to the change of orientation.
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Figure 21: Velocity components with respect to the local frame
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Figure 22: Airship’s attitude

In this simulation the airship’s altitude is not regulated. The altitude increases slightly (less than 10

meters for 800m). The variation of the altitude is dependent on the airship configuration parameters. In the

case of an heavier than air airship, with a negative pitch angle at the equilibrium the altitude would have

decrease.

Figure 21 shows the evolution of the airship velocity components with respect to the local frame. As

expected the longitudinal component u is correctly stabilized to the reference value of 5ms−1. Furthermore

the longitudinal component appears to be the essential part of the velocity as predicted (u >> v and

u >> w). The curve of the propeller’s thrust represented in figure 23 shows the importance of the velocity

regulator. Each time the orientation changes, the rudder’s angle saturate inducing a strong increase of the

tangential effort. To compensate the phenomenon and avoid the reduction of the velocity, the controller

increases the propeller thrust. Three peaks corresponding to the saturation of the rudders’-angle saturation

appear on the thrust curve in figure 23.
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Figure 24: Lateral and angular errors evolution

Figures 22 represent the evolution of the attitude angles . The variation of the roll angle φ justifies the

choice to consider it as a well damped stable variable. The gondola fixed under the airship’s hull acts as a

damped pendulum. Furthermore, the amplitude of oscillations remains very low.

The oscillations of the pitch angle θ that can be observed have been generated during the vertical takeoff

phase which has been done manually. The following three peaks result from the increase of the pitching

moment which is induced by the thrust. The evolution of the yaw angle ψ is quite regular despite the three

successive change corresponding to the switch of reference segments.

This result shows the validity of the approach which consists in regulating the lateral motion while

considering the roll angle as a stable well damped state variable. On the other hand, the stabilization of

the longitudinal component of the velocity allows to regulate quite well the altitude. Following the control

scheme of figure 10 the altitude has to be adjusted from time to time by using the longitudinal controller.

This switch between lateral and longitudinal control is determined by the motion planner.

4.3.3 Simulation B : navigation with lateral wind

The same flight objective has been simulated in presence of an external lateral wind of 2ms−1 which

according to experiments constitutes a strong perturbation. The objective was to demonstrate the control

robustness with respect to external perturbations.

As before the takeoff phase has been performed manually, but this time by facing the wind. The

reference points have been determined following the same procedure as for the first experiment.

Figure 25 shows the airship’s 3D trajectory. The trajectory projection within the lateral plane and the

variation of altitude are described in 26. As shown the trajectory passes a little distance away from points B
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Figure 25: 3D navigation with lateral wind
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Figure 26: Lateral motion and time evolution of the altitude
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Figure 27: Evolution of the velocity components in the body fixed frame

and C. This error is mainly due to the delay of definition of these points. The altitude’s variation is differs

from the previous experiment (figure 20). This is due to the fact that, though the velocity with respect to

earth is regulated, the aerodynamic velocity varies. When the airship is facing the wind Va increases by

2ms−1. The downwards pitching torque induced by the gondola is greater than the upwards pitching torque

induced by the vectored thrust. As the pitch angle is lower than the incidence angle α the airship’s moves

downwards. Note that, despite this pitching phenomenon the altitude’s variation remains quite moderate,
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Figure 28: Airship’s attitude
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Figure 30: Evolution of position and angular errors

showing the feasibility of the method.

Figures 27 represent the evolution of the components of the velocity with respect to the earth expressed

in the body fixed frame. As before the longitudinal component constitutes the essential part of the velocity.

The maximal value of the lateral component v is 2ms−1. Note that for the highest values of v a static error

of about 0.4ms−1 occurs in the regulation of u. As shown in figure 29, these variations induce a thrust

increase from 2N to 14N . Note that the initial thrust saturation corresponds to the acceleration phase

allowing to reach the cruising speed.

Figures 28, show the evolution of the airship’s attitude. As before the roll angle behaves as a stable

well damped mode. The pitch angle θ appears to be strongly perturbed. This is due to the presence of the

strong lateral wind which acts differently on the airship during the motion. Following the vertical takeoff,

the pitch angle ranges between −4o and 8o, inducing moderate changes of the altitude. The variation of
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the yaw angle ψ differs from the nominal case (22). Depending on the relative wind direction, the time

required for the turns, as well as the saturation time of rudders vary (see figure 29). During the first turn the

airship was facing the wind and the efficiency of rudders was maximal with a relative wind of 7ms−1. This

is the reason why this turn required a shorter time than the following next turns. Note that the wind was

blowing from the back with a relative velocity of only 3ms−1 for the second turn, while its lateral action

facilitates the last turn. The evolution of lateral position and angular error is shown in figure 30.

5 Discussion

The work presented in this first part of the paper is based on the synthesis of a complete model of the airship

Karma. This model is issued from a careful analysis of the dynamic and aerodynamic forces and torques

acting on it. On this base, the proposed strategy is involves the decoupling of the lateral and longitudinal

dynamics by considering two sub-models. This approach allows to construct a global control strategy

by addressing the control problem differently for each flight phase. The presentation focused on the the

steady lateral navigation which constitutes the central flight phase and for which the need for autonomy

is predominant (for instance in the case of exploration tasks as described in the second part of the paper).

The proposed controllers have been simulated by considering the complete model with and without wind

perturbations The decoupled approach which consist in executing in parallel the velocity regulation and

the tracking of the reference path provides a robust and efficient way to control the lateral motion. Though

the roll angle and the altitude are not directly controlled during this phase their behavior is compatible

with the control approach. The roll turns out to be stable and well damped while only a slight variation of

the altitude occurs. To answer the problem of altitude drift, the path following control must be switched

off when necessary to adjust the altitude according to the diagram of figure 10. In parallel, thanks to the

second control loop, the velocity remains continuously regulated during both phases. The control switch

is activated by the supervisor on the base of the prescribed navigation constraints (landmark visibility for

instance).

This theoretical study is currently pursued in two directions. A first part of the work concerns the

application of advanced control techniques to extend the control performances. One important objective is

to better take into account actuator saturation and uncertainties due to perturbations in designing the control

laws. A second part of the work, done in collaboration with the CEMIF Laboratory of the University of

Evry, concerns the trajectory planning problem.

However, the main effort is now directed towards experiments. The autonomous lateral control is

expected to be experimented in the very near future. It will constitute the first part of the longer-term

objective which is to execute complete autonomous flights from takeoff to landing.

Part B: High resolution terrain mapping

High resolution terrain mapping can be the main payload of flying devices in a wide variety of applications:

fine geographic survey, environmental analysis, mine detection and localization... But terrain mapping is

also a way to achieve precise localization of the flying robot, by providing environment references, thus

enabling a position estimation with bounded errors as the robot flies. Finally, mapping is a prerequisite to

the development of cooperative air/ground robotics ensembles. Indeed, whatever the cooperation scenario,

one of the most important issue to address to foster the development of such ensembles is the building and

exploitation of common environment representations, using data provided by all possible sources. This is

the case in loose cooperation schemes, e.g. where the ground rover operates after the aerial robot. The map

built can then be used to prepare the rover mission, but also on-line, to localize the rover as it navigates for

instance. And in tighter cooperation schemes, i.e. when both kind of robots operates jointly, to ability to

build, share and maintain a common environment model is of course a key functionality.

This part of the paper presents our approach to the simultaneous localization and map building problem,

using only a set of non-registered low altitude stereovision image pairs. The approach is presented in the

following section, and section 7 presents the basic algorithms on which it relies: stereovision, interest

points detection and matching, and visual motion estimation. Section 8 details our implementation of the
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Extended Kalman Filter, with a focus on the identification of the various errors. Localization results and

the building of digital elevation maps are then presented and discussed in section 9.

6 Simultaneous localization and map building

The main difficulty to build high resolution terrain maps is to precisely determine the sensor position and

orientation as it moves. Dead reckoning techniques, that integrate over time the data provided by motion

estimation sensors, such as wheel encoders for rovers or inertial sensors, are not sufficient for that purpose.

Indeed, not only the position estimate they provide between successive data acquisitions may be not precise

enough, but they are intrinsically prone to generate position estimates with unbounded error growth. Visual

motion estimation techniques that use stereovision and visual features tracking or matching have recently

been proposed in the context of ground rovers [26, 27]. They allow to get a more precise position estimate

between successive data acquisitions, but their errors also cumulate over time, since they do not memorize

any environment feature.

The only solution to guarantee bounded errors on the position estimates is to rely on stable environment

features, that are detected and memorized as the robot moves. It has early been understood in the robotic

community that the problems of mapping such features and estimating the robot location are intimately

tied together, and that they must therefore be solved in a unified manner [28, 29].

This problem, known as the ”SLAM problem”9 has now been widely studied in robotics, mostly in the

case of robots moving on planes, i.e. whose position is totally determined by 3 parameters (an historical

presentation of the main contributions can be found in the introduction of [30]). Among the different

approaches to solve it, the Kalman filter based approach, or variants like the information filter, is undoubtly

the most popular. It is theoretically well grounded, and it has been proved that its application to the SLAM

problem converges [30]. Some contributions cope with its main practical drawback, i.e. its complexity

which is cubic in the dimension of the considered state [31, 32]: such developments are necessary when

the robot navigates in large areas.

Other approaches to the SLAM problem have been proposed, mainly to overcome the assumption

that the various error probability distributions are Gaussian, which is required by the Kalman filter. Set

membership approaches just need the knowledge of bounds on the errors [33, 34], but they are practically

difficult to implement when the number of position parameters exceeds 3, and are somehow sub-optimal.

Expectation minimization algorithms (EM) have also been successfully adapted to the SLAM problem [35],

and an approach that address incremental SLAM in this context can be found in [36].

In terms of sensor modality, solutions to the SLAM problem has mainly been experimented with range

sensors in indoor environments (sonar sensors [37, 38], laser range finders [39, 36], and recently millimeter

wave radars in outdoor environments [31, 30]). To our knowledge, there are much fewer contributions to the

SLAM problem based on vision. In [40], monocular vision is used as a bearing sensor, with a combination

of a Kalman filter and a bundle adjustment technique. In [41], an approach that uses stereovision and

visual scale-invariant features transforms for a robot evolving on a plane is presented, the data association

problem being solved a Hough transform hashing.

6.1 Overview of our approach

Our approach is an application of a Kalman Filter based solution to the SLAM problem, in which the robot

position is totally 3D (i.e. determined by 3 translation parameters and 3 orientation parameters) and that

exclusively uses vision. Vision has the great advantage to allow both a very precise determination of the

orientation parameters and the detection and association of stable environment features. Moreover, using a

stereovision bench, range estimates of the features are directly available, although much less precise than

the data provided by a laser range finder. We will however see that thanks to the Kalman filter, it is possible

to achieve extremely precise localization of the stereovision bench, without the aid of any other positioning

sensor.

In our approach, landmarks are interest points, i.e. visual features that can be matched when perceived

from various positions, and whose 3D coordinates are provided by stereovision. The key algorithm that

9SLAM stands for Simultaneous Localization And Mapping.
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allows both motion estimation between consecutive stereovision frames and the observation and matching

of landmarks is a robust interest point matching algorithm. We use an extended Kalman filter (EKF) as a

recursive filter: the state vector of the EKF is the concatenation of the stereo bench position (6 parameters)

and the landmark’s positions (3 parameters for each landmark). The visual motion estimation between

consecutive stereovision frames is used to predict the filter state, and is fused with the observations provided

by landmark matchings.

The various algorithmic stages achieved every time a stereovision image pair is acquired are depicted

in figure 31:

1. Stereovision: a dense 3D image is provided by stereovision (section 7.1), along with an estimate of

the covariances on the coordinates of the computed 3D points (section 8.2.1).

2. Interest points detection and matching: interest points are detected in one of the acquired image, and

are matched with the interest points detected in the previous step (section 7.2).

3. Landmark selection: a set of selection criteria are applied to the matched interest points, in order

to partition them in three sets: an observed-landmark set, a non-landmark set, and a candidate-

landmarks set (section 8.3). The observed-landmarks are the detected points that matches already

mapped landmarks, non-landmarks points will solely be used to estimate the elementary motion

between the current and the previous step, and candidate-landmarks are points that may be added to

the the filter state, if they pass through the selection criteria during the next steps.

4. Visual motion estimation (VME): the interest points retained as ”non-landmarks” are used to estimate

the 6 motion parameters between the previous and current steps (section 7.3), using a least-square

minimization. The associated covariances are also estimated, by propagating stereo and matching

errors (section 8.2.3).

5. Position refinement: this is the update of the Kalman filter state (section 8).

After every SLAM cycle defined by these steps, a digital elevation map is updated with the acquired

images (section 9.2).

There is an important point to mention here: indeed, the stereovision bench being the only sensor

used in our approach, its data is used both for the prediction stage (visual motion estimation) and the

observation stage of the Kalman filter. The prediction and observation are therefore not fully independent,

which violates a necessary condition for the filter to be valid. However, in the absence of calibration errors

of the stereovision bench, applying the prediction and the observation stages on two separate sets of points

does not induce any correlation (which is clear when one considers that the points are perceived by different

cameras). This is why the interest points are separated in different sets during the landmark selection. Still,

the assumption that there is no calibration error is of course never satisfied, and the errors of the prediction

and observation stages are therefore correlated, which is a limitation of our approach.

7 Basic algorithms

Our vision-based SLAM approach is based on three basic algorithms: dense stereovision computes the 3D

coordinates of most of the perceived pixels, providing thousands of 3D points in the environment. Interest

point detection and matching algorithm finds and identify visual landmarks, and allows both the estimation

of elementary motions and the observation of already mapped landmarks. Finally, visual motion estimation

rejects the outliers produced by the matching algorithm and computes an accurate estimate of the motion

between consecutive stereovision frames with the remaining inliers.

7.1 Stereovision

We use a classical pixel-based stereovision algorithm, now widely used in field robotics. It relies on an

off-line calibrated binocular stereovision bench: the images are first warped (rectified) so that epipolar lines

are horizontal, which allows a dramatic optimization to compute similarity scores between the pixels [42].
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Figure 31: Functional architecture of our approach to the SLAM problem on the sole basis of stereovision

A dense disparity image is then produced from the warped image pair thanks to a correlation-based pixel

matching algorithm (we use either the ZNCC criteria or the census matching criteria [43]), false matches

are removed thanks to a reverse correlation. Finally, the 3D coordinates of all the matched pixels are

determined, using the relative 3D position between the two cameras of the bench provided by the off-line

calibration stage. Section 8.2.1 presents how a covariance error matrix is associated to these coordinates.

With the digital cameras of Karma, this algorithm works well for all the scenes we tested: on figure 32,

one can see that pixels have been properly matched in all the perceived areas, even the low textured ones.

Figure 32: A result of the stereovision algorithm, with an image pair taken at about 30 m altitude. From left to right: one of the

original image, disparity map (the disparities are inversely proportional to the depth of the pixels, and are shown here in a blue/close

red/far color scale), and 3D image, rendered as a mesh for readability purposes.

7.2 Interest points detection and matching

Visual landmarks should be invariant to image translation, rotation, scaling, partial illumination changes

and viewpoint changes. Interest points, such as detected by the well known Harris detector [44], has

proven to have good stability properties: their repeatability is over 50 % when the scale change is not

greater than 1.5 times [45, 46]. If there is a prior knowledge on the scale change, even approximate, a scale

adaptive version of Harris detector yields a repeatability high enough to allow robust matches [47]. When
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no information on scale change is available, scale adaptation is not possible. In such cases, scale invariant

feature detection algorithms have recently been proposed [48, 49, 50]. However, these methods generate

much less features than the standard or scale adaptive detectors. Also, matching features in such contexts

is quite time consuming, scale being an additional dimension to search through.

To match interest points, we use an algorithm that we originally described in [46]. We briefly presents

its principle here, with an adaptation to roughly known scale variations.

Interest points are local features for which the signal changes two-directionally. The precise Harris

detector computes the auto-correlation matrix with gradients of signal on each image points, the two eigen-

values of this matrix being the principle curvatures [45]. When the principle curvatures are significant and

locally maximum, the point is declared as an interest point (or corner). In the precise version of Harris

detector, Gaussian functions are used to compute the derivatives. To stabilize the derivatives in scale space,

the Gaussian functions are normalized with respect to scale changes. The auto-correlation matrix of scale

adaptive Harris detector is then:

M(x, s, s̃) = G(x, s̃) ⊗

(

I2
u IuIv

IuIv I2
v

)

(12)

Iu = sGu(x, s) ∗ I(x) Iv = sGv(x, s) ∗ I(x) (13)

where G is the Gaussian kernel, Gu,v ,the first order derivative in u, v direction and x = (u, v). When

scale change is not significant, s is set to 1 and the auto-correlation matrix is the same as in the precise

version of Harris detector.

Our matching algorithm relies on local interest point groups matching, imposing a combination of

geometric and signal similarity constraints, thus being more robust than approaches solely based on local

point signal characteristics. Its steps are the following:

1. Starting with a randomly selected interest point in the first image, matching hypotheses are generated

with a similarity measure based on the computed curvatures: a set of candidate matching points is

determined in the second image.

2. Local interest points groups are constructed around the studied point and its candidate matches,

considering the n closest neighboring points (n being of the order of 6).

3. Point-to-point match hypotheses are generated for the neighboring points with the same similarity

measure as above. 2D affine group transformation hypotheses are established on the basis of these

hypotheses. The transformation yielding the highest point repeatability is confirmed by an other

similarity measure computed on all the points of the groups.

4. Once a group hypothesis is generated, steps 1 to 3 are re-iterated, starting with the closest point to

the first matched group in the first image, and using the estimated 2D affine transformation to focus

the search in the second image.

The local affine transformation being updated each time a new group match is found, and theses steps

are iterated until no more matches are found. Figure 33 shows that this interest point matching algorithm

can generate a lot of good matches, even when the view point change between the considered images is

quite high.

Between consecutive images, and in the absence of any external motion estimation, no information is

available on the scale change. This change is however always small, and the precise version of the point

detector is used (i.e. s is set to 1). When flying over a previously perceived areas, the altitude of the blimp

might have changed significantly, and so the scale. But an estimate of this altitude change is known thanks

to the SLAM algorithm: an estimation of the scale change s is available, and is used to match the already

mapped landmarks in the current image.
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Figure 33: A result of interest point matching between two non registered aerial images

7.3 Visual motion estimation

The interest points matched between consecutive images and the corresponding 3D coordinates provided

by stereovision are used to estimate the 6 displacement parameters between the images. This is achieved

by the least square minimization technique presented in [51]. The important point here is to get rid of the

outliers (wrong matches), as they considerably corrupt the minimization result. The interest point matching

outliers could be rejected using the epipolar constraint defined by the fundamental matrix computed on the

basis of the matches. However, the computation of this matrix is very sensible to the small errors in the

points positions and to the outliers themselves. Also, such an outlier removal technique will not cope for

stereovision errors, such as the ones that occur along depth discontinuities for instance: inliers matches in

the image plane might become outliers when considering the corresponding 3D coordinates.

Therefore, we developed a specific outlier rejection method that consider both matching and stereovi-

sion errors. First, matches that imply a 3D point whose coordinates uncertainties are over a threshold are

discarded (the threshold is empirically determined by statistical analysis of stereovision errors). Then, the

remaining matches are analyzed according to the following procedure:

1. A 3D transformation is determined by least-square minimization. The mean and standard deviation

of the residual errors are computed.

2. A threshold is defined as k times the residual error standard deviation. k should be at least greater

than 3.

3. The 3D matches whose error is over the threshold are eliminated.

4. k is set to k − 1 and the procedure is re-iterated until k = 3.

This outlier rejection algorithm guarantees a precise 3D motion estimation (see results in sections 8.2.3

and 9.1), which can then be used during the prediction stage of the Kalman filter (section 8.1).

8 Kalman filter setup

We present here in details our Kalman filter setting, using the results of the three algorithms sketched above.

After the problem formulation and the description of the estimation process, we detail the identification of

the various errors, which is the key problem in setting up a Kalman filter to solve the SLAM problem. An

active selection of the landmarks is then proposed, which allows to minimize the state dimension growth

and to optimize the precision of the estimations.
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8.1 Extended Kalman filter

The EKF is an extension of the standard linear Kalman filter, that linearizes the nonlinear prediction and

observation models around the predicted state. The goal of EKF is to estimate the state of a stochastic

nonlinear dynamic system, which evolves under control inputs.

8.1.1 General framework

A general discrete nonlinear system is modeled as

x(k + 1) = f(x(k), u(k + 1)) + υ(k + 1) (14)

where u(k) is a control input, υ is a vector of temporally uncorrelated process noise with zero mean

and covariance Pυ(k).
The nonlinear observation model of the system is modeled as

z(k) = h(x(k)) + w(k) (15)

where h maps the state space into the observation space, and w is a vector of temporally uncorrelated

observation errors with zero mean and covariance Pw(k).
In the Kalman filter framework, the state estimation encompasses three stages: prediction, observation

and update of the state and covariance estimates.

Prediction. The state and observations are predicted using (14) and (15), and the state covariance is

obtained through the linearization of (14):

x̂(k + 1 | k) = f(x̂(k), u(k + 1)) (16)

ẑ(k + 1 | k) = h(x̂(k + 1 | k)) (17)

Px̂(k + 1 | k) = ∇fPx̂(k)∇fT + Pυ(k + 1) (18)

Observation. The true state x(k + 1) is observed, yielding the innovation ν(k + 1), the corresponding

covariance being obtained by linearizing (15):

ν(k + 1) = z(k + 1) − ẑ(k + 1 | k) (19)

S(k + 1) = ∇hPx̂(k + 1 | k)∇hT + Pw(k + 1) (20)

Update. The update stage fuses the prediction and the observation to produce and estimate of the state

and its associated covariance, according to the following formulas:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + K(k + 1)ν(k + 1) (21)

Px̂(k + 1 | k + 1) = Px̂(k + 1 | k) − K(k + 1)S(k + 1)KT (k + 1) (22)

in which K(k + 1) = Px̂(k + 1 | k)∇hT S−1(k + 1) is the Kalman filter gain matrix.
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8.1.2 Filter setup for stereovision-based SLAM

In our approach, the state of the filter is composed of the 6 positioning parameters xp = [φ, θ, ψ, tx, ty, tz]
of the stereovision bench (or the robot - the notations are the same as in the first part of the paper) and of a

set of N landmarks 3D coordinates mi = [xi, yi, zi], 0 < i ≤ N :

x(k) = [xp,m1 · · ·mN ] (23)

The associated state covariance has the following form:

P(k) =

[

Ppp(k) Ppm(k)

Ppm
T (k) Pmm(k)

]

where Ppp represents the robot pose covariance, Pmm the landmark covariance and Ppm the cross-

covariance between the robot pose and landmark estimates.

Prediction. Under the assumption that landmarks are stationary, the state prediction is:

x̂(k + 1 | k) = f(k + 1)(x̂(k),u(k + 1)) (24)

where u(k + 1) = (∆φ,∆θ, ∆ψ, ∆tx, ∆ty, ∆tz) is the visual motion estimation result between k and

k + 1 positions. The predicted state covariance (equation 18) is written as:

Ppp(k + 1 | k) = ∇pf(k + 1)Ppp(k)∇pf
T (k + 1) +∇uf(k + 1)Ru(k)∇uf

T (k + 1) +Pυ(k + 1) (25)

Ppm(k + 1 | k) = ∇pf(k + 1)Ppm(k) (26)

Pmm(k + 1 | k) = Pmm(k) (27)

where Ru represents the error covariance of the visual motion estimation result. Note that the covari-

ance of landmarks is not changed in the prediction stage.

Observation. When observing the ith landmark, the observation model and the Jacobian of the observa-

tion function are written as:

ẑi(k + 1 | k) = hi(k + 1)(x̂(k + 1 | k)) (28)

∇hi(k) = [∇phi(k), 0 · · · 0,∇mi
hi(k), 0 · · · 0] (29)

where hi(k+1)(x̂(k+1 | k)) is a function of the predicted robot state and the ith landmark in the state

vector of the filter: it can then be also written as hi(k + 1)(x̂p(k + 1 | k), m̂i(k + 1 | k)). The innovation

and the associated covariance is written as:

νi(k + 1) = zi(k + 1) − ẑi(k + 1 | k) (30)

Si(k + 1) = ∇hi(k + 1)P(k + 1 | k)∇hi
T (k + 1) + Ri(k + 1) (31)

where Ri represents the error covariance of ith landmark observation.
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Update. The update stage of the state and associated covariance estimates is made through the applica-

tions of equations (21) and (22), in which the gain matrix K, innovation ν and associated covariance S are

respectively replaced by Ki, νi and Si.

If no observation are made (i.e. if no already mapped landmarks are re-perceived), the observation and

update stages are not activated: the state and its covariance are just updated by the prediction stage.

When detecting a new landmark, it is added to the state vector of the filter, that becomes x̂(k) =
[x̂p(k), m̂1(k) · · · m̂N (k), m̂N+1(k)] (its size increased of 3 units). The landmark initialization model is:

m̂N+1(k) = g(k)(x̂p(k), zN+1(k)) (32)

P(k) =





Ppp(k) Ppm(k) (∇pg(k)Ppp(k))T

Ppm
T (k) Pmm(k) (∇pg(k)Ppm(k))T

∇pg(k)Ppp(k) ∇pg(k)Ppm(k) ∇pg(k)Ppp(k)∇pg
T (k) + ∇zg(k)Rm(k)∇zg

T (k)





(33)

where zN+1(k) denotes the new landmark, g(k) represents the initialization function using the current

robot pose estimate and Rm is the error covariance of the new landmark.

8.2 Errors identification

To implement the Kalman filter in our context, the following errors must therefore be estimated:

• the landmark initialization error (covariance matrix Rm),

• the landmark observation error (covariance matrix Ri for the observed landmark i),

• and the error of the input control u, which is the visual motion estimation result (covariance matrix

Ru).

This is important, as a precise determination of these errors will avoid the empirical ”filter tuning”

step. Note that in our approach, the lumped process noise υ is set to 0, landmarks being stationary and

the robot pose prediction being directly computed with the current pose and the result of the visual motion

estimation.

8.2.1 Landmark initialization errors

Landmarks are detected and matched on the video images, their 3D coordinates being computed by stereo-

vision. When a new landmark is detected, its identity is given by the corresponding interest point, and the

covariance matrix Rm on its state coordinates is totally defined by the stereovision error. Once identified, a

new landmark is added in the filter state vector according equation (32), and its uncertainties are propagated

into the state estimate covariance matrix according (33).

An error model of stereovision. During the stereo matching phase, disparities are computed for integer

values, the matching disparity dm being the one that maximizes the similarity score s. In order to get a

finer disparity estimate, a sub-pixellic disparity d′m is determined by fitting a parabola to the similarity

score curve at its peak, the parabola being defined by the similarity scores computed at disparities dm − 1,

dm and dm + 1. The sub-pixellic disparity is the disparity that maximizes the found parabola10:

d′

m = dm +
s(dm − 1) − s(dm + 1)

2[(s(dm) − s(dm − 1) + (s(dm) − s(dm + 1)]
(34)

The sources of errors in the disparity estimates are the image noise, the slight viewpoint change of the

two cameras, the spatial sampling of the scene induced by the cameras, the size of the correlation window

10Note that there does not exist any theoretic ground that justifies the use of a parabolic interpolation. It is only simple to compute,

and it shifts the value of the integer disparity towards the neighbor that gives the highest similarity score, which is intuitive.
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used, and the interpolation of the similarity score curve. Thorough studies of these phenomena can be

found in the vision literature, but they lead to complex algorithms that are not tractable on-line.

In order to have an estimate of the disparity errors, we studied the distribution of the disparities on a

set of 100 stereo image pairs acquired from the same position. As in [52], it appeared that the distribution

of the disparity computed on any given pixel can be well approximated by a Gaussian (figure 34). But a

much more interesting fact is that there is a strong correlation between the shape of the similarity score

curve around its peak and the standard deviation on the disparity: the sharper the peak, the more precise

the disparity found (figure 34). This rather intuitive relation is the basis of our error model: on line, during

the stereo matching phase, a standard deviation σd is associated to each computed disparity d, using the

curvature of the similarity score curve at its peak. This is done at no extra computing cost, as this curvature

is the one of the interpolating parabola at its peak.
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Figure 34: Left: examples of some probability density functions of disparities computed on a set of 100 image pairs, with the

corresponding Gaussian fit. Right: Standard deviation of the disparities as a function of the curvature of the similarity score curve at

its peak.

Once matches are established, the coordinates of the 3D points are computed with the usual triangula-

tion formula:

z =
bα

d
x = βuz y = γvz (35)

where z is the depth, b is the stereo baseline, and α, βu and γv are calibration parameters (the two latter

depending on (u, v), the position of the considered pixel in the image). Using a first order approximation,

it comes:

σ2
z ≃ (

∂z

∂d
)2σ2

d =
(bα)2

d4
σ2

d (36)

substituting the definition of z defined in (35), we have:

σz =
σd

bα
z2 (37)

which is a well known property of stereovision, i.e. that the errors on the depth grows quadratically

with the depth, and are inversely proportional to the stereo baseline11. The covariance matrix of the point

coordinates is then:

Rm =





1 βu γv

βu β2
u βuγv

γv βuγv γ2
v



 (
σd

bα
z2)2 (38)

When a new landmark is observed, its coordinates are added to the filter state, and the state covariance

is updated according to equations (32) and (33).

11This is the reason why we choose a 2.2 m wide stereo bench - with the new gondola, we will adapt a rigid 3 m wide bench.
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8.2.2 Observation error

In our case, landmark observation is based on interest point matching: matching errors on image plane

is the first error source to consider to define the observation error. Two kind of errors can occur: wrong

matches (outliers), and interest point location error. Outliers being rejected by the rejection algorithm

presented in 7.3, only interest point location errors are considered to determine the matching error.

With the precise Harris detector, the sub-pixellic coordinates of an interest point p belongs to one pixel.

When perceived again from a very close point of view (e.g. in two consecutive images), most of the area

corresponding to this pixel is mapped into an other pixel, and the matched interest point p′ coordinates

lie within this pixel. The expected matching error is therefore set to 0.5 pixel. But when the view-point

is very different (e.g. when re-perceiving a landmark after a long loop), the projective deformation of

the 3D scene and possible occlusions effects are much more important. In such cases, it might happen

that the matched point p′′ does not lie within the pixel that covers the first point p (and it might also

happen that no matches are detected in the worst cases): the expected matching error value is then set to 1
pixel, which is consistent with the maximum error of 1.5 pixel generally tolerated to assess good matches

using the epipolar constraint [45]. Figure 35 illustrates this phenomena. The two leftmost images were

consecutively taken during a flight: the matching errors are less than 0.5 pixel, whereas in the rightmost

image that has been taken from a very different view-point, the matching location error exceeds 0.5 pixel,

but is not greater than 1 pixel.

p’3
p‘2

p’1

p2

p1

p3

p’’1p’’2

p’’3

Figure 35: Illustration of the matching point location error, in the case of small and big viewpoint changes. Top images show the

detected interest points, the uncertainty of the matched ones being represented by black circles in the closed-up bottom images.

Now that interest point matching error is defined, one must combine it with the errors on the corre-

sponding 3D estimates to define the observation error. The principle of this combination is illustrated in

figure 36: the observation matching error is defined by the reprojection of the matching error in the 3D

scene. When the 2D matching error is set to 1 pixel, the expected value of a matching point p0 is defined

by its 8 closest neighbors pk, k = 1, 2, , , 8. The stereo error distribution being a zero mean normal one,

the expected 3D coordinate and associated variance of the matching point is computed as follows:

X̄ =
1

9

8
∑

k=0

Xk, σ
2

X̄
=

1

9

8
∑

k=0

(X̄ − Xk)2 + σ
2
k (39)

where X0 and Xk are the 3D point coordinates of p0 and its neighbors, and σ0 and σk are the corre-

sponding variances.
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Figure 36: Principle of the combination of the matching and stereovision errors. The points located in the square box are the

projection of P on the image plane. Small ellipses indicate stereovision errors, the large dotted ellipsoid is the resulting observation

error.

When the expected matching error is set as 0.5 pixel, the 3D coordinates being only computed on

integer pixels by stereovision, we assume the 3D surface variation is locally linear, and the expected 3D

coordinate and corresponding variances of the observed point p0 are then:

X̄ =
1

9
(X0 +

8
∑

k=1

(
X0 + Xk

2
)), σ

2

X̄
=

1

9

8
∑

k=0

(
X̄ − Xk

2
)2 + (

σ0 + σk

2
)2 (40)

These coordinates and the associated variances are used in the equations (30) and (31).

8.2.3 Motion estimation errors

Given a set of 3D matched points Q̂ = [X1, , ,XN ,X1, , ,X
′

N ], the function which is minimized to

determine the corresponding motion is the following [51]:

J(û, Q̂) =

N
∑

n=1

(X′

n − R(φ̂, θ̂, ψ̂)Xn − [t̂x, t̂y, t̂z]
T )2 (41)

where û = (φ̂, θ̂, ψ̂, t̂x, t̂y, t̂z). û and Q̂ can be written with random perturbations:

û = u + ∆u, Q̂ = Q + ∆Q

where the true u and Q are not observed. In order to measure the uncertainty of local motion estimation,

the uncertainties of 3D matching points set are propagated to the optimal motion estimate û. Assuming

the optimal motion estimate minimizes the cost function, the Jacobian of the cost function is 0, and the

uncertainties of landmarks and their observation can be propagated by taking Taylor series expansion of

the Jacobian around u and Q, as shown in [53]:

g(u, Q) = g(u + ∆u, Q + ∆Q) −
∂g

∂u
(u + ∆u, Q + ∆Q)∆u −

∂g

∂Q
(u + ∆u, Q + ∆Q)∆Q (42)

where g = ∂J
∂û

is the Jacobian of the cost function , and ∂g
∂u

is the Hessian of the cost function with

respect to u. The Hessian ∂g
∂u

is positive definite for all (u, Q) because the relative extremum of the cost

function is a relative minimum: this guarantees the existence of the reciprocal of the Hessian. Since û and

u minimizes J(û, Q̂) and J(u,Q), g(û, Q̂) and g(u, Q) are set to 0 in (42). The random perturbation

∆u and its covariance are then computed as follows:
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∆u = −(
∂g

∂u
(u + ∆u, Q + ∆Q))−1 ∂g

∂Q
(u + ∆u,Q + ∆Q)∆Q (43)

Σ̂∆u = (
∂g

∂u
(û, Q̂))−1 ∂g

∂Q
(û, Q̂)Σ

∆Q
∂g

∂Q
(û, Q̂)T (

∂g

∂u
(û, Q̂))−1 (44)

Considered that Xn and X′

n are not correlated, the covariance estimate Pû can be also written as:

Pû = (
∂g

∂u
(û, Q̂))−1(ΛX + ΛX′)(

∂g

∂u
(û, Q̂))−1 (45)

where

ΛX =

N
∑

n=1

∂g

∂Xn

(û,Xn)PXn
(

∂g

∂Xn

(û,Xn))T

ΛX′ =

N
∑

n=1

∂g

∂X′
n

(û,X′

n)PX′
n
(

∂g

∂X′
n

(û,X′

n))T

Pû = Ru is the input covariance matrix which is used in equation (25) to estimate the state variances

during the filter prediction stage. Results of the visual motion estimations and the corresponding error

estimates are presented in figure 37, along a sequence of 40 images taken from Karma. The mean computed

variances on the 6 motion parameters, and their dispersion is summarized in table 3: the visual motion

estimation measures a few meters translations with a few centimeters accuracy, and measures rotations

with a precision of the order of 0.1◦, with a quite good regularity.

Φ Θ Ψ tx ty tz
Average of estimated VME errors 0.098o 0.089o 0.037o 0.036m 0.038m 0.011m

σ of VME estimated errors 0.024o 0.030o 0.008o 0.013m 0.011m 0.003m

Table 3: Statistics on the estimated errors of the visual motion estimations (VME) of figure 37.

8.3 Landmark selection

As explained in the overview of our approach (section 6.1), the 3D matches established after the interest

point matching step are split into three groups: observed landmarks, non landmarks, and candidate land-

marks. The observed-landmarks set is simply the points that corresponds to landmarks already in the state

vector of the EKF. New candidate-landmarks should be cautiously added to the filter state, in order to avoid

a rapid growth of its dimension and to obtain a regular landmark coverage of the perceived scenes. The

candidate-landmarks selection procedure is made according to the following three criteria:

• Observability. Good landmarks should be observable in several consecutive frames: it guarantees

that they are salient.

• Stability. The 3D coordinates of good landmarks must be precisely estimated by stereovision.

• Representability. Good landmarks must efficiently represent a 3D scene. The robot state estimation

will be more stable if landmarks are regularly dispatched in the perceived scene, and this regularity

will avoid a rapid growth of the EKF state vector size.

The number of candidate landmarks that are checked is determined on the basis of the number of new

interest point matches (i.e. the ones that do not match with an already mapped landmark). This number is

a percentage of the new interest points: we actually use 10 %, as the visual motion estimation technique

requires a lot of matches to yield a precise result. The landmark selection is made through the following

steps:
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Figure 37: The motion parameters computed by the visual motion estimation algorithm between consecutive frames along a 40

images sequence (top), and corresponding estimated errors (bottom). Note that there are no obvious correlation between the image

angular and linear distance and the computed errors.

1. The found number of new landmark candidates is first selected using the observability criterion.

The observability of a landmark candidate is evaluated during several frames. When the selected

landmarks at time t are observable up to time t + k, the candidates discovered at time t + 1 should

be observable at least until time t + k + 1.

2. The candidates that passes through the observability test are then checked for stability. Their position

and observation errors during the observability check are memorized, and they are ranked according

to the maximum of these errors.

3. Finally, the candidates representability is checked. The ranked candidate list is scanned, starting from

the most precise one: every time a candidate is located at a distance greater than a given threshold

from the already mapped landmarks, it is added to the mapped landmarks.

The observability criterion requires that candidates are evaluated through several successive frames:

the EKF is therefore activated a few image frames later as the images are gathered.

9 Results

Our developments have been tested with hundreds of images taken on-bard Karma, at altitudes ranging

from 20 to 35 m. The digital cameras of the 2.2 m wide stereo bench are 1/2′′ CCD sensors with 1024×768
pixels, and are equipped with a a 4.8 mm focal length lens (67◦ × 53◦ field of view). The cameras have
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been calibrated at full resolution, and images are processed after being sub-sampled by a factor of two, to

save stereovision computing time (which is cubic in the dimension of the images).

9.1 Positioning errors

The GPS on-board Karma is a differential code GPS with a 3σ accuracy of 2 m: it can not be used as a

ground truth reference to validate the position estimates of the stereo bench. However, when Karma flies

over an already perceived area (i.e. when it “closes a loop”), the visual motion estimate can provide an

estimate of the relative positions between the first and last image of the sequence that overlaps. This refer-

ence is precise enough, as compared to the cumulation of errors induced with the visual motion estimation

applied on consecutive frames.
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Figure 38: A first result of our SLAM implementation with a sequence of 40 stereovision pair, taken at altitudes ranging from 20

to 25 m. Top image show the reconstructed trajectory in orthogonal projection and in 3D. Bottom images show the 120 landmarks

mapped, with 1σ uncertainty ellipses (left: real scale, right: magnified by a factor of 40)

Figure 38 presents a comparison of the reconstructed loop trajectory with a set of 40 images, while

figure 39 show the evolution of the standard deviation of the 6 position parameters of the stereo bench

when applying the EKF. Two phases can be seen on this latter figure: until image 25, the standard deviation

grows, however much more slowly that when propagating only the errors of the VME. A few landmarks

detected in the beginning of the sequence are re-perceived in the following images: the standard deviations

decreases, and stabilizes for the subsequent images where some ”old” landmarks are still observed.

The quantitative figures summarized in table 2 are much more informative: they compare the results of

the final position estimate with respect to the reference defined by the VME applied between images 1 and

40: the precision enhancement brought by the EKF is noticeable, and the absolute estimated errors are all
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Figure 39: Evolution of the standard deviations of the robot position parameters during the flight shown in figure 38.

Frame 1/40 Reference VME VME SLAM SLAM SLAM

Reference std. dev. result abs. error result std. dev. abs. error

Φ −7.08◦ 0.10◦ −10.38◦ 3.30◦ −7.29◦ 0.21◦ 0.20◦

Θ −1.50◦ 0.09◦ −3.90◦ 2.40◦ −2.11◦ 0.28◦ 0.61◦

Ψ −105.71◦ 0.04◦ −105.15◦ 0.56◦ −105.82◦ 0.09◦ 0.11◦

tx −1.84 m 0.04 m −2.75 m 0.91 m −2.08 m 0.11 m 0.24 m
ty −3.31 m 0.04 m −4.78 m 1.47 m −3.38 m 0.08 m 0.07 m
tz −1.73 m 0.01 m −2.64 m 0.91 m −1.83 m 0.04 m 0.10 m

Table 4: Comparison of the errors made by the propagation of the visual motion estimation alone and with the SLAM EKF approach,

using as a reference the VME applied between images 1 and 40

bounded by twice the estimated standard deviations. The translation errors are below 0.1 m in the three

axes after an about 60 m long trajectory, and angular errors are all below half a degree.

Figure 40 shows an other trajectory reconstructed with a set of 100 images, and finally, figures 41 to

42 show results integrating 400 images, the corresponding numerical results being presented in table 3. In

this latter case, a strong position refinement is provided by the filter when the blimp flies again over data

acquired at the beginning of the trajectory.

Frame 1/400 Reference VME VME SLAM SLAM SLAM

Reference std. dev. result abs. error result std. dev. abs. error

Φ −0.12◦ 0.87◦ −0.26◦ 0.15◦ −1.05◦ 0.40◦ 0.94◦

Θ 2.87◦ 1.14◦ −6.16◦ 9.02◦ 1.74◦ 0.44◦ 1.12◦

Ψ 105.44◦ 0.23◦ 101.87◦ 3.57◦ 104.77◦ 0.14◦ 0.67◦

tx −4.93 m 0.57 m 6.29 m 11.22 m −2.81 m 0.23 m 1.12 m
ty 0.14 m 0.46 m 3.22 m 3.08 m 1.53 m 0.24 m 1.39 m
tz 3.89 m 0.15 m 20.17 m 16.27 m 3.48 m 0.08 m 0.41 m

Table 5: Comparison of the errors made by the propagation of the visual motion estimation alone and with the SLAM EKF approach

for the trajectory of figure 41, using as a reference the VME applied between images 1 and 400.

9.2 Digital elevation maps

Thanks to the precise positioning estimation, the processed stereovision images can be fused after every

update of the EKF into a digital elevation map (DEM), that describes the environment as a function z =
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Figure 40: An other trajectory reconstructed with a sequence of 100 images. 320 landmarks have been mapped (the magnification

factor of the uncertainty ellipses in the bottom-right image is here 20)

f(x, y), determined on every cell (xi, yi) of a regular Cartesian grid.

Our algorithm to build a DEM simply computes the elevation of each cell by averaging the elevations

of the 3D points that are vertically projected on the elementary surface it defines. The standard deviation

on the cell elevation is also straightforwardly computed, and since a luminance value is associated to each

3D point produced by stereovision, it is also possible to compute a mean luminance value for each map

cell. Figure 43 shows a digital elevation built from the 100 images during the trajectory shown in figure 40:

the resolution of the grid is here 0.1 m, and no map discrepancies can be detected in the corresponding

orthoimage, which is the vertical orthogonal projection of the luminance informations encoded in the DEM

grid.

9.3 Discussion

The first results described here show that thanks to the application of an EKF on the sole basis of stereovi-

sion, it is possible to achieve a positioning of the blimp with a precision of a few centimeters after severals

tens of meters flight, thus enabling the possibility to build very high resolution environment maps. To our

knowledge, it is the first attempt to tackle a SLAM problem in 3D space, using exclusively informations

provided by vision.

The main advantage of our approach relies on the use of interest points as landmarks. Such points are

indeed very numerous in any kind of environment: no ”obvious” landmarks (such as trees, rocks, fences,

pebbles...) are required for the algorithms to operate successfully, and this allows an active selection of the

landmarks to map. The reliability of our interest point matching algorithm is of course a key point here, as
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Figure 41: An other result of our SLAM implementation with a sequence of 400 stereovision pair. Top image show the reconstructed

trajectory in orthogonal projection and in 3D. Bottom images show the 340 landmarks mapped, with 1σ uncertainty ellipses (left:

real scale, right: magnified by a factor of 40)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Phi

Theta

Psi

Image step

S
ig

m
a 

of
 a

ng
le

 u
nc

er
ta

in
ty

 (
de

gr
ee

)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Translation X

Translation Y

Translation Z

Image step

S
ig

m
a 

of
 tr

an
sl

at
io

n 
un

ce
rt

ai
nt

y 
(m

)

Figure 42: Evolution of the standard deviations of the robot position parameters during the flight shown in figure 41. A drastic

decrease of the variances appears in the end, when several landmarks are reperceived.

it allows robust data associations. Also, the use of the visual estimation technique as a mean to achieve the

prediction stage of the filter is very efficient: its estimates are precise enough to yield a fast convergence,

keeping the filter linearizations as fair approximations. Finally, a thorough study and identification of the
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Figure 43: The DEM computed with 100 images, positioned according to the trajectory of figure 40: orthoimage and 3D view of

the bottom-left area. The map covers an area of about 3500 m2.

various errors estimates involved in the filter allowed to set it up properly, without any empirical tuning

stage, which would have been very tedious.

There remain however various points to tackle, before having the system integrated on board Karma.

First, the high number of landmarks will not allow to maintain the whole EKF state vector over a few

tens of images, because of computation time constraints. An implementation such as the compressed

EKF [31] is definitely required. Second, the fact that the prediction and observation stages originate from

the same sensor, and are therefore not fully uncorrelated, might raise some convergence problems over

a long time, especially is calibration bias are not negligible: we were however not able to detect such

problems in our experiments. Anyhow, our algorithms for the prediction stage (VME) or the landmark

mapping could easily be integrated with any other positioning sensor in a Kalman filter framework. Finally,

our approach is intrinsically limited in altitude by the use of a stereovision bench. Our experiments showed

that a baseline/depth ratio (the well known b/H ratio in aerial imagery) of 1/15th is big enough to allow

centimeter accuracy positioning. We believe that our algorithms will have similar performances until b/H
ratios as small as 1/30th (i.e. altitudes around 70 m), but this has to be confirmed experimentally.

Other issues remain to be considered before considering the exploitation of the built maps by a ground

rover. Especially, at the considered map resolutions, DEM’s are not suited to represent verticals and over-

hangs present in the environment (see how bad the trees look in figure section 43): some pre-processing is

required in order to detect such situations before fusing the data in the DEM.

10 Conclusions

We have presented the current status of our project, insisting on developments related to flight control and

terrain mapping. The project is on-going, and now focuses on integration:

• Integration of the control laws during actual flights will be achieved in a progressive manner, thanks

to the electronic switch module that allows a mix operator/automatic control. Actual flight data will

help to refine some of the involved parameters, in both the model and control laws definition.

• Integration of the mapping algorithms is rather a matter of software engineering (besides the evalua-

tion of a compressed SLAM approach performances).

• But the most interesting aspects come when tackling the integration of control and mapping issues.

Fusion of the blimp state parameters, considering also the control inputs, with the state as measured
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by the SLAM algorithms will allow the to enhance the precision of absolute positioning, allowing

the achievement of long trajectories. Autonomous mapping of a given area is then achievable, thanks

to an exploration planner that will send reference trajectories to the motion planner, on the basis of

the current state of the built map.

Besides these integrations related to the blimp autonomy, the fusion of data acquired from a ground

rover with the aerial map is currently under way, as a first step to cooperative air/ground robotics. Most

of the difficulty rely here on the registration of the ground data with respect to the existing map: the

viewpoints, the resolution and the precision of the data are indeed extremely different between air and

ground data.
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