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SYNOPSIS 

This thesis presents the basic steady-state operating 

characteristics of a device 11otm as the autoparametric vibration 

absorber (or simply as the AvA). This is a two-degree of freedom 

system consisting of a main linear spring mass system and an 

attached absorber system. The motion of the main mass under external 

forcing, acts parametrically on the motion of the absorber. 	Terms, 

nonlinear in the absorber motion, act back on the main mass and with 

appropriate choice of timing parameters, 'absorption' of the main 

mass response can be obtained. 

Mathematically the analysis of the AVA under harmonic 

excitation of the main mass is the study of two coupled nonhomogeneous 

equations of the second order with quadratic nonlinearities. Three 

possible methods of solution are considered, each of which provides 

the same first order solution for the steady-state behaviour of the 

MA. After a stability assessment, this theoretical solution is 

compared vith the steady-state results of the experimental investigation. 

A theoretical comparison is also made between the steady -state 

performance of the AVA and that of a linear timed and damped absorber 

of the same mass ratio. The results of this comparison highlight 

the need for an Al/A system possessing the optimum, absorbing 

capabilities and consequently the design of several Al/A mechanisms is 

studied. 



A possible theoretical solution of the transient behaviour 

of the AVA is also presented 	This transient solution is forniulated 

using a technique similar to that used in the steady-state analysis. 

The merits of this transient solution are assessed by comparison with 

a digital computer simulation of the system equations of motion. 

Finally a brief study is made of the response behaviour of the 

AVA system when the main mass is subjected to random excitation. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Parametric and Autoparametric Excitation 

The phenomenon of parametric excitation, in which an oscillatory 

system oscillates at its natural frequency w if one of its parameters 

is made to vary at frequency 2w, was first observed by Faraday*(1831). 

He noticed that the wine in a wineglass oscillated at half the 

frequency of the excitation caused by moving moist fingers around the 

edge of the glass. 	Later, Nelde (1859) provided a more striking 

demonstration in which a stretched string was attached at one end to 

a prong of a tuning fork capable of vibrating in the direction of the 

string. It was observed that when the fork vibrated with frequency 

2w, lateral vibrations of. the string occurred at frequency w. 	In 

1883 Lord Rayleigh explained this phenomenon mathematically. 

From a mathematical standpoint the study of such phenomena may 

be reduced to the integration of differential equations with time-

dependent (generally periodic) coefficients. 	Beliaev (1924) was, 

apparently, the first to provide an analysis of parametric resonance 

in a structure. 	His model was that of an elastic column, pinned 

at both ends, and subjected to an axial periodic force (t) F0+F1 coswt. 

The equation which emerged was of the Mathieu-Hill type. However, 

the study of this type of linear differential equation contributes 

- little to the understanding of parametric excitation phenomena which 

are essentially nonlinear in most cases. 

* references are listed alphabetically in the Bibliography. 



Parametric resonance is an integral part of the wider field 

of dynamic instability. 	In a linear system the amplitude grows 

indefinitely while in the nonlinear case, the instability decreases 

with increasing amplitude and vanishes when the system amplitude 

reaches a certain level for which the oscillations become stationary. 

The distinction between parametric, or more specifically 

heteroparametric (the prefix 'hetero' is normally dropped), and 

autoparametric excitation is that in the former case, parameter 

variations are produced by external periodic excitation, and in the 

latter, by the system itself. 	The classical autoparametric problem 

is that of the elastic pendulum described by Minorsky. 

Beliaev's findings were completed by Androiiov and Leontovich 

(1927) and over the next thty years a considerable volume of 

literature had amassed on various aspects of parametric resonance 

and stability. Notable among the researchers of this period were 

the Russians, Chelomei, Krylov and Bogolyubov and the Germans, Mettler 

and Weidenliammer. 

With the expansion of this relatively young branch of dynamical 

studies there was an increasing demand for more powerful mathematical 

techniques. As early as 1944, Artem'ev applied the technique of 

expansion with respect to a small parameter to determine instability 

zones, but it was not until the early sixties that the asymptotic 

methods were firmly established. in the literature. 	These methods 

are well documented by Bogolyubov and Mitropol'skii. 

This brief survey of developments in the field of parametric 

resonance would not be complete without a mention of the significant 

àontribution made by Bolotin. 

2. 
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The papers he wrote during the fifties on dynamic stability and, 

in particular, on paramdtric stability, are incorporated in his 

book, "The Dynamic Stability of Elastic Systems" which was published 

in English in 1964 and is considered a standard text in this field. 

For several years this Department has been engaged in the 

study of parametric response with the aim of providing a better 

understanding of the nature of the phenomenon and a broader 

experimental basis for existing theoretical work. 	This thesis 

presents one such investigation into the interaction between dynamic 

and autoparametric response based on an original research idea 

suggested by Dr. A.D.S. Barr, at present Reader in this Department.. 

1.2 The Autoparametric Vibration Absorber 

Within the context of this thesis, vibration absorbers are 

considered to be passive single degree of freedom systems, designed 

for addition to some larger vibrating system with a view to reducing 

its resonant response under external harmonic excitation. Falling 

into this class are such devices as the tuned and damped absorber, 

the gyroscopic vibration absorber and the pendulum absorber. They 

are basically linear devices because although in operation large 

amplitudes may introduce nonlinear stiffness or inertial effects the 

working of the device is not dependent on these. 	The effectiveness 

and response characteristics of these absorbers is well documented. 

The subject of this research however, is a device which interacts 

in an essentially nonlinear manner with the main system to which it 

is attached. 	It is the manner .in which the device is excited that 

leads to it being termed the 'autoparametric vibration absorber' 

(contracted to AVA) in keeping with the definition of autoparametric 

excitation given in the previous section. 



In the usual forms of absorber the motion of the main mass acts 

effectively as a 'forcing' term on the absorber motion. 	In the 

autoparametric absorber however, the main mass motion causes 

variations in the absorber spring stiffness which, although time-

varying, are not explicit functions of time but actually depend on 

the absorber motion itself which acts back on the main system through 

nonlinear terms. 

The absorber-like response of an autoparametric system might 

have been anticipated from existing analysis. For example, the 

classical autoparametric problem, already mentioned, in which an 

elastic pendulum exhibits energy absorption in the high-frequency 

mode (2co) followed by transference of this energy to the low frequency 

mode (u). However in this research the absorber-like response was 

first noticed in the laboratory when during tests on the parametric 

excitation of simple structures under foundation motion, it was 

observed that in a region of parametric instability the structure 

could have considerable effect on the 'foundation'. 	The foundation 

was really another degree of freedom and autoparametric interaction 

was involved. 

Mathematically the analysis of the autoparanietric absorber under 

harmonic excitation of the main system is the study of two coupled 

nonhomogeneous equations of the second order with quadratic 

nonlinearities. A general study of this form of system using the 

averaging method has been given by Sethna. A system which is 

mathematically similar to the device presently under consideration 

is presented in a paper by Sevin and also in related papers by Struble 

and Heinbockel. 

40 



They discuss the parametric interaction of a vibrating beam with its 

pendulous supports, however, they confine their studies to the 

autonomous or free-vibration case. 

The question naturally arises as to whether the AVA has any 

advantage in application over the more conventional types of absorber. 

This is an open question at present but in most cases it can be 

anticipated that the answer will be negative. However, the study 

of an absorber system combining the action of the AVA with that of 

the linear tuned and damped absorber does show some promise in this 

direction. From a fatigue point of view, any benefit gained from 

the operation of the AVA absorber system at half the frequency of the 

main system tends to be nullified by the increased stresses caused 

by the relatively large operational amplitudes of the absorber itself. 

1.3 The Scope of the Present Investigation 

This thesis presents the operating characteristics of the 

autoparametric vibration absorber. 	The theoretical model of the 

AVA system is that of a main linear spring mass system under periodic 

forcing the motion of which acts parametrically on the motion of 

an attached absorber system which consists of a cantilever beam with 

adjustable end mass. 

For the mathematical analysis of the relevant equations of 

motion, the asymptotic method described by Struble is used in 

preference to the averaging method used by Sethna and the two-

variable expansion procedure described by Cole and Kevorkian, but, 

for this problem at least, the results are the same. 	In the asymptotic 

method a general perturbational solution of the equations of motion 

is expressed in the form 

2 	N 
u = Acos(wt + 0) +€u1  + 6 u + ... 



where each of A, e, u1, u27...5'.UN  is in general, a function of time. 

The first term of the expansion is the principal part of the solution 

while the additive terms in powers of (a natural parameter of the 

system) provide for a perturbational treatment. 	Substitution of 

this solution into the equations of motion leads to sets of variational 

and perturbational equations of different orders in G. 	It is the 

variational equations of the first order in E. which provide' the steady-

state solution of the behaviour of the AVA in this case. 

Formulation of the steady-state solution requires that certain 

assumptions be made regarding the conditions of internal and external 

resonance 	A solution is obtained assuming the condition' of exact 

internal resonance in which the absorber frequency is tuned to half 

that of the main system while the main system is excited in the 

neighbourhood of its natural frequency by the external harmonic forcing 

(external resonance condition). 	Another, more general, solution is 

found by assuming that the absorber is slightly detuned so that the 

exact internal resonance condition is no longer valid. 	In both cases 

the stability of these theoretical steady-state solutions is studied 

and the results presented as a series of amplitude response curves for 

selected values of the system parameters. 

On the completion of the analysis of the steady-state solution 

it was decided 'to effect a theoretical comparison between the AVA and 

the linear tuned and damped absorber in an attempt to assess the 

efficiency of the former. From this comparison it emerges that the e 

parameter plays an important role in determining the absorbing power 

6. 

of the AVA. 
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It is because this E. parameter is a function of the construction 

of the absorber that consideration is given to other possible AVA 

systems with a view to obtaining an optimum design. 	(One such 

system is a combination of the AVA and the linear tuned and damped 

absorber). 

To demonstrate the validity of the theoretical predictions 

regarding the nature of the steady-state solution, experiments are 

performed using a cantilever-type absorber mounted on a main spring 

mass system which is excited by an electromagnetic vibrator. From 

the data collected by monitoring the steady-state amplitudes of the 

absorber and the main mass it is possible to compile a series of 

amplitude response curves which are directly comparable with their 

theoretical counterparts. 

A study of the operating characteristics of the AVA would not 

be complete without an inquiry into the nature of its transient 

behaviour. 	Consequently, a possible analytical solution of the 

transient motion Is discussed which involves mathematical procedures 

very similar to those used in the steady-state analysis. 	The merits 

of this solution are then compared with a digital computer simulation 

of the AVA transient performance. 

Although the present investigation is mainly concerned with the 

AVA's ability to absorb energy from a system subjected to harmonic 

excitation, a few experiments were performed to show the AVA's response 

to external random excitation. 

Finally, a paper entitled "The Autoparametric Vibration Absorber" 

by R.S. Haxton and A.D.S. Barr, is appended at the end of this thesis. 



CHAPTER 2 

THEORETICAL ANALYSIS OF THE 

AUTOPAF.MIETRIC VIBRATION ABSORBER 

2,1 	Introduction 

The mathematical analysis of the autoparametric absorber 

under harmonic excitation of the main mass system is the study of 

two coupled nonhomogeneous equations of the second order with 

quadratic nonlinearities. 	In thischapter these equations are 

derived from a basic theoretical model using the Lagrangian 

formulation. 	The application of an asymptotic method described 

by Struble provides an insight into the nature of the steady-state 

behaviour of the AVA. Finally a study is made of the stability 

of the steady-state solutions. 

A possible analytical solution of the transient behaviour of 

the AVA system under external excitation is given in Appendix I 

together with the results of a digital computer system simulation. 

2.2 Theoretical Model 

Fig. 2.2.1 represents a schematic drawing of an AVA mounted 

on a single degree of freedom system under external forcing F(t). 

The AVA consists of a weightless cantilever beam of length t and 

flexural rigidity El carrying a concentrated end mass m. The 

varying motion x(t)  (subscript d indicates 'dimensional', a 

nondimensional X is introduced later) of the main mass system 

(mass N, spring stiffness k) induces fluctuations in the effective 

lateral spring stiffness )\ of the cantilever. 

8. 



Fig. 2.2.1 

Schematic Diagram of a Cantilever-Type 
Autoparametric Absorber System. 

ix 



It is this timewise variation in stiffness which initiates the motion 

of the absorber. However this motion of the absorber mass is not 

in a purely lateral mode 	but is associated with an axial 

displacement which can be related to y
d 
 from the geometry. 

Consequently the absorber feeds X—directed forces back on the main 

mass. 

A factor which emerges from the analysis is the importance of 

this relationship between the axial and lateral displacements of 

the end mass in determining the effectiveness of the absorber. 

With this in mind, consideration was given to alternative mechanisations 

some of which are discussed briefly in Appendix II. 

2.3 Equations of Motion 

In deriving the equations of motion using the Lagrangian 

formulation it is essential to include terms due to the axial motion 

of the absorber mass in the evaluation of the expressions for kinetic 

energy, T, and potential energy, V, of the system. 

If Z denotes the axial displacement of the absorber mass then 

z  = + (\2 dX  
o dx1 

where y is a function of the deflection form of the cantilever and 

x is the distance along the undeflected beam. 	(See S. Timosheuko's 

'Strength of Materials', Part II). 	Assuming the cantilever to 

have a static form of displacement curve such that 

= d 
(3tx2  - x3 ) 

 2t 



then the relationship between Z and Yd is  

=y 	with Z 
= 5t Yd  

Dots indicate differentiation with respect to time t. 

The expressions for T and V are then 

2.2 	12 .2 
T 	

+ 'd 
+ 	

d - 	XdYdTd + d251 

and 

V=+kX 2  +2>\Yd +MgX+mg(X_Y2) 

where g is the acceleration due to gravity. 

The resulting equations of motion are 

m6 (d2+ydd)_t) (i +)Id+xd+1  +)g- 	- N 

(> 	6 	
xd) 	

36  
+ 	- •1g - •

i 	d + 25t2 	+ 	
= 0 

Henceforth the gravitational effects will be ignored with the 

adoption of a horizontal configuration of the main mass and 

cantilever system. Also viscous damping will be assumed to act 

on the main mass (c 1 ) and the absorber mass (02). 

Consequently the equations of motion take the form 

d 	i 
Cl 
 d 	

- r
(
t) 

(1 +)I+-*+x 	
m 6 . 2  

N d N 5td + 	- N 

C2 	- 	

Xd + t2 d + ddd = 0 1dmd 	in 	5t d 

10. 
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It is now beneficial to perform a nondimensionalisation on 

the basis of the static deflection X of the main system under 

the force amplitude F0  of the external forcing function. 

Thus when the external forcing is harmonic of the form 

F(t) = F0  cos 29t the nondimensional equations are 

X + 2€'w1 X + w, 2X _ER(r2  + yj) = 	cos 20t 

2.3.1 
, 2 

+ 	
+ 	

- Ek)y + 62y(r2 ± y5j) = 0 

where X0  = F/k ; X = 	; y = Y/X0 
 ; 

G= 6Xj5t ; 	= k/(M + m) 

= X/m ; \= 3EI/ 3  ; R = 	+ rn) ; e 1  = c1 /2(M + 

= c 2/2m W2 
	

2.3.2 

is the free undamped natural frequency of the entire system with 

the absorber locked (y = o) and w
2 
 is the free undamped nEitural 

frequency of the absorber. R is a mass ratio and 6 a natural 

small parameter of the system. 

2.4 Steady-State Solution of the Perfectly Tuned MA 

Three possible methods of achieving an approximate solution 

to equations 2.3.1 have been examined. 	These are the method of 

averaging (as used by Sethna), the two-variable expansion procedure 

(Cole and Kevorkian), and an asymptotic method outlined by Struble. 

For this particular problem the asymptotic method lends itself most 

easily to analysis. 	The method of averaging, although providing 

identical results, tends to be rather tedious, while the two-variable 

expansion procedure is primarily a technique for singular perturbation 

problems. The asymptotic method is adopted here while the other two 

techniques are detailed in Appendix III. 
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As a prerequisite to further analysis the equations 2.3.1  are 

written in the form 

X + 492X = €[_1 (4Q2  w1 2 )X - 2 1 w1 X + R( 2  + y) + P cos 29t] 

2.4.1 

2 	-12 	2 	. 

This 'softening' of the forcing term through association with 

the small parameter E such that w 2  is replaced by eP, enables the 

detailed structure of the solution close to external resonance to 

be obtained. 

The solution of 2,4.1 is taken in the form 

X = A(t) cos [w1 t + 	+ ex 1 (t) + €2x2 (t) + 
2.4.2 

y = B(t) cos [ 2t + e(t)] + € y1  (t) + £2y2 (t) + 

where A, B, 4 and 0 are slowly varying functions of t. 

The first term in each asymptotic series represents the 

principal part of the solution while the additive terms in powers 

of £ provide for a perturbational treatment. 

Substitution of 2.4.2, to the second order in E., into the 

equations of motion yields the following two equations:- 
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+ ) 2]cos(w1 t + 4) - [A+ 2k(w1  + )]sin(w1 t + 4) 

+e2R
+ 492A cos(w1t + 4) + 49EX1  + 4Q2  e 2  x 2 

= e[ C1  (4Q2 - 	&A cos(1t + 	+ EX 1, + 

- 	2w1 [A cos(w1 t + 4) - 	+ ) sin(w1 t + 4) + G*1] 

-F €R[(BB + 2 )cos2 (w2 t + o) - B2(w2 + 0)2 [cos 2 (u 2 t + e) - 

— sin 2 ( 2 t + e) 	- 	+ 4Bñ(w2  + 6)1 sin(w2t + 0)cos(c 2 t + e)] 

+ €2i[ 	+ 2B 1  + By1  - B(w2  + 6) 2y1  cos(w2t + o) 

- {2Br1 (w2  + 	+ 	+ 	+ 	
sin(wt + o)] + EP cos2t 

2.4.3 

and 

- B( + Ô) 2]cos(w2t + e) - [ Be + 2(w2  + 6)]sin(w2t + o) 

+ 	+ 	+ Q2B cos(th2t + e) + 2 €y1  + Q2 €2 

= e[e 1 ( 	- w22 )B cos( 2t t e) + €y1 + €2 1] 	 -. 

- £2,2[B cos(w2t + o) - B( 2  + Ô)sin( 2 t + o) + 

+ e[ jBA - AB(w1 + )2 cos(u31 t + 4)cos( 2t ± e) - 

- fAB$+ 2BA(o1 + 	 + 4) cos (w2t + e)] 

+ €2[B 1 cos(w2t + e) + y1 	- A( 1 + 4 ) 2 1
cos(w1 t + 4) - 

- i f+ 21( + 	sin(1t + 4)] 

- 62[ JB2 B + B 2  - B3 (ü 2  + o)2cos3(.2t + e) + B3 (w2  + Ô) 2  sin 2 ( 2 t + o). 

. cos(wt + e) - 	B3e + 4B2B(c,2  + 6)1 sin(w2t + O)cos2 (c 2t + e)] 

2.4.4 
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Those terms in equations 2.4.3 and 2.4,4 of order zero in E 

are called variational terms. However, equating these terms 

appropriately on each side simply implies that each of A, B, $, 0 

is a constant. 	It is necessary then to consider the higher order 

terms in € which give rise to sets of perturbational equations in 

the perturbational parameters X1,, y1 , X and y2 . 	If there exists 

any term on the right-hand side of these perturbational equations 

which is likely to produce resonance in one of the perturbational 

parameters then this term must be removed for the solution to 

remain bounded. 	Such 'resonant' terms are transferred to the 

variational terms and provide for a set of variational equations in 

which A, B, 4 and 0 are not constants but functions of time. 

Continuing the analysis, the first order terms in e in 2.4.3 

and 2.4.4 give the first order perturbational equations, 

+ W 1 2 X = - 2 11 [A cos(w1 t + 4) - A( 1  + )sin(w1t + 4] 

+ R[(B + B2 )co82 (co2 t + e) - B2(w2 + 

• Cos 2 (w2t + e) - sin 2 (w2t + 0 	B2e + 4BB(w + ê). 

sin(,2t + 0)cos(w2t + e)] + P cos 29t 	2.4.5 

and 

+ W2 Y1  = - 2 22[ cos(w2t +e) - B( 2  + Ô)sin( 2t + e)] 

+ [DX - AB( 1  + 4) 2]cos(w1 t + 4)cos( 2 t + o) 

- [AB + 2BA( 1  + $)]sin(ol t + 4)cos(w2t + e) 	 2.4.6 
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Both equation 2.4.5 and 2.4.6 have terms on the right which 

constitute resonant terms when certain conditions are imposed. 

Firstly, the periodic external forcing will have most effect when 

the frequency 29 is close to the system frequency w1  , accordingly 

it is assumed that a condition of external resonance holds, defined 

by 

(29/w1 ) = 1 + o(e) 	 2,4.7 

Secondly, to ensure that the absorber is excited parametrically in 

its principal region of instability the internal resonance or 

tuning condition, 

= 2w2 	 2.4.8 

is imposed. 	(This is the perfectly tuned or exact internal 

resonance condition, the effect of a slight detuning will be 

discussed later). 	Consequently, many of the terms on the right-hand 

side of 2.4.5 and 2.4.6 produce resonance in the perturbational 

parameters when the above conditions hold. 	By way of example, 

consider the term cos 2 (w2 t + o). Now using the standard trigonometric 

formulas cos2 (w2t + e) =+ cos2((02t + o)) but cos2(w2t + o) 

can be written as cos [(w1 t + 4) + ( 20 - 4)} which is equivalent to 

cos(w1 t + 4)cos(20 - 4)- sin(w1 t + 4)sin(20 - 4), and so the term 

cos2 (w2t + e) provides two fundamental harmonics which must be 

removed to the variational equations. 	This is a direct consequence 

of the exact internal resonance condition 2.4.8. Another, in 

the same category, is the cos(w 1 t + 4)cos(w2t + e) term which provides 

a resonant part cos 	- w2)t + ( 4 - 	and a nonresonant 

part cos 	+ w2)t + (c+ o)]', the resonant cos (w1 - w2 )t + (cp o) 

produces two, harmonics, 
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cos(w2t + e)cos(20 - 4) and sin(ui2t + O)sin(20 - ) which again must 

be removed. 	Finally, the forcing tern cos 29t is written as 

cos [( 1 t + 	- 4ç thereby producing two harmonics of the form 

cos(w1 t + 4)cos4 and sjn(col t + 4)sin40 	This shows the effect of 

the external resonance condition 2.4,7 

The resulting first order perturbational equations are 

+ 	= - R(B + 2) 
	

2,4.9 

2 	'1+ 	= 	- AB(w1  + 3) 2]cos (w1  + W2 )t + ( 4) + 

- {B4+ 2BA(1 +3)]sin 	+ c)t + ( 4+ e)\ 	2.4.10 

Now as previously stated A, B, 4 and e are slowly varying 

functions of time so that their first derivatives with respect to 

time are assumed small of the first order in E . This means that 

2.4.9 and 2.4.10 need not be treated precisely. 	Equation 2.4.9 

simply becomes 

1  L0 1 + 1 2X1  = 0 2.4.11 

while 2.4.10 reduces to 

.. 	2 	1 
yl + W2 1 = - ABw 2  cos (w1  + w2)t + (+ e) 	2.4.12 

and the particular integral solutions to 2.4.11 and 2.4.12 can be 

taken as 

X  = 0 

2.4.13 

= + AB[w1 /(w1  + 2w2 )]cos (co + 2 )t + ( 4+e)} 
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With these solutions for X 1  and y1  the second order 

perturbational equations may be written following' the same 

procedure of removing the resonant terms to the variational 

equations then simplifying the remaining terms by eliminating 

those of order greater than €0, The reduced second order 

perturbational equations are 

+1 2 
x 2= - + AB2RL 1 

 (
w 1 + 2u,2 )cos (w + 2w2 )t + ( + 2e)} 	2.404 

and 

+ L2y2 	+ 2"'1 + 2
2 )]sin (w + w2)t + 

+ (c+ e) - + A2B[)1 3/(w1  + 2w2 )]cos 1(2w i + i2 )t + 

+ (2+ + 	+ - B3w22cos3(w2t + e) 

Once again particular integral solutions to 2.4.14 are required 

before formulating the third order perturbational equations. 

However these need not be found as the present analysis requires 

variational equations of the second order only. 

The Variational Equations 

Returning to equations 2.4.3 and 2.4.4, the variational 

equations comprise the coefficients of the fundamental harmonic 

terms together with the coefficients of the resonant terms brought 

up from the first and second order perturbational equations. 

Thus the coefficients of cos( 1 t + 0 give, 
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X—A( 1  +) 2 +402A 

= 	- w1 2 )A]— 	2 11A 

+ 	
+ 2) - B

2 (ü 2  + 6)2](20 - 4,). 

- 	+ 2BB((,2  + 0)]sin(20 - 4) + CP cos 4, 

+ €2[Ru 1 AB/4( 1  + 2w2 )][ - B(o2 + 0)2 + 2B( 2  + e)(W1 + c2)] 	2.4.15 

The coefficients of sin(w 1  t + 4) give 

- A4, —  2A( 	+c) 

=+ 3) - E.R[--B2  + 2BB(w2  + 6)]cos(20 - 4) 

- R[+(BB + 2) - B2 ( 2  + )2]sin(20 - 4) 

+ GP sin+ 2[Rw1  ABA (w1 + 2w2)][BdO + 2B( 2  + ê)] 
	2.4. 16 

The coefficients of cos(w2t + o) give 

B - B(w2  + é) 2  + 

= e[T'( 2  - 22 )B] - E2 
2 
 w B 
2 

+ 	
- 	

+ 3)2](20 - 4) 

+ 	[+AB+ BA(c* + 3)]sin(20 - 4) 

+ €2[c1AB/4(1 + 2w2 )][X - 	
+ 3)2 ]  

- + €2[3B2B + 3B2 - 2B3(2 + 6) 2 ] 	 2.4.17 

Completing the four variational equations, the coefficients of 

sin( 2t + e) yield, 
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Be - 2B( 	+ ê) 

= 	 + ô) - e[+AB+ BA(ci1  + )]cos(29 —4) 

+ e[+BX - j-AB(w1  + ) 2 ]sin(28 

+ 2[u 1  ABA (ü 1  + 2c 2 )][A4+ 2A( 1  +)] 

+ - e[ B3  + 4B2B(o2  + e)] 	 2.4.18 

Again, because of the assumed slow variation of A, B, 4) and e, 

and since it is sufficient to obtain solutions correct to the second 

order in e, the above four variational equations can be simplified. 

Accordingly, each of the omitted terms will be of the third order 

in e. 

Hence 2.4.15 becomes 

- A = (6/2w 
2 
 )[2C' (Q 2  - 22)A - 2 1 w2A - +RB2w22cos(20 - 4) + 

+ -- P cos4+ RAB2 5 22/8] 
	

2.4-19 

where w has been eliminated using the internal resonance condition 

Similarly 2.4.16 becomes 

- A = ( e/2c1 2 )[4 122A + -- RB2o22sin(2e - 4) + 4- P sin4) 	2.4.20 

While 2.4.17 yields 

- BO = (e/2m2)[C1 (2 - '02 2)B- 2 2 w2B - 2AB22cos(20 - 0 - 

- €A2 B, 2  + E4-B3w22 ] 	 2.4421 
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Finally 2.4.18 gives 

- 	= (€/2t2)[2>22B - 2ABw22sin(20 - 4))] 	 2.4.22 

The tern in A in equation 2.4,19 and that in B in equation 

2.4,21 can be eliminated using equations 2.4,20 and 2.4.22, 

respectively. 	Thus 2.4.19 becomes 

- A4 = ( e/22)[2C1(Q2 	- 1 RB22 	(2e -4)) + p cos4] 

+ (e/2 2 )2[8',1 2w23A + RB2' 1 W23  sin(2e - 4)) + P 2 sin4)+ 

+ 	253/4] 	 2.4.23 

and 2.4.21 becomes 

- Be = (E/2w2 )[67 1  (Q2 - w22 )B - 2ABw22cos(20 - 4)] 

+ (€/2w2)2[42223B - 4AB23sin(2e - 4') - 2A2Bu 23  + B3 23] 2.4.24 

Equations 2.4.23, 2.4.20, 2.4.24, 2.4.22 constitute the four 

second order variational equations from which the steady-state 

solution may be obtained. 	Before further analysis however, it is 

convenient to introduce a change of variables. 	This transformation 

takes the form 

2 	2 
t=4 1 /6JP ;y=(w2  -QVew2 J 

; B=b2 JP/w2 J 	; 	;O=(2 	2.4.25 

Note, EP = ,,2 = 4 22  as previously stated. 

The resulting variational equations are, 
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b 1  4r = 4yb 1  + b22cos(2 '2 - 1V1) - cos ir1  

+ £[- 4 1 (e/R) 2b 1  - b22sin(2 2 	W1 ) - sin q, 

- 	

- 

 

5(e/R)4  b1 b22  

b 
	

(€/R)+b1  - b22sin(2 V2  - 	n 

b2  '4r2 = 2yb2  + (4/R)b1  b2cos(2 r2 
- 

+ E 2[_2 2 (E/R)b2  + (4/R)b1b2sin(24V2 - 

+ (2/R)(e/R)[2b12b2 - b 23 ] 

and 

= - 2 2 (€/R)b2  + (4/R)b1b2sin(2lr2 - 

... 2.4.26 

where primes denote differentiation with respect to the slow time 

t 

The steady-state solutions for b1, b2,IV,and 4r2  are 

found by equating the right-hand sidesof equations 2.4.26 to zero. 

Thus b 	b2' = b1  4V1' = b2 *2/=  0 and after some algebra, 

eliminating 	and 4r2,  there results two rather complicated 

relationships between b 1  and b2 , namely 

2 	22 
4b12 	2 R + y R + 2yR(€/R)2(2b12 - b 2 ) 

+ (e/R)(2b1 2  - b22 ) 2 	 2.4.27 

and 



4 
2 

+
- 

16(e/R) 1 2b 1 2  + -4",-R )22 	
2 	2  

	

2 ~ 4E 1 ' 2 
 b
2  + 16yb 1 
	_4'_Y  

R 	2 

b 8 	 1 

- 4y 2Rb2 2  + +(e/R) -s + (G/R)b 1 2b24  - 4y(G/RYb2 - 

b1 	
b6 

- 18y (G/R) 2 b1 2b22  + 	 + 2, y(ER)7  b24  + 

b1  

+ .. (e/R)b 6  = 1 	 2.4.28 

Although an approach to the steady-state solutions for b 1  

and b2  through the second order variational equations provides a 

more detailed insight into the nature of those solutions, the 

algebra required becomes rather excessive. 	In the present study, 

therefore, a solution to the first order variational equations will 

suffice, in the knowledge that 2.4.27 and 2.4.28 would yield more 

accurate predictions. 

The first order variational equations comprise the fundamental 

harmonic terms of 2.4.3 and 2.4.4 together with the resonant terms 

of the first order perturbation equations. 	They are, after 

simplification and transformation, 

bl4r = 4yb1  + b22cos(2 	
- 	

- cos 

b1' 	=-4(e/R)2b1 - b22  sin(212 
- 	

- sinW1  

b2V2- 2yb2  + (4/R)b1b2cos(24r2 - 4r1 ) 

and 	b 	= - 22(G/RPb2 + (4/R)b1b2sin(2r2 
- 

4r1) 

... 2.4.29 

Regarding the form of the above four equations it is seen that 

they are directly derivable from the second order variational 

equations 2.4.26, the terms emanating from the second order perturbation 

equations are simply eliminated. 
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Once more, equating the right-hand sides of equations 2.4,29 

to zero such that b.( = b2  = b 1  4r 1' = b2 r' = 0, produces a 

set of four steady-state equations 

4yb 1  + b22  cos (2 Y2 - 	 - cos Ar = 0 

- 
4) (e/R)+b1 

- b22sin(2 IV2 - 	
- sin V,  = 0 

2yb2  + (4/R)b 1 b2 cos(24r2  - 
4r

1 ) = 0 

and 	- 2 2 (e/R) 2 b2  + (4/R)b1b2sin(24r2 - r1 ) = 0 

2.4.30 

which yield, on the elimination of 	and 
4"2' 

 two explicit relations 

for b and b2 , both nonzero. 	These are 

b1  = ~ 	
+ 2R] 
	

2.4.31 

and 	b2  = 2(y2R 
- 

E:# 1  ) ± [i - 4y2eR('1 
+ 	)2]+ 	2.4.32 

Equations 2.4.31 and 2.4.32 represent the theoretical solution 

of the steady-state behaviour of a perfectly tuned AVA system in the 

neighbourhood of external resonance. From 2.4.32 it is clear that 

b2  is dependent on both 	and ,, however, 2.4.31  suggests that b 1  

is dependent only on 
2 
 and not 	This apparent ambiguity is 

dispelled when the results of the second order analysis are recalled. 

Clearly equations 2.4.27 and 2.4.28 show a direct relationship 

between b 1  and b2  and consequently b 1  must also be dependent on 1. 

This illustrates one advantage of working to a higher order of 

approximation. 



2.5 Steacly—State Solution of a Sli ghtly Detuned AVA 

This section considers the more realistic case (from a physical 

standpoint) of an AVA which has a certain degree of detuning. In 

other words the exact internal resonance condition w = 2w 2  is no 

longer deemed to hold, instead it must be replaced by a new and more 

general assumption that 

2w2  - w1  = 
	

2.5.1 

where & is a small parameter, referred to as the detuning factor. 

(The external resonance condition 2.4.7 still holds). 

With this new internal resonance condition it is necessary, 

once again, to obtain the first order variational equations. 	The 

equations of motion (2.4.1) are unaltered and the same solution 

(2.4.2) is adopted. 	Substitution of the solution into the equations 

of motion leads to the two equations 2.4.3 and 2.4.4. 	Equating 

the coefficients of the terms of the first order in e produces the 

first order perturbation equations 2.4.5 and 2.4.6 which, for 

convenience are rewritten here, 

+ W 
1 2 
X = - 2,1 w1 [A cos(w1 t + 4) - A(w1  + )sin(w1t +4)] 

+ R[(B + h2  )cos 2 (w2t + o) - B2 (w2  + 

• jCos 2 (w2t + o) sin 2 (w2t + e)- {B20 + 4B(w2  + 

sin(w2t + O)cos(w2t + o)] + P cos 29t 

and 

yj + wy1  = - 2 22[B cos(w2t + o) - B(w2  + 6)sin(w2t + e)] 

+ [BX - AB(w1  -4)2]cos(w1t + Ocos(w2t + e) 

- [AB-i- 2BA(w1  + 4)]sin(w1 t + 4)cos(02t + e) 

2.5.2 

2.5.3 
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Imposing internal and external resonance conditions 

necessitates the removal of certain terms from the right of equations 

2.5.2 and 2.5.3. 	For example the term sin( 2 t + G)cos((j,,2 t + e) can 

be written as -- sin 2(w2 t + e) or -- sin(w1 t + 4 + t + 20 -4) and 

two harmonics result, sin(w1 t + 4)cos o and cos(w1 t + 9)sin w 

where a new variable w is defined as 

w=t+20-4 	 2.5,4 

The resulting first order variational equations are 

(cos(w1 t +4)) 

A - A(w1 + 3)2 + .40
2 
 A  

= €[C1 
(2 
 w1 2 )A] - 

+
+ 2) - B

2 (w2  + 6) 2]cosw 

- R[+B2d + 2BB(w2  + )]sinw + EP cos4 	 2.5.5 

(sin(w1 t + 4)) 

-A-2A(w1  +) 

= C2'w1 A( 1  + 3) - 2B 0 + 2BB(w2  + Ô)]cos 

- 	
+ 2) - B

2 ( 2  + 6) 2]sinw + EP sin4 	2.5.6 

(cos( 2t + o)) : 

= e[C1 (2 - 22)B] - 

+ 	- 	
+ 4)2]cosw  

Bi(w1  + 4)]sinco 	 2.5.7 
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(sin(w2 t + o)) 

- B9 - 2B( 2  + 

= 2'w2B(w2  + 	- [+AB+ BA(w1  + )]cosw 

+ E.[4BX - +AB(w1  + 2 1 sinw 	 2.5.8 

Asurning the first derivatives of A, B, 4) and e to be of the 

first order in 6, the simplified equations are 

- 2A4= E[ 	
(2 - 
	- ERB2to22cosw + P Cos'4 

- 2Aw1  = €.2',1 w1 2A + ERB2W22SinLi) + EP sin 4) 

- 2B 20 = e[ 	
(2 	

- 67ABw12cos63 

- 2Bw2  = €22w22B - e+ABw12sinw 

. . 2.5.9 

Transforming the variables as follows 

t = 4 1/e .M ; y ( w22  - 	; 

A = b1 47/w2  ..f ; B = b2  'J/w2  " 	4 	= 	
w = w ; 2.5.10 

remembering that €P 
=1  2

and w = 2w2 - £, the four variational 

equations assume their final form 

	

b1  'V 1' = 8yb1w2/(2w2 - 	+ 2b1  U2 - 4w2)/(eR)2(2w2 - 

+ (2b22w2cosw)/(2co2 - 	- (2wcos 1j  )/(2w2 - 

= - 4,1 (€/R)b1  - (2b22w2sinw)/(2w2 - 

— (2w2sinV1 )/(2w2  _g) 

b2 4r' = 2yb2  + [b1 b2 (2w2  - S) 2cosw]/Rw22  

/ 	 1 	 2 	2 

2 	
= - 42w2(€/R)2/(2w2 - S) + [ b1b2(2w2 - ) sinL]!R 

... 2.5.11 



27. 

As before, primes denote differentiation with respect to 

the slow time '. 

Equating the right-hand sides of equations 2.5.11 to zero 

provides the steady-state solution of the detuned AVA system. 

However, it is advisable in subsequent analysis to replace the 

detuning factor S, which is small of order 6, by the frequency 

ratio 

P = 2w /c,1 	 2.5.12 

which is in the neighbourhood of unity. Hence the four steady-

state equations are 

4pyb 1  + 2(1 - p2)b1/(R)* +  pb22cosw - pcos4r1  = 0 

- i (e/R)+b1 - pb22sin - psin 1  = 0 

2yb2  + (4/p2R)b1 b2cosw = 0 

-2p(e/R) 2b2  + (4/p2R)b1 b2sinu = 0 	0 

2.5.13 

On the elimination of w and V, there results two expressions 

for b1  and 

±+p2 Rp2 22  + 2R]+ 	2.5.14 

and 	
S 

b22  =2p2[y2R - 	+ p(1 - p2 )(R/€Py 

P 
1 	

2 
4p2y2 R( 1  + 	- 	- 	)

2 2 
 '2 - 

- 4p3 (1 - p2)(R)y 2 ( 1  + p2')]
2 	2.5. 15 
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These expressions represent the first order approximation to 

the steady-state behaviour of a detuned AVA system in the region of 

external resonance. They may be compared with their counterparts 

in the previous section, equations 2.4.31 and 2.4,32. 

So far, analysis has provided the steady-state solutions for 

an AVA system both perfectly tuned and slightly detuned. In the 

remainder of this chapter the stability of these solutions will be 

examined by observing the behaviour of the parameters b 1 , b2 , 'tJf1  and 

2 when given small displacements about their equilibrium position. 

2.6 Stability of Steady State Solutions Exact Internal Resonance 

Case 1 : b 1 , b2  nonzero. 

The first order variational equations for a perfectly tuned 

absorber are given by equations 2.4.29 which, for convenience, are re-

written here 

= - 
	

(E/R)+b1 - b22sin(2 V2 - 4r1) - sin 

= - 2 2 (/R) 2b2  + (4/R)b1 b2  sin ( 2 4r2 - 

b1  '. = 41b1  + b22cos(2 4r2 - 	- cos 

b2 	2yb2  + (4/R)b1b2cos(2\tr2 - 

2.6.10.9 

The parameters b 1 , b2, Vi 
and 	of the above system 

equations are given small displacements from their equilibrium 

configurations such that 

	

= b1 °  + Lb1  ; b2 = b 2 0 + S b2 , 4r = 0 

+ 	 2 0  + g  2 
2.6.2 

0 	1 
q

0 
where the b1  and 	satisfy the equilibrium solutions. 



The substitutions 2.6.2 are made in the variational equations 

2.6 .1 and, with the retention of linear terms in Sb and there 

emerges a set of four first order equations, 

=- [4 1 (€/R)+]b 1  - [2b20sin(2 /° 
	4r0)]b 

2 
+ [b2 °  cos (2 W2 

0
- *1 

0) - 
	

01 

2 
- [2b2 °  cos(2 2 

= [(4/R)b2 0sin(2 4r2 o  - 

+ [(4/R)b10sin(21112° - 	- 2/ 2 (€/R) 2]b2  

- [(4/R)b10b20cos(2r2° - 
	

r1 

+ [(8/R)b10b20cos(24T2° - 4r, 0 )] 4V2  

b1 ° jr, = [ 4y]b. .i-.[2b 2 0cos(24r2 °  - 4! 

29. 

2 
+ [b2 °  sin(2 V20 - 

2 
- [2b2 °  sin(2 	- 

'V•°) +sin4r1 0 ] S *'; 

O)] 
 s'V2 

b2°  V2 = [(4/R)b20cos(2 '2 -• 

• [(4/R)b10cos(2 4'2 - 	+ 2y]Sb2  

• [(4/R)b 1 0b2 0sin(2 'V20 - *°)] 	i 

- [(8/R)b10b20sin(24120 - ' VO)] S42 

•.• 2.6.3 
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Further, if . a solution for the Sb1  and Sqr is taken in 

the form 

	

b. 	bT 

	

1 
exp \t 

; 	
41i 1 	

exp X  

then the four equations 2.6.3 may be written in matrix form 

(K - XD)r = 0 

where H is the matrix of the coefficients of the Sb T  and 

D is a diagonal matrix and r is the column vector of the Sb1  and 

T.  
It follows that the nature of the roots of the 4 x 4 

stability determinant, 

1K - )DI = 0 	 2.6.4 

determines the stability of the solutions. 	Once expanded, 

2.6.4 provides a characteristic equation of the form 

34  x4  + 33  X. +2 	+ j 1 X + J0  = 0 	2.6.5 

where 

34  = 1 ; 33  = 4(€/R)2(21 + 

2 	
(16/R)[y2R + e,2 +(b2° ) 2  + 2e712] 

il = 32(6 2/R)[(2,1  + 2 )(b2° ) 2  + 2'(y2R + 	i 2)] 

- a. 

Jo 
= (64/R2)(b20)2[(b20)2 - 2(y2R - 

2.6.6 

It should be noted that considerable calculations are involved 

in the expansion of the determinant 2.6.4 and the final expressions 

for the coefficients of lambda (2.6.6) are only obtained after the 

elimination of *1 
0 	0 

2 and b1
0 
 using the results of the steady- 

state analysis (2.4.30 and 2.4.31). 
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The Routh-Hurwitz criteria provide the necessary and 

sufficient conditions for the characteristic equation 2,6.5 to 

have roots with negative real parts and consequently, for the 

solutions to be stable. 	They are J positive and H = J 1 J 2J3  

- 	positive for stability. 

Now by inspection of 2.6.6 J 1 9' 
 J

29 
 J3  and J4  are positive 

(only positive damping is considered) and by calculation H is also 

positive. The only remaining condition to be considered is that 

3 be positive, which yields the inequality 

	

(b2° ) 2  > 2(yR - 	 2.6.7 

as the required stability condition. 	If this inequality is now 

compared with the steady-state solution for b 2 2 given by equation 

2.4.32, namely 

b 
2 2 

= 2(y2R - 	± 	- 4y2€R(1 + 

then it is seen that the stability condition becomes 

± [1 - 4y2€R(1 + 32 	
> 0 	2.6.8 

It is evident therefore that the steady-state solutions for 

and b2  both nonzero, are stable over the frequency range 

spanned by the upper branches of the b 2  response curves, and are 

bounded by the points of vertical tangency on these curves. 

Case 2 : b 1  nonzero, b2  zero 

The substitutions 

= 	
° + Sb1 ; b2  = Sb2(b20=O); 4' = i.tf +4'j 	= 	+ 1'2 	

2.6.9 

are made in the system equations 2:6.1 where once again b 1 0 , b29  = 0, 

4r1  and 4r26  satisfy the equilibrium conditions. 
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For b2 °  = 0, the steady-state equations 2.4.30 yield the following 

expression for 

1 
- 	b1 ° 

 =± 4[2 + (c/R)12]f 	
2.6.10 

Thus with b20  = 0 and b1
0 
 given by 2.6.10 there results four 

first order equations in the 6b and SIVI. These  are 

= - [41(e/RY]b1 - [cos *1 0 ] 94r, 

= 	[(4/R)b1 0sin(2 4r2 o  - 4r, 0
) 

- 2 2 (€/R) 2]b2  

b1 0 S 14I= [4y] b1 + [sin q, 0 ] 84r, 

and 

0 = [(4/R)b1.°cos(2\V2° - 11", 0 ) + 2y]Sb2  

2.6.11 

As there are no linear terms in &4r2  the stability 

determinant reduces to a 3 x 3 in the coefficients of Sb 1 , 8b2  

and 	The fourth of equations 2.6.11 provides an expression 

for cos(24120 - 4r1 0 ). 	Expanding the determinant results in a 

cubic characteristic equation of the form 

+ 2 x2  + j 1 X + J = 0 	2.6.12 
0 

where 

= 	= 8(E/R) 2 + 2[(G/R) 2  - (2/R)
2 
 (b 	

- 2] } 

= 16[y2  + (/R) 1 2] + 16(/R)21/R)2 - [(2/R) 2 (b1 ° ) 2- 12]; 

= 32[y2 + (/R),12][(e/R)+,2 - [(2/R) 2 (b 1 ° ) 2  

... 2.6.13 

4r, ° and 4r2 o  have been eliminated using steady-state equations 2.4.30). 
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For a cubic characteristic equation the Routh-Huniitz 

criteria are J. positive and J 1 J2  - J0  positive for stability. 

After calculation J 1 J2  - J0  has the form 

3 1 2 
J -Jo = 128(/R) 2/ 1 [ y2  + (/R)_ 1 2 ] 

°
2 	4-  2 

+ 32(e/R) 2 1  [(€/R)*2 - [(2/R)2(b1) - 1 
2
] 

} 

	

+ 128(e/R) 1 2  [(e/R) 4- 2  - [(2/R)2(b1°)2 - 2]2} 	2.6.14 

By inspection of 2.6.13 and 2.6.14 it is clear that stable 

solutions require 

(e/R) 4- 2 	[(2/R)2(b1°)2 
- 	

2.6.15 

Further, the bounds of stability are defined by the 

equality 

= (2/R) 2 (b 1 ° ) 2  - (/R)' 22 	:2.6.16 

which becomes, on substituting for b 1 °  using 2.6.10, 

2 = 
- (e/2R)('2 

+ ~2 	 ± (1/2[1 
- '2 2

) 2 
 +  i]2 	 2.6.17 

2.6.17 defines the frequency range within the solution is unstable. 

Considering once again the stability criterion 2.6.15 it is 

evident on rearranging the inequality thus 

(b10)2 	(R/2 )2
Y
2 
+ ( 1 /4)2 

that the right-hand side represents the square of the two-degree 

	

of freedom solution for b1 , given by 2.4.31. 	In other words 

the stability criterion is simply stating that the zero b2  solution 

is stable while the one-degree of freedom solution for b1  (b2  = 0, 

see equation 2.6.10) remains below its two-degree of freedom solution 

(b1  and b2  nonzero, equation 2.4.31). 
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Consequently the frequency expression 2.6.17 defines the 'cross-

over' points in the main mass response found by equating the one-

degree of freedom solution to the two-degree of freedom solution. 

Returning to the steady-state solution for b 2  given by 

equation 2.4.32 it is seen that for b 2  = 0 this same expression 
db 

2.6.17 is obtained and that the slope 	is infinite. 	Therefore 

the bounds of zero b 2  stability coincide with the points of vertical 

tangency in the lower branches of the b 2  response curves. 

In summary then, the stability criterion 2.6.15 provides a 

frequency expression 2.6.17 which defines 

the bounds of zero b2  stability, 

the cross-over points of the b 1  response curves, and 

the points of vertical tangency in the lower branches 

of the b2  response curves. 

Clearly the cross-over points could be renamed the entry points 

as they signify the beginning of absorber action. 

2.7 Stability of Steady-State Solutions : Detuned. Absorber 

A study of the stability of the solutions2.5.14 and 2.5.15 for 

a detuned absorber follows the same procedure as detailed in the 

previous section. 	It is necessary only to quote the results of such 

an analysis for the detuned case. 

Case 1 : b 1  ,b2  nonzero. 

The condition which emerges from the Routh-Hurwitz criteria is 

that 

(b2° ) 2  > 2p2(y2R 
- 

e 	) + p(1 - p?)(R/€)+y 	2.7.1 

for stable solutions. 
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Comparing this inequality with the result 2.5.15 it can be concluded 

that 

	

P4( 12 
	

22 2 
± [1 .- 4p2y2 	2  

	

R( 1  + p , 2 ) 2  - 	 - P 

- 4p3(1 	p2)(6R)+y( 	
+ 	 > 0 	2.7.2 

and therefore that the lower branches of the b 2  response curves are 

unstable. 

Case 2 : b 1  nonzero, b2  zero 

Here the Routh-Hurwitz stability criteria require that 

[(2/R)2(b1°)2 	4 2 + 
- pY] 	2.7.3 

O 0 
for stability where the steady-state expression for b1 

i 
 b2 	i = 0) s 

given by 

0 
b 1 	 p 

24[p2y2 
~ 752] 

+ [4p(l 
- 2)/()+] 

+ (i 

2.7.4 

2.7.4 is obtained from the steady-state equations 2.5.13 with b2  = 0, 

and its substitution into 2.7.3 gives a frequency relationship which 

defines the frequency band inside which the zero b 2  solution is 

unstable. Thus the bounds of stability are determined by the roots 

of the expression 

[4p4R2]y4  + [4p3(l - 

2 	1 2 	4 2 	2 
+ [4p €R( 1  + 	2 + (i - 

+ [4p5(1 - p2)(6R)+,22]y +[4p 	2 + 	- 	 2 - i] 0 2.7.5 

	

42 2 2 	2 22  



However, 2.7.4 only provides a hypothetical one-degree of 

freedom response which, while it ensures the correct mathematical 

formulation of the stability bounds (2.7,5), does not represent 

the true b1  response. To understand this it is necessary to 

consider what detuning means in a physical sense. 

If the absorber system is not perfectly tuned to half of the 

main mass frequency it is considered to be in a detuned condition. 

The degree of this detuning may be reduced by suitable adjustments 

to the absorbers' stiffness or to the magnitude of its end mass. 

In the present study the system mass (M + m) is maintained constant 

and so any detuned condition stems from incorrect adjustment of the 

absorber stiffness for a given amount of damping €.. 	In this 

case it is obvious that the system cannot differentiate between 

perfect tuning or any amount of detuning when performing one-degree 

of freedom motion. 	Thus the one-degree of freedom response is 

given by equation 2.6.10, that is 

b = 
1 

0 
+

— 4[y2 + (e/R) 2 ] 

Consequently the cross-over points found by equating 2.6.10 with 

the two-degree of freedom solution 2.5.14 do not coincide with the 

bounds of zero b 2  stability. 

Finally, the expression 2.7.5 is also derivable from equation 
d.b2  

2.5.15 for b2  = 0, while the slope 	becomes infinite. 	Thus 

2.7.5 also defines the points of vertical tangency in the lower 

branches of the b2  response curves. 

Summarising the foregoing comments it may be said that the 

stability criterion 2.7.3 provides a frequency expression 2.7.5 which 

defines, 
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(a) the bounds of zero b 2  stability, 

and 	(b) the points of vertical tangency in the lower branches of 

the b2  response curves, 

but which does not define the cross-over points. Because the 

cross-over and entry points for a detuned absorber system do not 

coincide, jumps in the main mass response are to be expected on the 

commencement of absorber action. 

37. 
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CHAPTER 3 

THEORETICAL ANPLITTYDE RESPONSE OF THE AVA 

3.1 
	

Introduction 

With the completion of the stability analysis it is now possible 

to assimilate the findings of the preceding chapter and present them 

in graphical form. 	The drawing of a series of theoretical amplitude 

response curves for the main mass and absorber systems provides for 

easy interpretation of the steady-state results and forms a basis for 

comparison with known experimental data. 

For the most part only the response curves of a perfectly tuned 

absorber system are presented although the effects of detuning are 

shown. 

The chapter ends with a theoretical comparison of the 

autoparametric absorber and the linear tuned and damped absorber. 

3.2 Theoretical Response Curves: Perfectly Tuned Absorber 

To provide response curves which my be compared more readily 

with experimental data, the steady-state solutions for b 1  and 

given by equations 2.4.31 and 2.4.32 are transformed thus 

I Xd/X o I = 	1 22 	(i - n2 ) 2/4e2 ] 	3.2.1 

(yd/x0)2I = (8/eR) [ t(i - 
	Ael  - 

± (4/eR) [1 - (1 - n2 ) 2 1  + 52  )] 	
3.2.2 
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Using these nondimensional expressions together with the 

stability conditions previously derived for the perfectly tuned case, 

the nondimensional quantities (xd/xO)  and (yd/XO)  can be plotted 

against the forced frequency ratio, n 2Q/w1 , for various values 

of viscous damping E and 	Known experimental values are 

assigned to the constants X09 Eand R, while the ratio of the 

damping parameters ' and 32 is varied over a range thought likely 

to he encountered in practice. 

Adopting the following values for the system constants, 

= 0.0030 in, E = 0.0005 and R =0.0196 

the Figs. 3.2.1 to 3.2.6 show the effect of varying 	(for a given 

on the amplitude response of the system. 	Each of these figures 

presents the amplitude response of the main mass, (i), together with 

the corresponding absorber response, (2). 	It should be noted that 

the lower branches of the absorber response curves are unstable as 

indicated by the broken lines and that the amplitudes of the absorber 

mass are approximately ten times greater than those experienced by 

the main mass. 

An examination of equation 3.2.2 reveals the following properties 

of the absorber response curves: 

For real (yd/xO),  [i - 0 + 	 [1 + i/( + 

Thus, absorber action occurs for a limited range of excitation 

frequencies in the neighbourhood of w when the damping is not too 

large. 

For o<(,  + )2 <G
4  the response curves have two maxima, one 

minimum and four points of vertical tangency (two for (yd/X,) = 0). 
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For 	4 	
+ 	(12 	

the response curves have 

only one maximum, no minima,and four points of vertical tangency. 

For(' + 	
> + 	the response curves have only one 

maximum, no miünima,and no points of vertical tangency. 	This means 

that the equality 

+ 	= + 	 3.2.3 

defines the maximum permissible damping for stable absorber action 

(see Fig. 3.2.6). 

To provide a measure of the effectiveness of the absorber 

Figs. 3.2,1 and 3.2.2 also show one-degree of freedom responses 

(absorber locked, Yd  = o) for = 0 and = 0.0035, respectively. 

The points of vertical tangency on the absorber response curves 

are important as they define the boundaries of the region of parametric 

instability of the absorber. 	They coincide with the discontinuities 

and jumps observed in the main mass displacements. 	In subsequent 

discussion the forcing frequency at which a nonzero absorber amplitude 

becomes unstable will be referred to as a 'collapse frequency' and 

the associated main mass amplitude just prior to this will be referred 

to as its 'collapse amplitude'. 

To follow the details of the action of the MA consider the 

set of curves depicted in Fig. 3.2.3. 	It is seen that following 

the path of increasing frequency (indicated by arrows) the system 

behaves as a normal one-degree of freedom system (region A) until it 

reaches the cross-over point (point B) previously discussed. 	This 

corresponds to a point of vertical tangency in the absorber solution 

(b2°  = 0 solution unstable) and so absorber action begins. 
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The main mass system then follows the two-degree of freedom solution 

(region c), its amplitude reaching a minimum value at n = 1. 	It 

then climbs steadily until the collapse amplitude is reached (point D). 

This corresponds to a vertical tangency in the absorber solution 

which defines the collapse frequency and marks the bound of absorber 

action. 	The result is that absorber action ceases and the main mass 

amplitude drops to its one-degree of freedom level (point E), 

Following a path of decreasing frequency (again arrowed) the 

main system behaves in a similar fashion tracing the path F, G 

(absorber entry point), C, H (collapse amplitude), K and A. 

The corresponding regions and points on the absorber response 

curve are similarly illustrated using lower case letters, the jumps 

bb and gg coinciding with the entry points B and G on the main mass 

response. 

To complete the graphical presentation of the perfectly tuned 

.EIVA system, the amplitude response curves for both the main mass and. 

the absorber can be combined to form the three-dimensional plots of 

Fig. 3.2.7 and Fig. 3.2.8. Fig. 3.2.7 shows the 3-d surface of main 

mass response formed when the additional parameter axis 	is 

introduced. 	The effect of viscous damping on the response is 

immediately apparent while any point on the wedge-shaped surface 

defines a main mass response for which there exists stable absorber 

action. The locus of the collapse amplitude, which is shown by 

chain line, has as asymptotes the two-degree of freedom response for 

= 0 and 	= 0 and, for increasing 	terminates when the 

maximum damping condition (3.2.3)  is satisfied (in this case when 

= 0L0035 and 	= 0.0238). 



This locus is seen to have a minimum value which defines that ratio 

which will produce the minimum collapse amplitude. 

Expressed mathematically, the equation of the locus is 

(x/x0)2 = f)22  + 1/42(,1 + 

and it has a minimum value defined by 

+ '2 	
1/462 = 0 

Finally, the locus of the minimum amplitude of the two-degree 

of freedom solution may also be drawn, it is a straight line of 

gradient i,' 1  and is shown by chain line. 

The 3-d surface of the absorber response is shown in Fig. 3.2.8 

where the unstable lower branches of the solutions have been omitted 

for clarity and every point on the U-shaped surface defines a state 

of stable absorber action. 	There are a' number of interesting loci 

in this figure which are identified as follows, 

the locus of maximum amplitude (chain line), 

the locus of collapse amplitude (dash line), 

the locus of zero b2  stability which defines the entry points 

(chain line), 

(ci) the projection on the b 2  = 0 plane of the locus of collapse 

amplitude (dash line). 

Now it has already been mentioned in this section that the 

absorber response curves fall into three distinct groups. The 

-A- 
boundaries  separating these groups occur at ('). + 	= 2 and 

+ 
'2' 
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Theoretical Amplitude Response Curves for 	= 0, 	2 = 0, 

(Perfectly Tuned Absorber, p = i.o). 

(i) main mass response, 

absorber response, 

main mass response (absorber locked). 
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Theoretical Amplitude Response Curves 
for 	= 0.0035, 	= 0.0035, (p = 1.0). 

(i) main mass response, 

absorber response, 

main mass response (absorber locked). 
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Theoretical Amplitude Response Curves 
for 	= 0.0035, E,2  = 0.0070, (p = i.o). 

(i) main mass response, 

(2) absorber response. 
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Theoretical Amplitude Response Curves 
for 	= 0.0035, 	2 = 0.0110 9  (p = i.o). 

(i) main mass response, 

(2) absorber response. 
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Theoretical Amplitude Response Curves 
for 	= 0.0035, 	= 0.0189, (p = 1.0). 

- 	(1) main mass response, 

(2) absorber response. 

(Details of jumps omitted for clarity). 
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(Note : no jumps). 



Pig. 3.2.7 

3-cl Plot of Theoretical RespOnse Amplitude 
of Main Mass wider the Action of the AVA. 
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Fig. 3.2.8 

3—d Plot. of Theoretical Response 
Amplitude of the Absorber. 
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When (' 
+ )2 )  = C the locus of maximum amplitude exhibits 

a bifurcation, a transition point from two maxima (and a minimum) to 

one maximum. For the values ascribed to the system parameters this 

occurs when 	= 5.39, i.e. 	= 0.0035 and )2 = 0.0189 (see 

Fig. 3.2.5). 

When 	
+ 	= 	

the two sets of vertical 

tangency points coincide so that the locus of collapse amplitude 

intersects the-zero b 2  plane. 	For the given system this occurs when 

= 6.80, i.e. 	= 0.0035 and 	= 0,0238 (see Fig. 3.2.6). 

An infinites/iinal increase in damping beyond these values results in 

imaginary absorber action (negative collapse amplitude) and so the 

system reverts to its one-degree of freedom response. 

3.3 Theoretical Response Curves: Detuned Absorber 

Once more it is convenient to transform the steady-state 

solutions for b1  and b2 , given by equations 2.5.14 and 2.5,15, to 

provide expressions suitable for graphical presentation, thus 

Ixixol = ± 1P 
4 2 
2 + 2 - 2)2 A e

2 ] 	
3.3.1 

rr = (8/eRp2 )Lt(P2 2 -n 
 )2/4 	

p2112 + R(1-p2 )(p2-n2 )/4e.] 

	

, 	2 	2 	
(i 	

2 2 
+ (4/eRp2)[1 - p

2 2 
-n j2 
	

+ 	- 	- 2 ) '2 - 

- 2p2( 	
2

j
, 2 	2 

	

1 - p 	p - n )(3+ 
P2 2 

'2 ] 	
3.3.2 

These expressions may be compared with their counterparts 

in the previous section, 3.2.1 and 3.2.2. 	They are very similar 

in form and, of course, identical when p = 1. 



Using 3.3,1  and  3.3.2 together with the restraints of 

the stability conditions for the detuned case, it is possible to 

produce a series of response curves similar to those already drawn 

for the perfectly tuned absorber. However, to avoid unnecessary 

duplication it is sufficient to simply highlight the effects of 

detuning with the aid of Figs. 3.3.1 and 3.3,2. 	The value of the 

d.etuning factor p is taken as 1.01 to emphasis these effects 

although closer tuning can be obtained in practice. The same values 

are chosen for the system constants, namely, X 0  = 0.0030 in, 

€= 0.0005 and R = 0.0196. 

Fig. 3.3.1  is drawn for 	= 2 
= 0 and may be compared 

directly with Fig. 3.2,1 for the perfectly tuned case, 	Similarly 

Fig. 3.3,2, for 	= 2 
= 0.0035, is directly comparable with Fig. 

3.2.2. The features which emerge from this visual comparison may be 

listed as follows: 

The two-degree of freedom solutions for X 
  

and Yd 

shift bodily to centre themselves about n = 1.01. 

The symmetry of the perfectly tuned response no longer 

exists due to the term in 0 - p2 )(p2  - n2 ) which reduces 

the collapse amplitudes when n >pi.0  and increases 

them when n <. p > 1.0. 	(Note the opposite effect occurs 

for p 4 i.o). 

Because the one-degree of freedom response of the system 

is unchanged, the cross-over' and entry points do not 

coincide with the result that the main mass response 

now exhibits jumps on the entry of absorber action. 
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Theoretical Amplitude Response Curves for 	= 0, € = 0. 

(Detuned Absorber, p = i.oi). 
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absorber response, 

main mass response (absorber locked). 
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3.4 Comparison of AVA with LTDA 

A glance at equation 3.2.1 shows that a more powerful 

absorber action is achieved when the value of the parameter 

(= 6X0/56 is increased. 	This implies an increase in the 

ratio of axial motion to lateral motion of the absorber end mass. 

In practice this can be achieved by dimensioning the absorber 

cantilever beam to provide the same natural frequency (CO with 

the same mass (m) while decreasing the length W. 

Experimentally it was possible to produce an absorber of 

small length, giving an 6 value of 0.0025 (cf. 6= 0.0005 used 

previously). Fig. 3.4.1 shows a set of theoretical main mass 

responses for such an absorber. 	Studying Figs. 3.2.1, 3.2.3 

and 3.4.1, it can be seen that a general improvement in the 

performance of the absorber has been obtained by shortening its 

length but this improvement is obtained at the expense of greater 

strain amplitudes in the absorber. 

To provide a measure of the effectiveness of this improved AVA 

system it was decided to effect a theoretical comparison with the 

linear tuned and damped absorber (contracted to LTDA). 	It is assumed 

that the theory of the LTDA is known to the reader, if not, it is 

well documented by J.P. den Hartog in his book "Mechanical Vibrations". 

The LTDA main mass response is 

X 	
(2n)2/ 2 

	

+n 	
1) 2 	

2  
2 	m 22 	m 2 	2 

	

- i + n j + 	n - (n - 0 

where rn/N is the ratio of absorber mass to' main mass, ' is the 

damping introduced between m and N. 	The experimental ratio (rn/N) 

= 0.02 is chosen for both AVA and LTDA systems. 
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under the Action of Small Length MA. 
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Since this ratio is small compared with unity, the LTDA natural 

frequency ratio is taken as unity and the optimum damping between 

its two mass system is found to be 0.09. 

Fig. 3.4.2 compares the resulting LTDA main mass response 

(a) with two AVA response curves (b) and (c). 	Also shown is the 

one-degree of freedom response (d) for the absorber locked. 	The 

AVA response (c) represents the minimum collapse amplitude attainable 

for the stated parameters but this 	value does not produce good 

absorber action near resonance, 	Response (b) for a smaller 

value compares more favourably with the LTDA near resonance but the 

consequent widening of the parametric instability zone results in 

much higher collapse amplitudes. 
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CHAPTER 4 

EXPERINENTAL INVESTIGATION 

4.1 	Introduction 

The theoretical model of Chapter 2 was derived from the 

experimental apparatus shown in Fig. 4.2,1. 	This apparatus had 

been in use for some time to study the phenomenon of autoparametric 

vibration. During these early experiments it was observed that 

over a certain frequency range the system exhibited the characteristics 

of vibration absorption. From this it became apparent that the 

theoretical model with its nonlinear second order differential equations 

represented some form of vibration absorber and the idea of the 

autoparametric vibration absorber was conceived. 

After the theoretical solution of the steady-state behaviour 

of the absorber had been obtained it was necessary to confirm these 

predictions experimentally. The aim of the experimental investigation 

described here is to assess the performance of the AVA for various 

amounts of viscous damping in the X and y motions. The amplitude 

response curves for the main mass and absorber may then be compared 

with their theoretical counterparts. 

4.2 Experimental Apparatus 

A study of the performance of the AVA requires: 

An appropriate two-degree of freedom spring-mass system with 

good amplitude response (low damping). 

A force producing device. 

Instrumentation to monitor the input to the system and measure 

its response to such input. 



To fulfil the first of these requirements several spring-mass 

models were tested. 	The original model is shown in Fig. 4.2.1. 

It is essentially a two-beam system the two lowest modes of which 

can be thought of as constituting a two-degree of freedom system. 

The main mass system consists of a heavy gauge spring steel 

beam which deflects in the plane of the figure and is assumed to 

be effectively rigid in torsion. 	It supports at its free end a 

vertical cantilever consisting of a thin spring steel strip carrying 

an adjustable end mass. 	This absorber system has its flexible 

direction normal to that of the beam so that it deflects out of the 

plane of the figure. 

It was found that the most suitable force producing device 

Q. 

for this system and subsequent systems was the el,tromagnetic 

vibrator. In this case the main beam is excited near to its root 

by a small Pye-Ling vibrator, type 1147. 

The response of the main beam is measured by a proximity 

probe situated near its fixed end. 	Because the main mass response 

was the one to which greatest interest was attached at this time, 

no concerted effort was made to monitor the response of the absorber, 

although several attempts were made using visual techniques and 

strain gauge placements at the base of the absorber cantilever. 

Although the two beam system exhibited a good amplitude response 

in that the inherent damping was extremely low, it had several notable 

disadvantages. The first of these concerned the distribution of the 

main mass. 	Clearly the theoretical model of Chapter 2 is based 	on 

a concentrated main mass system making it difficult to equate the 

response of the distributed main mass of the beam system to that of 

the theoretical model. 
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Fig. 4.2.1 

Original Experimental Model. 

main mass, 2. absorber cantilever spring, 
absorber end mass, 4. main beam clamping block, 

5. proximity probe, 6. vibrator, 
7. vibrator clamping plates, 8. steel framework. 



Further, the response of the main beam was measured near its root 

(because of amplitude restrictions imposed by the proximity probe) 

and consequently the response of the tip (where the idealised main 

mass is assumed to act) had to be assessed assuming a static 

deflection mode shape for the cantilever. Finally, difficulty was 

experienced in determining the force input to the system. 	It was 

found that the current to the vibrator varied considerably during a 

U,  
response test because of the varying imped9nce of the system over a 

given frequency range. Although the vibrator current could be held 

at a constant level this was no indication that the force input to 

the system was constant. 

These shortcomings in the experimental set-up caused the 

validity of the experimental' findings to be placed in doubt. 	The 

only effective way to dispel these doubts was to design a new two-

degree of freedom system which more closely approached the theoretical 

model and which made instrumentation both easier and more effective. 

The system which was finally adopted is shown in Figs. 4.2.2 

and 4.2.3. 	Fig. 4.2.2 is a plan and elevation drawing of the 

essential features while Fig. 4.2.3 shows the model in situ. 

The main mass is a solid steel block supported and restrained 

to horizontal motion by four spring steel legs. A coil spring 

provides the necessary horizontal stiffness giving a natural frequency 

of 6.92 Hz. 	The absorber system consists of a spring steel beam 

with an adjustable end mass. This system is attached to the main 

mass by means of a light clamping block. A cantilever beam 0.020 in. 

thick by 0.75 in. wide giving an absorber of length 7.25 in. was used 

for most of the investigation (called absorber system 1) although a 

short length absorber (1.45 in.) was tested (absorber system 2) using 

a beam 0.005 in. thick by 0.50 in. wide. 
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Fig. 4.2.2 

Experimental Apparatus. 

1. main mass, 2. spring steel legs, 3. coil spring, 
4. absorber cantilever spring, 5. absorber end mass, 
6absorber clamping block, 7. angle bracket, 
S. vibrator, 9. support points, 10. proximity probe, 
11. linear displacement transducer, 12. strain gauges. 
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Three Views of Experimental Apparatus 



(For the advantages of a short length absorber, see Chapter 3). 

The complete system is mounted on an angle bracket which is 

strapped to the head of a Pye-Ling vibrator, type V1006. 	To 

prevent a bending moment on the vibrator head, the deadweight is 

taken by suspending the whole assembly on elastic ropes connected 

to four support points on the angle bracket. 

Viscous damping is introduced into both main mass and absorber 

systems by the addition of light vanes operating in oil baths. In 

this way the damping can be varied by increasing or decreasing the 

depth to which the vanes are gmersed in the oil. 

Thus the experimental rig is basically a spring mass system 

on a moving support (vibrator head). Keeping the amplitude of the 

support constant ensures a constant exciting force on the system. 

With this design the shortcomings of the original system have 

been eliminated. Now the main mass system has a form which closely 

resembles the theoretical model and which makes direct amplitude 

measurement possible. Also, by monitoring the vibrator head 

amplitude the force input to the system is known. 

The basic arrangement of the instrumentation incorporated in 

the set-up is shown diagrammatically in Fig. 4.2.4 while Fig. 4.2.5 

shows the array of eouipment in its laboratory setting. 

Excitation of the vibrator is through a power amplifier 

(Pye-Ling PP1/2P) from an accurate Muirhead low frequency decade 

oscillator (type D-880-A). 
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Vibrator field current is stabilised against voltage variations 

using the Pye-Ling Stab 4 unit which is also interlocked with the 

vibrator cooling system s D that the blower motor operates when the 

Stab unit is switched on. 	Potentiometers, in series with the 

oscillator and amplifier, provide a fine control over the power 

input to the vibrator. 

Vibrator head amplitude is measured by a probe which is 

brought into proximity with the metallic end-face of the angle 

bracket. This proximity probe monitors the capacitance so formed 

and displays it in terms of peak to peak vibration amplitude on the 

meter of the wayne Kerr vibration meter p731 B. 

A Hewlett Packard linear displacement transducer (type 7DCDT-250) 

measures the displacement of the main mass relative to the vibrator 

head movement. 	It is basically a linear variable differential 

transformer with built-in carrier oscillator and demodulator systems. 

The coil assembly is fixed to the angle bracket and is energised by 

a 6 volt d.c. supply. 	Iffien the core, which is attached to the main 

mass, is displaced axially within the bore of the coil assembly it 

produces a voltage change in the output proportional to the displacement. 

Because of the slight lowering of the main mass on its legs 

when performing large vibration amplitudes, adequate clearance 

between the core and the bore of the coil assembly is essential. The 

standard core (0.120 in. dia.) supplied with these transducers did 

not provide enough clearance on the bore diameter of 0.125 in. 

However it was possible to obtain a core of 0.098 in. dia. which 

ensured the necessary freedom. 

0  Ca 0 

Ze 



The output from the displacement transducer is displayed on 

a Hewlett Packard 141A oscilloscope. 	A particular feature of this 

'scope is its variable persistence facility which allowed the 

measurement of damping rates in the X-mode by the amplitude decay 

method. 

The response of the absorber end mass is monitored using 

strain gauges placed at the root of the absorber cantilever. 

Because of the considerable curvature of the beam near its root due 

to the large deflections of the end mass, it was found desirable 

to use gauges of small dimensions. 	Those chosen were Showa 

foil strain gauges, type SF-1, of gauge length 1.0 mm and width 

2.1 mm. 	Strain gauge terminals were used to protect the fragile 

lead-out wires of the gauges. 

Two active gauges were employed., the bridge circuit being 

completed by the Brüel and Kjaer strain gauge apparatus, type 1516. 

This equipment energises the bridge circuit using a 3 kc/s oscillator 

and monitors the magnitude and sense of the bridge unbalance on.a 

centre zero meter. 	There is also provision for output to a 

recording instrument (essential when measuring dynamic strain). 

The output from the Band K equipment is in the form of a 

modulated signal, the carrier frequency being 3 kc/s. This signal 

was amplified and fed into a Honeywell visicorder, model 2106, 

(ultraviolet recorder) which provides a permanent record of the 

magnitude of the dynamic strain at the root of the absorber cantilever 

from which the amplitude of the end mass is obtained. 
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403 Calibration of Exierimental Apparatus 

The instrumentation described in the previous section consists 

of three monitoring systems, two of which require calibration. The 

three systems may be identified by the quantities which they measure: 

System A : Vibrator head. amplitude, 

System B : Main mass amplitude, 

and System C : Absorber end mass amplitude. 

System A requires no calibration because only relative 

measurements of vibrator head amplitude are made. The purpose of 

this system is to detect any change in the magnitude of the exciting 

force. 

In system B the manufacturers' calibration of the linear 

displacement transducer was found satisfactory in that the scale 

factor of 6 volt/in, was linear over ± full stroke. 	The vertical 

sensitivity of the 'scope was adjusted following the procedure 

outlined in the instruction manual. 	Thus if the peak to peak 

amplitude reading on the 'scope is P cm for a sensitivity range of 

S v/cm then the main mass amplitude is given by (P.S/12)in. 

Finally, in System C, the output trace of the ultraviolet 

recorder is calibrated against direct measurement of the absorber 

end mass amplitude. A light needle is fixed to the end mass and 

a smoked glass slide brought up to it until contact is just made. 

This amplitude measurement is compared with the recorder printout 

for various steady—state amplitudes of the absorber. The resulting 

calibration curve was found to be linear over a wide range of 

amplitude response and so the absorber end mass amplitude is obtained 

by multiplying the amplitude of the recorder trace by the gradient 

of this calibration curve. 
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4.4 Experimental Procedure 

At the start of a series of amplitude response tests the 

absorber is locked (using tape) so that the damping ratio (€.) in 

the X-mode can be measured by the amplitude decay method using the 

long persistence facility of the oscilloscope. With the absorber 

still locked a one-degree of freedom test is performed to determine 

the damped natural frequency and resonant amplitude of the main mass 

system. Then the absorber is unlocked and tuned as near as possible 

to half the main mass frequency, after which, the main mass is 

locked (using clamps) and the y-mode damping ratio 	measured 

using the ultraviolet recorder. 

Two-degree of freedom amplitude response tests are then 

performed, each set in a given series having a common damping ratio 

in the X-mode but differing in the value of the y-mode damping which 

must be measured before each individual test in the manner described 

above. 

Typical test procedure involves the step-wise increase and 

decrease of the forcing frequency through the resonance region. 

At each setting of frequency the vibrator head amplitude is held at 

a constant predetermined level by means of the potentiometer in the 

power amplifier output and the steady-state amplitudes of the main 

mass and absorber systems are recorded. 

4.5 Experimental Response Curves 

Absorber System 1 : 6=0.0005 

As with the theoretical curves, the experimental response 

curves are plotted in nondimensional form. 
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Each graph is a plot of (Xd/xO)  and (yd/XO)  against the forced 

frequency ratio, n. 	Interpretation of these experimental curves 

follows the same pattern as outlined for the theoretical case. 

The first series of tests is shown by Figs. 4.5.1 to 4.5.4. 

In each case the damping ratio in the X-mode is 	= 0.0035 while 

the y-mode damping ratios 
(E12  ) are 0.0017, 0.0035, 0.0110 and 0.0184, 

respectively. 

Figs, 4.5.5 to 4,5.7 present a second series of tests for an 

X-.mode damping ratio of 0.0116 and y-mode damping ratios of 

0.0016, 0.0050 and 0.0116, respectively. 

In each graph the curves are labelled (1), (2) and (3). 

Curves (i) are the amplitude responses of the main mass under 

absorber action. Curves (2) are the corresponding response curves 

for the absorber system. 	Finally, curves (3) (shown by broken line) 

are the system responses with the absorber locked ((yJx0 ) = 0). 

These are only shown in selected graphs. 

Absorber System 2 : 6 = 0.0025 

Fig. 4.5.8 shows a typical main mass response (i) under the 

action of the short length cantilever absorber for an X-mode 

damping ratio of 0.0030. Unfortunately the absorber response was 

unobtainable due to the extreme deflections of the end mass relative 

to the absorber's length. 	In fact the end mass doubled back on 

itself with the end slope of the beam approaching 180 ° . 

In keeping with the labelling convention, curve (3) is the main 

mass response with the absorber locked. 
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Experimental Amplitude Response Curves 
for 	= 0.003551 €'2 = 0.0017. 

(i) main mass response, 

(2)-absorber response, 

(3) main mass response (absorber locked). 

t 
yct 

X 0  

ipI.Is 

ME 

400 



	

160 
	

I 	I_ 

I' 

	 I 
- 	 I 	 - X 0 

 

	

120 
	

200 

I L 

- 	 I 	 - 

	

I3\ 	14 

I 
	

,00 

	

40 
	

400 

	

C 
	

D 
O.b 	i•uc.)  

Fig. 4.5.2 

Experimental Amplitude Response Curves 

	

for 	= 0.0035, 	'2 = 0.0035. 

(i) main mass response, 

absorber response, 

main mass response (absorber locked). 
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Experimental Amplitude Response Curves 

for 	= 0.0035,C' 2  = 0.0110. 

(i) main mass response, 

(2) aborber response. 
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Experimental Amplitude Response Curves 

for 	= 0.0035,
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(i) main mass response, 

(2) absorber response. 
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Experimental Amplitude Response Curves 

for 	0. 0116, Q' = 0.0016. 

(i) main mass response, 

absorber response, 

main mass response (absorber locked). 
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Experimental Amplitude Response Curves 

for 	0.0116, C= 0.0050. 

main mass response, 

absorber response. 
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Experimental Amplitude Response Curves 

for 	= 0. 0116, C' = 0.0116. 

(i) main mass response, 

(2) absorber response. 
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CHAPTER 5 

DISCUSSION OF RESULTS 

5.1 	Comments on the Theoretical Response Curves 

The theoretical amplitude response curves of the AVA are 

presented in Chapter 3. For the most part these curves represent 

the steady-state response of a perfectly tuned AVA with an E. value 

of 0.0005. The effects of detuning are clearly demonstrated and 

a comparison is made between the response curves of the perfectly 

tuned absorber and those of a slightly detuned absorber. This is 

followed by a brief theoretical comparison of the performance of a 

short length AVA with that of a linear tuned and damped absorber of 

the same mass ratio. 	In this present section a. few additional 

comments are made on the theoretical findings of Chapter 3. 

From a study of Figs. 3.2.7 and 3.2.8 it is evident that for 

low values of the y-mode damping ratio, €'2  (the X-mode damping 

ratio, €.', is constant) the absorber action greatly reduces the 

main mass amplitude in the resonance region and that the steady-state 

response of both the main mass and absorber systems is characterised 

by a deep U-shaped trough. However, at these low 	values the 

absorber action also produces very large collapse amplitudes in 

the main mass response which are obviously undesirable. 	These can 

virtually be eliminated, by increasing the value of 2 
 but this 

results in decreased absorber efficiency through the resonance region 

(in the neighbourhood of n = 1.0). Although it was shown in 

Chapter 3 that there exists a valueof 	(for a given '?) which 

produces a minimum value of the collapse amplitude this is not necessarily 

the best choice of damping parameter because the efficiency of the 

absorber must be assessed over the complete frequency range. 



Clearly a compromise must be reached between the acceptable 

limits of the collapse amplitude of the main mass and its amplitude 

at n = 1.0. 	The difficulty in choosing optimum damping conditions 

for the AVA is highlighted by the comparison made between the 

performance of the AVA and that of the LTDA (see Fig. 3.4.2). 	In 

this case, however, the difficulty is aggravated by the upper limit 

placed on the value of Q. (0.0025) which was based on the best value 

obtainable in practice with a cantilever absorber system. 

5.2 Comments on the Experimental Response Curves 

Chapter 4 presents a selection of experimental amplitude 

response curves for a cantilever absorber system with an . value 

of 0.0005. 	In the first series of tests (Figs. 4.5.1 to 4.5.4) the 

X-mode damping ratio has the constant value of 0.0035 while the 

y-mode damping ratio is allowed to vary. Although the effect of 

viscous damping was not considered in Chapter 2 when discussing 

the causes of detuning in the experimental system, it is obvious 

that increasing the y-damping ratio reduces the value of the first 

resonant frequency of the absorber system and results in the detuning 

of the AVA. 	Further, because of the nature of the experimental 

damping system, an increase in y-damping causes an increase in the 

value of the absorber end mass, m, due to the entrained mass effect 

of the oil in which the vane operates, with the result that the 

frequency of the absorber system is lowered and the AVA detuned. 

Consequently, for each change in y-damping an attempt was made to 

ensure the best possible tuning, with the minimum amplitude of the 

main mass system occurring at n = 1 .0, by making slight adjustments 

to !he active length of the cantilever beam. 
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It is noted, however, that no matter how good the tuning, the 

curves of this -first series of tests still exhibit considerable 

asymmetry. This feature of the experimental curves will be 

discussed later. 

A second series of tests (Figs. 4,5.5 to 4.5,7) were 

performed for 	= 0.0116 to demonstrate the amplitude reducing 

effect of increased X-damping on the steady-state response of the 

main mass and absorber. 	This series also shows the effect of 

y-damping on the tuning of the absorber because no attempt was 

made to retune the absorber after a change in y-damping. As 

expected the curves move bodily to the left when the y-damping 

ratio is increased. 

For both series of tests the behaviour of the system and the 

trends exhibited by the response curves under increasing y-damping 

are similar to those described in the previous section for the 

theoretical response curves. 

Experiments conducted with a short length cantilever absorber 

of G value 0,0025 demonstrate the improved performance of such an 

AVA. 	A typical test result is given in Fig. 4.5.8. 	The reduction 

in cantilever length increases the ratio of axial to lateral 

movement of the absorber end mass thereby enhancing the absorbing 

power of the AVA. The theoretical comparison between the AVA and 

the LTDA is based on the performance of an AVA having this 

particular €. value. 

5.3 Comparison of Theoretical and Experimental Response Curves 

Direct comparison between the theoretical and experimental 

response curves can be made using Figs. 3.2.2 and 4.5.2 for 
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= 0.0035, 	
2 	

0,0035 ; Figs. 3.2.4 and 4.5.3 for 

= 0.0035, €. = 0.0110 ; and Figs. 3.2.5 and 4.5.4 for 

	

= 0.0035, 	T 0.0186. 

The experimental curves used in this comparison are taken 

from the first series of tests in which every effort was made to 

tune the absorber precisely to the condition to, = 2w2 , however 

they lack the symmetry displayed by the theoretical curves about 

the n = 1.0 axis. 	This asymmetry is partly attributable to the 

detuned condition of the exDerinhental absorber system and 

consequently the detuning characteristics illustrated by the 

theoretical curves of Figs. 3.3.1 and 3.3,2  must be borne in mind 

when assessing the merits of this visual comparison. 	But obviously 

there must be other factors which contribute to this asymmetry 

of the experimental results. 	The theoretical analysis does not 

take into account, for example, the inherent nonlinearity in the 

spring force of the absorber cantilever which, with, the relatively 

large amplitudes involved, is quite significant. 

Judging by the overall form of the response curves the 

comparison is seen to be quite reasonable although the experimental 

amplitudes of the main mass are, in general, greater than those 

predicted theoretically. 	The theoretical analysis predicts the 

degeneration of the AVA response under the action of increasing 

viscous damping, a trend which is clearly exhibited by the 

experimental response curves. 

More specifically, the experimental curves exhibit such 

features as entry frequencies (bounds of zero b 2  stability), 
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jumps in the main mass response on the entry of absorber action, 

collapse amplitudes, etc., all of which are mirrored in the 

theoretical response curves. 	It can be concluded, therefore, that 

the theoretical response curves of the AVA's steady-state behaviour, 

derived from the first order theory of Chapter 2, compare favourably 

with known experimental data. 

5.4 Discussion of the Theoretical Analysis 

A first order approximation to the steady-state behaviour 

of the AVA has been obtained using three different techniques. 

For reasons already stated the asymptotic method presented in 

Chapter 2 is preferred to the averaging method and the two-variable 

expansion procedure described in Appendix III. 

In each case the equations of motion (2.3.1) are written in 

what is known as the standard form (2.4.1) in which right-hand 

side is proportional to a small parameter (e) of the system. As 

mentioned in Chapter 2, this reduction of the equations to the 

standard form permits the study of thq solution close to external 

resonance because of the association of the forcing term with the 

small parameter. The alternative would be the 'hard' forcing 

case where the equations of motion are written as 

+ 49X = e[(42 - w1  2)X - 2 11 X +'R(r2  + y)] 

+1 2cos2Qt 

+Q2y = e[(Q 
2 _

2  2 jy_2w2y+Xy-€y( 2 +)] 

and the solution taken in the form 

61 

X = A(t)cos[w1 t + 4(t)] + 	2 - 2 cos2Qt + £X 
1 (t) + 

5.4.1 

y = B(t)cos[w2t + e(t)] + 6y1 (t) + 
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Applying the asymptotic method leads to the following 

set of first order variational equations 

3 

- A4=(€/2w2)[2C1 (Q2  - 	 - RB2w22cos(2e 	
12 

	

- 2 	
2s1n9] 

	

(02 	g 

3 

- A = (€/2L2)[4122A + 2 RBw2s(20 	+ 2 	
2 cos4] 

- 

2c 2w22  

- BO = (6/2w2)[E1 
(2 

- w22)B - 2ABw22cos(20 - 	
- 2 

- 

2 Bcos201 

and 	
2C~2w 2 

 fi - 	 = (e/2w2 )[2 2co22B - 2ABo22sin(2O 
- 
 4)-- 2 2 2 B sin2e] 

... 5.4.2 

where equations 5.4,2 are formulated assuming the exact internal 

resonance condition, o = 2o2 , and the external resonance condition, 

+ 

From the form of 5.4.1 the solution is seen to consist of a 

forced and 'natural' response superimposed as though the system 

were linear. 	Both portions of the response exist *hen the forcing 

frequency 2Q is well away from the natural frequency 	However, 

it is noted that as the forcing frequency approaches o, the natural 

response becomes entrained by the forced response. 	In fact, as 

pointed out by Struble in his book 'Nonlinear Differential Equations', 

when discussing hard forcing of the van der Pal equation, the 

rapidity with which the natural response portion fades out is 

increased by 

(a) increases in the hardness of the forcing function, 

and (b) decreases in the separation of the natural and impressed 

frequencies. 
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It can be concluded, then, that the soft forcing case is to be 

preferred when considering the nature of the solution in the 

neighbourhood of external resonance. 

In Chapter 2 the asymptotic method was used to obtain the 

variational equations of the second order of approximation, however, 

as results have sho•m, there seems little to be gained (in this 

particular problem at least) by working to an order of G greater 

than unity. 	The variational equations of the first order of 

approximation give an adequate representation of the steady-state 

performance of the AVA. 

The comparison of the theoretical and experimental steady-

state amplitude response curves, discussed in section 5.3, not 

only shows the merits of the first order theory but serves to 

highlight the advantages which the more general detuning theory 

has over the rather restrictive theory of the perfectly tuned 

absorber. Although the exact internal resonance case provides many 

of the essential features of the steady-state behaviour, it requires 

a detuning theory to predict the asymmetry exhibited by the 

experimental curves which is characterised by such features as jumps 

in the main mass response on the entry of absorber action and-collapse 

amplitude differences on either side of the n = 1.0 axis. 

A study of the transient behaviour of the AVA was made in 

Appendix I, but unfortunately, difficulty was found in formulating 

a plausible theoretical solution. 	The analysis of the transient 

solution of an autonomous system is a relatively simple matter. 

Struble and Heinbockel, for example, were able to analyse the transient 

behaviour of a beam-pendulum system. However the AVA is a 

nonautonornous system which does not yield easily to analysis. 
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The results of a computer simulation of the AVA equations of 

motion suggest that a rather sophisticated theoretical analysis 

is required to reproduce anything resembling the actual transient 

response of the system. 

While investigating the validity of the transient solution 

derived in Appendix I, it was thought necessary to check the 

transient response properties of the first order variational equations. 

A computer simulation verified that the transient response of these 

equations was similar to that of the full equations of motion 

derived from the theoretical model. Although this result did not 

improve the standing of the theoretical transient solution it at least 

served to strengthen the opinion that the first order variational 

equations are a good representation of the AVA's response. 

5.5 Comments on the Experimental Investigation 

The aim of the experimental investigation described in Chapter 

4 was to provide a quick and reliable means of assessing the merits 

of the theoretical steady-state analysis. 	However, a more 

extensive experimental investigation would have been interesting. 

For example, to supplement the theoretical comparison between the AVA 

and the linear tuned and damped absorber, it would have been interesting 

to perform an experimental comparison of these two absorbers, both for 

deterministic and stochastic excitation of the main mass system. 

Future experimental work might also include a study of the performance 

of the combined AVA-LTDA system discussed in Appendix II (System 3). 

The response of the AVA to random excitation of the main mass 

is discussed in Appendix IV. 
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The experimental measurements of the response spectral densities of 

the main mass with and without absorber action, demonstrate the 

AVA's ability to reduce the power density level. 'However, such a 

brief look at such a vast topic leaves many questions unanswered. 

The experimental and theoretical study of the performance of the AVA, 

(and similar systems) under stochastic excitation would seem to be 

a fruitful area for future research. 

5.6 Future Areas of Study 

Apart from the study of the AVA's performance under stochastic 

excitation there are several other areas of study which stem from 

the present research. 	One such area of interest concerns the design 

of the AVA itself. 

Because of the unfavourable comparison between the AVA and the 

linear tuned and damped absorber (unfavourable to the former) it was 

decided to design a more efficient AVA system. 	The results of this 

work are detailed in Appendix II. However a more rigorous study 

of these alternative systems is required with a view to obtaining an 

optimum design for the AVA. Of the three systems discussed in Apppendix 

II, the combination AVA-LTDA (System 3) seems the best prospect and 

certainly more work is required on the theoretical and experimental 

study of this system. 

The application of the AVA to systems exhibiting torsional 

oscillations is another aspect which is worth considering. 	For 

example, by placing one or more AVAs on the end of a rotating shaft 

which has torsional oscillations at frequencies w and 2w, the axis 

of the AVA being normal to the shaft axis and displaced from it, it 

is possible to envisage the absorption of both frequencies simultaneously 

by suitable alignment of the absorber axis relative to the radius line 

from the shaft axis to the root fixing of the AVA (see Fig. 5.6.1). 
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Application of the AVA to Systems 
Exhibiting Torsional Oscillations. 

(A) AVA axis along radius line, acts as 
a LTDA, absorbin frequency w, 

(b) AVA axis at arbitrary angle to radius line, 
acts as a combination LTDA-AVA, absorbing 
both w and 2w frequencies, 

(C) AVA axis at right angles to radius line, acts 
as an AVA, absorbing frequency 2w. 
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Situations in which the AVA is subjected to harmonic forcing 

frequencies which are linear combinations of the natural frequencies 

(CO and 	of the system, for example (w 1  + W2 ), are also of interest. 

In this case a study of the first order perturbational equations is 

required to find which terms become resonant under this new input 

condition. 



CHAPTER 6 

CONCLUSIONS 

6,1 	Review of Principal Results 

This investigation has studied the basic absorbing action of 

an autoparametric system. Although this absorbing action was 

first observed in the laboratory, it may well have been anticipated 

from existing theory. 	The device described in this theâis, which 

is Imown as the autoparametriè vibration absorber or simply as the 

AVA, depends for its operation on the timeviise variation of its 

spring stiffness, arising from the motion of the main mass to which 

it is attached. 	This time-variation of one of the parameters of the 

absorber leads to the growth of large lateral amplitudes of the end 

mass which eventually reach a limiting value due to the inherent 

nonlinearities of the system, while the associated axial motion of 

the absorber end mass produces nonlinear inertial feedback terms 

which influence the main mass response. 

In summary, the principal results are as follows. 	The 

absorbing action of the cantilever AVA has been shown experimentally 

and the first order asymptotic theory developed in Chapter 2 has 

effectively predicted the essential features of the steady-state 

response. Further, the good agreement, both qualitatively and 

quantitatively, between the amplitude response curves of the detuned 

absorber and those obtained experimentally suggests that there is 

no advantage to be gained in taking the theoretical analysis beyond 

the first order of approximation. 
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With regard to the mathematical analysis of the AVA under 

harmonic excitation, it has been shown that the same results for 

the steady-state solution of the AVA system equations can be 

obtained by three distinct, but not unrelated, techniques. 	Of 

these, the asymptotic method of Struble is to. be preferred as it 

is the easiest to apply and is the most physically meaningful. 

(The other two methods are discussed in Appendix III). 

Although the comparison described between an autoparametric 

absorber and a linear tuned and damped absorber of the same mass 

ratio is not favourable towards the former, it does serve to 

highlight the important role played by the ratio of axial to lateral 

motion of the end mass in determining the absorbing efficiency of 

the AVA. Of course, this feature of the absorber action can be 

reasoned intuitively from the theoretical model when it is realised 

that the efficiency of the absorber depends on the magnitude of the 

axial inertia force which it exerts on the main mass. 

With regard to the transient response of the AVA, clearly more 

thought must be given to the theoretical analysis of this problem. 

The computer simulation Of the full equations of motion revealed a 

complicated amplitude response pattern which would be difficult to 

predict by analytical means. 	Two additional factors emerge from 

the digital computer simulation of the AVA system. Firstly, the 

simulation of the first order variational equations produces a 

transient response pattern similar in nature to that of the full 

equations of motion. 	This is a further indication that the first 

order theory is sufficient to predict the response performance of 

the AVA. 
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Secondly, a comparison of the simulated transient response of an 

AVA and a linear tuned and damped absorber of the same mass ratio 

was not favourable towards the former, in that the LTDA passed 

through the transition zone from the given starting conditions to 

steady-state operation without the violent interaction of the main 

mass and absorber modes, so clearly illustrated in Fig. 1.2.1, 

Appendix I. Also the LTDA has a better transient response time 

in that it settles more quickly into its steady-state mode of 

operation. 

6.2 Concluding Remarks 

It can be concluded from this study of the absorbing 

capabilities of the AVA that it is unlikely that it will replace 

the well-established absorbers such as the linear tuned and damped 

or the gyrostatic absorber in their present industrial role. 

However there is still a great deal of development of the autopara.metric 

device which might still be carried out and it may prove 

advantageous in some applications. 	For example, it is possible to 

design an absorber which will act simultaneously as an autoparametric 

and a tuned and damped absorber (see Appendix II). 

In the search for a practicable form of AVA it is necessary 

to consider parameters such as the ratio of absorber end mass to 

main mass, which remained invariable at approximately 1/50 in this 

particular study. 	Increasing this ratio to 1/10, or more, must 

improve the efficiency of the absorber, however, the mechanical 

constraints of the cantilever-type absorber system would probably 

restrict its use to small mass ratios, in which case, System 3 of 

Appendix II would appear to be the most likely choice for a possible 

commercial prototype. 



Finally, the whole question of the stochastic excitation of 

the AVA and other similar systems presents a wide area for future 

research. 
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PRINCIPAL NOTATION 

The principal usage of the symbols is given here, other 

meanings are made clear in the relevant portions of the text. 

A(t) 	Varying amplitude of main mass. 

b1 (t) 	= [R/P]k 2A(t). 

b2 (t) 	= [R/P] 2B(t). 

B(t) 	Varying lateral amplitude of absorber end mass. 

Cl, C2 	Viscous damping. 

El 	Flexural rigidity. 

F(t) 	External harmonic forcing. 

F0 	Force amplitude. 

g 	Acceleration due to gravity. 

.., J4  Coefficients of characteristic equation. 

k 	Spring stiffness of main mass. 

/ 
k 	Spring stiffness. 

t 	Active length of cantilever absorber. 

M 	 Absorber end mass. 

N 	Main mass. 

N JQI 	Averaging operator = Lim 4 fQ dt. 
t 	

T -+oo 

n 	Forced frequency ratio = 20/w1. 

P 	Forcing function = 

1 '2 	
Principal co-ordinates. 

Q 	=1/n. 

q1 '2 
	

Generalised co-ordinates. 

R 	Mass ratio = in/(M + 

t 	Real time. 
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* 
t =2Qt. 

*  
= t Ci + 	

2 	
+ 

= G t* .  

T Kinetic energy function. 

V Potential energy function. 

x(t) Motion of main mass = Xd/Xo . 

xd(t) Motion of main mass (dimensional). 

Static deflection of main mass =F 0/k. 

X1 , 	.. Perturbational parameters. 

Y(t) Lateral motion of absorber end mass = yd/Xo . 

Yd(t) Lateral motion of absorber end mass (dimensional). 

y
29 
	.. Perturbational parameters. 

z(t), 	z(t) Axial motion of absorber end mass. 

o(t) Phase angle. 

(3(t) Phase angle. 

Y Frequency function = (22 - Q )/€w 	T• 

Detuning factor = 2w2  -. w 1 . 

Small natural parameter of system. 

Viscous damping parameters. 

G(t) Phase angle. 

Spring stiffness of absorber; eigenvalue. 

Phase angle. 

P Detuning factor = 20J2/w1 . 

Slow time 	= (G/4) 	t. 

4(t) Phase angle. 
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*1'2(t)' 
i  ,(t) Phase angles. 

w Circular frequency. 

Undamped natural frequency of entire 

system 	= [k/(M + 

Undamped natural frequency of absorber 

= [X/m]. 

29 External forcing frequency. 
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APPENDIX I 

TRANSIENT RESPONSE OF AVA SYSTEM 

UNDER EXTERNAL EXCITATION 

101 	Theoretical Approach 

In this section a possible analytical solution of the 

transient behaviour of a perfectly tuned AVA is discussed. 	The 

starting point for this analysis is the set of four first order 

variational equations obtained by the asymptotic method of Chapter 

2. 	Before transformation the equations have the form 

- A = (€/2w2 )[4 1 22A + +RB2 22 sin(2O -4)) + 4- P sin4] 

- A4 = (6/2w2)[2€(Q - tj22 )A - 4-RB2w22cos(20 - 4)) + 4- p cos4>] 

- 	= (€/2t 2 )[2 2w22B - 21,Bw22sin(20 - 

- BO = (E/2w)[e (02  - w22)B - 2A&22cos(20 - 4))] 
... 1.1.1 

Now choose a solution for A, B, + and 0 in the form of a 

perturbation series 

A = A0  +eA1 + €2 A2 + e3
A + 

B=B0 +GB1  

4 = 	+ 	
+ 2< + 

e34 3  + 

0 = O + eo 1  + E2e2  + e303  + 

... 1.1.2 



Solution 1.1.2 is substituted into equations 1.1.1 to order 

Terms in sine and cosine are expanded thus, 

sin(20 - 4) = sin(20 - 	+ €(20 - i )cos(20 - 4) 

+ 62(20 - 2)cos(20 - 4) + 

The resulting four equations are 

0 

(A + A 
0 	

1+62A2+e3A) 

= - (€/2w2 )[4,122 (A0  +€A + 62A) + 

+ 4- P(sin4 + 641 cos4 + 	2cos4) + 

+ 4- 	+ 	+ €2B2 ) 2  sin(20 - 4) + 

+ e(201 - 1 )cos(2E)0 - 40) + 62(20 - 42)cos(20 - 

(A0  + GA1  + 62A2  + 63A3 )(4 + 	+ 624 + 64)7 ) 

= - (€/22)[2(Q2 - w22)(A0 --A1 + 62A) + 

+ 4- P (cos - e.4 sin4 - €.242sin4) - 
'0 	1 	0 

- 4- RLO(B 0  + LB 1 + e2B2 ) 2  {cos(2{cos(2E) -  4)) - 

- e(2e1 - +1 )sin(200 - 	- 62(202  - 42)sin(20 - 4) 1] 

(B 
0 	1 + LB + OB + E3B3 ) 

= - (€/2(A 2 )[2 222 (B + GB1  + 62B2 ) - 2 22 (A0  + GA1  + 

+ GB1  + EB2) sin(200 - 4) + €(2e1 - 	)cos(20 0  - 4) + 

+ 62(20 - 2)cos(200 - 
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(B + €B + €2 B2  + 63B3)(00 + + + 	 €03 ) 
0 	1 

= - 	(c2 - 	)(B + €B1  + e2 B2 ) - 2w2  (A.+ €A1  + 

0 
+ 6B 1 + 62 B2 ) {cos(20 - 	- €(2e 1  - 41)sin(2e - 	- 

- €2(20 - 2)sin(200 - +0)1 I 
... 1.1.3 

From equations 1.1,3, equating terms of zero order in E 

gives 

A0 =0,B0 =0,A 0 =0 and B0O0 =0 	 1,1,4 

A possible solution is 

A =B =1 and 	=0 =0 	 1.1.5 0 	0 	 0 	0 

Equating terms of the first order in € gives 

= - (1/a2)[4122A + 4Rco22BZsin(20 - 4) + -I-  P sin] 

= - (1/2w2 )[2 2o 22 B0  - 2c22ABsin(20 - 

A 	+ A 	= - (1/2w )[21(Q2 - 2) - +R22BZcos(20 - 	+ 0 	ho 	 2 

+ f P Cos 401 

B001  + B1 e 0  = - ( 1/2u)2)[C1 (2 - ü,22)B0 - 2w22A 0 B0cos(200  - c)] 

•.• 1.1.6 

Substituting 1.1 .5 into 1.1 .6 and integrating produces 

A1  = - 2 12t 	B. = - 2'02 t  
2 

Q 2 
	

0) 2 
+1 = [ - 	( -__ 	+ + Rw2 - (P/42)]t 

Q2  —w 2  
01 =E -+c 	2) 

0)2 	
+ 

... 1.1.7 
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Note that in formulating 1-1.7, the constants of integration are 

chosen to be zero. 

Equating terms of the second order in G yields 

A2  = _(1/2c 2 )[4 1 w22A1  + +Rw22B02(201 
- 

i )cos(20 - 4) + 

+ Rw 
2 
 B Bin(2E) - 	 ) + ~ P 4 1 cos] 

	

2 ol 	o 	o 0 

B2  = —(1/2w2 )[2 2c 22B1  - 2w22A 
0 0 	1 
B (20 - 1)cos(200 - 	 - 

- 2w22 (A0B1  + A1B0)sin(200 - 

A 4 + A 4 + A240 = _(1/22)[2 1 (2 - 
22 

)A, + +Rw22B02  
o2 	11 

(201 
- 

	

.sin(200 - 	 - Rw22B0B1cos(200 - 4) - -- P41 sin4] 

B002  + B 
 1  0 

 1 + B200  = —(1/2w2)[e(c22  - 022 )B
1  + 2w22A0B0 (201  -4). 

.sin(290 - 4) - 2 22 (A0B1  + A1B0)cos(200 - 4)] 
... 1.1 .8 

Using 1.1.5 and 1.1.7, equations 1.1.8 produce on integration 

	

2 	2 

A2  = [(P/8)C1 ( 	2 2  ) +2 

w2 

2 

	

- (PR/16) - 	 + (Rw2 )2/32 + 

	

2 	2 2 
+ (p /32cl 2  )]t 

B2 
= [122 

+ 2 
- (& 22/8) + P/8]t2  

+2 
= 	

- 32 - 

+ )l] j;2 

22 
t 

... 1.1.9 

Finally, equating terms of order 	gives, 
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A3  = - (1/2 2 )[4 1 w22A2  + 	- 42)co(200 - 4) + 

• pw 2 2 B B1 (20i - 4i )cos(2e - 4o  ) + 

• +Rw 2 (B1 2  + 2B B )sin(2e ) 

o2 	—++P 2 	 42cos4] 

B3  = - (1/2w2 )[2' 2u 22B2  - 2w2A 
0 0 	2 
B (28 - 42)cos(20 - 	- 

- 2w22 (AB1  + A1 B0 )(201  - 41)cos(200 - 4) - 

- 2w22 (AB2  + A1 B1  + A2B0) n(280 - 4)] 

A03  + 	+ A2§1+ 
 A30 

= - (1/22)[2 j'1(02 - 	+ +RLi 22B02 (202  - 2)sin(200 - 4) + 

+ Rw22B0B1  (2e - 1 )sin(200 - 4) - 

— +1 22 (B1 2  + 2B B2)cos(200 - 4) - -- P+2 sin  +0] 

•B 
0 3 

e +B 
1  0

2 +B201  +B300  

= - (1/22)[ 	
(2 - 

22 )B2  + 2w22A0B0(202 - + 2 )sin(200  - 4) + 

+ 2w22 (A0B1  + A1 B0)(201  - 41)sin(200 - 4) - 

- 2w22 (A0B2  + A 
1  B 

 1 + A2B0)cos(200 - 4)] 

... 1.1.10 

Once again the substitutions 1.1.5, 1.1.7 and 1.1.9 are 

made in equations I.1.10 .which yield on integration, 



2 
- 

	

A3 = [- (P/12)e 1 ( 	 - 	 + (PR/16)' 2 w2  + 

	

+ (R/3)u23(1 + 	
- (R/4) 2 2co23]t3  

B3 = [- (23w23/6)  - 	+ 	+ 	 + 

- (P/24)w2 (2 1  + 3 2 )]t3  

2 	2 	 2 	2 

= [(P2/96)C1( 	
w2 
 - 	

-2 	
- (P/6) 1 2 2  

- (P2R/128u 2 ) + (1/6)w23 (', 1  - ,2 ) 2  + (R/6)w23  - (R3/384) 23  + 

+ (PR 2/128)w2  + (P3/384)o 23]t3  

	

2 	2 
2 

(2 2c 23/3) - (R/12) 23  + (R2/96)c 23  - 
( e3  = (P/24) C'   

- (PR/48)w2  + P2/96w2]t3  

... 1.1.11 

The solutions for A, B, and 0 may now be written to order 

Thus 

2 	2 

= 1 - €[21w2]t + e2[(p/8)_l( 	2 	
+ 2 1 2 w22  - (P16) - 

— 4 Rw 2 + (R2/32) 22  P2/32co22]t2  - 63[(P/12)61 	
W2 'l + 

+ (423/3)  - (PR/16) 2w2  - (R/3) 23 ( 1 	+ (R/4) 2 2w]t3  + 

+  o(t4 ) 

2 	22 	2 

	

B = 1 - €[' 2c 2 
 

]t + 	W2 + 2 - (R/8),22  +; P/8]t2  

- 	 +w 2 	 + 	
- (R/24)w23(21 + 5) + 

+ (P/24)w2 (2 1  + 3 2 )]t3  + 0(t4) 



-

83. 

= - 	
- 	

+ P/4 2 ]t ~ €2[+R22(1 - 	- +P 1 ] t2  

2 	2 	2 	2 
- 

+ 	 3 ) - (PR/96)C1(— 	
2 	

(P/6) 2  - 
CU2  

- (P2T/128c 2 ) + (R/6 )w23(1 - 12 	
+ 	) (R/6CU23  - (R3/384)w23  + 

+ (PR  2/128)w2  + (P3/384) .23]t3 + 0(t4 ) 

2 
- 

____ 2 22 3 	 ____ 
0 = —G[+ 1 (_

2 
 - w2 	 + € [(P/24) 1 ( 

CU2 	
]t - 	

CU2 	+ 

+ (2 1 2CU23/3) - (R/12)w23  + (R2/96)w23  - (PR/48)CU2  + P2/96CU2]t3  

+ o(t4 ) 

1.1 .12 

The results of the theoretical approach to the transient solution 

are given by equations 1,1.12. 	Comments on the validity of these 

results are made after the next section which discusses computer 

simulation of the AVA system. 

1.2 Computer Simulation of Transient Behaviour of the AVA 

The transient behaviour of the AVA can be simulated using a 

digital computer. An IBM computing package known as CSMP 

(continuous system modelling program) allowed the direct programming 

of the AVA system equations on the System/360 computer. 

The equations of motion 2.3.1 are rewritten to give two 

uncoupled equations in X and y  of the form 

X = (- 4.AX - EX - ABy2  - BDyr 
+ 2 

+ 4Asin2t)/(1 - BOy2 ) 

1.2 . 1 

= ( -Ay - Dr - 4ACXy - CEXy + BCyr2  + 4ACysin2Qt)/(1 - BOy2) 
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These equations were written in Fortran into the program deck 

together with initial conditions for X and y, and the computer 

instructed to perform a double integration of the quantities X and 

Y . When the equations are written in the above form the implicit 

loop situation of the original equations, in which X depends on 

, is eliminated and the computer finds no difficulty in performing 

the integrations. 

The package provided a choice of integration routines of 

varying degrees of sophistication. 	For this work, a fourth order 

Runge-Kutta integration with fixed step length was found to be 

adequate. 

Finally the computer is instructed to provide a print-plot 

of the dependent variables X and y against the independent variable 

t (time). 	It is necessary to choose a print-plot step length which 

is small enough to provide adequate resolution of the X and y 

response frequencies. 

A typical print-plot is shown in Fig. 1.2.1. 	For this 

particular simulation the parameter values were 

= 0.0010 , 	= 0.0020 , 	= 0.0200 , 

R = 0.0196 , n = 0.995 , X0  = 0 , y0  = 0.001 

where n is the forced frequency ratio and X 0 , y are the initial 

conditions imposed on the system. 	Thus Fig. 1.2.1 shows the behaviour 

of the system, under the action of a forcing frequency near the 

resonance of the main mass, when it is suddenly released at t = 0 

with the above starting conditions. 



>- 

if) 	 Q 	 ID UI c'J 	 CII 

Fig. 1.2.1 

Digital Computer Print-Plot of Transient Response 
of Main Mass (x) and Absorber (r). 

x  



85. 

The interaction of the two modes can be clearly seen. At 

t = 10 this interplay is quite violent but gradually the responses 

settle down to their steady-state amplitudes at t = 25. 	It is 

interesting to note that the amplitude ratio X/y at t = 25 is 

approximately 1/9 which is in good agreement with the ratios found 

theoretically (see theoretical response curves, Chapter 2). 

In a similar manner the response of the linear tuned and 

damped absorber, described in Chapter 3, was also simulated to 

compare its transient behaviour with that of the AVA. It was found 

that the interaction between the absorber and main mass systems of 

the LTDA was minimal and that a smooth transition to the steady-

state situation had been achieved by t = 5. On this count the AVA 

system emerges as a poor second.. 

1.3 Validity of the Theoretical Solution. 

To assess the merits of the theoretical solution of the transient 

behaviour of the AVA system the equations 1.1.12 were programmed 

using the CSMP package described in the preceding section. 	The computer 

was instructed to evaluate the functions of time A, B, 4 and 0 and 
then print-plot x(= A cos( 1 t + 4))) and y (= B cos(w2t + o)) against 

time, t. 

In the resulting print-plot both the X and y modes exhibited 

continuous exponential growth. This inconclusive result was 

disappointing although not entirely unexpected (it was realised that 

a very sophisticated theoretical solution would be required to predict 

the type of motion illustrated in Fig. 1.2.1). 	Certainly there are 

terms in equations 1.1.12 (e.g. the term (e2P2/32w22 )t2  in the 

expression for A, which is of zero order in 6, P is of order 



which tend to dominate the solution and may be the cause of the 

positive growth of the amplitudes but it would appear that the 

remedy to the problem is almost certainly of a more fundamental 

nature0 

It is possible of course, that the theoretical solution of 

the transient behaviour of the AVA is based on variational equations 

(i,ii) which in themselves do not produce the transient response 

of the full equations of motion (1.2.1). 	Accordingly the variational 

equations 1.1.1 were also programmed using CSIP. 	In this case the 

computer print-plot of X and y showed the type of transient response 

depicted in Fig. 1.2.1. 	Consequently the variational equations 

retain the transient response properties of the original equations 

of motion and are not the cause of the poor theoretical results, 

86. 
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APPENDIX II 

ALTERJJATIVE POPES OF CONSTRUCTION FOR THE AVA 

11,1 Introduction 

The effectiveness of the AVA was shown to depend on the ratio 

of axial to lateral motion of the absorber end mass (see Chapter 3). 

To improve this ratio it was found that the length, t, of the 

cantilever AVA had to be small. However there were mechanical 

limitations to the length reduction of such an absorber and in an 

attempt to overcome these limitations three other systems were 

considered. 

This Appendix details three alternative theoretical models 

which may provide a more satisfactory (higher) value for the G 

parameter. For each model the equations of motion are derived and 

compared with those of the cantilever model, namely 

0 + N)Xd + ft X + (i + )g - EML € (. 2 	(t) 
- M 

>% 	€ 	622 
Yd + (- - 	

g - X 
) 
d + C ) .+ ddd - 0 

0 	0 	 0 

where € = - and 	= 3E1/1
3 

. 

11.1 .1 

11.2 System 1 

The first of these models is shown in Fig. 11.2.1 in which the 

usual notation is adopted. Here the absorber is a cylinder of 

radius r free to roll in a circular slot of radius R. Positive 

contact between the cylinder and main mass is maintained by means 

of the spring 
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Pig. 11. 2.1 

System 1. 



The kinetic energy function is 

1 	'2 	1 	' 	•' 	 .2 	i 	2 
T=IX +mtX+z)±rny +I 

where I = + mr2 . 

Let the absolute rotation of the cylinder be (4 - o) where 

RO = r+, then A = (R - r)8/r. From the geometry, 

z = (R - - [(R - - and on the elimination of 0, the 

kinetic energy function becomes 

' 2 
.22. 

__________ + 	

2-i- T=4MX+4mX + 	22 

2.2 
£ .2 	+n(R-IM  +2n3y 	

2 	2 
[(R-r) .. y] 

The potential energy function is 

v=4kx2 +Mgx+mg(X+z) +v 

From the geometry of Fig. 11.2.1 , 

V= 4- k'(e'- t)2  where t' = [(t + z) ± y
2 
]
4 

v= [t + (R - r)2 + £ i (R - 	- [(R - r)2 
- 2 ]4} - 

2 	2 	2 	2 
- (R - r)[(R - r) - y 

]2] 
- k't[t + 2(R - r) ± 2t {(R - r) - 

- [(R- r)2 
- 2]4} 

- 	2(R- r)[( 	
2 	2J4]+ R-rj - y 

• Using the Lagrangian formulation, the equations of motion are 
2.2 	

F(t) (R - r)y 	___ 

2 	2 
+yy)- 

 M 

and 	
11.2.1 

2(> € C 	 _________ 
y+ ~ 1g+1)y ~ 

(€)2((R-r)22 	
+)y=O 

0 	0 	 o [(R-r)2-y2] 



x 2  2 
where 6 

= 	0 	
and 

___________ 	 _ 	2 __ 
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[(R)2 
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l 

[(n r)2 —y 2]+ 

11,3 System 2 

Fig. 11.3.1 shows the second of the AVA models. 	In this case 

the absorber is a simple pendulum supported by a pivot point on the 

main mass and given a prescribed natural frequency by the linear 

springs k'. 	(Note, the stiffness of the absorber system could be 

provided by a torsional spring at the pivot thereby providing greater 

freedom of angular oscillation). 

Using the notation of Fig. 11.3.1, the energy functions are 

T=+MX2++n1[r2+ (±)2] 

and v = 	+ j-Xy 2  + IgX + mg(x - 

where Xhas yet to be defined. 

From the geometry, 

z= t_[t2 _y2], Z 	2
VY 

2+ [z —y] 

and the absorber spring potential - 
i 	2 Xy = 

r2  / 
k y 2 

2 
i.e. X=2k'. 

Thus the kinetic and potential energy functions become 

[t —y] 2  

2 
and 	V=kX2+k'y2MgX+mg(X_t+.[t2_y2]2) 

89. 
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Applying the Lagrangian formulation, the equations of motion 

are 
2*2 

0 ++ X + 0 + ) g ( 2+3 ) = F1 t) 

o [t 
- 

y ] 
11,3,1 

2.2 
.. 	 ,X 	C 	6 , 

)y 	e 2, 
)y and y+ --g-A+ 

"i i ' 2 	
2 +yyO 

0 	0 	0 	[t-y] 

	

xo 	2 
where e= 

L 	

r and \ 2 

I t 	
2 

1104 yste 

The final scheme for an improved AVA introduces an additional 

degree of freedom. 	Fig. 11.4.1 shows the basic features in which 

the absorber end mass is now free to slide along the massless rigid 

arm of the pendulum. The three degrees of freedom are X, r 

(dynamic length of pendulum), and 4 (angular displacement of arm). 

The kinetic and potential energy functions are 

T=+MX2 ~ +m[( ~ Xcos4)2±(r4-X  sin 4) 2] 

and v=+X 1  X2++X242++X3(r- £)2 

where X1  9 X2 
 and \ 3  are system stiffnesses and t is the static length 

of the pendulum. 	(Note, gravitational effects have been ignored). 

Applying the Lagrangian formulation once more, produces the 

following equations of motion, 

(i +)+aX+ mr..
r 

 

- 24+- r(2 + 
  

- 

N 

(&2  - 	 + 2 
mr 
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System 3. 
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On introducing a new variable z = r - t, the equations 

become 

(1 ~ 	
= P 

X2 	X 	24 =0 

	

m(z + 
2

(z + 	 (z + 

= 0 

11.4.1 

11.5 Comparison of the Theoretical Models 

Systems 1 and 2 have equations of motion (11.2,1 and 11.3.1) 

whose form is very similar to those of the cantilever model of 

Chapter 2 (ii.i.i), and consequently it is expected that their 

solutions will also take the same form. 	It is only necessary then 

to consider the form taken by the 6 parameters. 

In System 1 it is seen that € is large (here 'large' is a 	- 

comparative term, E.remains small compared to unity) if the ratio 

y/(R - r) approaches unity. 	Similarly in System 2, eis large if 

the ratio y/t tends to unity. 	Since there appears to be no 

mechanical constraints to designing these systems with the necessary 

geometry, an AVA system with absorbing capabilities comparable to 

any other type of absorber seems plausible. 

The form of equations 11.4.1 for System 3 makes any comparison 

between itself and the other systems very difficult. 	It is necessary 

to solve these equations using the technique of Chapter 2 and 

compare the form of its theoretical solution with that of the cantilever 

model. 	In the final section of this Appendix a possible means of 

solution is considered. 
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11.6 A Solution to System 3 Equations 

The first step is to nondimensionalise the equations 11.4.1 

giving 

X ± R + w1 2X - 	+ 4) - 	+ 	+ 	= w1 2cos2Qt 

4. + 	+ 6(24 + 2 - 4x) + 	+ 2z4 - z45) = 0 

+5+32z_2— 
42 = o 

.. 11.6.1 

where (t) = Fcos2Qt, X = 	and the above X, 4, z are the 

nondinionsional quantities X/X0 , t4'/X  and z/X0 . 

The other quantities are defined thus, 

R = m/(m + 	, W = X1 /(m + 	= 

= A 3/m , and £= x0/t. 

A glance at equations 11.6.1 reveals the inertia coupling in 

the X and z modes, so the next step is to uncouple these modes 

replaôing them with normal modes p 1  and p2 . 

Consider the set of equations 

= 0 

11.6.2 

z+X+ W 
2
z = 0 

These equations have the form 

Aj+Cq= 0 

where A is an inertia matrix, C a stiffness matrix and q a modal 

column vector. 
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By solving the characteristic equation A - > i1  = 0 the eigenvalues 

( >'s) are obtained which, when substituted into the characteristic 

matrix, provide the eigenvectors of the system. 	These eigenvectors 

form a modal matrix, T, which is used in the transformation to normal 

co—ordinates thus 

q = T 	 11.6.3 

where p is a column vector of the normal co—ordinates. 

Consequently the X and z equations in 11.6.1 are replaced by 

equations of the form 

+ T 1  A 1  C T p = T 1  A 1  f 

where T 1  A 1  C T is a diagonal matrix, Q 2 , of the eigenvalues 

and f is a column vector of the forcing functions. 

Returing to equations 11.6.2, their characteristic equation 

yields the eigenvalues 

2 ,2 = 	
2 

+ W3 2)/(, - R)J ± [ {( i 2  + W )/(i - R) 21 - 

- 4 1 22/(1 - R)] 2  

or X1 ,2 = ± 13 	 11.6.4 

where o(, P are self—evident. 

At this stage the question of system tuning must be discussed. 

In an attempt to 'marry' the potentialities of the AVA and LTDA 

systems it should be possible to tune the frequency of the absorber 

axial motion to that of the main mass and adjust the absorber's 

lateral frequency to half this amount. 
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In other words the desired internal resonance condition is 

X 1  = >2 = 4 22  or 0 =9 = 2o 	11.6.5 

where Q and Q are the frequencies of thQ normal modes p 1  and p2  

which replace X and z respectively. 

This exact internal resonance condition (11.6.5) presents a 

problem however, in that the eigenvalues X,,2 
 become identical. 

From 11.6.4, 

>1,2 —°(  ; p=o 

i.e. X l , 2 = i (w1 + 0)3  
2 	2

3 
	- R) = wc/(1 - R) 2 	11.6.6 

If the repeated eigenvalue 11.6.6 is substitutedinto the 

characteristic matrix there emerges only one elgenvector, 

2, 
0)3  t..1 - Rj - 

11.6.7 

13 

In order to perform the transformation q = P p  it is necessary 

to have a modal matrix which is nonsingular, that is, which possesses 

.rvecse 	—1 
an ad-j-oint, T (ITI 	o). 	However a nonsingular modal matrix must 

have column vectors which are.linearly independent of one another and 

so it is necessary to find another eigenvector, linearly independent 

of 11.6.7, to form the modal matrix, P. 

Although time did not permit a detailed study of this 

particular aspect, a brief survey of the literature did suggest that 

a generalised eigenvector was not easily obtained, especially when 

the characteristic matrix, f( >), is nonsymnetric, as in this case 

where, 
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f()= 	
2 

->\ 

A method of avoiding this problem would be to assume a near 

resonance condition between modes p 1  and p2  such that 

=01 + o(€.) 

This means that there are now two distinct eigenvalues 

>'i=°- 	
and 

where P is of the first order in G. 

Substituting 11.6.10 into the characteristic matrix 11.6.8 

determines the two linearly independent eigenvectors, 

1w3 	+ 	
for 	

2 
and  1w - - 
	

for 

L 	-J 	L 

and thus the modal matrix is 

	

2 - + 	2 - - 

	
= [

tl1 t211T 	- 	

+ 	t22j12  

11.6,8 

11.6.9 

11.6,10 

11,6.11 

Performing the transformation 11.6.3, yields 

X = t11  P1 + t21  P2 

11.6.12 

Z = t12  P1 + t22  P2  

If the equations are considered to the first order in E then 

the force vector, f, in the matrix equation, 
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+ Q 
2 

p = T 1  A 1  f 

is 	w1 2cos2Qt +R(2 44)1 

and 

-i -1 	1 	
[(t22  + Rt12 )w1 2cos2Qt +eR(42  + 4)-(t22  +  tldev 

T A f 
= ITJIA( [(t11  + t21 )eV - (t21  + Rt11 ) {w1 cos2Qt +€R(42  41 

where ITI and IA( are the determinants of the modal and inertia 

matrices respectively. 

Therefore the equations of motion 11.6.1 are uncoupled to give 

the following three equations in p
11  p2  and , 

+ c~1 p1  = -i-- [(tfl  + Rt12)o 1 2cos2Qt + 	+ 	- (t + t12)4]22  

= - €[2(t12p1  + t22p2 ) + 2(t121  + t22p2 ) - (t11 	+ 

p2 + 2I2 = ITI 	[(t21  + t11 )e 2  - (t21  + Rt11 ) w1 2cos2t + G.R(42 + 

... 11.6.13 

Applying the asymptotic method of Chapter 2, equations 11.6.13 

are rewritten 

V. 
Pi  + 	2p1 

= 	
- 

Q1 2 )p1  + c1 R( 2  + 	) -.c2 2  + c 
 1 
 P cos2Qt] 

9 
2 = €[1  (2 

- 	 + (t11 	+ t212 ) - 2(t121  + t222 )3 - 

- 

 

2(t 12P1
+ 

P2  + 49p2 
= 

e[ 1  (4Q2  - 922 )p2  - c3R( 2  + 	+ c 	 -  c 
 3 
 P cos29t] 

... 11,6.14 

where 	= (t 22 + Rt12 )/ITI IAI, C 2  = (t22  + t12)/ITI IAI 

0 3  = (t21  + Rt11  )/ ITI IAI , 04  = (t21  + t11  )/ITI IAI 
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and a solution taken in the form 

PI = A cos ( 

	

d1 t + ) 
+--P i I 

+ 2p12 + 

4 = B cOS(t 2 t + ) 	+ 	+ 

P 2 
= C cos(c~2 t + 	+ p 1 

 +G P22
+ 

11 .6.15 

where each of A, B, C, m, 3 and ti is, in general, a function of time. 

Substituting the solution 11.6.15, to the first order in E, 

into the equations of motion 11.6,14 yields the following three 

equations 

[X - 	 + ) 2 ]cos(c2 1 t + 	- [A+ 2i (Q + )sin(c 1 t + c') 

+ 4Q2A cos(Q1 t 	+ 4Q2 €p11  

= €[€1(402 - 2 )A cos(Q1 .t + 	+ €c 1 R[ (Bb + 	2 )cos2 (co2 t + 	- 

— B2(co2 
+ 	)2 

[cos2(2t 
+ 

- sin(wt + 	- 

- [B2 + 4BB( 2  + 	sin(t + 3)cos(w2t +)] 

+ 	+ 
B 2 (W2

+ ) 2  sin  2 (w2 t + 	- 2BB(w2  + 

.sin(t 2 t + p)cos(2t + 	+ Ec 1 P cos2Qt 	11.6.16 
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- B(w2  + 	t + 13) - 	+ 2B(w2  + )]sin(w2t + 13) 

+ 	+ 92B cos(t 2t + 13) + Q2 4 

= 	- 22 )B cos( 2 t + 13)] + 6t[BX - AB(Q1 + )2} cos( 1 t +). 

•cos(w2t + 13) - [AB+ 2BA(Q1  + 	t + o)cos(w2t + 13)] 

+ €t21 [ [B - BC(Q2 + .)2 cos(Q 2t + p)cos( 2t + t3 ) - 

- [BCi + 2136(22  + 	sin(Q2t + j)cos(w2t + 13)] 

- 2Ct 1211h cos(1 t + a)cos(u 2t + ) - BA( 	+ )cos(Q1  t + o)sin(w2 t + 13) 

- AB(Q1  + &)sin(Q 1 t +o)cos(ü 2 t + 13) + 

+ AB(C1 + 
	

+ )sin(Q 1 t + o()sin(w2t + 13)] 

- 2€t22[BC cos(Q2 t + 1x)cos( 2 t + 13) - BC(w + )cos(Q2t + 

•sin(u,2 t + ) - c( 	+ i)sin(Q2 t + j )cos(w2t + 13) + 

+ 	+ 	
+ A)sin( 2t + p)sin(w2 t + 13)] 

- 2t12[[AB - 	
+ )2} cos(Q

1 t + o)cos( 2t + 

- JAB + 2A3(u,2  + 	cos(Q1  t + o<)sin(w2t + 13)] 

- 2Ct221tCB - 	+ )2 cos(Q2t + i)cos(w2t + 13) - 

- .BC + 2CB(w2  + 	cos (t + p.)sin(u 2 t + 13)] 

11.6.17 

and 
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- 	+ ) cos( 2t + ) - [ cj + 2C( Q2  + )]sin(Q2t + 

+ 4 Q 
2 

C cos(P2 t + 	+ 4Q2Gp21  

= E[€_1 (42 - 22 )c 	cos(Q2t + 	- c3RJ:.(BB + 2 )cos 2 (w2 t + ) - 

2 	2c 	2 	 2 
- B 	+ 13) 	COS (w2 t + 13) - sin (w2t + 13) 	- 

- B2t3 + 	+ 	sin(ut + 13)cos(2t + 

.2 	2 	 2 	•22 
+€c4[B cos (w2 t ± 13) + B 	+ 13) sin (w2 t + 

- 2BB(w2  + )sin(w2t + (3)cos(w2t + 13)] - 	P cos 2Qt 

11,6,18 

Equations 11.6.16 to 11.6.18 provide a set of six first order 

variational equations, they include the resonant terms from the first 

order perturbation equations (not given here), and after simplification 

they may be written as 

	

2AQ1  = c[ 	(49 2 - 	
2 

-- 1 2 )A - C RB2 22cos(213 - ) + 	cB 2 2  

.cos(213 - ce.) + c 1  P cos 

- 2Afl1  = C[c1RB2w22sin(213 - Co - 4 c2B2w22sin(213 - cx) + c 1 P sinco] 

- 2Bw2 = e[€1 (2 - W2 2)B - 	t11ABc12cos(2p - cx) - 

- 7  21BCQ22cos(213 - ') + t12ABw22cos(213 - cx) - 

- t12ABQ1 w2 cos(213 - ) + t 22 Baw22cos(213 - 	- t22BCQ22cos(213 - 

- 22 = 	- 4- t11ABQ12sin(213 - cx) - 4- t21BCQ22sin(213 - i) + 

+ t12ABw22  sin(213 - co) - t12AB12cos(213 - cx) + 

+ t22BCw22sin(213 - ) - t22BCc2c2cos(2p - 
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- 2B2 = [- 	t11 	1 2smn(2 - o() - - t21BCQ22sin(2 - 	±  12) 

+ t12AB 22sin(2 - 	- t1212cos(2p - 	+ 

± t22BC 22sin(2 - 	- t22BCQ2oi2cos(2p - 

- 2CQ2  = [ e 
(2  - 0

22 )c + c8 B2 22cos(2 - 	- 

22 
- -c4B W2 cos( 2t3 - 	- c 3 

 P cosj.L] 

- 26c 2  = G[_. c 3RBThj22sin(2I3 - 	+ - c4B2w22sin(213 - 	- c3P sini.t] 

Equations II. 6.1 9 represent the first order variational equations 

of this combined AVA-LTDA system where the resonance conditions are 

chosen to be 

=2 
+ o(€) = 2w  (internal) 

and 	
11.6.20 

29 = 	+ 0(G) 	(external) 

Once again it is convenient to transform the variables thus 

, 2 	2 
t = 	' 	= 	2 - 
	)/eo2  -JIi 

A=b1 JP/w2 J ; B=b2 -JWw2 -J ; C=b3-JWw2JT 

= 	
= ' 2 	= 

•41 3 	 11.6.21 
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The resulting variational equations are 

= 4yb1  + c 1 b2 2  Cos (2 qr2 - 	- (c2/2R)b22cos(2 	- 	- c1 Cos 

b 	= - c1  b22sin(24I - 	+ (c2/2R)b22sin(21V2 - 	- c1  sin4' 

b2 r = 2yb + (2/R)(2t11  + t12)b1b2cos(24i - iT1 ) + (2/R)(2t21  + 

o b2b7cos(24i - 

=(2/R) (2t 	+ t12 )b1 b2sin(2'4 	+ (2/R)(2t21  + 

b2b3sin(21J) - v) 

b34 	= 4yb3  - c3b22cos(24' - 113 ) + (c4/2R)b22  Cos (2iJi - r3 ) + c3cosi 

= C3  bsin(21 - 13 ) - ( c4/2R)b22sin(24r - 	+ c3  sin . 

... 11.6.22 

where primes denote differentiation with respect to slow time, T. 

The steady-state solution is found by equating the right-hand 

sides of 11.6.22 to zero. 	After some algebra a solution for b 1  

can be obtained in the form 

yR 

(C
3 

 /C
1 
 )(2t21  + t22)sin(2* - V1  )ctn(2 	- 13) - (2t11  + t

12 
 )COS 4! 

11.6.23 

Unfortunately b1  is not independent of the phase angles, perhaps 

more algebraic manipulation might remedy this, however at present, 

time does not allow a more detailed study. 

Note, the form of 11.6.23 may be compared with the corresponding 

result for the cantilever AVA, 

= ± yR 
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APPENDIX III 

THE METHOD OF AVERAGING AND THE TWO - VARIABLE 

EXPANSION PROCEDURE 

It was mentioned in Chapter 2 that three methods of solution 

of the AVA system equations had proved successful. 	The asymptotic 

method presented in Chapter 2 was considered the most effective but 

a study of the other procedures is not without interest. 	This 

Appendix presents the method of averaging and the two-variable 

expansion procedure. 

111,1 Method of Averaging 

The system equations are written in the form 

X + 402X = €[€_1 (4Q2  - 	+ R(r2 + yj) + P cos2Qt] 

111.1.1 

+ 	
= 	

- 22)y + ly] 

Note, damping terms have been omitted together with the e term in 

the y equation. 

Once again the sinusoidal exciting force is assumed to be of 

the same order in £ as the nonlinear terms, permitting the study 

of the physically interesting solutions that occur when the frequency 

of the exciting force is in the neighbourhood of either of the linear 

natural frequencies of the system. 

It is assumed that 

492 
- 

o2I < e 	JQ2  - 	6 
	

111.1.2 
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Choose solutions of the form 

X 
=1 

 (t)cos(2Qt + 
	ti

(t)) ; X = - 2QA1  (t)sin(2Qt + 'i (t)) 

111.1.3 

y = A2 (t)cos(Qt + 	2(t)) ; r = 
- QA2 (t)sin(Qt + 

The form of 111.1.3 requires that 

- Al 1  sine 1  + A1 cosO1  = 0 

111,1.4 

- A2  t2s'ne2  + A2cosO2  = 0 

where 0 = (29t + i), 
02 = (Qt + 	 111.1.5 

From 111.1. 3 

= - 2QA
1 
 sine  - 2A 1  (2c + t 1  )cose 1  

y = 	2 
sine  2 - 	+ 

11101.6 

Using 111.1.3, 111.1.5 and 111.1.6, equations 111.1.1 become 

- 2QA1sinO1 - 2QA14T1cos01 = C E E7 1 (4Q2  - w1 2 )A1  COO 1  - R22 B2cos2O2  + Pcos29t] 

- QA2  sine 2 - QA2 t2 cosO 2  = 	- 	 - 492A1 A2cosG1 cosO2 1 

111-1-7 

where terms on the right such as CA2A2 , CA2A1  and GA 	 have been 

dropped because they are of the second order in 6. 

Combining 111.1.4 and 111.1.7 leads to four variational equations, 

A1 = —(€/2Q)[C 1 (4Q2  - w1 2 )A 1 cosO 1  sine 1  - RQ2A2 2cos2O2  sine 1  + 

+ P cos 20tsin01 ] 

A1  iI = _(6/2Q)[e (42 - 
	

2 	
Cos 2O1  - Rc22A22cos2e2cosO 1  + Pcs2QtcosO1] 
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A 2 	 - 4c 2A1 A2 coso1 cose2sine2 1 

A2 '2 - (e/)[e 	- 	) A2  Cos 02  - 492A1 A2cose1 cos2e2 1 
... 111.1.8 

Equations 111.1.8 can now be written in complex form, suitable 

for the application of the method of averaging, thus 

A 1  = -(6/4iQ)[+C1(42 - w12)41(e'201 - e 201 ) - 

- ---R ç)2A 2 (  i(202 + o) - e_1(202 + el ) - e1202 - Oi) + e_1(202 - 

+ P e 	+ 01 ) - e_1 ( 2Qt + 01 ) - e2t - 01) + e_ 2Qt - 01))3 

A1 	_(€/4)[41 (42 - w1 2 )A 1  (2 +e 	1+0 i20 	-120 i)- 

- 'R.2A21(202 + o )I 	+e -1(202 + o) + 1(20 	- e 	2 e ) 1+e -1(20 	- 0 )) 2 	1 

1 	i(2Qt + el ). +e -i(2Qt + e ) 	1(2Qt 1+e - 0 ) 1 	+e -i(2Qt - e ))j 1 

)[+e(2 - w22)A2(e1202 	-i20 -e 

- 	2(0 	2 	

2) A2  = -(e/2jQ 	 - 

1(20 + e) - e 1 ( 202 + 01) + el(202 	e)  e_ 202 - 01))] 

	

+e 2+e 	2)- A2 2  _(e/2c2)[+ 	(2 - w22)A2(2 	
120 	-120 

- 	2e 	 2+01)+ Q2A1 A2 ' 	1+2e 	1+e 	2 	1 +e 10 	-10 	1(20 + e ) 	-1(20 

+ e 
1(20 2 - o 1 +e ) 	_i(202 - 0 1) )] 

... 111.1.9 

111,1.9 are relationships of the form 

A n . = n GP (A1  , A2, 	2' t) 
111.1.10 

3 = €.G n  (A1 , A2, • 1' 	2' t) 
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The method of averaging introduces new variables a(t) and 

4r(t) such that 

30  A =a 
n n 

111.1.11 
= 	+ E(a, a2 , 4r1, 

'2' t) 

where F and G are the indefinite integrals of F and C , 
n 	n 	 n 	n 

excluding those terms in F and G that are independent of t. 

IV 

0,  and G are functions of zero order in e). The functions 

and 4r  satisfy the following averaged equations, 

a  n =€MF 
ni 

111.1.12 
4r =6MG1 

	

Tn 	n 

where the operator II is defined thus 

	

MQ = Lim 	fo Q  dt 	111.1-13 

The integration 111-1-3  is performed with respect to explicitly 

occurring t in Q. 

Consider terms like e 
120 

 1, e 
i(20  2  - 01) and  e 20t - 01) 

in equations 111.1.9, remembering that now 01 = (29t + 4r1 ) and 

= (Qt + t2 ), then 

1 
f e 1 	= — 
P i20 

dt 	
1 

f e 
T i2 	( 29t)

dt —0. as T-*.c0 
—. To 	To 

	

1 i(2 4r 	ilr ) T i(2c -t 	29t) 
1 T i(20 - O1)dt =e 	2 	1 f 0  e 	

- 	dtei(22 	as T-oc 
f0 e 	2 

1 T i(29t - 01 dt = 
	

_ i4r1 . T e1(2Qt - 29t) 	-i tl as T ' dt e 	__ 00 
T fO e 	Te 	0 	 _ 

Hence 111.1 .9 became, 
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= -(€/4iQ)[- +R2a22(- i(2 *2 + e_1(2\V2 - W 1 ) )  + e  

iVl)]  

2 	2 	1pQ2a2 i(24r _r) 	-i(24r -)+ a1 r1  = - ( 149)[C'  ( 4 	- w1  )a1  - 	(e 	2 	1 + e 	2 

+ 	 + eh1)] 

a2  = _(e/2jQ)[- Q2a 1 a (i(2V2 	W1) e(22  - 

a22  = -(e12Q)[e(Q
2 
 - W2 2 )a2 	

2 
 - 	a1a2 ( e ( 2 2 	+ e ( 2 2 	1))] 

111.1.14 

It is now assumed that the condition of external resonance holds, 

namely that 

A)1 = 2w2  

so that equations 111.1.14 become, in trigonometric form, 

= _(G/2w2)[+Rw22a22sin(24r2 - 	+ -- PsinlV1] 

a 1  ifr 1  = -(6/w2 )[2C 1 ( 2  - w22 )a 1  - +Rw22a22cos(2r2  - 'V1 ) + Pcos4r1] 

a2   = _(e/2w2 )[_ 2w22a1 a2  sin( 2 2  - 

a2 4r2  = -(€/2w2 )[C1 ( 2  - w2 )a2  - 2w22a1 a2  Cos (2\V2  - irl 

... 111.1.15 

Equations 111.1.15 may now be transformed using the change of 

variables introduced in Chapter 2, 

t = (41€) (PR)'t ; y = (1 ew2 ) (PR) 	(w22  - 

111.1.16 

a1 = (P/R)+ b 1 /w2 	a = (P/R)+ b2/w2 
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This provides the convenient form 

b = - b22  sin (2f2 - r 1 ) - 

4yb1  + b22cos(2 q2 - 
	

- cos 

b = (4/R)b1b2sin(2(2 - 

b2412  = 2yb2  + (4/R)b 1  b2 
 cos(2 V2  

. 111.1.17 

where primes denote differentiation with respect to slow time I. 

This completes the study of the method of averaging, it 

can be seen that equations 111,1 .17 are the same as equations 2.4.29 

without the damping terms. 

111.2 Two-Variable Expansion Procedure 

The equations of motion for the undamped system are 

+ 49  = e[T1(4Q2 - 	+ R(r2 + yj) + P cos2Qt1 

111.2.1 

+ 9 2 = c[6 (2 - 
22 )y + y] 

(Again G2  term in y equation has been omitted.) 

It is suitable to rewrite these equations as follows, 

2ii 	2 
49 X + 4 X = e[e1(4Q2 - w1 2 )x + 4RQ2(2 	

I, 

+ r) + P cost* ] 

111.2.2 

2,, 	2 	
1 2 
	2 	2" [e 4Qy+Qy= € 	—w2 )y+49Xy] 

* 
where primes denote differentiation with respect to time t = 29t. 

Exact internal resonance is assumed so that 	= 2w2 , 

2  and with w1 /2Q = w2/Q = Q, G P/40 equations 111.2.2 become 
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-1 	2) 
X  + X = [e (i - Q X + R(y + y) + G cost*

] 

111 . 2-3 
'I 

I,  4E
71 
	_Q2)y+Xy] 

Now choose two time scales t, and t2  such that 

= t(i +e
2 
W+  

111.2.4 

t2 =  et 

and write a solution in the form of an expansion in the two variables 

and 
 t 29 

x(t*, 
) 

=F 0 (t1 , t 
 2  ) +I 

 (t 1 , t2 ) + 2 2 (t1 , t2 ) + 

y(t*, ë) = E0(t 1 , t2 ) + GE1  (t 1 , t2 ) + 62E2 (t1 , t 
 2  ) + 

111.2.5 

Then 

F0  at1  P0  
+ - 

dt 	e F1  dt1 	d  

X - 
at 

+ 

at 	t1  
* + 	+ • 

at 	at 

=---[ I]4+-[ f  ]-4 
Nt d.t dt 

/ 	~ E0  at1  dt 	E1  dt 	E1  dt2  

y = - 
at 

+ - + 
dt 	t1 

 

+ 	+ 
(it 	dt 

' 	o 
dt 

1 
.. 	S  
o 	/ 2 

dt d.t 

... 111.2.6 

	

.. dt 	at 
Note that -4 = 1 and -4 = e from 111.2.4 

	

at 	at 

Substituting the solution (111.2.5, 111.2.6) into the equations 

111.2.3 provides sets of equations in the perturbation functions 

F  of,  E0 , F19  E1 , etc. 
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Thus to order 

+F =0; 
0 

=0 
't1 	

0 

and the solutions for F 0  and E have the form 

F 
0 	0 
= A (t2)cos(t1 	

0 
± B (t.)) 

111.2.7 

= C0 (t2 )cos((t1 /2) + D(t2 )) 

To order £1 

Q 	
2 2F 	E 2 	2E 

+F =(1  .- 2)F- 	+R{( 
0) 
 +E 

1 	t1t2 	
0 	

Gcost1 0   

111.2.8 

-2 
 

+ 	= + 	(i - Q2)EQ 	

1 2 	
° t 1 2 

Substituting 111.2.7 into 111.2.8 and using the usual 

trigonometric identities, there results 

+ F =E1(1 - Q2 )Acos(t + B) + 2A' sin(t 1  + B) 
1 	

Q 
 

+ 2A B' cos(t1  + B) - + RC O2cos(t1  + B0)cos(2D0  

+ + RC O2sin(t1  + B0)sin(2D0  - B0 ) 

+ G cos(t + B0)cos B0  + G sin(t1  + B)sinB0  

and 

+ + E1 = + 	(1 - Q2 )C 0  cos((t1 /2) + D0 ) + c sin((t1 /2) + D0 ) 

1 

+ C 0D cos((t1 /2) + D) - 4- AC 0  cos((t 1 /2) + D )cos(2D0- B0 ) 

- 4- A 0 0 
C sin((t1 /2) + D 0)sin(2D0  - B 0  ) - 4- A0C0cos((3t1 /2)+ 

+ B0  + D0) 
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where primes now denote differentiation with respect to 

For F1  and E bounded tile coefficients of cos(t 1  + B0 ) 

give 

- Q2 )A + 2A B' -  + RC O2cos(2D 0  - B0 ) + G cosB0  = 0 
00 

Similarly the coefficients of sin (t 1  + B0 ) give 

2A + - RCO2sin(2D0  - B0 ) + ( sinB0  = 0 

While coefficients of cos ((t 1 /2 ) + D0 ) yield 

- Q2)C + CD' - 4- A0C0cos(2D0  - B0) = 0 

and those of sin ((t 1 /2) + D 0  ) give 

C' _1  A C sin(2D - B) =0 
0 	00 	0 	0 

... 111.2.9 

EQuations 111.2.9 may be transformed to real time t using 

d. 	•1 	ci 
cit2 	2PG cit 

Thus, 111.2,9 become 

A 	= (e/4P)[e(4Q2 - c&2)A0 - R Q2C O2cos(2D 0  - B0 ) + P cosB0] 
00 

	

io  = _(C/4Q)[R 9 2C 2sin(2D0  - B) + P sinB0]

fi C
0 0 = _(

e/2Q)[ 1 (Q2  - w22)C0 	0 0 
- 2Q2A C cos(2D0  - B)] 

6 0  = _(e/2c)[— 292AC 0sin(2D 0  - B0)] 

... 111.2.10 

where dots denote differentiation with respect to t. 
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If the usual transformation of variables is made, namely 

- 	2 	2\ 
t = (4/e)(PRT'1 ; y = (1/Gw2)(PRY2 	2 - 

	' 

A = (P/R)
I  
2  

0 	
b1 /w2  ; C. = (P/RYb2/u,2 ; B = 1i ; D = 4r 2 

111.2.11 

then equations 111.2.10 assume the familiar form 

b 1 	= 4yb1  + b22cos(2 jr2 
	

- cos 

= - b22sin(22 - 	- sin 

11 

= 2yb2  + (4/R)b1 b2  cos(241 2 
  
-r) 

= (4/R)b 1 b2  sin(24r2 - ir 1 ) 

... 111.2.12 

where primes denote differentiation with respect to T. 

Equations 111.2,12, 111.1,17 and 2.4.29 (without its damping 

terms) are the same equations, showing the equivalence of the two 

methods described here to that used in Chapter 2. 	It then becomes 

a matter of preference as to which method to use. 	The method of 

averaging involves lengthy transfers from trigonometric to complex 

functions and vice versa as well as considerable integration, while 

the two-variable technique does not provide the physical insight of 

the asymptotic method. 

Thus the asymptotic method used in Chapter 2 emerges as the 

best technique both for its brevity and for the physical interpretation 

it lends during its application in that it highlights the important 

behaviour of the so-called resonant terms. 



112. 

APPENDIX IV 

A NOTE ON THE BEHAVIOUR OF THE 

AVA UNDER RMTDOM EXCITATION 

Although this present investigation has been limited to a 

study of the performance of the AVA under deterministic external 

excitation of the main mass system, its response to random 

excitation is of considerable interest. 	No attempt is made here 

to present a theoretical analysis of this particular aspect but a 

brief survey of the literature would suggest that a study of systems 

with randomly varying parameters under random excitation has been 

restricted to the linear case. 	(See, for example, the series 

of papers by Ariaratnam and Graefe). 	Such linear systems are 

governed by a stochastic differential equation of the form 

n-i  
d(d 	Z)(dt 	

n-i 
d 	z 

+ d ) 	+ ... + (a1 dt + d131 	0  ) = df3 	IV.1 

dt"1 	
' 

dt n-1 

where the coefficients ar(r = 1 , 2, .., n) are deterministic 

constants and p0(t), Pr (t) are random functions of time. 

From equation IV.1, a second order system without damping would 

be represented by the equation 

+ (a1  +—)z= dt 

The form of this equation may be compared with the corresponding 

AVA equations to the first order in €, 

+ W 
1 2 
X - €R( 2  + y) = 

Xo  

+ 	- €I)y  = 0 

where Q(t) is a stationary random process. 
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Clearly the randomly varying nonlinear feedback term 	+ 

essential for the operation of the AVA, makes the solution of this 

set of equations difficult. 	However, it is possible to obtain 

some experimental data on the AVA's response to a random excitation 

of Gaussian distribution. 

The AVA's ability to cope with random excitation was assessed 

experimentally by comparing the power spectral densities of the 

main mass response with and without absorber action. 	Basically 

the experimental set-up was similar to that described in Chapter 4, 

A Hewlett Packard noise generator (model 3722A) replaced the 

Muirhead decade oscillator and the output from the linear displacement 

transducer (which monitors the main mass response) was fed into a 

Fenlow spectrum analyser (sA2) which was coupled to an automatic 

plotter (NFl). 	The noise generator provides a random noise output 

which is a continuous analog waveform of approximately Gaussian 

amplitude distribution. 

The response of the main mass system to this random excitation 

is plotted in the form of a spectral density by the Fenlow equipment, 

(see Fig. iv.i). Figure IV.2 compares the spectral density plots 

obtained for the absorber locked and with absorber action. 	It can 

be seen that there is a distinct decrease in the power density of 

the main mass response when the absorber is acting. While not in 

itself a startling result, it does suggest that the AVA does respond 

favourably to random excitation. 	It would be Interesting to note 

how the AVA's performance compares with that of other types of 

absorber in this respect. 
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Abstract 

The paper presents the basic features of the steady-state 

performance of a two-degree of freedom system consisting of a main 

linear spring mass system under periodic forcing the motion of which 

acts parametrically on the motion of an attached absorber system. 

Terms, nonlinear in the absorber motion,act back on the main mass and 

with appropriate choice of tuning parameters, 'absorption' of the main 

mass response can be obtained. 

Experimental results for this type of device are compared with 

a theoretical solution obtained from a first order asymptotic approximation0 

Comparison is also made with the performance of a linear tuned and 

damped absorber. 



INTRODIJCTION 

Within the context of this paper, vibration absorbers are 

passive single degree of freedom systems which are designed for 

addition to some larger vibrating system with a view to reducing its 

resonant response under external harmonic excitation. Falling into 

this class are such devices as the tuned and damped absorber, the 

gyroscopic vibration absorber and the pendulum absorber and the 

effectiveness and response characteristics of these is well documented. 

They are basically linear devices because although in operation large 

amplitudes may introduce nonlinear stiffness or inertial effects the 

working of the device is not dependent on these0 

The device described here however, which for reasons that will 

be made clear has been termed the 'autoparametric vibration absorber' - 

(contracted to AVA), interacts in an essentially nonlinear manner with 

the main system to which it is attached. In the usual forms of absorber 

the motion of the main mass acts effectively as a 'forcing' term on the 

absorber motion. In the autoparainetric absorber however, the main mass 

motion causes variations in the absorber spring stiffness, that is, it 

varies one of the parameters of the absorber. Now it is well known 

that timewise variation of a parameter or 'parametric excitation' of this 

kind, can lead to large amplitudes in the excited system particularly when 

the time variation involved is periodic. 

In this case however the time-variation, arising from the main 

mass motion, is not an explicit function of time, it is actually 

dependent on the absorber motion itself which acts back on the main 

system through nonlinear terms. The system is thus termed autoparametric, 

the, adjective parametric being reserved for situations where there is an 

explicit time-variation of the parameters. 

1. 



Mathematically the analysis of the autoparametric absorber 

under harmonic excitation of the main system is the study of two 

coupled nonhomogeneous equations of the second order with quadratic 

nonlinearities. A general study of this form of system using the 

averaging method has been given by Sethria [1], [2]. 	For the present 

particular problem, the asymptotic method described by Struble [3] 

has been used in preference but, for this problem at least, the results 

are the same. 

The classical autoparametric problem is that of the elastic 

pendulum described by Minorsky [4] but mostly, this problem has been 

discussed as an antonomous (free-vibration) one. The paper by Sevin 

[5] and the related ones by Struble and Heinbockel [6] [7] for instance 

are in this category but the system they discuss of a vibrating beam 

interacting parametrically with its pendulous supports is very close, 

mathematically at least, to the system presently under consideration. 

The simple pendulum is one possible form of AVA. 

The absorber-like response of an autoparametric system might 

have been anticipated from existing analysis. However in this instance 

it was first noticed in the laboratory when during tests on the parametric 

excitation of simple structures under foundation motion, it was observed 

that in a region of parametric instability the structure could have 

considerable effect back on the 'foundation'. The foundation was really 

another degree of freedom and autoparametric interaction was involved. 

The question naturally arises as to whether the AVA has any 

advantages in application over the more conventional types of absorber. 

This is at present an open question but in most cases it can be 

anticipated that the answer will be negative. In normal operation the 

frequency of the AVA absorber motion is one-half of that of the main 

system and this might be beneficial from a fatigue point of view, however 

the AVA depends in its operation on having relatively large amplitudes 

2, 



and the corresponding increased stresses involved will tend to nullify 

any such advantage. The steady-state performance of the AVA can be 

made comparable with that of a tuned and damped absorber of the same 

mass ratio but, with the configurations so far examined, a rather 

extreme geometry in the form of an extremely short absorber beam length 

in conjunction with a large amplitude of oscillation is required in 

order to do this. 

The paper presents the essential steady-state operating 

characteristics of the AVA0 

Basic System 

A schematic drawing of an AVA mounted on a single degree of 

freedom system under external forcing F(t) is shown in Fig. 1 	The 

AVA consists of a weightless cantilever beam of length I and flexural 

rigidity El carrying a concentrated end mass in0 The varying motion 

xd(t) (subscript d indicates 'dimensional', a nondimensional X is 

introduced later) of the main mass M brings about fluctuations in the 

effective lateral spring stiffness >\ of the cantilever. The X-directed 

force back on the main mass from the absorber comes from the fact that 

the absorber mass in does not move purely laterally 	but has an 

associated X-wise or axial displacement which can be related to y  from 

the geometry, assuming for instance a static form of displacement 

curve for the cantilever. This relationship between the axial and 

lateral displacements is of prime importance in determining the effectiveness 

of the absorber. 

It is not necessary that the absorber should be in the form 

of a cantilever beam. An alternative mechanisation for instance, 

would be a pendulum pivoted on the main mass and restrained to the axial 

position by springs. 

3 



Equations of Motion 

The equations of motion are most readily derived via the 

Lagrangian formulat-ion a  Both the axial and lateral components of 

velocity of the absorber mass have to be included in the evaluation 

of the kinetic energy and using the static deformation curve of the 

cantilever these components are found to be in the ratio (6'yd/51)o 

In nondimensional form when the external forcing is harmonic 

F(t) = F0cos2Qt the equations are 

	

+ 2 e 	* + 1 2X €R(t2 + yj) - w2cos2Qt 

(i ) 

so 	 2 2 	.2 	.; 
Y + 22c2 + 	

- 6X)y + y(y + yy) = 0 

where dots indicate differentiation with respect to time t and 

= PO/k'; X = Xã/XO  ; y = y/X0 ; C = 6XJ5t ; 

41, 
2 = k/(M-i-m) 	

'2 	
>/m ; X = 3E1/ t3  ; R= m/(M+m) ; 	(2) 

	

C 	= 
/2 

("'+M) 	; 2 = c2/2mo,2 

The basis X of the nondimensionalisation is the static deflection 

Of the main system under force amplitude F0 , COI  is the free undamped 

natural frequency of the entire system with the absorber locked (y = o) 

and oj2  is the free undamped natural frequency of the absorber. Viscous 

damping 01  and c2are  assumed to act on the main mass and absorber mass 

respectively, R is a mass ratio and C. a natural small parameter of the 

system. Gravitational effects have been ignored. 

Steady-State Solution 

An approximate solution to equations (i) can be found using 

the asymptotic procedure outlined by Struble [3]. For this purpose 

the equations are written in the form 

4 . 



X + 49X =E[€T1 (4Q2  - 	231 ctX +R(2 + y) + Pcos2Qt] 

(3) 
•• 

	

+ Q 
2 	e[61(Q2 - 2 - 2y + Xy—y(r2 

 + yy 

where associating the small parameter G with the forcing term so that 

GP is written for allows the detailed structure of the solution 

near external resonance to be obtained. 

The solution of (3) is taken in the form 

X = A(t) cos[>1 t + 4'(t)] + e.x 1 (t) + e2x2(t) 
+ 

00  

- 	
(4) 

and r = B(t) cosC2t + 0(t)] G() +. e2 (t) + 

where A, B, 4> and 0 are slowly varying functions of t. 

Substitution of this solution, to the second order in Q. , into 

the equations of motion yields the following two equations 

[ — A( 	+')2]cos( 1 t +) - [A+ 	+)]sin(ti,1 t +4) 	+ e2-2 
2 

+ 492  A cos(ci,1 t +4) + 4926X1  + 4Q2  X2  

- L,2) {& cos(1t + +) + cx1  + e2x2 1 

- G2 W, 	cos (c 1 t + 4) - A(w1  +4)sin(1t + 4) + 6Xi] 

+C R [(B + B2 )cos2 (,2t + o) - B2 (c,2  + 6)2  cos2 (w2t + e) - sin 2 (,2t +o) 

- {B20 + 4]3B(u,2  + ) 3 sin(c,2t + e)cos(c,2t + o)] 

2 	 • 2 
+ 	R. [[By1 + 2By1  + (B - B 	+ e) ) y1  cos( 2t + e) 

- [2Br 
I 
 (w2  + e) + (B0 + 2B ''2 + 	y1  sin (,2t + e) ] 

	

cos 2Qt 
	

(5) 
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and 

[B - B(w2  + ) 2]cos( 2t + o) - [ B + 2(w2  + )]sin(ut + 0) +e 

+ e2y2 
 + Q2Bcos(w2t + o) 

+Q GY1+ 

2 	2 
= 	

- 	.1 
fcos(t + e) + 	+ 

_e2 2w2[Bcos(w2t + e) - B(w2  + Ô)sin( 2t + e) +Eçr] 

 AB (wi  - 	
+ 

)2J cos(w1 t + )cos(t 2t + e) - AB+ 2BA(w1 +)o 

,sin(t 1 t + 4)cos(102t + o)] 

+ 62[B 1 cos( 2t + e) + y1 	- A( 1 +)2 }cos( 1 t 	) - 

+ - 21(w +)} sin(1t+4)] 

- e2[{B2i + BB2  - 
B3 (,W2

+ b) 2 J cos3 (co2t + e) + 
B3 (.2

+ Ô)2  sin 2 ( 2t+ 

+ e)cos(w2 t + o) - B3O + 4 B2B(w2  + Ô)}sin(ci,2t + 0)  cos 2 ( 2 t + e)] 	(6) 

The terms of order zero in 6 in equations (5)  and (6) are 

referred to as variational terms and equating these appropriately on 

each side yields four variational equations. Higher order terms in 

C give rise to perturbational equations and any of these having resonant 

solutions are transferred to the variational equations. 

- 	
6. 



The first order terms in C  in (5) and (6) give the first order 

perturbation equations, 

+ w 
	- 	[Acos(w1  t + 	- A(w1  + 3 )sin(w1  t + 

• R 	+ 2  )cos 2 (w2t + O)-B2 (w2+Ô) 2  cos2 (u,2t + 

• O)-sin2 (w2t + e)3 

- [

0. 

320+ 4B3(02  +)sin(wt + O)cos(w2t + o)] 

+ P cos 29t (7) 

0. 	 2 
+ 

 
Yi 	

W2  y1  = _2 2w2[B cos (w2t + e) - B(w2  + G)sin(w2t + e)] 

+ [[BX - AB(w1  -i4) 2  cos(w1 t + 4)cos(w2t + o) - 

[AB 4+ 2BA(w1  +4) sin(w1 t +cj)cos(w2t + e)] 	(8) 

The periodic external forcing will have most effect when the 

frequency 2Q is close to the system frequency w, accordingly we assume 

that the condition of external resonance holds .(29/w1 ) 1 + o(€). 

Further, to ensure that the absorber is excited parametrically in its 

principal region of instability the internal resonance or tuning condition 

= 2w is imposed. 	Consequently such terms as cos (w 1  - w2 )t + (4'- e) 

in (7) and (a) are resonant and must be removed to the variational 

equations0 

The resulting first order perturbation equations are 

0. 

+ w1 2X 1  = 4- R. (B + 2) 

+ w22 
 
y1  = 4-{ BX - AB 	+ )2]cos (w1  + w2)t + ( 4 + o) 

- J2  'AB" 2BA(w1  + )]sin [(w1 .+ w2)t + ( 4'+ e)3 

7. 



Now as previously stated A, B, and 0 are slowly varying 

functions of time so that their first and second derivatives with 

respect to time are, assumed small. 	This means that these perturbation 

equations need not be treated precisely and the particular integral 

solutions can be taken as 

xl  = 0 

A&,1  

= 2(w1 + 22) cos (w 
+ 2 )t + (+ o) 

With these solutions for X 1  and y1  the second order perturbation 

equations may be written, once again any 'resonant' terms are removed 

to the variational equations. 

The Variational Eauations 

Returning to equations (5) and (6), the variational equations 

comprise the coefficients of the fundamental harmonic terms together 

with the coefficients of the resonant terms brought up from the 

perturbation equations. 

Thus the coefficients of cos(c&,1 t +4) give 

 Ca  
- A(1 	

)2 
+ 4ç2 ..,.[ 

1(2 - 
1 2 )A] —62 11 A 

2) 
- B2(2 + )2](20 _q) 

- GR[+B20  + 2BB(w2  + )]sin(2E) - ) + GPcos4 

+e 2[Rt1AB/4(1 + 2 2)][B - B(2 + 6)2  + 2B( 2+ 

+ 6)(
c + 

8 . 



The coefficients of sin( 1 t + ) give 

A4 — 2A(w1  +) =C2Lo A(w 1  +) — R[:gB2e+ 2BB(w2  + b)]cos(20 -4) 

+ 2) - B
2 (,2  :E b) 2] sin(2e q:) 

+GPsinH- e2[Rw1  ABA (w1  + 2(,2 )][BO + 2B(w2  + o)] 

The coefficients of cos(w2t + o) give 

 6 ) 2 so 

B - B(t 2  + 	+ Q2B = c[ 	(Q2  - 22 )B] - 

- 	 +e[+BX - 'AB 	)2] cos(20 - 4) 

+e[AB+ Bi( 1  + t)] sin(2E) - 

+ 	
+ 2 2 )][X - A(1 + )2]  

+ 3B 2  - 2B3 ( 2  b) 2] 

Finally, the coefficients of Sin(Li 2t + e) yield 

- BO - 2B( 2  + 	= e2 2w2B(w2  + 	- e[j-AB+ BA(tA 1  + )]cos(2e - 

+ e[+BA - fAi3( + q)2] 
	

(2o - 4) 

+e2  [* 1 AB/4(t 1  + 2L 2 )][A4H- 2A(t 1  4)] 

+ +.2[B3ô' + 4B 

Again, 	

+ )] 

Again, taking into account the assumed slow variation of A t  B, 4 

and 0, these variational equations can be simplified. 



The resulting reduced equations are, 

-. A4, = (e/2w2)[2 1 (2 	- 	
- +RB2w22cos(2e 

+ +Pcos4' + E(RAB2ci1w2(2w1 + 	+ 2w2 ))] 

- 	(E/2,)[w1 2A + 7' RB2w22sin(20 - 4,) + +Psin4,] 	(io) 

• BO = (G/2w2)[ — 1 2 - 2 
 )B - 2 V02 - 2ABw22  cos(20 4)) 

- G(A2B w1  3/2(w1  + 2w2 )) +e4-B3w22 ] 	(11) 

- L = (e/2)[2)2w22B - 2ABu,22sin(2e -4))] 	 (12) 

The term in I in equation (9) and that in B in (ii) can be 

eliminated using equations (io) and (12). 	It is also convenient to 

transform the variables as follows, 

t=41/eThi;y=(w22 -Q2 )/E(j2 JA; 

(i 3) 

A = b 1  rPlw2  FR ; B = b2J/w2J.;  

The resulting variational equations are, 

= 4yb1  + b22cos(2 2 - 	- 	1 

+ €3 {-' (€/R)*  b1  - b22  sin (22 - 4r) - sin 4r] 

- . (G/R)k1b22 	 (14) 

= - 4 1 (€/R) b1 	b2  sin (212 - 4r1 ) - sin IV, 	(15) 

b2  W = 2yb2  + (4/R)b1 b2cos(2'V 2  - irl 

+ e 21- 2 2 (€/R) 2b2  + (4/R)b1 b2sin(2 - 4')] 

	

+ (2/R)(/R) 2[2b1 2b2  - b23] 	 (16) 

10. 



and 

= 2(G/R) 2  b2  + (4/R)h1 b2  sin (2 4r2 - 
	

(17) 

where primes denote differentiation with respect to the slow time ''O 

In this analysis a solution to the first order variational 

equations only will be sought. These are 

b 	4yb1  + b22cos(24 - 	- cos 
	

(1 8) 

b lI: = - 4 (6/)+ b 1  - b22sin(2 - 	- sin if 
	

(19) 

b2 	= 2yb2  + (4/R) b1b2cos(2 2 - 
	

(20) 

= - 2 2 (G/R) 2  b2  + (4/R) b1 b2  sin (2 12 - 
	

(21) 

The steady-state solutions for b 1 , b2 ,l4J and 	are found by 

equating the right hand sides of equations (18) to(21) to zero0 

Thus b = b21  = b1 
f: 

- b2 4f•/: = 0 and after some algebra, 

eliminating %j; and'T, 

b1  =±+ (R) [122 + y2  R] 2 
	

(22) 

and b = 2[y2 R - 12 1  ± [
i - 4y2GR (' +2 2 

	

(23) 

By transformation the two nondimensional expressions for the 

X and y amplitudes are 

	

Xd/Xo= ± [
22  + 

(i - fl2)2/4)2 	
(24) 

and 

= (8/GR)[((1 - 112)2 /4e) -  G )i 32 1  

± (4/eR)[1 - (i - 2)2(1 + 
	

(25) 

lie 



Stability of Steady-State Solutions 

Case 1 b 1 , b2  nonzero. 

By observing the behaviour of the parameters b1, b2, qr19
tiJ 

when given small displacements about their equilibrium position it is 

possible to determine the stability of the steady-state solutions. 

The following substitutions 

b1=b10+b1;b2=b20+b2; 	=°+ WI ;=°+  qrl 

are made in the variational equations (18) thro' (21) where b, b, 4°' 
are the equilibrium solutions. Retaining the linear terms in 

b1 , Sb2 , 4J and W2 gives a: set of four first order equations. 

Following the usual procedure, the stability determinant provides 

a characteristic equation of the form 

j4 X4 +J3 +j2 2 +J1 +Jo =O 

The Routh-Hurwitz criteria are, J positive and 

H i 123 - 	- 103 2  positive for stability. 

Now by inspection J
, P  j2 v  J3 and 34 

 are positive and by 

calculation H is also positive. The only condition to be considered 

is thus 30>0 

i.e. 	(b2° ) 2  > 2[y  

is the i7equired stability condition, (c.f. first part of equation (23)). 

This means that the steady-state solutions for b1  and b2  both 

nonzero, are stable over the frequency range spanned by the upper 

branches of the b2  response curves, and are bounded by the points of 

vertical tangency on these curves. 

Case 2 b1  nonzero, b zero. 

0 
Here b1 = ± 	1 b = 0 

4[2 + (€/R)312] 

12. 



The characteristic equation is cubic of the form 

0 

and the stability criteria are J positive and J 1 J > J 

	

2 	0 

The condition that emerges is that 

[(2b1°/R) 	2]+ 

for stability. 

Substituting for b 1 0 , the solution is unstable within the 

frequency range defined by 

2 	2
= —(G/2R)(12 + 
	

(1/2R)[ 2 ( 1 2 	+ i] 
	

(26) 

Again from equation (23) it is seen that for b 2  = 0 this same 

db2 
expression (26) is obtained and that 	is Infinite. Therefore the 

bounds of zero b2  stability coincide with the points of vertical 

tangency in the b2  response curves. 

One further aspect which emerges is that the 'cross-over' points 

0 
found by equating the one-degree of freedom solution (b 2  = 0) to the rn  

two-degree of freedom solution (equation (22)) thus 

1 

16[ y2  + (c/R) 1 2] - 

(fl/4)[2 + y
2  R] 

provides the same frequency expression (26). This means that the 

'cross-over points are the entry points for the absorber system. 

The Theoretical Response Curves 

It is now possible to draw a set of theoretical amplitude response 

curves for the quantities (x/x0) and (y/x0) using equations (24) and 

(25), together with the stability conditions just derived. These 

nonclimensional amplitudes are plotted against the forced frequency ratio, 

It = 29/ 1 ,for various values of viscous damping C3, and 

13. 



To establish a comparison with experimental results known experimental 

values are assigned to 	' '2 and the constants X 0 , e and R. (x0  = 0.0029 in, 

E= 0. 0005, R = 0.0196). 

Fig. 2 shows the theoretical response curves for the amplitude 

of the main mass. Included are the one-degree of freedom responses 

(absorber locked,y = o) for 	= 0 and 	= 0,0035 and four response 

curves showing the effect of absorber action, for 

(a) e = 0, E 2 = 0 ; (b)e,1  = 0.0035, e 2  = 0,0035 

(c)e.1 = 0.0035,€2 - 0.0110 (a) E'3 1  = 0.0035, C) 2  = 0,0184 

The corresponding response curves for the absorber system are 

sho'rn in Fig. 3. It should be noted that the lower branches of these 

curves are unstable as indicated by the broken lines. 

The points of vertical tangency on the absorber response curves 

are important as they define the boundaries of the region of parametric 

instability of the absorber. They coincide with the discontinuities and 

jumps observed in the main mass displacement of Fig. 2. The forcing 

frequency at which a nonzero absorber amplitude becomes unstable will 

be referred to as a 'collapse frequency' -and the associated main mass 

amplitude just prior to this will be referred to as its 'collapse 

amplitude'. 

In Fig. 2 the locus of the collapse amplitude for 	= 0.0035 

is shown for varying '32 by the broken line. This locus has as 

asymptotes the one-degree of freedom response for 	=0 and the two- 

degree of freedom response for C 	0 and C42  = 0. It is seen to have 

a minimum value which defines that value of C)2  for a given C) 1  which 

will produce the minimum collapse amplitude. 

To follow the details of the action of the AVA consider the set of 

curves 	from Figs. 2 and 3 for C3 1  = 0.0035 and 32  =0.0110. 
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From Fig, 2, it is seen that following the path of increasing 

frequency (indicated by arrows) the system behaves as a normal one-degree 

of freedom system (region A) until it reaches the cross-over point (point 

B) previously discussed. 	This corresponds to a point of vertical 

tangency in the absorber solution (b 2°  = 0 solution unstable) and so 

absorber action begins0 The main mass system then follows the two-

degree of freedom solution (region c), its amplitude reaching a minimum 

value at n = 1 	It then climbs steadily until the collapse amplitude 

is reached (point D). 	This corresponds to a vertical tangency in the 

absorber solution which marks the bound of absorber action. The result 

is that absorber action ceases and the main mass amplitude drops to its 

one-degree of freedom level (point E)0 

Following a path of decreasing frequency (again arrowed) the 

main system behaves in a similar fashion tracing the path F, G 

(absorber entry point), C, H (collapse amplitude), K,. and A. 

Fig. 3 shows the corresponding regions and points on the absorber 

response curve, the jumps BB and GG coinciding with the entry points 

B and G on the main mass response0 

Experimental Apparatus and Procedure 

The experimental apparatus was designed to give a one-degree of - 

freedom main mass system with low damping. Fig. 4 shows the basic 

layout. 

The main mass is a solid steel block supported and restrained to 

horizontal motion by four spring steel legs. A coil spring provides 

the-necessary horizontal stiffness giving a natural frequency of 6.92  Hz. 

The absorber system consists of a spring steel beam 0.020 in. thick by 

in. wide with an adjustable and-mass. 	This system is attached to 	the 

main mass by means of a light clamping block. 

150 



The complete system is mounted on an angle bracket which is 

strapped to the head of an electromagnetic shaker. To prevent a bending 

moment on the shaker head, the deadweight is taken by suspending the 

whole assembly on elastic ropes connected to the four support points of 

the angle bracket. 

The shaker was excited through a power amplifier from an accurate 

decade oscillator. 

Viscous damping could be introduced to both main mass and absorber 

systems by the addition of light vanes operating in oil baths. 

Thus the experimental rig is basically a spring-mass system 

on a moving support (shaker head). Keeping the amplitude of the 

support constant ensures a constant exciting force on the system. 

The instrumentation incorporated in the set-up consisted of 

() a proximity probe to monitor shaker head amplitude. 

a linear displacement transducer to measure main mass amplitude 

(coupled to an oscilloscope). 

strain gauges at the root of the absorber cantilever to 

measure absorber end-mass amplitude 

(coupled to an ultraviol-recorder). 

The oscilloscope and ultraviolet recorder provided monitoring and 

recording facilities. The instrumentation was initially calibrated and 

appropriate damping rates decided. - 

The typical test procedure involved the step-wise increase and 

decrease of the forcing frequency through the resonance region. At 

each setting of frequency the shaker head amplitude was held at a constant, 

predetermined level by means of a potentiometer in the power amplifier 

output and the steady-state amplitudes of the main mass and absorber systems 

were noted.. 
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The Experimental Response Curves 

Fig. 5 shows four response curves for the main mass system 

labelled (a), (b), (c) and (d). 	Curve (a) is the response with the 

absorber locked (b2  = o) for = 0.0035. Curves (b), (C) and (d) 

are the amplitude responses under absorber action for the following 

damping ratios, 

(b)Q.)1  = 0.0035 1 E5 2  = 0.0035.; (c), 1  = 0.00359 E'2 = 00110; 

(a)G 1  = 0.0035, 	- 0,0184. 

Fig. 6 shows the corresponding response curves for the 

absorber system. 

Interpretation of these experimental curves follows the same 

pattern as outlined for the theoretical case. 

Comparison of Theoretical and Experimental Response Curves 

Direct comparison between the theoretical and experimental response 

curves can be made using Figs. 2, 3, 5 and 60 The experimental curves 

(b), (c), (a) in Fig. 5 compare directly with curves (b), (c), (d) in 

Fig. 2. 	Similarly curves (b), (c), (d) in Fig. 6 have their counterparts 

(b), (c), (a) in Fig. 3. 	 - 

The comparison is seen to be quite reasonable although the 

experimental amplitudes of the main mass are, in general, greater than 

those predicted theoretically. 	It is, of course, difficult to tune the 

absorber precisely to the condition w = 2w2 , and as a result the 

experimental curves lack the symmetry displayed by the theoretical curves 

about the n = 1 .0 axis. 
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This may also in part be attributable to the neglect in the 

theory of the nonlinearity in the spring force of the cantilever which, 

with the relatively large amplitudes involved, was quite significant. 

The main mass experimental curves of Fig. 5 can also be seen to 

exhibit jumps at the points of entry of the absorber which are not 

predicted by the first order theory used. 

Comparison of AVA with LTDA 

It can be shorn from the analysis that a more powerful absorber 

action is achieved when the value of the parameter (= 6X 0 /5t) is 

increased. This implies an increase in the ratio of axial motion to 

lateral motion of the absorber mass. 	In practice this can be achieved 

by dimensioning the absorber cantilever beam to provide the same natural 

frequency 	with the same mass (m) while decreasing the length (t). 

Experiments were carried out using an absorber whose length was 

one—fifth of that of the system already discussed. This increased the 

value of C by a factor of five. Fig. 7 compares a set of theoretical 

and experimental main mass responses for such an absorber, where e1  0.0030 

and €12 0.0338. Studying Figs. 2, 5 and 7, it can be seen that a general 

improvement in the performance of the absorber has been obtained by 

shortening its length but this improvement is obtained at the expense of 

greater strain amplitudes in the absorber. 

To provide a measure of the effectiveness of this improved AVA 

system it was decided to effect a theoretical comparison with the linear 

tuned and damped absorber (contracted to LTDA). The theory of the LTDA 

is given in reference [8]. 

The experimental mass ratio (rn/N) 0.02 is chosen for both AVA 

and LTDA systems. 
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Since this ratio is small compared with unity, the LTDA natural frequency 

ratio is taken as unity and the optimum damping between its two mass 

systems is found to be 0.09. 

Fig. 8 compares the resulting LTDA main mass response (a) with 

two AVA response curves (b) and (c). 	Response (b) is for 	= 0 and 

= 0.0208, while response (c) is for 	= 0 and 	= 0.0360. Also 

shown is the one-degree of freedom response (d) for the absorber locked. 

The AVA response (c) represents the minimum collapse amplitude attainable 

for the stated parameters but this€ value does not produce good absorber 

action near resonance. 	Response (b) for a smaller 
2 
 value compares 

more favourably with the LTDA near resonance but the consequent widening 

of the parametric instability zone results in much higher collapse 

amplitudes. 

Conclusions 

The basic absorbing action of the autoparametric system 

described has been shown experimentally and the first order asymptotic 

theory developed has effectively predicted most of the principal 

features of the steady-state response. 	The transient response of the 

absorber is currently under investigation. 

The comparison described between an autoparametric absorber and 

a linear tuned and damped absorber of the same mass ratio is not 

favourable towards the former. However there is a great deal of development 

of the autoparametric device which might still be carried out and it may 

prove advantageous in some applications. It is for instance in principle 

possible to design an absorber which will act simultaneously as an 

autoparametric and a tuned and damped absorber. If the input consists of 

a fundamental frequency (Q) and its first overtone (20) then the 

fundamental component would be absorbed by the tuned and damped action while 

the overtone would stimulate the autoparametric action. 
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Fig. 1 

Schematic diagram of autoparametric 
absorber system. 
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Fig. 2 

Theoretical response amplitude of 
main mass under the action of the 
AVA for various values of the 
damping ratios. 
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Fig. 3 

Theoretiôal response amplitude of 
the absorber for various values 
of the damping ratios. 
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Experimental Apparatus 

1. main mass, 2. Spring steel legs, 

3. coil spring, 40 absorber cantilever spring, 
5. absorber end—mass, 6 absorber clamping block, 
7. angle bracket, 8, shaker, 
9. support points, 100 proximity probe, 
he linear displacement transducer, 12. strain gauges. 
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Fig. 5 

Experimental response amplitude 
of main mass under the action 
of the tWA0 
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Experimental response amplitude 
of absorber. 
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Comparison of theoretical and 
experimental main mass response 
amplitude under the action of 
small length AVAO The legend 
-o-------o- represents experimental 
data. 
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Fig. 8 

Comparison of main mass response 
amplitude of the LTDA with that 
of the small length AVA. 
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