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SYNOPSIS

This thesis presents the basic steady-state operating
characteristics of a device lmown as the autoparametric vidbration
absorber (or simply as the AVA). This is a tﬁo—degree of freedom
systemn consisting of a main linear spring mass system and an
attached absorber system. The motion of the main mass under external
forcing, acts parametrically on the motion of the absorber. Terms,
nonlinear in the absorber motion, act back on the main mass énd with
appropriate choice of tuning parameters, ’absorption’.of the main

mass response can be obtained.

Mathematically the aralysis of the AVA under harmonic
excitation of the main mass is the study of two coupled nonhomogeneous
equations of the second order with quadratic nonlinearities. Three
possible methods of solution are considered, each of which provides
the same first order solution for the steady-state behaviour of the
AVA. After a stability assessment, this theoretical solution is

compared with the steady-state results of the experimental investigation.

A theoretical comparison is also made between the steady-state
performance of the AVA and that of a linear tuned and damped absorber
of the same mass ratio. The resulis of this comparison highlight
the need for an AVA system poésessing the optimum absorbing
capabilities and consequently the design of several AVA mechanisms is

studied.



A possible theoretical solution of the transient behaviour
of the AVA is élso presented. This transient solution is formuwlated
using a technique similar to that used in the steady-state analysis.
The merits of this transient solution are assessed by comparison with

a digital computer simulation of the system equations of motion.

Finally a brief study is made of the response behaviour of the

AVA system when the main mass is subjected to random excitation.
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CBAPTER 1

INTRODUCTION

1.1 Parametric and Autoparametric Excitation

Theiphenomenon of parametric excitation, in which an oscillatory
system oscillates at its natﬁral frequency w if one of its parameters
is made to vary at frequency 2w, was first observed by Faraday*(1831).
He noticed that the wine in a wineglass oscillated at half the
frequency of the excitation caused by moving moist fingers around the
edge of the glass. Later, Melde (1859) provided a more striking
demonstratioﬁ in which a stretched string was attached at one end to
a prong of a tuning fgrk capable of vibrating in the directioﬁ of the
string. It was observed that when the fork vibrated with frequency
2w, lateral vibrations gf.the string occurred at frequency w. In

1883 Lord Rayleigh explained this phenomenon mathematically.

From a mathematical standpoint the study of sgéh phenomena méy
be reduced to the integration of differgntial equations with time-
dependent (generally periodic) coefficients. Beliaev (1924) was,
"apparently, the firsf to provide an analysis of parametric resonance

in a structure. His model was that of an elastic coiumn,pinned

at both ends, and subjected to an axial periodic force F(t) = F,+F; coswt.

The equation which emerged was of the Mathieu-Hill type. However,
‘the study of this type of linear differential equation contributes
little to the understanding of parametric excitation phenomena which

are essentially nonlinear in most cases.

# references are listed alphabetically in the Bibliography.



Parametric resonance is an integral part of the wider field
of dynamic instability. In a linear system the amplitude grows
indefinitely‘while in the nonlinear case, the instability decreases
with increasing amplitude and vanishes.when the system amplitude

reaches a certain level for which the oscillations become stationary.

The distinction between parametric, or more specifically
heteroparametric (the prefix ’hetero’ is normally dropped), and
autoparametric excitation is that in the former case, parameter
variations are produced by external periodic'excitafipn, and in the
latter, by the system itself, The classical autoparametric problem

is that of the élastic pendulum described by Minorsky.

4 Beliaév’s findings were completed by Andronov and Leontovich
(1927) and over the next‘th;;ty years a considerable volume of
literature had amassed on various aspects of parametric resonance
and stability. Notable among the researchers of this period were
the Russians, Chelomei, Krylov and Bogolyubov and the Germans, Mettler

and Weidenhammer.

With the expansion of this relatively young branch of dynamical
-studies there was an increasingAdemand for more powerful mathematical
'_techniques. As eafly as 1944, Artem-ev applied the technique of
expansion with respect to a small parameter to determine instability
zones, but it was not until.the eariy sixties that the asymptotic
methods were firmly established in the literature. These methods

are well documented by Bogolyubov and Mitropol’sk;i.

This brief survey of developments in the field of parametric
resonance would not be complete without a mention of the significant

contribution made by Bolotin,



The papers he wrote during the fifties on dynamic stability and,
in particular, on paramétric stability, are incorporated in his
book, "The Dynamic Stability of Elastic Systems" which was published

in English in 1964 and is considered a standara text in this field.

For several years this Departmenf has been engaged in the
‘study of parametric response with the Qim of providing a better
understanding of the nature of the phenomenon and a broader
experimental basis for existing theoretical work. This thesis
fresents one such investigation into the interagtion between dynamic
and autoparametric response based on an originél research idea

suggested by Dr. A.D.S. Barr,'at present Reader in this Department.

1.2 The Autoparametric Vibration Absorber

Within the context of this thesis, vibration absorbers are
considered to be passive single degree of freedom‘systems, designed
for addition to some larger vibrating system with é view to reducing
its resonant response under external harmonic éxcitation. Falling‘
into this class are such devices asbthe tuned and damped absorber,
the gyroécopic vibration absorber and the pendulum absorber. They
are basically linear devices because although iﬁ operation large
amplitudes may.introduce‘nonlinear stiffness or inertial effects the
working of the device is not dependent on these. The effectiveness

“and response characteristics of these absorbers is well documented.

The sﬁbject of this research however, is é device which interacts
in an essentially nonlinear manner with the main sygtem to which it
is attached. It is the manner in which the device is excited that
leads fo it being termed the ’autoparametric vibration absorber’
(contracted to AVA) in‘keeping with the definition of autoparametric

excitation given in the previous section.



In the usﬁal forms of absorber the motion of the main mass acts
éffectively as a 'forcing’ term on the absorber motion. In the
autoparametric absorber however, the main mass motion causes
variations in the absorber spring stiffness which, although time-
varying, are not explicit functions of time but actually depend on
the absorber motion itself which acts back on the main system through

nonlinear terms.

The absorber-like response of an autoparametric system might
have been anticipated from existing analysis. For example, the
classical autoparametric problen, already mentioned, in which an
elastic pendulum exhibits energy absorption in the high-frequency
mode (2w) followed by transference of this energy to the low frequency
mode (w). However in this rgsearch the absorber-like response was
first noticed in the laboratory vhen ddring tests on thé parametric
excitation of simple structures under foundation motion, it was
observed that in a region of parametric instability the structure
could have considerable effect.on the ’foundafion’. The foundation
was really another degree of freedom and autoparametric interaction

vas involved.

Mathematicélly the analysis of the autoparametric absorber under
harmonic excitation of the main system is the study of two coupled
nonhomogeneous equations of the second order with quadratic
nonlinearities. A general study of this form of system using the
averaging method has been given by Sethna. A system which is
mathematically similar to the device presently under consideration
is presented in é paper by Sevin and also in related papers by Struble

and Heinbockel.



They discuss the parametric interaction of a vibrating beam with its
pendulous supports, however, they confine their studies to the

autonomous or free-~vibration case.

The question naturaily arises as to whether the AVA has any
advantage in application over the more conventional types of absorber.
This is an open question at present but in most cases it can be
anticipated that the answer will be negative. However, the study
of an absorber system combining the action of the AVA with that of
the linear tuned and damped absorber does shoﬁ some promise in this
direction. From a fatigue pbint of view, any benefit gained from
the operation of the AVA absérber system at half the fregquency of the
main system tends to be nullified by the increased stresses caused

by the relatively large operational amplitudes of the absorber itself.

1.3 The Scope of the Present Investigation

This thesis presents the operating characteristics of the
autoparametric vibration absorber. The theoretical model of the-
AVA system is that of a main linear spring mass system under periodic
forcing the motion of which acts parametrically on the motion of
an attached absorber system which consists of a cantilever beam with

adjustable end mass.

For the mathematical analysis of the relevant equations of
motion, the asymptotic method described by Struble is used in
preference to the averaging method used by Sethna and the two-
variable expansion procedure described by Cole and Kevorkian, but,
for this problem at least, the results are the same. In the asymptotic
method a general perturbational solution of the equations of motion

is expressed in the form

u = Acos(wt + ©) +én, + €?u2 + e +é§uN



where each of A, 6, Ugy Ugyeees Uy is in general, a function of time.
TQe first term of the expansion is the principal part of the solution
while the additive terms in powers of € (a natural parameter of the
system)xprévidevfor a perturbational treatment. - Substitution of

this solution into tﬁe equations of motion leads to sets of variational
and pertufbational equations of different orders in €. It is the
variational equations of the first order in € which provide the steady-

" state solution of the behaviour of the AVA in this case.

Formulation of the steady-state solution requires that certain
assumptions be made regarding the conditions of internal and external
resonance. A solution is qbtained assuming the condition of exact
internal resonance in which the absorber frequency is tuned to half
that of the main system while the main system is excited in the
neighbourhood of its natural frequency by the external harmonic forcing
(external resonance condition). Another, more general, solution is
found by assuming that the absorber is slightly detuned so that the
. exact internal resonance condition is no longer valid. In both cases
the stability of these theoretical steady-state solutions is studied
‘and the results presented as a series of amplitude response curves for

selected values of the system parameters.

On the completion of the analysis of the steady-state solution
- it was decided to effect a theoretical comparison between the AVA and
the linear tuned and damped absorber in an attempt to assess the
efficiency of the fo?mer. From this comparison it emerges that the €
parameter plays an important role in determining the absorbing power

of the AVA.



It is because this € parameter is a function of the construction
of the absorber that consideration is given to other possible AVA
systems with a view to obtaining an optimum design. (One such
system is a combination of the AVA and the linear tuned and damped

absorber).

To demonstrate the validity of the theoretical predictionms
regarding the nature of the steady-state solution; experiments are
performed using a cantilever-type absorber mounted on a main spring
mass system which is excited by an electromagnetic vibrator. From
the data collected by monitoring the steady-state amplitudes of the
absorber and the main mass it is possible to compile a series of
amplitude response curves which are directly co@parable with their

theoretical counterparts.

A study of the operating characteristics of the AVA would not
be complete without an inquiry into the nature of its transient
behaviour. Consequently, a possible analytical solution of the
transient motion is discusged ﬁhich involves mathematical proceduies
very similar to those used in the steady-state analysis. The merits
of this solution are then compared with a digital computer simulation

of the AVA transient performance.

Although the present investigation is mainly concerned with the

AVA’s ability to absorb energy from a system subjected to harmonic

exéitation, a few experiments were performed to show the AVA’s response

to external random excitation.

Finally, a paper entitled "The Autoparametric Vibration Absorber®

by R.S. Haxton and A.D.S. Barr, is appended at the end of this thesis.



CHAPTER 2

THEORETICAL ANALYSIS OF THE

AUTOPARAMETRIC VIBRATION ABSORBER

2.1 Intrecduction

The mathematical analysis of the autoparametric absorber
under harmonic excifation of the main mass system is the study of
fwo coupled nonhomogeneous equations of the second order with
quadratic nonlinearities. In this chapter these equations are
derived from a basic theoretical model using the Lagrangian
formulation. The application of an asymptotic method described
by Struble provides an insight into the nature of the steady-state
behaviour of the AVA. Finally a study is made of the stability

of the steady-state solutions.

A possible analytical solution of the transient behaviour of
the AVA system under external excitation is given in Appendix I

together with the results of a digital computer system simulation.

2.2 Theoretical Model

Fig. 2.2.1 represents a schematic drawing of an AVA mounted
on a single degree of freedom system under external forcing F(t).
The AVA consists of a weightless céntilever beam ofnlength f and
flexural rigidity EI carrying a concentrated end mass m. The
varying motion Xd(t) (subseript 4 indicates ’dimgnsional’, a
nondimensional X is introduced later) of the main mass system
'(mass M, spring stiffness k) induces fluctuations in the effective

lateral spring stiffness N of the cantilever.
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Fig. 2.2.1

Schematic Diagram of a Cantilever-Type
Autoparemetric Absorber System.
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It is fhis timewise variation in stiffness which initiates the motion
of the absorber. Howevgr this motion of the absorber mass is not
in a purely lateral mode (yd) but is associated with an axial
displacement which can be related to Y4 from the geometry.
Consequently the absorber feeds X-directed forces back on the main

mass.

A factor which emerges from the analysis is the importance of
this relationship between the axial and lateral displacements of
the end mass in determining the effectiveness of the absorber.
¥With this in mind, consideration was given to alternative mechanisations

some of which are discussed briefly in Appendix II,

2.3 Equations of Motion

In deriving the equations of motion using the Lagrangian
formulation it is essential to include terms due to the axial motion
of the absorber mass in the evaluation of the expressions for kinetic

energy, T, and potential energy, V, of the system.
If 7 denotes the axial displacement of the absorber mass then
!t /dy\2
z=7% f (§5)° ax

where y is a function of the deflection form of the cantilever and
x is the distance along the undeflected beanm. (See S. Timoshenko’s
'Strength of Materials?, Part II). Assuming the cantilever to

-have a static form of displacement curve such that

Y
y =2, i’ - 2%)
2t .



10.

then the relationship between Z and Y4 is

_ 3 2 " s 6 .
Z = ¢ v wvith 2 = 51 Ya¥3

Dots indicate differentiation with respect to time t.

The expressions for T and V are then

Lk , 36 2.2 125 . .2
T= * —%m(X + 5502 Vg Vg = 51 Xa¥a¥a * Ya )

and

+ mg(Xy - = y,7)

2
V=—‘2—kXd +-’2—)\yd + Mg X TRL

d

where g is the acceleration due to gravity.

The resulting equations of motion are

oy Lk | o moé_ (2 .y _ B(t)
(1 + M)Xd +g X+ (0 08 - M 5¢ (74" + ydyd) =M
. (X _S6,_ 6 c 2o G2 )y,

Henceforth the gravitational effects will be ignored with the
adoption of a horizontal configuration of the main mass and
cantilever system, Also viscous damping will be assumed to act

on the main mass (01) and the absorber mass (c ).

Consequently the equations of motion take the form

it

C
myss 1+ x
O+ gXg+ X +5%- 5 sz(yd + ¥g¥4) = T
C
. 2 A 6
Vo + = vq + (5 X DT+ 2552 (yd + ¥ F vy =



i1,
It is now beneficial to perform a nondimensionalisation on
the basis of the static deflection Xo of the main system under

the force amplitude Fo of the external forcing function.

Thus when the external forcing is harmonic of the form

F(f) = Fo cos 2Qt the nondimensional ecquations are

X+ 2en, w1i + wy %% (3% + y¥) = 0)12 cos 20t
: 2.3.1

oo . 2 s 2 .2 .o

Yy + 2672w2y + (w2 - GX)y + € Y(y + Yy) =0

. o 2 i
where Xo = Fo/k s X = Xd/Xo IR yd/Ao H €=:6X°/5£ ;oW = x/(M + m) ;

it

w2 = Mn; N=3EL/0 ; R=n/( +n); €y = c,/2( + n)o, ;

il

€72 c2/2m W, | 2.3.2

wy is the free undamped natural frequency of the entire system with

_ the absorberllooked (y = O) and w, is the free undamped natural

2
freguency of the absorber. R is a mass ratio and € a natural

small parameter of the system.

2.4 Steady-State Solution of the Perfectly Tuned AVA

Three possible methods of achieving an épproximate solution
to equations 2.3.1 have been examined. These are the method of
averaging (as used by éethna), the two-variablé expansion procedure
(Cole and Kevorkian), and an asymptotic method outlined by Struble.
For thié particuiar problem the asymptotic method lends itself most
easily to analysis. The method of averaging, although providing
identical results, tends to be rather tedious, while the two-variable
expansion procedure is primarily a technique for singular perturbation
problems: The asymptotic method is adopted here while the other two

techniques are detailed in Appendix ITII.



12.

As a prerequisite to further analysis the equations 2.3.1 are

written in the form

X+ 40°% = e[e"1 (49 - w12)X - 20)1w15( + RG% + y¥) * P cos 20t]
: 2.4.1

o 2 -1,.2 2 . " .2 .
¥+ ey =¢fe (@ -, )y - 29,05 + Xy - €y(5° + 5¥)]

This ’softening’ of the forcing term through association with
the small parameter € such that w 2

1

detailed structure of the solution close to external resonance to

is replaced by €P, enables the

be obtained.
The solution of 2.4.1 is taken ih the form

X

i

4(x) cos [t + ¢(£)] + €X (£) + €X,(8) + ...
’ 4 2.4.2

e
]

B(t) cos [wét +0(t)] + ey, (8) + 62y2(t) + eee

where A, B, ¢ and O are slowly varying functionsof t.

The first term in each asymptotic series représents the
principal part of the solution while the additive terms in powers

of € provide for a perturbational treatment.

Substitution of 2.4.2, to the second order in €, into the

equations of motion yields the following two equations:-



130

(£ = Ao, + $)%Jcos(w t + &) = [A&+ 24(w, + §)]sin(u, t + ¢)

+€X, + X% + 49°%A cos(w1t + &) % a0°ex, + 49° ex

1 2 1 2

€[€_1 (492 - w12) {a cos(w1t +¢) + €X,. + €2X2}]

1

€29, 04 coslw t + ¢) - Alwy + $)sin(uwt + ¢) + €X,]

+ €R[ (BB + ]§2)0052(th + 6) - ]32(w2 + 6)2 {cosz(wzt + 0) -

sinz(wz-t + 6)} - {Bzé + 4B]§(w2 + 9)} sin(wzt + e)cos(wzt + 0)]

+

G.ZR[ {B§1 + 2f33'r1 + §y1 - B(w2 + é)2y1} co:;(w2’c +0) -

- {2B§r1 (u)2 +8) + Bé'y1 + 2f3(w2 + é)y‘l} sin(wzt + 08)] + €P cos20t
2.4.3
and : .
[B - Bluw, + é)z]cos(wz‘t +0) - [B8 + 2B(w, + 8)]sin(w,t + ©)

+ 63?1 + e25;2 + 0°B cos(gizt + 0) + Q2€y1 + 02 €2y2

2

= é[e’1 (@° - w22){B cos(wz’c +0) + €y, + €2y2}]

€27n,u,[ B cos(u,t + 8) ~ Blw, + 8)sin(w,t + €) + €y,]

+

e[ {Bi - AB(w1 + d?)z} cos(w1t + ¢)cos(w2t +0) - |

{aBS + 2}315.((91 + )} sin(w1t + ¢>cos(w2t + 6)]

+ 62[]35('1005((»21: +0) + 7y, $4 - Aw, + S )Z}cos(w1t + &) -

¥y {A$+ 21:&(031 + 4))} sin(w1t + ¢)]

2

- €[ {5+ B - B(u, + 8)7c0s (uyt + 0) + B(uy + 8)%min (a1 + 0).

. cos(wzt +6) - {BBé' + 432]§(w2 + 6)} sin(wzt + e)cosz(wzt + 0)]

2.4.4
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Those terms in equations 2.4.3 and 2.4.4 of order zero in €
are called variational terms. However, equating these terms
appropriately on each side simply implies that each of A, B, ¢, ©
is a constant. It is necessary tﬁen to consider the higher order

terms in € which give rise to sets of perturbational equations in

I
P

the perturbational parameters X1, Vi X2 and Yoo If there exists
any term on the right-hand side of these perturbational equations
which is likely to produce resonance in one of the perturbational
parameters then this term must be rqmoved for the solution to
remain bounded. Such ’resonant’ terms are fransferred to the
variational terms and provide for a set of variational equations in

which A, B, ¢ and 6 are not constants but functions of time.

Continuing the analysis, the first order terms in € in 2.4.3

and 2.4.4 give the first order perturbational equations,

. - 271w1[A c05(w1t +¢) - A(m1 + é)sin(w1t +.¢)]

X1+m1X1=
+ R[ (BB + ﬁz)cosz(wzt + 0) - Bz(m? + é)z.
. {cosz(wzt +0) - sinz(wzt +0)} - {:Bzé + 4BB(w, +.é)}.
..sin(wzt + e)cos(wzt + 6)] + P cos 2Qt 2.4.5
and

&1 + w22y1 = - 272w2[ﬁ cos(wzt +0) - B(m2 + é)sin(wzt + 8)]
+ [BA - AB(w, + @)Z]cos(w1t + ¢)cos(w2t + ©)

- [ABd + éBA(w1 +'¥)]sin(m1t + $)cos(wyt + 0) 2.4.6



15.

Both equation 2.4.5 and 2.4.6 have terms on the right which
constitute resonant terﬁs when certain conditions are imposed.

Firstly, the periodic external forcing will have most effect when

the frequency 2Q is.close to the syétem frequency w, accordingly

it is assumed that a condition of external resonance holds, defined

bj
(20/w,) =1+ o0(€) 2.4.7

Secondly, to ensure that the absorber is excited parametrically in
its principal region of instability the internal resonance or

tuning condition,

is imposed. (This is the perfectly tuned or exact internal

resonance condition, the effect of a slight détuning will be

discussed later). Consequently, many of the terms on the right-hand
side of 2.4.5 and 2.4.6 produce resonance in the perturbational
parameters when the above conditions hold. - By way of example,
consider the temrm cos2(w2t + 6). Now using the standard trigonometric
formulas coéz(mat +0) = %01 + cosZ(wzt + 0)) but cos2(w2t + 0)

can be written as cos {(w1t + ¢) + (26 - ¢)} which is equivalent to
cos(w1t + é)cos(20 - ¢)- sin(w1t + ¢)sin(20 - ¢), and so the term
cosZ(wzt + 9)'provides two fundamental harmonics which must be

removed to the variational equations. This is a direct cénsequence
of the exact internal resonance condition 2.4.8. Another, in

the same category, is the cos(w1t + ¢)cos(w2t + 6) teim which provides
a resonant part cos {(w1 - w2)t + (¢ - 9)} and a nonresonant

part cos {(w, + w,)t + (¢ + ©)}, the resonant cos {(w1—' wy)t + (¢ - o)}

produces two harmonics,



16.
cos(wzt + 0)cos(26 - &) and sin(wzt + 6)sin(26 - ?) which again must
be removed. Finally, the forcing term cos 2Qt is written as
cos {(uﬁt + ¢) - ¢} thereby producing two harmonics of the forﬁ
cos(uht + ¢)cos<b and sin(uﬁt + ¢)sinAb. - This shows the effect of

the external resonance condition 2.4.7
The resulting first order perturbational equations are

351 + w12X1 - 3 Rr(BE + F°) 2.4.9

§1 + w22y1 =3 BK - AB(w1 + @)2]063 {(w1 +'w2)t + (¢ + 9)}
- HaBé+ 2BA(w, +$)]sin Lo + @)t + (¢+ o)} 2.4.10

Now as previously stated A, B, ¢ and © are slowlyAvarying
functions of time so that their first derivatives with respect to
time are assumed small of the first order in €. - This means that
2.4.9 and 2.4.10 need nof be treated precisely. Equation 2.4.9

simply becomes

X, + 0% = 0 2.4.11
- vhile 2,4.10 reduces to
?1 + w22y1 = - %ABw12 cos{(m1 + m2)t + ($+ 9)} 2.4.12

and the particular integral solutions to 2.4.11 and 2.4.12 can be

taken as

2.4.13
v, = ¥ aBlw, /(0 + 2w,)]cos {(Q1 + w,)t + (¢4ge)}



17.
With these solutions for X1 and vy the second order
perturbational equations may be written following‘the same
procedure of removing the resonant terms to the variational
equations then simblifying the remaining terms by eliminating

those of order greater than eo‘ The reduced second order

perturbational equations are

2
X, + 0 Ky = = + AB Rw1(w1 + 2w2)cos {(m1 + 2w2)t + (¢ + 26)} 2.4.14

§2 + wzéyz = 72A3[w1w2(w1 + wz)/(w1 + 2w2)]sin {(w1 + wz)t +
+ (d+ 9)} -4 A2E-[m13/(w1 + 2w,)]cos {(2&1 + wy)t +

+ 26+ 0)} + 3 Bu,%cos3(w,t + 0)
Once again particular integral solutions to 2.4.14 are required
before formulating the third order perturbational equations.

However these need not be found as the present analysis requires

variational equations of the second order only.

The Variational Eguations

Returning to equations 2;4.3 and 2.4.4, the variational
equations comprise the coefficients of the fundamental harmonic
terms together with the coefficients of the resonant terms brought

up from the first and second order perturbational equations.

Thus the coefficients of cos(w1t +¢) give,
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3 - A(w1 +<§>)2 + 49%4

il

-1, 2 2 :
e[€ (40" - w)a]l - €29 A

+ eR[+(BB + 1'32) - B2(w2 + é)z]cos(Ze -$)

GR[-%BZ'G' +,2B}'3(w2 + 0)]sin(26 - $) + €P cos ¢
+ €[ Ru 48/4(w, + 20,)1[5 - Blu, + 8)° + 2B(w, + B)(w, + )] 2.4.15

The coefficients of sin(w1t +$) give

- A'd; - 2!1((01 + ¢)

]

62%0)1.15.((»1 +¢) - eR[%-Bz'e' + 2Bf3(w2 + 0)]cos(20 - &)

eR[$(38 + 5°) - (w, + 8)°Jsin(26 - ¢)

+ €P sind+ €2[Rw1AB/4(w1 + 2'w2)][3'é + 2B(w, + )] 2.4.16

The coefficients of cos(wzt + 6) give

B - B(w, + 8)% + %8

e[e(@®

- w22)B] - €2'>2wé}§
+ e[4BK - $43(0, + $)%]cos(20 - $)
+ e[+aB§+ Bi(w, + $)]sin(20 - §)

62[w1AB/4(w1 + 2m2)]['}: - A(m1 + 4))2]

+

1 2[38°B + 388° - 2}33(m2 + 0?2 | 2.4.17

Completing the four variational equations, the coefficients of

sin(mzt + 0) yield,
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- B‘é - ZE((AZ + é)

= e2'72co218(w2 + 8) - e[1aBd + Bii(w1 + $)]cos(20 - ¢)
+e[3BE - $aB(w, + $)2)sin(26 - ¢)
+ e?[w1AB/4(w1 ; 2m2)][A$ + 2.&(&1 +~&)]

+ 3 8% + 41321'3(;)2 + 0)] 2.4.18

Again, becauserf the assumed slow variation of A, B, # and O,
and since it is sufficient to obtain solutions correct to the second
order in €, the above four variational equations can be simplified.
Accordingly, each of the omitted terms will be of the third order

"in €.

Hence 2.4.15 becomes

: =1 (o2 2y, . 2 2
- A = (€/20)[2€ (27 - w,")A ~ 2%92A - $RB"w, cos(26 - ) +

+ 5P cosd+ eR.&stsz/s] | T 2.4.19

where w, has been eliminated using the internal resonance condition

Similarly 2.4.16 becomes

. | 2 2 2 .
- A= (€/2w2)[471m2 A + ¥ RB w, sin(26 - ¢) + + P sing] 2.4.20

While 2.4.17 yields

. 1,2 2 . 2
- B8 = (¢/2w,))[€ (2° = w,")B = 29,0,B - 2ABw, cos(26 - ¢) -

- e’Bu,” + €1Bw,)"] 2.4.21



Finally 2.4.18 gives

- B= (e/zwz)[272m223 - 2ABm22sin(29 -$)]

The term in A in equation 2.4.19 and that in B in equation

2.4.21 can be eliminated using equations 2.4.20 and 2.4.22,

respectively. Thus 2.4.19 becomes

- ab = (e/2m2)[2é?1(92 - m22)A - %RBzwzzcog(ze - ¢) + 3 P cos¢)

+ (e/2m2)2[8§12w23A + RB20)1w23 sin(26 - ¢) + Pa w sindg +
+ RA325m23/4]
and 2.4.21 beccmes

- BO = (e/zwz)[ef1(92 - w22)B - 2ABw22cos(26 -¢)]

20,

2.4.22

2.4.23

+ (6/20,)[49,%0,7B - 4B, 5in(20 - ¢) - 24%Bu,” + Bw,’) 2.4.24

Equations 2.4.23, 2.4.20, 2.4.24, 2.4.22 constitute the four

second order variational equations from which the steady~state

solution nay be obtained. Before further analysis however, it is

convenient to introduce a change of variables. This transformation

takes the form
t=4%/ e ; v = (0, - &)/ew, PR ;
A=, J?/wz VE 3 B=b, J?/wz VE 3 é=1V ;.08=1Y,

Note, €P = m12 = 4w22 as previously stated.

The resulting variational equations are,

2.4.25
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2
A,‘(b1 + b, cos(2 1lf2 - \lf1) - cos \Xf1

o
=5
i

+ €9,[- 49, (e/R)';"b1 - b22sin(2 v, - llq) - sin ¥, ]

%(e/ R b, b22

Il

49 (/R = b sin(2¥, = ;) - sin ¥,

o
N
RS3

}

= 2yb, + (4/R)b,bycos(2 ¥, - V)

+

6'52[-2'}2(?/R)%b2 + (4/R)b bysin(2 W, - V7))
+ (2/12)(6/12)%{:2101 2b2 - b23]

and

o’
i

.o 1
7z .
2 - 29,(€/R)%b, + (4/R)bybysin(2 ¥, - V)
' cee 2.4.26
where primes denote differentiation with respect to the slow time

T.

The steady-state solutions for b,, by, ¥y and \V‘Z are

found by equating the right-hand sides of equations 2.4.26 %o zero.-

Thus b1’ = b2’ = b, \lf1, = b, \lfé = 0 and after some algebra,

eliminating \lf1 and V,, there results two rather complicated

relationships between b‘l and b2, namely

2 2 2.2 + 2 2
4, = €9,°R + YR + 2yR(€/R) (?.b1 - b, )
2)2

2
+ (e/R)eb,“ - v, 2.4.27

and



4 4
b
2, 2 2 2 2 2. 2 2.2 2
16(€/R)'>1 b, <+ %eRgb ==, + 4e%,.b," + 167D, + R =, -
b
8 1

b 1
2. 2 2 8 2. 4 7, 4
- 4Y°Rb," + +e/Rr) =+ -——16(€/R)b1 b, - av(€/R) b," -
1 ! 1 b 6 1
5, 2, 2 5 2 -
*b, “b," + FY(ER)® 2 % (er)? b24 +
1
2 6 _
+ 7 (&/R)b,” =1 2.4.28

- 18y(€/R)

Although an approach to the steady-state solutions for b1
and b2 through the second order variational equations provides a
more detailed insight into the nature of those solutions, the
algebra required becomes rather excessive. In the present study,
therefore, a solution to the first order variational equations will
suffice, in the knowledge that 2.4.27 and 2.4.28 would yield more

accurate predictions.

The first order variational equations comprise the fundamental
harmonic terms of 2.4.3 and 2.4.4 together with the resonant terms
of the first order perturbation equations. They are, after

simplification and transformation,

_‘O"

=
—t
{

= 4yb, + bzzcos(Z \l)’2 - \lﬂ‘) - cos \lf1

b1’ =42, (e/R)Jz'b1 - b22 sin(2 v, - V1) - sin ¥,
b,V = 2vb, + (4/R)b,bycos(2¥, - W) -
and b, == 2'}2(6/11)%-'1)2 + (4/R)bbysin(2 ¥, - V)

oo 2.4.29

Regarding the form of the above four equations it is seen that
they are directly derivable from the second order variational
equations 2.4.26, the terms emanating from the second order perturbation

equations are simply eliminated.
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Once more, equating the right-hand sides of equations 2.4.29

to zero such that b{' = bé’ =

set of four steady-state equations

4 I'4
b1\V1 = b, ¥, =0, produces a

4vb, 4 b22003(2 ¥, - ¥) - cos \\f1' =0
- 49, (e/R)’;'b1- - bzzsin(é Y, - ¥,) - sinl; =0
21o, + (4/R)b,bocos(29, - V) = 0O
and - 20,2(6/3)%1)2 + (4/R)b1b2sin(2 v, - \lr1) =0 _
- - ee. 2.4.30

which yield, on the elimination of ﬂf1 and ﬂ/2, two explicif relations

for 'b1 and b2, both nonzero. These are
ok 2 2 ok |
b, =+ HR)*[€," + v°R] 2.4.31
1 2
2 2 2 P o
and b," = 2(v°R - €, 32) +[1 - 4y eR(f:,1 + «»,2) ] 2.4.32

Bquations 2.4.31 and 2.4.32 represent the theoretical solution
of the steady-state behaviour of a perfectly tuned AVA system in the
neighboufhood4of external resonance. From 2.4.32 it is clear that
b2 is dependent on both 74 and M3 howevér, 2.4.31 suggests that.b1
is depéndent only on Mo and not "9 ° This apparent ambiguity is
dispelled when the results of the second order analysis are recalled.
Clearly equations 2.4.27 and 2.4.28 show a direct relationship
between b1 and b2 and consequently b1 must also be dependent on P
This illustrates one advantage of working to a higher order of

approximation.,



2.5 Steady-State Solution of a Slightly Detuned AVA

This section considers the more realistic case (from a physical
standpoint) of an AVA which has a certain degree of detuning. In
other words the exact internal resonance condition © = 2w2 is no
longer deemed to hold, instead it must be replaced by a new and more

general assumption that

where § is a small paramefer, referred to as the detuning factor.

(The external resonance condition 2.4.7 still holds).

With this new internal resonance condition it is necessary,
once again, to obtaih the first order variational equations. The
~ equations of motion (2.4.1) are unaltered and the same solution
(2.4.2) is adopted. Substitutién of the éolution into the equations
of motion leads to the two equations 2.4.3 and 2.4.4. Equating
the coefficients of the terms of‘the first order in € produces the
first order perturbatioh equations 2.4.5 and 2.4.6 which, for

cénvenienée; are rewritten here,
X, + 0, X, = - 250, [4 cos(ut +¢) - Aoy + ¢)sin(ut +¢)]

+ B[ (58 + $)eos®(wyt + 0) = B(u, + 8)°.

{cosz(w2t +6) - sinz(wét + oy~ {5% + 43B(w, + )} .

sin(w,t + 0)cos(uw,t + 6)] + P cos 20t 2.5.2

and

oo 2 . . .
¥+ w, Yy, = - 292w2[B cos(wzt + 6) - B(w2 + e)s%n(wzt + 0)]

+ [BE - AB(w1 +-$)2]cos(w1t + #)cos(wzt +0)

[ABb+ 2Bﬁ(uﬁ + é)]sin(w1t + $)cos(w,t + 6) 2.5.3
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Imposing ;'Lnte'rnal and external resonance conditions
necessitates the removal of cértain terms from the right of equations
2.5.2 and 2.5.3. For example the term sin(wzt + e)cos(wzt + 9) can
be written as + sin 2(w21: +0) or + sin(w1t + b+ 8t +20-9) and
twb hamonics' res\ult, sin(m1t + ¢)cos w and cos(w1t + Cb)sin ©

where a new variable w is defined as
w=§t +20 - ¢ 2.5.4

The resulting first order variational equations are

(cos(w1t + ¢)) :

A - A(w1 + ¢)2 + '492A

“1,.2 . 2 .
e[ (40° - v, ")a) - €2n9u A

+ er[4(B5 + 3°) - B2(m2 + 8)?]cosw

G:R[—’Z-Bzﬁ + 2Bf3(w2 + 6)]sinw + €P cosd 2.5.5

(sin(w, t +9)) *

2% - 2i(w, +4)

M 2ll
€29 w Alw, + ¢) - eR[2B°0

+ 2B]§(w2 + 8)]cosw

er[H(BE + 82) - Bz(w2 + é)2]simu + €P sin¢ - 2.5.6

(cos(wzt + 6)) 2

B - B(w, + 8)° + o°B

efe™(e® - w,)B) - e29,u,B
+ €[$BK - -%AB(w-1 + dp)z]cosm

+ €[$aB8+ BA(w, + $)]sinu | 2.5.7



(sin(wzt +0))

- BS - 21§(w2 +6)

GZ%wZB(wz +0) - e[%AB.d.:+ Bl'\.(w1 + &)]cosw

+ e[ 4B - $AB(u, + $)2]sinw . 2.5.8

Assuming the first derivatives of A, B, ¢ and © to be of the

first order in €, the simplified equations are

2Aw1¢ = 6[6_1 (492 - w12)A] - GRBzwzzcbsw + €EP cos b

. 2 2 2 . .
- 2hw, = €2%w "A + ERB w, sinw + €P sind
- 2Bw2é = e[e"1 (92 - w22)B] - e—;_~ABw1 2cosw
- 2i3w = €29%.w 2B - €=L.ABcu 2sinm
o = C2hty 2ABw

o e 20 509
Transfoming'the variables as follows
t=4%T/eJPR ; Y = (w22 - 92)/€c02 JFR

A=, J‘?/wZJK;B=b2J?/w2J§; ¢= Y, 50= V¥, 5 wu=0; 2.510

remembering that €P = w12 and w, = 2w, - $, the four variational

equations assume their final form

b, V. = 8ybw,/(20, ~ §) + 2b, (s2 - 4Sw2)/(€R?17(2w2 - §)°
+ (2b22wzcosw)/(2w2 -$) - (2w2cos ‘lf,l )/(2w2 -5)
b/ == 4 (&/R)F b, - (2b)uyminn)/(2u, - §)
~ (2wysin ¥, )/ (20, - §)
b, 19’2/ = 2Yb, + [b1b2(2m2 - S)Zcosw]/Rmz2
b2’ =~ 4172w2(€/R)J§b2/(2w2 -$) + [b1b2(2w2 - 5)gsinw]/Rm22

LN 2°5°1~1
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As before, primes denote differentiation with respect to

the slow time 7.

Equating the right-hand sides of equations 2.5.11 to zero
provides the steady-state solution of the‘detuned AVA systenm.
However, it is advisable in subsequent analysis to replace the
détuning factor §, which is small of order €, by the frequency

ratio
p = 2w2/uH 4 2.5.12

wvhich is in the neighbourhood of unity. Hence the four steady-

state equations are
| 2 1 2
4pYb, + 2(1 - p )b1/(6R) + pb,“cosw - pcos {, =0
£ 2 '
- 471(€/R) b, - pb, sinw - psiniy, = O
2
2Yb, + (4/p R)b1 b,cosw = O

1 ’ .
. 2 .
—.2p’2(€/R)2b2 + (4/p R)b]bzslnm =0
A ese 2.5:13

On the elimination of w and W} there results two expressions

for b1 and b2

N .
b, = _-*_-_-12—p2(R)2[:€p2/7)22 + YZR]% , 2.5.14

1

and

' i
b22 =292[Y23 - &y '72] + p(1 - 92)(R/e)27

.. 22 2 |2 2y2 2
£ [1 - a0™%er(y, + 6%,)° - o4t - 69)%," -

- 4001 - pz)(efi)%wr’yz(z1 + pz')z)]% ‘ 2.5.15
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These expressions represent the first order approximation to
the steady-state behaviour of a detuned AVA system in the region of
external resonance. They may be compared with their counterparts

in the previous section, equations 2.4.31 and 2.4.32.

So far, analysis has provided the steady-state solutions for
an AVA system both perfectly tuned and slightly detuned. In the
remainder of this chapter the stability of these solutions will be

examined by observing the behaviour of the parameters bi’ b2, ¢q and

4[2 when given small displacements about their equilibrium position.

2.6 Stability of Steady State Solutions ¢ Exact Internal Resonance

Case 1 : b1, b2 nonzero.

The first order variational equations for a perfectly tuned
absorber are given by equations 2.4.29 which, for convenience, are re-

written here

b1’ =~ 40, (e/R)%b1‘ - b22sin(2 \lfz - \lr1) - sin L\r1
b = - 272(6/3)'3%2 + (4/R)b,bysin(2V, - V)

= 4Yb, + b22003(2‘$é - wa) - cosﬂq

(=2 o
N a—
& 5

H f

= 2yb, + (4/R)b bycos(2 Y, - \lf1)
' ee 2,641

The parameters b,, b,, IU% and \Vz of the above system
equations are given small displacements from their equilibrium

"configurations such that
S0 4 5b,, U =W 4 U, W =0 4 SU, 2.6.2
27 2 2* N 1 1? 72 2 2 °Te

where the bio and ¢i° satisfy the equilibrium solutions.



The substitutions 2.6.2 are made in the variational equations
2.6.1 and, wvith the retention of linear terms in Sbi and Slb'i, there

emerges a set of four first order equations,

il

' §v) = - [49, (6/11)'1""]51@1 - [2b2651n(2 VAT 0NN
. , .
+ ['b2° cos(2 \lf2° - ’4)’1 %) = cos \lf1 °] 54,—1 .

2
- [2b2 cos(2 llfz - ‘llf1 )]S’l}fz

§v; = [(4/R)b,%sin(2 ¥,° - ¥, °)]6v, |
+ [(4/0)b, %sin(2 ¥,° - ,°) = 20,(€/0) 16,
- [(4/R)v, %, %c0s(2¥,° - ¥,°)] §¥,

+ [(8/R), obzo°°s(2 ‘1’20 - ‘V1°)] S\sz

b1°$df1/ = [4v]5b, +.[2b,°cos(2V,° - 1[)’10)]8‘02
2
+ [0, sin(2 V,° = ¥°%) + sin ¥, °) 5¥;

2
- [2b2° sin(2 \szo - 11[10)] 5\"2

by’ 5‘{’2{ = [(4/R)b, cos(2 ¥,° - ¥, °)]6Dy
+ [(4/}z)b1 %cos(2 llfzo - \ho) + 2Y]Sb2
+ [(A,/R)b1 ob2~:)sa'.n(2 \P'zo - V1 O)J W1 |

- [(8/R)b, v, %sin(2¥,° - ;)] 5,

. 2.6.3
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Further, if a solution for the §b, and Su& is taken in

the form
Sb =5bTe*<p ANt 3 SV =S\J,"Tezn At
i i 7 ’ i i =
then the four equations 2.6.3 may be written in matrix form

(M - AD)r =0

wvhere Ii is the matrix of the coefficients of the SbiT and SWRT,
D is a diagonal matrix and r is the column vector of the SbiT and
$¢iT. It follows that the nature of the roots of the 4 x 4

stability determinant,
M~ AD| =0 2.6.4

determines the stability of the solutions. Once expanded,

2.6.4 provides a characteristic equation of the form

7 oo I No+d, ¥4I N+ =0 ' 2.6.5
where
Jy=1 5 g = 4(€/R)%'(2o,~1 +95) 3
J,.= (16/R)[y2R + 6912 +(b2°)2 + 2€m9,] 3
I, = BZGéé/ﬁ%)[(271 + 472)(b2°)2 + Zzb(YzR + 6512)] ;
and : .
3, = (64/R2)(b2°)2[(b20)2 - 2(v°r - € 7,)]

vee 2.6.6

It should be noted that considerable calculations are involved
»in the expansion of the deferminant 2,6.4 and the final expressions
for the coefficients of lambda (2.6.6) are only obtained aftef the
elimination of ¥,°, ¥,° and b, using the results of the steady-
state analysis (2.4.30 and 2.4.31).
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The Routh-Hurwitz criteria provide the necessary and
sufficient conditions for the characteristic equation 2.6.5 to
have roots with negative real parts and consequently, for the
golutions to be stable. They are Ji positive and H = J,J,J, =

17273

2 2 _ m s
J1 J4 - JOJ3 positive for stability.

Now by inspection of 2.6.6 J1, J2, J3 and J4 are positive
(only positive damping is considered) and by calculation H is also
positive. The only remaining condition to be considered is that

JO be positive, which yields the inequality
04,2 2
(0,°)° > 2(y°R - €3,9,) 2.6.7

as the required stability condition. If this inequality is now
compared with the steady-state solution for b22 given by equation

2.4.32, namely

b2 = 2(v°R - €9,9,) & [1 - ty%er(y, + 52)2]%

" then it is seen that thé stability condition becomes
+[1 -4 Z%R(n, + )2]%':> 0 2.6.8
. Y 51 ’52 . L] .

It is evidént therefore that the steady-state solutions for
bi and b2 both nonzero, are stable over the frequency range
spanned by the upper branches of the b2 response curves, and are

bounded by the points of vertical tangency on these curves.

Case 2 ¢ b1 nonzero, b2 zZero

The substitutions

b1 = b1 A+A8b1; 52 ='$b2(§2°'=0); W} = ¢3° +$¢i; ¢é = ¢é° + S¢é 2.6.9

are made in the system equations 2.6.1 where once again b1°, b2Q =0,

4r1° and IVZO satisfy the equilibrium conditions.
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For b2o = 0, the steady-state equations 2.4.30 yield the following

expression for b1°,
o i
b1 = + a1 206910
a[v° + (G/R)'71 I
Thus with b2° = 0 and b1° given by 2.6.10 there results four
first order equations in the ébi and Sllfi. These are
y 1 o
by = - [4,71 (€/R)2]£b1 - [cos 11/1 ] S\}r1
1
/ o . o 0 >
§by = [(4/1{)1;1 sin(2 ¥," - 1[)'1 ) - 272’(€/R)3]Sb2
o 7 . o
§Y, = [4v]ép, + [sin ¥, 7] s,
and i
) 0 o)
0 = [(4/R)b1- cos(2 \Vz - \V1 ) + 27]8‘02
' e 2.6.11
As there are no linear terms in 5¢é the stability
determinant reduces to a 3 x 3 in the coefficients of 5b1 , £b2
and Slh . The fourth of equations 2.6.11 provides an expression
for cos(2 quo - 1{{1 o). Expanding the determinant results in a
cubic characteristic equation of the form
T N+ T, N A I N +T =0 2.6.12
3N 2 1 o~ T
where .
_oyE 3 *
Js =13 3, = 8(e/R)7 « 2{(e/r) By - [ (2/R)? (b,°)° - v ST
2
3, = 16[v* + (€/R)%,°] + 16(€/R) 4,1{(6/11) - [(2/R)?(b, )%= *T? ar
é
5, = 320¥° + (&/R)9, 21 {(e/R)%,, - [(2/R) (%) - ¥}IF}

LR 2;6.13

(\lf1° and \VZO have been eliminated using steady-state equations 2.4.30).
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For a cubic characteristic equation the Routh-Hurwitz

criteria are Ji positive and J J2 - Jo positive for stability.

1

After calculation J1J2 - Jo has the form

51 Tyl = 128(@/11)'127;,1[72 + (e/R)J’Z%Z]'
+ 52(e/m)%, {(e/n)%, - [(2/0)2(6,°)? - 1712
+ 128(e/0)g, 2 {(e/m)Fn, - [(/02(6, 2% - T} 2.6.14

By inspection of 2.6.13 and 2.6.14 it is clear that stable

solutions require
¥ 2,0 02 2% -
’ (G/R) 72 } [(2/R) (b1 ) - Y ] 206015

Further, the bounds of stability are defined by the

equality
v = (2/R)%(, %)% - (e/R)a,” 2.6.16

° using 2.6.10,

which becomes, on substituting for'b1

¥ = - (&/2R)(5,° + 9,%) i (1/2R)[ € (5,7 - @22)2 F1F 2,617

2.6.17 defines the frequency range within the solution is unstable.

Considering once again the stability criterion 2.6.15 it is

evident on rearranging the inequality thus
2 2.2 2
(0,202 < (8/2)%° + (eR/4)3,

that the right-hand side represents the square of the two-degree

of freedom solution for b1, given by 2.4.31. In other wofds
the'stability criterion is simply stating that the zero b2 solution
is stable while the one-degree of freedom solution for b1(b2 = 0,

see equation 2.6.10) remains below its two-degree of freedom solution

(b1 and b2 nonzero, equation 2.4.31).
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Consequently the frequency expression 2.6.17 defines the ’cross-
over’ points in the main mass response found by egquating the one-

degree of freedom solution to the two-degree of freedom solution.

Returning to the steady-state solution for b2 given by
equation 2.4.%32 it is seen that for b2 = 0 this same expression

db
2.6.17 is obtained and that the slope E?g is infinite.  Therefore
the bounds of zero b2 stability coincide with the points of vertical

tangency in the lower branches of the b2 response curves.

.In summary then, the stability criterion 2.6.15 provides a

frequency expression 2.6.17 which defines

(a) the bounds of zero b, stability,

2

(b) the cross-over points of the b1 response curves, and
(c) the points of vertical tangency in the lower branches

of the bé response cCurves,

Clearly the cross-over points could be renamed the entry points

as they signify the beginning of absorber action.

2.7 Stability of Steady-State Solutions : Detuned Absorber

A study of the stability of the solutions 2.5.14 and 2.5.15 for
a detuned absorber follows the same procedure as detziled in the
previous section, It is necessary only to quote the results of such

an analysis for the detuned case.
Case 1 : b1,b2 nonzero.

The condition which emerges from the Routh-~Hurwitz criteria is

that

(0,22 > 202070 - ey ) + o1 - WV 2.1

for stable solutions,



Comparing this inequality with the result 2.5.15 it can be concluded

that

+[1- 492Y2€R(9;1 + 92’52)2 - ot - p2)2'722 -

- 4p3(1 - pz)GER)%#52(31 + pzyz)]% > 0 2.7.2

and therefore that the lower branches of the b2 response curves are

unstable.

Case 2 b1 nonzero, b2 Zero .

Here the Routh-Hurwitz stability criteria require that
1 1 )
= 2/, 0\2 247 -
e e/R)%, » [(2/r)(6,°)° - 0% 2.7.%
- for stability where the steady—stéte expression for b1°(b2° = 0) is
given by

b1o . p . -
2{alo** + (e/R)'hz] + [4p(1 = PW/ER)Z] + (1 = p°)°/(er) } 7 |

2,704

2.7.4 is obtained from the steady-state equations 2.5.13 with b2 =0,
and its substitution into 2.7.3 gives a frequency relationship which
defines the frequency bénd inside which the zero b2 solution is

unstable. Thus the bounds of stability are determined by the roots

of the expression
[40*R%Y* + [40°(1 - Pz)(R%‘/E%)]YB
+ [46%R(5 2 + p*,2) + 021 = I RE)IY

+ [4p5(1 - p2)(€R)%'722]Y + [4p4e2912522 £ oM - p2)2’§22_ -1] =0 2.7.5



36.

However, 2.7.4 only provides a hypothetical one-degree of
freedonm responsé which, while it ensures the correct mathematical
formulation of the stability bounds (2.7.5), does not represent
the true b1 response. To understand this it is necessary to

consider what detuning means in a physical sense.

If the absorber system is not perfectly tuned to half of the
main mass frequency it is considered to be in a detuned condition.
The degree of this detuning may be reduced by suitable adjustments

* stiffness or to the magnitude of its end mass.

to the absorbers
In the present study the system mass.(M + m) ig maintained constant
and so any detuned condition stems from incorrect adjustment of the
absorber stiffness for a given amount of damping 652. In this
case it is obvious that the system cannot differentiate between
perfect tuning or any amount of detuning when'performing one-dégree

of freedom motion. Thus the one-degree of freedon response is

given by equation 2.6.10, that is

o
b1 = +

1
4y® + (G/R)%z]%

Consequently the cross-over points found by equating 2.6.10 with
the.two-degree of freedom solution 2.5.14 do not coincide with the

bounds of zero b2 stability.

Finally, the expression 2.7.5 is also derivable from equation
' ' db
5 = 0, while the slope a;— becomes infinite, Thus

2.7.5 also defines the points of vertical tangency in the lower

2.5.15 for ®

branches of the b2 response curves,

Summarising the foregoing comments it may be said that the
stability criterion 2.7.% provides a frequency expression 2.7.5 which

defines,



(a) the bounds of zero b2 stability,
and (b) the points of vertical tangency in the lower branches of

the b, response curves,

2
but which does not define the cross-over points. Because the
cross~over and entry points for a detuned absorber system do not
Q

coincide, jumps in the main mass response are to be expected on the

commencement of absorber action.
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CHAPTER 3

THEORETICAL AMPLITUDE RESPONSE OF THE AVA

3.1 Introduction

With the ccmpletion of the stability analysis it is now possible
to assimilate the findings of the preceding chapter and present them
in graphical form. The drawing of a series of theoretical amplitude
response curves for the main mass and absorber systems provides for
easy iﬁterpretation of the steady-state results and forms a basis for

comparison with known experimental data.

For the most part only the response curves of a perfectly tuned
absorber system are presented although the effects of detuning are

shown.

The chapter ends with a theoretical comparison of the

autoparametric absorber and the linear tuned and damped absorber.

3.2 Theoretical Response Curves: Perfectly Tuned Absorbef

To provide response curves vwhich may bé compared more readily
with experimentél data, the steady-state solutions for b1 and b2

givén by equations 2.4.31 and 2.4.32 are transformed thus

]Xd/xol = X ["722 + (1 - n2)2/462]% 3.2.1
(v/x? = (8fer) [ {1 - n2)%/ae]} - 31%]

£ (4feR) [t = (1 - 12)2(n, +9,)2)% 5.2.2



Using these nondimensional expressions together with the
stability conditions previously derived for the éerfectl& tuned case,
the nondimensional qﬁantifies (Xd/XO) and (yd/Xo) can be plotted
. against the forced frequency ratio, n = 29/&1, for various values
of viscous damping 671 and eﬁz. Known experimental values are
assigned to the constants Xo,G.and R, while the ratio of the
damping parameters N and % is variéd over a range thought likely

to be encountered in practice.
Adopting the following values for the system constants,

Xo = 0,0030 in, € = 0.0005 and R = 0.0196

the Figs. 3.2.1 to 3.2.6 show the effect of varying 4, (for a.given
91) on the amplitude response‘of the system. Bach of these figures
‘presents the amplitude response of the main mass, (1), together with
the corresponding absorber response, (2). It should be noted that
the lower branches of the absorber response curves are unstable as
indicated by the broken lines and that the amplitudes of the absorber
mass are approximately ten times greater than those experienced by

the main mass.

An examination of equation 3.2.2 reveals the following properties

of the absorber response curves:

1. For real (yy/x ), [1 - 1/(y, ;ryé)]%s n<[1+1/(3 + '72)]%.

Thus, absorber action occurs for a limited range of excitation
frequencies in the neighbourhood of oy vhen the damping is not too
large.

2. For 04(')1 + )2) < e“% the response curves have tyo maxima, one

minimum and four points of vertical tangency (two for (yd/Xo) = 0).
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1 )
-1 -
3. For €2 < (31 + @2) < e (ﬁ1$2) 2 the response curves have
only one maximum, no minima,and four pointis of vertical fangency.
~1 -
4. TFor (51 + 32) >+ € (7172) Z the response curves have only one
maximum, no winima,and no points of vertical tangency. This means

that the equality

1

(ny +95) = 3 <‘='1('mz>‘%"

3.2.3

defines the maximum permissible damping for stable absorber action

(see Fig. 3.2.6).

To provide a measure of the effectiveness of the absorber
Figs. 3.2.1 and 3.2.2 also show one-degrée of freedom responses

(absorber locked, Y3 = 0) for €91 = 0 and 671 = 0.0035, respectively.

The points of vertical tangency on the absorber response curves
are important as they define the boundaries of the region of parametric
iﬁstability of the absorber. They coincide with the discontinuities
and jumps observed in the main mass displacements. In subsequent
discussion the forcing.frequency at vhich a nonzero absorber amplitude
becomes unstable will be referred to és a ’collapse frequency’ and‘
the associated main mass amplitude just prior to this will be feferred

to as its ’collapse amplitude’.

To follow the details of the action of the AVA consider the
set of curves depicted in Fig. 3.2.3. It is seen that following
the path of increasing frequency (indicated by arrows) the system
behaves as a normal one~degree of freedom system (region A) until it
reaches the cross-over point (point B) previously discussed. This
corresponds to a point of vertical tangency in the absorber solution

(v © _ 0 solution unstable) and so absorber action begins.

2
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The main mass system then follows the two-degreé of freedom solution
(region C), its amplitude reaching a minimum value at n = 1. It

then climbs steadily until the collapse amplitude is reached (point D).
This corresponds to a vertical tangency in the absorber solution

which defines the collapse frequency and marks the bound of absorber
action. The result is that absorber action'ceases and the main mass

gmplitude drops to its one-degree of freedom level (point E). ‘

Following a path of decreasing frequency (again arrowed) the
main system behaves in a similar fashion tracing the path F, G

(absorber entry point), c, H (collapse amplitude), X and A.A

‘The corresponding regions and points on the absorber response
curve are similarly illustrated using lower case letters, the Jjumps
bb and gg coinciding with the -entry points B and G on the main mass

response.

To complete the graphical presentation of the perfectly tuﬁed
AVA system,vthe amplitude response curves for both the main mass and
the absorber can be combined to form the three-dimensional plots of
Fig. 3.2.7 and Fig. 3.2.8. Fig. 3.2.7 shows the 3-4 surface of main
mass response formed when the additional parameter axis @2/71 is
infroduced. The effect of viscous damping on the response is
immediately apparent vhile any point on the wedge-~shaped surface
defines a main mass response for wﬁich there exists stable absorber
action. The locus of the collapse amplitude, which is shdwn by
chain line, has as asymptotes the two-degree of freedom response for
671 = 0 and 692 = 0 and, for increasing 72/71, terminates when the
maximum damping condition (3.2.3) is satisfied (in this case when

€y

: ='0.0035.and €y, = 0.0238).
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This locus is seen to have a minimum value which defines that ratio

of'@2/31 vhich will produce the minimum collapse amplitude.
Expressed mathematically, the equation of the locus is
. \2 2 2 2

and it has a minimum value defined by

Dyl +3,) = 1/4€® = 0

Finally, the locus of the minimum amplitude of the two-degree
of freedom solution may also be drawn, it is a straight line of

gradient 1//71 and is shown by chain line.

The 3-d surface of the absorber response is shown in Fig. 3.2.8
where the unstable lower branches of the solutions have been omitted
for clarity and every point on the U-shaped surface defines a state
of stable absorber action. There are a number of interesting locij
in this figure which are‘identified as follows,

(a) the locus of maximum amplitude (chain line),

(b) the locus of collapse amplitude (dash 1ine), -

(c) the locus of zero b2 stability which defines the entry points
(chain line), |

(d) the projection on the b2 = O plane of the locus of collapse

amplitude (dash line).

Now it has already been mentioned in this section that the
absorber response curves fall into three qistinct groups. The

1
boundaries separating these groups occur at (71 + 52) =€ 2

~1

and

)2,
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Fig. 3.2.1
" Theoretical Amplitude Response Curves for 671 = 0, 6@? = 0,
(Perfectly Tuned Absorber, p = 1.0).

(1) main mass response,
(2) absorber response,

(3) main mass response (absorber lécked).
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Fig. 3.2.2

Theoretical Amplitude Response Curves
for €y, = 0.0035, €7, = 0.0035,  (p = 1.0).
. (1) main mass response, | V

(2) absorber response,

(3) main mass response (absorber locked).
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Fig. 3.2.3

Theoretical Amplitude Response Curves
for € = 0.0035, €7, = 0.0070, (p = 1.0).

(1) main mass response,

(2) absorber response.
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Fig. 3.2.4

Theoretical Amplitude Response Curves
for €y, = 0.0035, €9, = 0.0110, (p =1.0).

(1) main mass response,

(2) absorber response.
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Fig. 3.2.5

Theoretical Amplitude Response Curves
for €y, = 0.0035, €, = 0.0189, (p = 1.0).
(1) main mass response,
(2) absorber response.

(Details of jumps omitted for qlarity).
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Fig. 3.2.6

Theoretical Amplitude Response Curves
for €y, = 0.0035, €7, = 0.0238, (p =1.0).

(1) main mass response,

(2) absorber response.

(Note : no jumps).
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3~-d Plot of Theoretical Regponse Amplitude
. of Main Mass under the Action of the AVA.




Fig. 3.2.8

- 3-d Plot of Theoretical Response
Amplitude of the Absorber.
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When (@1 + 72) = € ¢ the locus of maximum amplitude exhibits
a bifurcation, a transition point from two maxima (and a minimum) to
one maximum. For the values ascribed to the system parameters this
occurs when %,/ = 5.39, i.e. €%, = 0.0035 and €3, = 0.0189 (see

Fig. 3.2.5).

When (31 + 32) =+ 671(9132)d% the two sets of vertical
tangency points coincide so that the locus of collapse amplitude
intersecfs'the-zero b2 plane. For the given system this occurs when
72/31 = 6.80, i.e, €9, = 0.0035 and €, = 0.0238 (see Fig. 3.2.6).
An infinitesgimal increase in damping beyond these vaiues results in
imaginary absorber action (negative collapse amplitude) and so the

system reverts to its one-degree of freedom response.

3.3 Theoretical Response Curves: Detuned Absorber

Once more it is convenient to transform the steady-state
solutions for b1 and b2, given by equations 2.5.14 and 2.5.15, to

provide expressions suitable for graphical presentation, thus

de/xol = 4 [94’722 + (92 - n2)2/4e2]% 33,1

|Ga/% )| = (8/ere? ) {(p%n?)?/a€} - €65, + R(1-p) (%) /4e]

+ (4/erp?)[1 - (pz—n2)2(°;1 + 92'52)2 - ot - p2)2'722 -

202(1 = p2)(p? - n2)('7132'+ 92'722)]% 3,3,2

These expressions may be compared with théir counterparts
in the previous section, 3.2.1 and 3.2.2. They are very similar

in form and, of coufse, identical vhen p = 1.



Using 3.3.1 and 3.3.2 togéther with the restraints of
the stability conditions for the detuned case, it is possible to
produce a series of response cur&es similar to those already drawn
for the perfectly tuned absorber. However, to avoid unnecessary
duplication it is sufficient to simply highlight the effects of
detuning with the aid of Figs. 3.3.1 and 3.3.2. The value of the

detpning factor p is taken as 1.01 to emphasis these effects

44.

although clogser tuning can be obtained in practice, The same values

are chosen for the system constants, namely, Xo = 0.00BO‘in,

€= 0.0005 and R = 0,0196.

Fig. 3.3.1 is drawn for 671 = 692 = 0 and may be compared
directly with Fig. 3.2.1 for the perfectly tuned case. Similarly
Fig. 3.3.2, for €§1 = 652v= 0.0035, is directly comparable with Fig.
3e2e2, The features which emerge from this visual comparison may be
listed as.follows:

1. The two-dégree of freedom solutions for Xd and Y4

shift bodily to centre themselves about n = 1.01.

2. The symmetry of the perféctiy tuned response no longer
exists due to the term in (1 - pz)(p2 - n2) which reduces
the collapse amplitudes when n >p>1.0 énd increases
them vhen n < p > 1.0, (Note the opposite effect occurs

for p « 1.0).

3. Because the one-degree of freedom response of the system
is unchanged, the cross—over and entry points do not
coincide with the result that the main mass response

now exhibits jumps on the entry of absorber action.
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Fig. 3.3.1

Theoretical Amplitude Response Curves for 671 = O, Ezb =0
(Detuned Absorber, p = 1.01).

(1) main mass response,
(2) absorber response,

(3) main mass response (absorber lookéd).
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Theoretical Amplitude Response Curves
for €m, = 0.0035, €7, = 0.0035, (p =1.01).
(1) main mass respbnse,

(2) absorber response,

(3) mzin mass response (absorber locked).
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3.4 Comparison of AVA with LTDA

A glance at equation 3.2.1 shows that a more powerful

~ absorber action is achieved when the value of the parameter €

(= 6X0/58) is increased. This implies an increase in the

ratio of'axial motion to lateral motion of the absorber end mass.
In practice this can be achieved by dimensioning the absorber
cantilever beam to provide the same natural frequency (wz) with

the same mass (m) while decreasing the length (t).

Experimentally it was possible to éroduce an absorber of
small length, giving an € value of 0.0025 (ef. €= 0.0005 used
previously). Fig. 3.4.1 shows a set of theoretical main mass
responses for such an absorber. Studying Figs. 3.2.1, 3.2.3
and 3.4.1, it can be seen that a general improvement in the
performance of thé absorber has been obtained by shortening its
length but this improvement is obtained at the expense of greater

strain amplitudes in the absorber.

To provide a measure of the effectiveness of this improved AVA
system it was decided to effect a theoretical comparison with the
linear tuned and damped absorber (contracted to LTDA). It is assumed
“that the theory of the LTDA is known to the reader, if not, it is
well documented by J.P. den Hartog in his book "Mechanical Vibrations".

The LTDA main mass response is

EQ = [— (2@n)2 + (n2 - 1)2 5.
% (23)°(a° - 1 + ¥ n°)? + (% n® - (n? - 1)%7?

where m/M is the ratio of absorber mass to main mass, 49 is the
damping introduced between m and M. The experimental ratio (m/M)

= 0.02 is chosen for both AVA and LTDA systems.
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Fig. 3.4.1

Theoretical lain Hass Response Amplitude
under the Action of Small Length AVA.

(a) €71 o, 672 = 0, :

(v) €s, = 0.0030, €s, = 0.0338,

(c) €3, = 0.0030 (absorber locked).
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Since this ratio is small compared with unity, the LTDA natural
frequency ratio is taken as unity and the optimum damping between

its two mass system is found to be 0.09.

Fig. 3.4.2 compares the resulting LTDA main mass response

' (a) with'two AVA response curves () ana (c). Also shown is the
one-degree of freedom response (d) for the absorber locked. The
AVA response (c) represents the minimum collapse amplitude attainable
for the stated parameters but this €§2 value does not produce good
absorber action near resonance. Response (b) for a smaller E@z
value compares more favourably with the LTDA near resonance but the
consequent widening of the parametric instability zone results in

much higher collapse amplitudes.
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Comparison of Main lass Reéponse Amplitude of a LTDA
with that of a Small -Length AVA of the same Mass Ratio.
(a) LTDA main mass response,

(b) AVA main mass response, 671 = 0, EQQ = 0,0208,

(¢) AVA main mass response, €y =0, €, = 0.0360,

(d) main mass response (absorber 1ocked).
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CHAPTER 4

EXPERIMENTAL INVESTIGATION

4.1 Introduction

The theoretical model of Chapter 2 was derived from the

experimental apparatus shown in Fig. 4.2.1. This apparatus had

been in use for some time to study the phenomenon of autoparametric
vibration. During these early experiments it was observed that

over a certain frequency range the system exhibited the characteristics
of vibration absorption. From this it became apparent that the
theoretical model with its nonlinear second order differential equations
represented some form of vibration absorber and the idea of the

autoparametric vibration absorber was conceived.

After the theoretical solution of the steady-state behaviour
of the absorber had been obtained it was necesgary to confirm these
predictions experimentally. The aim of the experimental investigation
described here is to assess the performance of the AVA for various
amounts of viscous damping in the X and y motions. The amplitude
response curves for the main mass and absorber may then be compared

with their theoretical counterparts.

4,2 Experimental Avparatus

A study of the performance of the AVA requires:
1. An appropriate tﬁo—degree of freedom spring-mass system with °
good amplitude response (Low damping).
2. A force producing device.
3. Inétrmmentation to monitor'the input to the system énd measure

its response to such input.
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To fulfil the first of these requirements several spring-mass
models were tested. The original model is shown in Fig. 4.2.1.
It is essentially a two-beam system the two lowest modes of which
can be thought of as constituting a two-degree of freedom system.
The main mass system consists of a heavy gauge spring steel
beam which deflects in the plane of the figure and is assumed to
be effectively rigid in torsion. t supports at its free end a
vertical cantilever consisting of a thin spring steel strip carrying
an adjusteble end mass. This absorber system has its flexible
direction normal to that of the beam so that it deflects out of the

plane of the figure.

It wvas found that the most suitable force producing device
' Q
for this system and subsequent systems was the e%ptromagnetic
vibrator. In this case the main beam is excited near to its root

by a small Pye-Ling vibrator, type V47.

The response of the main beam is measured by a proximity
probe éituated near its fixed end. Because the main mass response
wag the one to which greatest interest was attached at this time,
no concerted effort was made to monitor the response of the absorber,
although several attempts were made using visual techniques and

strain gaugeAplaéements at the base of the absorber cantilever.

Although the two beam system exhibited a good amplitude response
.in that the inherent damping was extremely low, it had several notable
disadvantages. The first of these concerned the distribution of the
main mass. Clearly the theoretical model of Chapter 2 is based on
a concentrated main mass system making it difficult to equate the
response of the distributed main mass of the beam systeﬁ to that of

the theoretical model.
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Original Experimental Hodel.
‘1. main mass, 2. absorber cantilever spring,
2. absorber end mass, 4. nmain beam clamping block,
5. proximity probe, 6. vibrator,
7. vibrator clamping plates, 8. steel framework.



Further, the response of the main beam was measured near its root
(because of amplitude restrictions imposed by the proximity probe)
and consequently the response of the tip (vhere the idealised main
mass is assumed to act) had to be assessed assuming a static
deflection mode shape for the cantilever. Finally, difficulty was
experienced in determining the force input to the system. It vas
found that the current to the vibrator varied considerably during a
response test because of the varying imped%nce of the system over a
given frequency range. Although the vibrator current could be held
at a constant level this was no indication that the force input to

the system was constant.

These shértcomings in the experimental set-up caused the
validity of the experimental findings to be placed in doubt. The
only effective way to dispel these doubts was to design a new two-
dégree of freedom system which more closely approached the theoretical

model and which made instrumentation both easier and more effective.

The system which was finally adopted is shown.in‘Figs. 4,2.2
and 4.2.3. Fig. 4.2.2 is a plan and elevation drawing of the

essential features while Fig. 4.2.3 shows the model in situ.

The main mass is a solid steel block supported and restrained
to horizontal motion by four spring steel legs. A coil spring
provides the necessary horizontél stiffness giving a natural frequency
of 6.92 Hz. The absorber system consists of a spring steel beanm
with an adjustable end mass. This system is attached to the maig
mass by means of a light clamping block. A cantilever beam 0,020 in.
thick by 0.75 in. wide giving an absorber of length 7.25 in. was used
for most of the investigation (called absorber system 15 although a
short length absorber (1.45 in.) was tested (absorber system 2) using

a beam 0.005 in., thick by 0,50 in. wide.
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1. main mass,

2. spring steelAlegs,

4. absorber cantilever spring,
6,absorber clamping block,

8. vibrator,

9.

11. linear displacement transducer,

support points,

Experimental Apparatus.

3. coil spring,

5. absorber end mass,
7. angle bracket,
10. proximity probe,

12. strain.gauges.



Three Views of Experimental Apparatus .



(For the advantages of a short length absorber, see Chapter 3).

The complete system is mounted on an angle bracket which is
strapped to the head of a Pye-Ling vibrator, type V1006. To
prevent a bending moment on the vibrator head, the deadweight is
taken by suspending the whole assembly on elastic ropes connected

to four support points on the angle bracket.

Viscous damping is introduced into both main mass and absorber
systems by the addition of light vanes operating in oil baths. In
this way the damping can be varied by increasing or decreasing the

im;
depth to which the vanes are gmersed in the oil.
Thus the experimental rig is basically a spring mass system

on a moving support (vibrator head). Keeping the amplitude of the

support. constant ensures a constant exciting force on the system.

With this design the shortcomings of the original system have
been eliminated. Now the ﬁain mass system has a form which closely
resembles the theoretical model and which makes direct amplitude
measurement possible. Also, by monitoring the vibrator head

amplitude the force input to the system is known.

The basic arrangement of the instrumentation incorporated in
the set-up is shown diagrammatically in Fig. 4.2.4 vhile Fig. 4.2.5

shows the array of equipment in its laboratory setting.

Excitation of the vibrator is through a power amplifier
(Pye-Ling PP1/2P) from an accurate Muirhead low frequency decade

oscillator (type D-880-A).
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Vibrator field current is stabilised against voltage variations
using the Pye-Ling Stab 4 unit which is also interlocked with the
vibrator cooling system so that the blower motor operates when the
Stab unit is switched on. Potentiometers, in series with the
oscillator and amplifier, provide a fine control over the power

input to the vibrator.

Vibrator head amplitude is measured by a probe which is
brought into proximity with the metallic end-face of the angle
bracket. This proximity probe monitors the capacitance so formed
and displays it in terms of peak to pesk vibration amplitude on the

meter of the Wayne Kerr vibration meter B731B.

A Hewlett Packard linear displacement transducer (type 7DCDT-250)
measures the displacement of the main mass relative to the vibrator
head movenent. It is basically a linear variable differential
transformer with built-in carrier oscillator and demodulator systems.
The coil assembly is fixed to the angle bracket #nd is energised by .

a 6 volt d.c. supply. Vhen tﬁe core, which is attached to the main
mass, is displaced axially within the bore of the coil assembly it

produces a voltage change in the output proportional to the displacement.

Because of the slight lowering of the main mass on its legs
when performing large vibration amplitudes, adequate clearance
between the core and the bore of the coil assembly is essential. The
standard core (0.120 in. dia.) supplied with these transducers did
not provide enough clearance on the bore diameter of 0.125 in.
However it was possible to obtain a core of 0.098 in, dia. which

ensured the necessary freedom.




The output from the displacement transducer is displayed on
a Hewlett Packard 141A oscilloscope. A particular feature of this
*scope is its variable persistence facility which allowed the
measurement of damping rates in the X-mode by the amplitude decay

method.

The response of the absorber end mass is monitored using
strain gauges placed at the root of the absorber cantilever.
Because of the considerable curvature of the beam near its root due
to the large deflections of the end mass, it was found desirable
to use gauges of small dimensions. Those chosen were Showa
féii strain gauges, type SF-1, of gauge length 1.0 mm and width
2.1 mm, Strain gauge terminals were used to protect the fragile

lead-out wires of the gauges.

Two active gauges were employed, the bridge qifcuit being
completed by the Brilel and Kjaer strain gauge apparatus, type 1516.
This equipment energises the bridge circuit_using aj kc/s oscillator
and monitors the magnitudé and éense of the bridge unbalance on.a
centre zero neter, There is also provision for output to a

recording instrument (essential vhen measuring dynamic strain).

The output from theiBand X equipment is in the form of a
modulated signal, the carrier frequency being 3 kc/s. This signal
was amplified and fed into a Honeywell visicorder, model 2106,
(Wltraviolet recorder) which provides a permanent record of the
magnitude of the dynamic strain at the root of the absorber cantilever

from which the amplitude of the end mass is obtained.



4.3 Calibration of Experimental Apparatus

The instrumentation described in the previous section consists
of three monitoring systems, two of vwhich reguire calibration. The

three systems may be identified by the quantities which they measure:

System A ¢ Vibrator head amplitude,
System B : Main mass amplitude,

and System C : Absorber end mass amplitude.

System A requires no calibration because only relative

measurements of vibrator head amplitude are made. The purpose of

this system is to detect any change in the magnitude of the exciting

force.

In system B the manufacturers’ calibration of the linear
displacement transducer was found satisfactory in that the scale
factor of 6 volt/in. was linear over + full stroke. The vertical
sensitivity of the ’scope was adjusted following the procedure

~outlined in the instruction manual. Thus if the peak to peak

amplitude reading on the ’scope is P cm for a sensitivity range of

S v/cm then the main mass amplitude is given by (P.S/12)in.

Finally, in System C, the output trace of the ultraviolet
recorder is calibrated against direct measurement of the absorber
end mass amplitude. A light needle is fixed to the end mass and

a smoked glass slide brought up to it until contact is just made.

This amplitude measurement is compared with the recorder printout

for various steady-state amplitudes of the absorber. The resulting

calibration curve was found to be linear over a wide range of

amplitude response and so the absorber end mass amplitude is obtained

by multiplying the amplitude of the recorder trace by the gradient

of this calibration curve.
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4.4 Experimental Procedure

At the start of a series of amplitude response tests the

_ absorber is locked (using tape) so that the damping ratio (€?1) in
the X-mode can be measured by the amplitude decay method using the
long persistence facility of the oscilloscope. ¥iith the absorber
still locked a one-degree of freedom test is performed to determine
the damped natural frequency and resonant amplitude of the main mass
system. Then the absorber is unlocked and tuned as near as possible
to half the main mass frequency, after which, the main mass is
locked (using clamps) and the y-mode damping ratio (€92) measured

using the ultraviolet recorder.

Tﬁo-degree of freedom amplitude response tests are then
performed, each set in a given series havipg a common damping ratio
in the X-mode but differing in the value of the y-mode damping which
must be measured before each individual test in the manner described

above. -

Typical test procedure involves the step-wise increase and
decrease of the forcing frequency through the resonance region.
At each setting of frequency fhe vibrator head amplitude is held at
a constant predetermined level by means of the potentiometer in the
power amplifier output and the steady-state amplitudes of the main

mass and absorber systems are recorded.

4.5 Experimental Response Curves

Absorber System 1 ¢ € = 0.0005

As with the theoretical curves, the experimental response

curves are plotted in nondimensional form.



Each graph is a plot of (Xd/Xo) and (yd/Xo) against the forced
frequency ratio, n. Interpretation of these experimental curves

follows the same pattern as outlined for the theoreticél case.

The first series of tests is shown by Figs. 4.5.1 to 4.5.4.
In each case the damping ratio in the X-mode is €71 = 0,0035 while
the y-mode damping ratios @572) are 0.0017, 00,0035, 0.0110 and 0.0184,

respectively.

Figs. 4.5.5 to 4.5.7 present a second series of tests for an
X-mode damping ratio of 0.0116 and y-mode damping ratios of

0.0016, 0.0050 and 0.0116, respectively.

In each graph the curves are labelled (1), (2) and (3).
Curves (1) are the amplitude responses of the main mass under
absorber action. Curves (2) are thé corrésponding response curves
for the absorber system. Finally, curves (3) (shown by broken line)
are the system responses with the absorber locked ((%/Xo) = O).

These are only shown in selected graphs.

Absorber System 2 : € = 0,.0025

Fig; 4.5.8 shows a typical main mass response (1) under the
action of the shor£ length cantilever absorber for an X-mode
damping ratio of 0.0030. Unfortunately the absorber response was
unobtainable due to the extreme deflections,éf the end mass relative
to the absorber’s length. In fact the end mass doubled back on

itself with the end slope of the beam approaching 180°.

.In keeping with the labelling convention, curve (3) is the main

mass response with the absorber locked.
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Experimental Amplitude Response Curves
for €m, = 0.0035, €y, = 0.0017.

(1) main mass response,
(2):absorber response,

(3) main mass response (absorber locked).
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Experimental Amplitude Response Curves
for Cy = 0.0035, 6@2 = 0.0035.

(1) main mass responmse,

‘(2) absorber response,

(3) main mass response (absorber locked).
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Eyperlmental Amplltude Response Curves
for 691 = 0.0035, €$2 = 0.0110,

(1) main mass response,

(2) ebsorber response. .
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Fig. 4.5.4
Experimental Amplitude Response Curves
fox~€91 = 0. 0035, €72 0.0184.

(1) main mass response,

(2) absorber response.
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Experimental Amplitude Response Curves
for ey = 0.0116, 67‘2, = 0,0016.

(1) main mass response,
(2) absorber response,

(3) méin mass response (absorber locked).
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Experimental Amplitude Response Curves
for €'71 = 0.0116, 6@2 = 0.0050.

(1) main mass response,

(2)'absorber response.
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Experimental Amplitude Response Curves
for €'71 = 0.0116, En, = 0.0116.

(1) mein mass response,

(2) absorber response.
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Fig. 405.8

Experimental Main Mass Response Amplitude -
under the Action of Small Length AVA.

(1) €4, = 0.0030, |
(2) 6@1 = 0.0030 (absorber locked). |
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CHAPTER 5

DISCUSSION OF RESULTS

5.1 Comnents on the Theoretical Response Curves

The theoretical amplitude responée curves of the AVA are
presented in Chapter 3. For the most part these curves represent
the steady-state response éf a peffectly tuned AVA with an € value
of 0.0005, The effects of detuning are clearly demonstrated and
a comparison is made between the response curves of the perfectly
tuned absorber and those of a slightly detuned absorber. This is
followed by a brief theoretical comparison of the performance of a
short length AVA with that of a linear tuned and damped absorber of
the same mass ratio. In this present section a few additional

comments are made on the theoretical findings of Chapter 3.

Fron a study of Figs. 3.2.7 and 3.2.8 it is evident that for
low vaiues of the y-mode damping ratio, €72, (the X-mode damping
ratio, eqh, is constani) the absorber action greatly reduces the
main mass amplitude in the resonance region and that the steady-state
response of both the main mass and absorber systems is characterised
by_a deep U~§haped trough. However, at these low E@@ values the
absorber action also produces very large collapse amplitudes in
the main mass response which are obviously undesirable. These can
virtually be eliminated by increasing the value of e72 but this
results in decreased absorber efficiency through the resonance region
(in the neighbourhood of n = 1,01. Although it was shown in
Chapter 3 that there exists a value of e72 (for a given Q@H) vhich
produces a minimum value of the collapse amplitude this is not necessarily
the best choice of damping parameter because the efficiency of the

absorber nust be assessed over the complete frequency range.



Clearly a compromise must be reached between the acceptable

limits of the collapse amplitude of the main mass and its amplitude
atn=1.0. The difficulty in choosing optimum damping conditions
* for the AVA is highlighted by the comparison made between the
performance of the AVA and that of the LTﬁA (see Fig. 3.4.2)° In
this case, however, the difficulty is aggravated by the upper limit
placed on the value of € (0.0025) which was based on the best value

obtainable in practice with a cantilever absorber system.

5.2 Comments on the Experimental Responge Curves

Chapter 4 presents a seléction of experimental amplitude
response curves for a cantilever absorber system with an € value
of 0.0005. In the first series of tests (Figs. 4.5.1 to 4.5.4) the
X-mode damping ratio has the constant value of 0.0035 while the
y-mode damping ratio is allowed to vary. Although the effect.of
viscous damping was not considered in Chapter 2 when discussing
the causes of detuning in the experimental system, it is obvious
that increasing the y-damping ratio reduces the value of the first
resonant frequency of the absorber system and results in the detuning
of the AVA. Further, because of the nature of the experimental
damping system, en increase in y-damping causes an increase in the
value of the absorber end mass, m, due to the entrained mass effect
of the oil in which the vane operates, with the result that the
frequency of the absorber system is lowered and the AVA detuned.
Consequently, for each change in y-damping an a%tempt was made to
ensure the best possible tuning, with thé minimum amplitude of the
main mass system occurring at n = 1.0, by making slight adjustments

to the active length of the cantilever: beam.



It is noted, however, that no matter how good the tuning, the
curves of this first series of tests still exhibit considerable
asymmetry. This feature of the éxperimental curves will be

discussed later.

A second series of tests (Figs° 4.5.5 to'4.5.7) were
performed for €b1 = 0.0116 to'demonstrate the amplitude reducing
effect of increased X-damping on the steady-state response of the
main mass and absorber. This series also shows the effect of
y-damping on the tuning of the absorber because no attempt was
made to retune the absorber after a change in y-demping. As
expected fhe curves move bodily to the left when the y-damping

ratio is increased.

For both series of tests the behavibur of the system and the
trends exhibited by the response curves under increasing y-damping
are similar to those described in the previous section for the

theoretical response curves.

Experiments conducted with a short length cantilever absorber
of € value 0.0025 demonstrate the improved performance of such an
AVA, A typical test result is given in Fig. 4.5.8. The reduction
in canfilever length increase; the ratio of axial to lateral
movement of the absorber end mass thereby enhancing the absorbing
power of the AVA. The theoretical comparison between the AVA and
the LTDA is based on the performance of an AVA having this

particular € value.

5.3 Comparison of Theoretical and Experimental Response Curves

Direct comparison'between the theoretical and experimental

response curves can be made using Figs. 3.2.2 and 4.5.2 for
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.

0.0035 ; Figs. 3.2.4 and 4.5.3 for

il
Il

€n, = 0.0035, €,

e, 0.0035, €, = 0.0110 ; and Figs. 3.2.5 and 4.5.4 for

0.0035, €9, % 0.0186.

I

€

The experimental curves used in this comparison are taken
from the first series of tests in which every effort was made to
tune the absorber precisely to the condition W = 2w2, however
they lack the symmetry displayed by the theoretical cur&es about
the n = 1.0 axis. This asymmetry is partly attributable to the
detuned condition of the experimental absorber system and
consequently the detuning characteristics illuétrated by the
'tieoretical curves of Figs. %3.%.1 and 3.3.2 must be borne in mind
when éssessing thé merits of this wvisual comparison. But obviously
there must be other factors which contribute to this asymmetry
of the experimental results. The theoretical analysis does not
take into account, for example, the inherent nonlinearity in the
spring force of the absorber cantilever which, with the relatively

1argé amplitudes involved, is quite significant.

Judgipg by the overall form of the response curves the
comparison is seen to be quite reasonable although the experimental
amplitudes of the main mass are, ip general,.greater than those
predicted theoretically. The theoretical ahalysis predicts the
degeneration of the AVA response under the action of increasing
viscous damping, a trend which is clearly exhibited by the

experimental response curves.

More specifically, the experimental curves exhibit such

features aé entry freguencies (bounds of zero b2 stability),



jumps in the main mass response on the entry of absorber action,
collapse amplitudes, etc., all of which are mirrored in the
theoretical response curves. It can ﬁe concluded, therefore, that
'the theoretical response curves of the AVA’s steady-state behaviour,
derived from the first order theory of Chapter 2, compare favourably

with known experimental data.

5.4 Discussion of the Theoretical Analysis

.A first order approximation to the steady-state behaviour
of the AVA has been obtained using three different techniques.
Fér reasons already stated the asymptotic method presented in
Chapter 2 is preferred to the averaging method and the two-variable

expansibn procedure described in Appendix III.

In each case the equations of motion‘(2.3.1)_are written in
what is known as the standard form (2.4.1) in which right-hand
side is proportional to a small parameter (€) of the system. As
mentioned in Chapter 2, this reduction of the equations to‘the
standard form permits the study of the solution close to external
resonance because of the association of the forcing term with the
small parameter. The alternative would be the ’hard’ forcing

"case where the equations of motion are written as

X+ 49%x = e[ &' (49° - w12)X - 29 0,% + G + 39)]

+ w1200s29t

i

Y} 2 —1 2 2 - b .2 .o
¥+ 0y =€l (2 - 0, )y ~ 29,7 + Xy - €y(F° + ¥¥)]

and the solution taken in the form

2
w,

S —
2 2

cos2Qt + €X1(t) 4 .
w1 - 4Q

X = A(t)cos[w1t + ¢(£)] +

60.

5.4.1

y= ﬁ(t)cos[wzt +6(t)] + ey () + ..
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Applying thé asymptotic method leads to the following

set of first order variational equations

3
4m, Qu,
Co - 2
- Ad = (6/2(02)[261(92 - wzz)A -+ RB wzzcos(Ze -9) - -—'7—12———?—-2 sin ¢ ]
) . , - Q
2
4m Qu 3
- A = (Q/sz)[471w22A + ¥ RB2w22sin(2e - $) + —2%——2—5 cos b |
w, -
2
2 2
: 1,2 2 2 28w,
- B0 = (&/20,)[ e (27 - w, )B ~ 2ABw,“cos(26 - ¢) - —5—— Bcos26]
w, - R
2
and . ) - 292m22
- B = (¢/2w,)[27,0,"B ~ 24Bw,"sin(20 - ¢) ~ —5—=— B sin26]
Wy = 2
e s 0 5'4'2

vhere equations 5.4.2 are formulated assuming the exact internal
resonance condition, W, = 2w2, and the external resonance condition,

Q= 0, + ofe).

From the form of 5.4.1 the solution is seen to consist of a
 forced and ’natural’ response superimposed as though the system
were linear. Both portions of the response exist when the forcing
frequency 2Q is well away from the natural frequency Wy e However,
it is noted that as the forcing fiequency approaches wy the natufal
response becomes entrained by the forced response. In fact, as
. pointed out by Struéle in his book ’Nonlinear Differential Eguations’,
when discussing hard forcing of the van der Pol equation, the
rapidity with which the natural response portion fades out is
increased by

(a) increases in the hardness of the forcing function,
and (b) decreases in the separation of.the natural and impressed

frequencies.
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It can be concluded, then, that the soft forcing case is to be
preferred vhen considering the nature of the solution in the

neighbourhood of external resonance.

In Chapter 2 the asymptotic method was used to obtain the
variational equations of the second order of approximation, however,
as results have shown, there seems little to be gained (in this
particular problem at least) by working to an order of € greater
than unity. The variational equations of the first order of
approximation give an adequate representation of the steady-state

performance of the AVA.

The comparison of the theoretical and experimental steady-
state aﬁplitude response curves, discussed in section 5.3, not
only shows the merits of the first order theory but serves to
highlight the advantages which the more general detuning theory
has over the rather restrictive theory of the perfectly tuned
ébsorber. Although ths exact internal resonance case provides many
of the essential featurés of the éteady-state behaviour, it requires
a detuning theory to predict the asymmétry exhibited by the
experimental curves which is characterised by such features as jumps
in the main mass response on the entry of absorber action and-collapse

~amplitude differences on either side of the n = 1.0 axis,

A study of the transient behaviour of the AVA was made in
Appendix I, but unfortunately, difficulty was found in formulating
a plausible theoretical solution. ~ The analysis of the transient
solution of an autonomous system is a relatively simple matter.
Struble and Heinbockel, for example, were able to analyse the transient
behaviour of a beam-pendulum system. However the AVA is a

nonautonomous system which does not yield easily to analysis.
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The results of a computer simulation of the AVA equations of
‘motion suggest that a rather sophisticated theoretical analysis
is regquired to reproduce anything resembling the actual transient

response of the system.

While investigating the validity of the transient solution
derived in Appendix I, it was fhought necessary to check the
transient response properties of the first order variational equations.
A computer simulation verified that the transient response of these
equations was similar to that of the full equations of motion
derived from the theoretical model. Although thisg result did not
iﬁprove the standing of the theoretical transient solution it at least
served 1o strengthen the opinion that the first order variational

equations are a good representation of the AVA’s response.

5.5 Comments on the Experimental Investigation

' The gaim of the experimental investigation described in Chapter
4 was to provide a quick and reliable means of assessing the merits
of the theoretical steady-state analysis. However, a more
extensive experimental investigation would have been interestihg.
For example, to supplement the theoretical comparison between the AVA
and the linear tuned and damped absorber, it would have been interesting
to perform an experimental comparison of these tﬁo absorbers, both for
deterministic and stocha§tic excitation of the main mass system.
Future experimental woik might also include a study-of the performance

of the combined AVA-LTDA system discussed in Appendix II (System 3).

The response of the AVA to random excitation of the main mass

is discussed in Appendix IV,



The experimental measurements of the response spectral densities of
the main mass with and without absorber action, demonstrate the
AVA’s ability to reduce the power density level. However, such a
brief look at such a vast topic leaves many questions unanswered.
The experimental and theoretical study of the performance of the AVA,
(and similar systems) under stochastic excitation would seem to be

a fruitful area for future research.

5.6 Future Areas of Study

Apart from the study of the AVA’s performance under stochastic
excitation there are several other areas of study which stem from
the present research. One such area of interest concerns the design

of the AVA itself.

Because of the unfavourable comparison between the AVA and the
linear tuned and damped'absorber (unfavourable to the former) it was
decided to design a more efficient AVA system. The results of this
work are detailed in Appendix II. However a more rigorous s%udy |

of these alternative systems is required with a view to obtaining an
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optimum design for the AVA. Of the three systems discussed in Apppendix

ITI, the combination AVA-LTDA (System 3) seems the best prospect and
certainly more work is required on the theoretical and experimental

study of this system.

The application of the AVA to systems exhibiting torsional
oscillations is another aspect which is worth considering. For
example, by placing one or more AVAs on the end of a rotating shafti
which has torsional oscillations at frequencies w and 2w, the axis

of the AVA being normal to the shaft axis and displaced from it, it

is possible to envisage the absorption of both frequencies simultaneously

by suitable alignment of the absorber axis relative to the radius line

from the shaft axis to the root fixing of the AVA (see Fig. 5.6.1).



Fig. 5.6.1

Application of the AVA to Systens
Exhibiting Torsional Oscillations.

(A) AVA axis along radius line, acts as
a LTDA, absorbing frequency w,

(b) AVA axis at arbitrary angle to radius line,
acts as a combination LTDA~AVA, absorbing
both w and 2w frequencies,

(c) AVA axis at right angles to radius line, acts
as an AVA, absorbing frequency 2w.
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Situations in which the AVA is subjected to harmonic forcing
frequencies which are linear combinations of the natural frequencies
(w1 and w2) of the system, for example (w1 + wz), are also of interest.
In this case a study of the first order perturbational equations is
required to find which terms become resonant under this new input

condition.
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CHAPTER 6

CONCLUSIONS

6.1 Review of Principal Results

This investigation has studied the basic absorbing action of
an autoparametric system. Although this absorbing action was
first observed in the laboratory, it may well have been anticipated
from existing theory. The device described in this thesis, which
is known as the autoparametric vibration absorber or simply as the
AVA, depends for its operation on the timewise variation of its
spring stiffness, arising from the motion of the main mass to vhich
it is attached. This time-variation of one of the parameters of the
absorber leads to the growth of large lateral amplitudes of the end
mass which eventually reach a limiting valﬁe due to the inherent
nonlinearities of the system, while the associated axial motion of
the absorber end mass produces nonlinear inertial feedback terms

which influence the main mass response,

In summary, the principal results are as follows. The .
absorbing action of the cantilever AVA has been shown experimentally
and the first order asymptotic theory developed in Chapter 2 has
effectivgly predicted the esséntial features of the steady-state
response. Further, the good agreément, both éualitatively and
quantitatively, between the amplitude response curves of the detuned
ébsorber and those obtained experimentally suggesté that there is
no advantage to be géined in takihg the theoretical analysis beyond

the first order of approximation.
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With regard to the mathematical analysis of the AVA under
harmonic excitation, it has been shown that the same results for
the steady-state solution of the AVA system eguations can be
obtained by three distinct, but not unrelated, techniques. Cf
these, the asymptotic method of Struble is to be preferred as it
is the easiest to apply and is the most physically meaningful.

(The other two methods are discussed in Appendix III).

Although the comparison described between an autoparametric
absorber and a linear tuned and damped absorber of the same mass
ratio ié not favoﬁrable towards the former, it does serve to
highlight the important role plajed by the ratio of axial to lateral
motion of the end mass in determining the absorbing efficiency of
the AVA. Of course, this fegture of the absorber action can be
reasoned intuitively from the theoretical model when it is fealised
that the efficiency of the absorber depends on the'magnitude of the

axial inertia force which it exerts on the main mass.

With regard to the transient response of the AVA, clearly more
thought must be given to the theoretical analysis of this problem,
The computer simulation of the full equations of motion revealed é
complicated amplitude response pattern which would be difficult to
predict by analyﬁical means.  Two additionai fac?ors emerge from
the digital computer simulation of the AVA system, Firstly, the
simulation of the first order variational equations produces a
transient response pattern similar in nature to that of the full
equations of motion. This is a further indication that the first
order theory is sufficient to predict the response performance of

the AVA.
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Secondly, a comparison of the simulated transient response of an
AVA and a linear tuned énd damped absorber of the same mass ratio
was not favourable towards the former, in that the LTDA passed
through the transition zone from the given starting conditions to
steady-state operation without the violent interaction of the main
mass and absorber modes, so clearly illustrated in Fig. I.2.1,
Appendix I. Also the LTDA has a better transient response time
in that it settles more quickly into its steady-state mode of

operation,

6.2 Concluding Remarks

It can be concluded from this study of the absorbing
capabilities of the AVA that it is unlikely that it will replace
" the well-established absorbers such as the'lineér tuned and damped
or the gyrostatic absorber in their present industrial role. |
However there is still a great deal of development of the autoparametric
device which might still be carried out and it may prove
advantageous in some applications. For example, it is possible to
design an absorber which will act simultaneouély as an autoparameﬁric

and a tuned and damped absorber (see Appendix 11).

In the search for a practicable form of AVA it is necessary
to consider parameters such as the ratio of absorber end mass to
main mass, vhich remained invariable at approximately.1/50 in this
particular study. Increasing this ratio to 1/10, or more, must
improve the efficiency of the absorber, however; the mechanical
constraints of the cantilever-type absorber system would probably
restrict its use to small mass ratios, in which case, System 3 of
Appendix II would appear to be the‘most likely choice for a possible

commercial prototype.



Finally, the whole question of the stochastic excitation of
the AVA and other similar systems presents a wide area for future

research.

69.
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PRINCIPAL. NOTATION

The principal usage of the symbols is given here, other

meanings are made clear in the relevant portions of the text.

A(t)
b, (t)
b, (t)
B(t)
cys
EI

F(t) |

B

{a}

o+ = =

o]

Pyop

SR

Varying amplitude of main mass.
1
= [R/P]2m2A(t).
1
= [R/PJZwZB(t).
Varying lateral amplitude of absorber end mass.
Viscous damping.
Flexural rigidity.
External harmonic forcing.

Force amplitude.

Acceleration due to gravity.

Coefficients of characteristic equation.

Sfring stiffness of main mass.
Spring stiffness.

Active length of cantilever absorber.
Absorber end mass.

Main mass.

Averaging operator = Lim~% IEQ dt.

T o0
Forced frequenéy ratio = 2Q/w1.

Forcing function = w12ﬁe.
Principal co-ordinates.

= 1/n.

Generalised co-ordinates.

Mass ratio = m/(M + m).

Real time.



y(t)
74(%)
Yi» Yor o

z(t), Z(t)
A“(t) .
B(t)

N2
e(t)

n(t)

8(t)

1.

= 2Qt.

]

+*
t (1 + 2w + veele

*
€t .

¥inetic energy function.

Potential energy function.

Motion of main mass = Xd/Xo.

Motion of main mass (dimensional).

Static deflection of main mass = F_/k.
Perturbational parameters.

Lateral motion of absorber end mass = yd/Xo'
Lateral motion of absorber end mass (dimensional).

Perturbational parameters.

Axial motion of absorber end mass.
Phase angle.

Phase angle.
2

Frequency function = (m2 - QZ)AEwZ JER.

Detuning factor = 2w2 - .
Small natural parameter of system.

Viscous damping parameters.

Phase angle.
Spring stiffness of absorber; eigenvalue.
Phase angle.

Detuning factor = 2m2/m1.

Slow time = (€/4) JFR t.

Phase angle.



2Q

Phase angles.

Circular frequency.

Undamped natural frquency of entire
system = [k/(¥ + m)]%.

Undamped1natural freguency of absorber
= [ )\/m]—’z.

External forcing freguency.
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APPENDIX I

TRANSIENT RESPONSE OF AVA OSYSTEM

UNDER EXTERNAL EXCITATION

I.1 Theoretical Approach

In this section a possible analytical solution of the
transient behaviour of a perfectly tuned AVA is discussed. The
starting point for this analysis is the set of four first order

variational equations obtained by the asymptotic method of Chapter

2. Before transformation the equations have the form
A= (€/2w,)[ 49, w 2) + +rB%w 2sin(29 -9) + & P sin¢]
P = 2/L % 92 2B Wy 2
- 4= (€/2w2)[2€f1(92 - w22)A - %RB2w2zcos(2e -¢) + % P cosd]
- B = (e/2w,)[2%,w %p - 2ABw %sin(26 - ¢)]
= 2/L =% 2
- B = (€/2w2)[e_1 (92 - w22)B - 2ABm22cos(26 ~-4)]

ees I.1.1

Now choose a solution for A, B, ¢ and 6 in the form of a -

perturbation series

A

i

Ao +eA1 + e2A2 + €3A3 4+ eee

B = BO + €B, + €.2B2 + 6:333 + .o

1
¢ = 4’0 ~x—e¢1 + e2¢2 + g3¢3 + e

2 3
6 =86, +¢€o, +}eez+e93+...

eee I.1.2



and .

Solution I.1.2 is substituted into equations I.1.1 to order

Terms in sine and cosine are expanded thus,
sin(20 - ¢) = sin(26 - ¢ ) + €(20, - $,)cos(26, - ¢ )
2
+ €7(20, - §,)cos(20 - $ ) + ...
"The resulting four equations are

o

2 3
(Aoﬁ»ea1 + €A2+eA3)

= - (€/20,)[49,0," (8, +€ay + E8)) +
+ % P(sing + €, c\os<f>o + e24>2cos¢o) +
+ 4 R‘“az(Bo + €B + €s,)° {sin(20_ - ¢ ) +
+ e(ze-1 - ¢ )cos(20) - ¢.) + 62(262 = $p)cos(2e, - ﬂ)}]

2 3 : 2 3
(&) +€a, + €4, + 6A3)(¢o + € + €, + e4>3)

I
!

1,2 2 2
(€/20,)[2 €7 (2% ~ w,") (4, + €A, + € Az) +

+ % P (cos ¢ - 6451 sin¢ -~ e2¢2sin¢o) -

2 2. 42
+ Rw, (B, + €B, + €°B,)" {cos(20_ - ¢_) -

€(20, - ¢,)sin(26_ - ¢ ) - 62(202 - ¢,)sin(26 - ¢ ) }]

L 4

> 5N
(Bo+€B1+eB2+eB3)

o 2 2 2 2
= - (€/20,)[29,0,°(B, + €B, + €B,) - 20, (2 + €A + €4,).

°(Bo + EB, + 62132) {sin(ZGo - 4)0) + €(2é1 - ¢1)°°s(2e§ - 4)0) +

+ r:',z(ze2 - $,)cos(2e, ~ $.)1]

78.
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v

2 3 2 3
+ €8 +e13_3)(eo+e91 + €6, + €0

(Bo + €B, »

5)

= - (&/2w,)[ € 1(e? -~ w, )(B + €B +EB)-2w(A + €A, +62A)

1

(B, +€B, + 62132) {cos(ze0 - $,) - €(20, - ¢,)sin(20 - ¢) -

- e2(292 - ¢,)sin(26_ - ¢) }] |
ees I.1.3

From equations I.1.3, equating terms of zero order in €
gives
A°=O,BO=O,AO¢O=OandBoeo=O I.1.4
A possible golution is
Ao = Bo =1 and ¢o =0 = 0 I.1.5

Equating terms of the first order in € gives

\ .
(1/2w2)[471w22A0 + %szzBosin(2eo —_¢0) +3 P sin¢b]

A = -
B, = - (1/20,)[2%.w 28 - 20,24 B sin(26_ - ¢ )]
17 2 72 2 0 2 “o o0 o} o
.‘ ! ~1 2 2 1 2.2 ’
A, + a8 =~ (1/20,)[2€7 (2" - w,")A ) - FRw, B cos(20 ~ ¢ ) +
++P cos¢b]
B6, + B8 =- (1/20,)[€ (0 = 0,2)B_ - 2w,°A B cos(20_ - & )]
o1 170 7 2 2 7o 2 700 o o

ee o In1o6

Substituting I.1.5 into I.1.6 and integrating produces

Ay == 2nyut , By =“'72“’2*‘
2

4>1=[-e'1( 22)+%Rm-(P/4w)]t
R -2

0 =[—l61(—"‘°“‘2‘-)+w2]t

ees I1.1.7



8C.

Note that in formulating I.1.7, the constants of integration are

chosen to be zero.

Equating terms of the second order in € yields

2, 2
A, = -(1/20,)[49,0,°A, + $Ro, B (20, - &,)cos(26 - &) +
2
+ Rw,"B B, 81n(29 - § )+ 5P ¢1cos¢>]
B, = -(1/2w,)[2%,6,°B, - 2w,°A B (26, ~ &, )cos(26 - & ) -
2 = o/Le By 2 o509 T Ry o~ Yo
2 .
- 2w2 (AOB1 + A1Bo)31n(290 - ¢o)]

Ad, +ad +A=i> = ~(1/20,)[2€T(@® - 2)A + $Ru,’ 2(2e -4,)
of2 17 2% = 2 zRw, B 1
: 2 ' .

,.51n(290 - ¢0) ~ Ruw, BOB1005(26° - +o) -3 P¢1s1n¢b]

B O, + BO + B0 =-(1/20,)[(0® - w,%)B, + 20,°4 B (36, -4)
o2 17 2°0 2 2 ‘M 2 00 1 17°

. 2
.sxn(290 - ¢o) - 2w, (AOB1 + A1Bo)cos(290,- ¢O)]
seo0 1.1 08
Using I.1.5 and I.1.7, eqﬁations I.1.8 produce on integration
92 - W 2 ‘ | | |
A, = [(p/8)e! (——2-2-) + 2'712w2'2 - (Pr/16) - %sza + (Rw2)2/32 +
Wo
+ (PP/520,2) )47
2 2 2 2,0 2
B, = [%72 wy" 4wy - (sz /8) + P/8]t
. 2¢ 2
2
0, = = N,

es e I.109

3

Finally, equating terms of order € gives,
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- 2 4o 2.2, )
Ay = - (1/20,)[ 4my 0,"4, + $R0,“B (26, = $,)cos(20 - b)) +
)
+ sz BOB1 (291 - ¢1)COS(260 - ¢O) +
1Rw,?(8,° + 2B B,)sin(26 - ¢) + + P

+ zRw, (B, + 2B B,)sin(2€ -¢ otz 4’2°°s¢03
B, = = (1/20,)[2m,0,°B, - 2w,°A B (26, - &, )cos(26_ - & ) -
3 2/L=M% S 2 BP0 Y2 T T2 o~ %o

- 2w?2(A0B1 + A1Bo)(291 - @1)003(290 - ¢o) -
- 2&22(A032 + A;B, + A,B )sin(26 - ¢ )]
AO:\)B + A14’2 + A2¢1 + AB(}O
- - (1/2u§)[2<€1(92 - w22)A2 + %szzBOZ(Zez - $,)sin(20 - ¢) +

2 . '
+ Rw, BOB1(291 - ¢,)sin(20, - ) -

2(p 2 o
- FRw," (B, + 2B032?cos(280 - ¢,) - % Py,sing ]

'BOGB + B1_92 + 13291 + B360
- - (1/20)[ € (& - w 2)3 + 20,°A B (20, - $,)sin(20 - $ ) +
- 2 " 2 ‘72 2 7070 2 2 0 0

2 .
+ 2w, (4 B, + 4,B )(20, - ¢, )sin(26_ - ¢,) -

2
- 2w, (A B, + AB, + AzBO)cgs(zeo - 4]
... I.1.10

Once again the substitutions I.1.5, I.1.7 and I.1.9 are

made in equations I.1.10 which yield on integration,
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2

= [~ (/12)€(

2
) - (49,%0,7/3) + (BR/16)%0, +

v (B/3)oy>(hy + 4,) = (B/4)%0,0,7]¢

By = [- (570,7/6) = w)’(23, +9,) + (8/24)y” (29 + 59,) =

- _(P/24)w2(2'71 + 3’72)]’63

2 2 2 2

b, = [(F/96)E" E—2) - (s2/06) € 22 - (619, 2, -
Wy . w, |
- (B°R/1280)) + (R/6)u,> (3, - 3,)° + (B/6)w,” - (R7/384)w,> +

+ (PR 28)uw, + (133/384)(»23%3

2
65 = [(p/24) ! (

) + (29,%0,3/5) - (R/12)m + (§%/96)u, -

- (PR/48)w, + P /96w2]t
eee Lo1.11
The solutions for A, 3B, ¢ and © may now be written to order €3.

Thus

2
—2w2 ) + 2712 22 - (PR/16) -

) 2

- 4 Ru,? + (R%/32)u,” + PP/320,°14% - [ (p/12)€ (

2 1,8
A=1- 6[2'71w2]t + e[(p/8)e " (

)’71 +
+ (49,%0,7/3) = (PR/16)9,0, — (R/3)w, (3, + 9,) + (R/4)2@2wg]t3 .

+ o(+h)

B =1 - e[n,0,]t + (39,207 + w2 - (R/8)u,” + B/8]H7
- EL(, 0,7/6) + w29 + 9,) = (R/24)y”(2m + 59,) +

+ (P/24)w, (29, + 3/72)]1:3 + o(t%)
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Q- W
= e[€;1(~__7;;42_) - Ry + P/4w,]t + eg[%ﬁ“22(51 - %) = 4Ps, ] £2
92 - w 2 Q - 2
+ L2/06)E (=52 - (r/96) € (=) - (/6D ", -
w2 wa

(P°R/1280) + (B/6)w,” (%, = 3,)% + (R/6)w,” - (R/384)u,” +

+ (PR%/128)w2 + (P3/384)w23]t3 + o(+h

92 _ w42 Q2 - w 2
8 =~ e[%€;1(*——7;;42—) - wz]t - 62[71m22]t2 + e;[(P/24)€?1(-—:;—2—) +
+ (29,%0,7/3) = (B/12)0, + (8%/96)w,” - (PR/48)u, + P°/96u,]t”
+ O(t4)

eeo Lo1.12

The results of the theoretical approach to the transient solution
are given by equations I.1.12. Comments on the validity of these
results are made after the next section which discusses computer

simulation of the AVA system.

I.2 Computer Simulation of Transieht Behaviour of the AVA

The transient behaviour of the AVA can be simulated using a
digital computer. An IBM computing package known as CSHMP
(continuous system nmodelling program) allowed the direct programming

of the AVA system equations on the System/360 computer.

The equations of motion 2.3.1 are rewritten to give two

uncoupled equations in X and ¥ of the form

X = (- 44X - EX - ABy2 - BDyy + B&Z + 4Asin20t)/(1 - BCy2)
1.2.1
( - Ay - Dy - 4ACKy - CEXy + BCyy® + 4ACysin20t)/(1 - BGy?)

Y
il



These equations were written in Fortran into the program deck
together with initial conditions for X and y, and the computer
instructed to perfoxrm a doﬁble integration of the quantities X and
&. Vhen the equations are written in the above form the implicit
160p situation of the original equations, in which X depends on

¥, is eliminated and the computer finds no difficulty in performing

the integrations.

The package provided a choice of integration routines of
varying degrees of sophistication. For this work, a fourth order
Runge-Kutta integration with fixed step length was found to be

adequate,

Finally fhe computer is instructed to provide a print-plot
of the dependent variables X and y against the independent variable
t (time). It is necessary to choose a print-plot step length which
is small enough to provide adequate resolution of the X and y

response frequencies.

A typical print-plot is shown in Fig. I.2.1. For this

particular simulation the parameter values were

€ = 0.0010 , €9

= 00,0020 , €ﬁ2 = 0.0200 ,

=
It

0.0196 , n =0.,995, X =0,y  =0.001 ,

where n is the forced frequency ratio and Xo, y, are the initial
conditions imposed on the system. Thus Fig. I1.2.1 shows the behaviour
of the system, under the action of a forcing frequency near the
resonance of the main mass, when it is suddenly released at t = O

with the above starting conditions.

84-
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Fig. I.2.1

Digital Computer Print-Plot of Transient Response
of Main Mass (X) and Absorber (Y)



The interaction of the two modes can be clearly seen. At
t = 10 this interplay is quite violent but graduzlly the responses
settlé dovn to their steady-state amplitudes at t = 25, It is
interesting to note that the amplitude ratio X/y at t = 25 is
approximafely 1/9 which is in good agreement with the ratios found

theoretically (see theoretical response curves, Chapter 2).

In a similar manner the response of the linear tuned and
damped absorber, described in Chapter 3, waé also simulated to
compare its transient behaviour with that of the AVA. It was found
that the interaction between the absorber and main mass systems of
the LTDA was minimal and that a smooth transition to the steady-
state situation had been achieved by t = 5. On this count the AVA

system emerges as a poor second.

I.3 Validity of the Theoretical Solution.

To assess the merits of the theoretical sélution of the traﬁsient
behaviour of the AVA system the equations I.1.12 were programmed
using the CSHMP package described in the preceding section. The computer
vas instructed to evaluate the functions of time A, B, ¢ and © and
then print-plot X(= & cos(w1t + ¢)) and y (= B cos(wzt + 0)) against

tine, t.

In'the resulting print-plot both the X and y modes exhibited
continuous exponentialvgrowth. This inconclusive result was
disappointing although not entirely unexpected (it was realised that
a very sophisticated theoretical solufion would be required to predict
the type of motibn illustrated in Fig. 1.2.1). Certainly there are
2)t2

terms in equations I.1.12 (e.g. the term (e21>2/32w2 in the

expression for A, which is of zero order in €, P is of order 6:1),
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vhich tend to dominate the solution and may be the cause of the
positive growth of the amplitudes but it would appear that the
remedy to the problem is almost certainly of a2 more fundamental

nature,

It is possible of course, that the theoretical solution of
the transient behaviour of the AVA is based on variational equations
(I.1,1) which in theﬁselves‘do not produce the transient response
of the full equations of motion (I.2.1). Accordingly the variational
equations I.1)] were also programmed using CSIMP. In this case the
computer print—plot of X and y showed the type of transient response
-depicted in Fig. I.2.1. Consequently the variational equations
rétain the transient response properties of the original eguations

of motion and are not the cause of the poor theoretical results.



87.
APPENDIX II

ALTZRWATIVE TORMS OF CONSTRUCTION FOR THE AVA

I1I.1 Introduction

The effectiveness of the AVA was shown to depend on the ratio
of axial to lateral motion of the absorber end mass (see Chapter 3).
To improve this ratio it was found that the length, ¢, of the
cantilever AVA had to be small. However there were mechanical
limitations to the length reduction of such an absorber and in an
attempt to overcome these limitations three other systems were

considered.

This Appendix details three alternative theoretical models
which may provide a more satisfactory (higher) value for the €
parameter. For each model the equations of motioh are derived and

compared with those of the cantilever model, namely

(1 .y Lk o m__mE€ (22 " wy_F)
U+ +5 %+ (0 rgpe-5 X, (7g" + vg¥y) = =
- II0101
o A E € v\ € \2/. 2 .
¥+ (& "% 8- Xon)yd + (Xo) (74" + yg¥qdyy = ©
6%, 3
vhere €=—§zand A= 3EI/ 8.

II.2 System 1

The first of fhese models is shown in Fig. I1.2.1 in which the
usual notation is adopted. Here the absorber is a cylinder of
radius r free to roll in a circular slot of radius R. Posgitive
cohtact'between the cylinder and main mass is maintained by means

of the spring X"



F(t)

Fig. I1.2.1

Systen 1.




The kinetic energy function is

T = MX2+ m(X+z)1-'"I‘ﬂfr'2

2
where I = % nr .

Let the absolute rotation of the cylinder be (¢ - 9) where

RO = r¢, then w = (R - r)8/r. From the geometry,

Iw2

ha
=(R-1)-[(R- r)z - yz}z and on the elimination of 6, the

kinetic energy function becomes

| . 22
AR, R R %m’ -
[(R - 1)° - ¥°]
; 2.2
RN Jn(R - »)°y

[(R - )2 - y°]

The potential energy function is

v =A% kX2 + MgX + mg(X + z) +'%{

" Prom the geometry of Fig. II.2.1,

¥

Vi

- (R-2)(R- r)? - yzj%] - k’e[c? +2(R - 1) +2¢ {®r-1) -

: 3
Vo=+ ¥ (- £)2 where ¢/ =[(¢ + Z)_+ Y2]Z

K[ P -0+ ti®R-1) - [(R=-1)?

* [(R - £)% - ¥°]

- [(R — r)2 - YZI%} 2(R - 2)[(R - r)2 -y ]2]z

Using the Lagrangian formulation, the equations of motion are

me ( (R - r)

(1 + )X + = X + (1 + M)g + 3 X [(R )2

( & - r) y

€ w
y+-25(-a;+-§- -}-(-X)y+(—)

0 o [(R - r) ~-¥y ]

]+

- yz]%} -

oy _ F(t)
¥) =%

+ YY)y =

[SE

88,

IT.2.1
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% AR-1) - [(R-12)2- yzl%}
T and >\ =k
[(R - £)° - ¥°)? [(r - )2 - y°]2

where € =

IT.3 System 2

Fig. IT1.3.1 shows the second of the AVA models, In this case
the absorber is a simple pendulum supported by a pivot point on the
main mass and given a prescribed natural frequency by the linear
si)rings k. (I\Tote, the stiffness of the absorber system could be
provided by a torsional spring at the pivot thereby providing greater

freedom of angular oscillation).

Using the notation of Fig. II.3.1, the energy functions are

T =+ k2 4 b a3+ (& - 2)2]

and V =‘7kX2 +—12—)\y2 + MgX + ng(X - z)

vhere X has yet to be defined.

From the geometry,

2 2% . ;-
z =0~ [t —y]z,z=_2‘zL2—r

[ -5
» 2 2., 2
and the absorber spring potential + Ay~ = =k y
¢
r2
ie. A=25%.,
¢

Thus the kinetic and potential energy functions become

P31+ {3+ (k- =573

[# =577

2, =

L
and V=7%k + 2k'y2+}1gx-+mg(x- £+'[22 _‘y2]2)
! ¢ _ ,



F(t)

M

~ k

SN




Applying the Lagrangiari formulation, the equations of motion

are
2.2
n ?.__e_ ﬂ A ‘e _ F t
(1 + )X + = H =X+ (1« )g -23 (—~??-~—§— + YY) = o
o [¢ -¥7]
. II¢3Q1 N
I - v
and y+ (J-Fe&-FXy+ § > 5Tt YY)y =
o] o} o} " -y
X 2,
where € = —-———-i-r and A= 2 "é’k
[ - 717 ¢

ITI.4 System 3

The final scheme for an improved AVA introduces an additional
degree of freedom. Fig. I1.4.1 shows the basic features in which
the absorber end mass is now free to slide along the massless rigid
arm of the pendulum. The three degrees of freedom are X, r

(dynamic length of pendulum), and ¢ (angular displacement of arm).

The kinetic and potential energy functions are

+ uk? + ol (F+ X cos¢)2 + (ry- X siné)z]

Ay %2 4 %—X2¢2 + %-XB(r - 1)?

T

and V
vhere X1, )? and XB are system stiffnesses and £ is the static length

of the pendulum. (Note, gravitational effects have been ignored).

Applying the Lagrangian formulation once more, produces the

following equations of motion,

1+ )X + = X X+ 2%~ 2r¢¢-— T ¢ + ¢¢)] _i_l

M-
. (02 L) 4o
T

¢=0

H |

nr

T+ ég (r - t) +% - r&? =



F(t)

Fig. 1I.4.1

Systemn 3.



On introducing a new variable z = r - ¢, the eguations

become

(1 +;'?—1>3&+-}2—X+%&-[’é~2é¢%>- (s + DG +ob] -

v A2 X 2%

- = 0
b s 2 G T
z + (%; - @2)z + X - lé? = 0

eee II.4.1

I11.5 Comparison of the Theoretical Models

Systems 1 and 2 have eguations of motion (II.2,1 and II.3.1)
whose form is very similar to those of the cantilever model of
Chapter 2 (II.1.1), and consequently it is expected that their

‘solutions will also take the same form, It is oﬁly necessary then

to consider the form taken by the € parameters.

In System 1 it is seen that € is large (here ’large’ is a

- comparative term, € remains sgall compared to unity) if the ratio
y/(R - ) approaches unity. Similarly in System 2, € is large if
the ratio Y/Q tends to unity. Since there appears to be no

» mechanical constraints to designing these systems with the necessary
geometry, an AVA system with ébsorbing capabilities comparable to

any other type of absorber seems piausible.

The fofm of equations II.4.1 for System 3 makes any comparison
between itself and the other systems very difficult. It is necessary -
to solve these equations using the technique of Chapter 2 and
compare the form of its theoretical solution with that of the cantilever
model. In the final section of'this Appendix a possible means of

"solution is considered.



II.6 A Solution to System % Bguations

The first step is to nondimensionalise the equations II.4.1

giving
i + Rz + w,‘ 2X - ER(&2 + 4>¢) - €2R[22¢;§ + Z(&Z + (Ma)] = w1 20032§2t
" 2 . L . 2, 2 e "
é -+ 0y b + €(2z¢ + 236 - $X) + € (2¢ + 2226 - z¢X) =0
£+ X + w32z - e%? - G?z$? = 0
veo 1I.6.1

where F(t) = Focos29t, Xo = Fo/).1 and the above X, &, z are the

nondimensional quantities X/Xo, £¢/Xo and z/Xo.

The other quantities are defined thus,

2

R=mn/(m+ M), . X1/(m + M), w22 = )\2/m£ ,

1

W,

5 .
5 = >\3/m , and €=Xo/£.

A glance at equations I1.6.1 reveals the inertia coupling in
the X and z modes, so the next step is to uncouple these modes

replacing them with normal modes P, and Pse

Consider the set of equatiohs

!
o

X + RE + w1?X
II.6.2

i+ X+ w 2z = 0
3
These equations have the form

A§+Cq=0

where A is an inertia matrix, C a stiffness matrix and g a modal

column vector.



By solving the characteristic equation ‘A -~ )Il = O the eigenvalues
( X’s)_are obtained which, when substituted into the characteristic
matrix, provide the eigenvectors of the system. These eigenvectors
form a modal matrix, T, vhich is used in the transformation to normal

co-ordinates thus
qg = Tp 11.6.3
where p is & column vector of the normal co-ordinates.

Consequently the X and z equations in I1.6.1 are replaced by

equations of the form

'15+.T—1 A CTp = a7t e

where T_1 A~1_C T is a diagonal matrix, 92, of the éigenvalues

and f is 4 column vector of the forcing functions.

Returing to equations II.6.2, their characteristic equation

yields the eigenvalues

2N 2 [(“’12 + ‘*’32)/(1 -m]x[ {(w12 + w32)2/(1 - R)2} -

4w12w32/(1 - R)]%

or A\ p=czx B _ : I11.6.4

where &, B are self-evident.

At this stage the question of system tuning must be discussed.
In an attempt to ’marry’ the potentiaiities of the AVA and LTDA
systems it should be possible to tune the frequency of the absorber
axial motion to that of the main mass and adjust the absorber’s

lateral frequency to half this amount.



In other words the desired internal resonance condition is

2 .
)\1 = )\2 = 4u,” or Q = 92 = 2m2 11.6.5

whers Q1 and 92 are the frequencies of the normal modes Py and P5

vhich replace X and z respectively.

This exact internal resonance condition (II,6°5) presents a
problem however, in that the eigenvalues X1 2 become identical.
9

From I1.6.4,

=0

o

M=%

iee M o= HoP w0/ ) = we/( - B I1.6.6

I

If the repeated eigenvalue II1.6.6 is substitutedinto the
characteristic matrix there emerges only one eigenvector,
2 —’2—A
w3 (1 - R)? - w1m3
11.6.7

(x)1 w3

In order to perform the transformation q = T p it is necessary
to have a modal matrix which is nonsingular, that is, which possesses
nverse g
an adjeint, T (IT! % 0). However a nonsingular modal matrix must
have column vectors which are linearly independent of one another and

so it is necessary to find another eigenvector, linearly independent

of I1.6.7, to form the modal matrix, T.

Although time did not permit a detailed study of this
particular aspect, a brief survey of thg literature did suggest that
a generalised eigenvectof was not easily obtained, especially when
the characteristic matrix, £ ( X), is nonsymmetric, as in this case

where,
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f(A) = w12—-)\. - R\

I1I.6.8
- A w 2_ pN
3
A method of avoiding this problem would be to assume a near

resonance condition between modes Py and P such that
Q, =@, + 0(€) 11.6.9

This means that there are now two distinct eigenvalues
Ay = *x-B and >\2=o<-|'-B : 11.6.10

where B is of the first order in €.

Substituting II.6.10 into the characteristic matrix II.6.8

determines the two linearly independent eigenvectors,

W

32 -+ B| for )\1 and [w32 - =B for )\2,

X - B K + B

end thus the modal matrix is

2 2 '
T - - &+ B mo =8| = [t,. ¢ |
[% e } 1 21] I1.6.11

& - B %+ B

Performing the transformation II.6.3, yields

X = %4 P+ Ty Py
I1.6.12

z = t + t

12 P4 22 Pp

If the equations are considered to the first order in € then

the force vector, f, in the matrix equation,



. 2
p+Qp=T A f

—

is w12cos2§2t + GR((‘{)Z +¢¢')
| ed
and
- 2 12 " 12
e (tyy + Rty o) {w “cos20t + R + ¢)]-(t,, + t,,)ed
HIE (t,, + t21)e¢2 - (t,, + Rt,,) {w1,2c032€2t +er(d + ¢}
- =]

where |T| and |A| are the determinants of the modal and inertia

matrices respectively.

Therefore the equations of motion II.6.1 are uncoupled to give

the following three equations in Pys Pp and ¢,

o 2
Py + 9Py

]

TJITT [(t,, + Bt, ;) {0, 2cos2at + €R($® + 48)} - (t,, + t,,)ed]

e[2¢(tyopy + typpp) + 24ty 5By + t55B,) = ¢(84By + ty,)]

.“ )
¢+ wy, ¢ =
y 2 1 : 12 2 2%
P, + 0,70, = T [(ty + 44 e - (4521 + RtH) {w1 cos2Qt + ea@ + 66)3]
eee II.6.13

Applying the asymptotic method of Chapter 2, equations II.6.13

are rewritten
N 2 “1, .2 2 2w 12 |
Py + 4Q Py = e[e (40° - Q )p1 + c1R(¢ + o) —.c2¢ + c1P cos20t]
§+92¢—e[e’1(92-w2)¢+(t +t 506 = 2(%, b, + t,,5,)% -
= 2 1181 * T21P2 12P1 * YooP2
= 20850y + tpy) ¢ ]
2 1, 2 2: 2w 12
P, + 4Q'p, = e[e (40 -— Qs )p2 - c3R(¢ + M>) + c4¢ - 03P cos2Qt]

eeo 1I.6.14

,
where €P = w,, ¢, = (t22 + Rt12)/|T| [Al, e, = (t22 + t12)/|TI |4},

o5 = (tyy + Rty )/ 170 4], ¢y = (tyy + 90/ 12] 4]



and a solution taken in the form

o]
-—
il

2
A cos(Q1t + o)) +€.p11 + €p12 + ceo

2
B cos(w,t + B) + €, + €, + ..o

-0
il

i 2
Py = C cos(QZt +p) + €p21 + CPyy + eue

o0 1106015
where each of A, B, C, 2, B and yu is, in general, a function of time.

Substituting the solution II.6.15, to the first order in €,
into the equations of motion II.6.14 yields the following three

equations

[£ - a(e

|+ &)2]cos(€21’c + o) - [Ax+ 211(91 + &)]sin(Q, ¢ + )

+€i511 + 492A cos(Q1t + %) + 492€p11
-1, 2 2 oo e2y 2
=€[e (49" - 2, A cos(Q1.‘b + )] + €c1R[(BB + B )cos (mzt + B) -
- 32(w2 + B)? {cosz(wzt + B) - sinz(mzt + )} -
- {B%F + 4BB(u, + B)} sin(wyt + B)cos(uyt +6)]
-€cz[f32cos2(w2t + B) + Bz(m2 + B)2sin2(w2t + B) - 2Bi3(m2 + B).

.sin(w,t + Bleos(w,t + B)] + €c, P cos20t : 11.6.16"
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[B - Blo, + £)%Jcos(u,t + B) = [ + 28(u, + B)]sin(u,t + B)
< 2 2
+ €¢1 + QB cos(mzt + B) +Q €¢1

o w22)B cos(wzt + B)] + 61:11[{}3:!\: - AB(Q,‘ + 5()2} cos(Q1t + ),

=¢[ 6—1 (@
.co.s(wzt + B) - {ABGZ+ 2B;4.(Q1 +5<)} sin(Q1’c + oi)cos(mzt + 8)]

. . 2
+ €t21[ {BC - BC(QZ + 1) }cos(ta + p)cos(wzt + B) -

{3cii + 283(e, + 1)} sin(QZt + peos(u,t + B)] -

2€t, 2[Af3 cos(e,t + «)cos(uw,t + B) - B.Z\.(w2 + B)cos(§21t + oc)sin(mzt + 8) -

1

AB(Q1 + &)sin(Q1t +-x)cos(w2t + B) +

+ AB(Q1 + &)(w2 + fS)sin(Qﬂ: + °<)sin(c021; + B)]

2€t,,[BE cos(R,t + p)cos(wZ% + B) - B2(w, + Beos(a,t + ).
.sin(w,t + B) - cé(sz2 + P)sin(Q,t + pleos(uyt + B) +

+ Be(, + p)(w, + B)sin(2,t + p)sin(u,t + B)]

- 2et, [ {aF - aB(w, + B)?3 cos(e, t + x)cos(u,t + B) -

~ {aBF + 248w, + B)} cos(e,t + )sin(uyt + B)]

- 2et,,[ { B - Be(w, + B)°} cos(e,t + weos(uyt + B) -

- {BC B + 201.3(032 + [3)} cos(ta + p)sin(wzt + B)]

I1.6.17

and



[¢ - C(Q2 + {;)zcos(ta +p) - [op o+ 2(3(92 + {),)]sin(QZt + )
+ €5, + 4 9°C cos(Q,t + p) + 40%
P2y = 2t T B Po1
= e[ (40° - 2,°)C cos(@yt + )] - €cgB (85 + F)cos” (wyt + B) -

182((»2 + B)Z {cosz((o2t + B) - sinz(wzt +8)} -

- {B2§ + 4Bf3(w2 + B)} sin(mz’c + B)cos(mzt + B)]

+€c4[f32cos2(w2t + B) + B2(m2 + é)zsinz(w2t + B) -

- .?.B]'B(m2 + é)sin(wzt + B)cos(wzt + B)] - €ey

P cos 20t
I1.6.18

Equations II.6.16 to II.6.18 provide a set of six first order
variational equations, they include the resonant terms from the first
order perturbation equations -(not given here), and after simplification

they may be written as

20\322003(2[3 - o() + v} c Bzw 2

- 2 2® Yo e

& = ele (40® - 912)A - ¢ RB

P cos o]

.cos(2B - *) + ey

. 2
260, = €[c1RBZm 2sin(25 -x) -+ e ,Buw 2sin(ZB - &) + ¢

5 2B o, 1P sine ]

- 2Bw2f.9 = E{Gu;1 (92 - w22)B - '% 'b”ABQ 2003(2,8 - ek) -

1

2
-+ t59 BCQ cos(2B - p) + t, ABW

2

22005(2{3 - o<) -

2
2ABQ1w2cos(2B - &) + t,,BCw cos(2B - p) - t22BC§22w2cos(26 - w]

* o

T 2 . 2 . ’
- 2Bw, =€[ - % %,,4B2 “sin(2p - =) - ¥ t,,B00, sin(2p - p) +

2
+ ty ,ABw, sin(2p - &) - ¢ LABR, Lozcos(2(3 - =) +

12 1

2 .
+ t,,BCw, sin(2B - p) - t22BCQszcos(2B - w]

2



106G,

e[- & t,,ABQ 2sin(2B -R) - % ty BCQZ2sin(2B - )+

N
1

1 1

2. .
+ ty ,ABw, sin(2p - o) - t12A}1Q1wzcoo(2B - ) +

2_.
+ $,,B0w, 8in(28 - n) - 4,,80Q,w,c05(28 - p)]

2CQ

il =e[e‘1(492 - 922)0 + cBRBzw 2cos(2p - p) -

2 2

1 2 2 :
- 5043 w, cos(2B - u) - c3P cosy]

. 2
- 20Q, = €[~ c RB'w P sinp]

3 228in(26 - u) -+ % c B2w 2sin(ZB - p) - C

4° %2 3

Equations I1I.6.19 represent the first order variational equations
of this combined AVA-LTDA system where the resonance conditions are

chosen to be

Q2 + o(e) = 2w2 (internal)

It

and I1.6.20

20 = @, + o(e) (external)

1

Once again it is convenient to transform the variables thus .

o+
il

1t/e VPR 5 v = (w,° - &)/ew, VPR
A=-b1 JP’/wQJE ; B:bzﬁ/w2J§ ; C=b3J'F/w2~/I—i ;

x=V, ; B=Y, ; p:\LrBA 11.6.21
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The resulting variational eguations are
b1\k1 = 4yb, + c1b2200s(2¢% - W}) - (cZ/ZR)bzzcos(2¢é - wa) - c1cosl.\f1
b{ = - c1b223in(2¢é - W}) + (02/2R)b22sin(2Wé - ﬂﬁ) - c1sinﬂg
bzllle = 2yb, + (2/R)(2%,, + £, )b, bcos(2¥ - V) + (2/R)(2t,, + t,,).
. b2b3cos(245 —'wé)
by = (2/R)(2t), + t )0 bosin(@Y, - W) + (2/R)(2t,, + t,5).
. bybgsin(2yy - ¥5)
b3¢% = 4yb3 - c3b22cos(2ﬂ5 - Ws) + (04/2R)b22003(2¢é - ¢5) + cBCOSQ%
=c

3 b22sin(2¢5 - ¢5) - (04/2R)b2251n(2ﬂé - W%) + cBSinwé

L II.6.22

where primes denote differentiation with respect to slow time, T.

The steady-state solution is found by equating the right-hand

sides of 1I.6.22 to zero. After some algebra a solution for b1

can be obtained in the form

= 1R
(03/01)(2t21 + t22)sin(2¢5 - Wq)ctn(2ﬂé —:Wé) - (21;11 + t12)cos(2Wé -V
' : ' 11,6423

b,

Unfortunately b1 is not independent of the phase angles, perhaps
more algebraic manipulation might remedy this, however at present,

time does not allow a more detailed study.

Note, the form of II1.6.23 may be compared with the corresponding

result for the cantilever AVA,

g
i
I+
.ﬂ,.
o)
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APPENDIX II1

THE METHOD OF AVERAGING AND THE TWO -~ VARIABLE

EXPANSION PROCEDURE

It was nmentioned in Chapter 2 that three methods of solution
of the AVA system equations had proved successful. The asymptotic
method presented in Chapter 2 was considered the most effective but
a study of the other procedurgs is not without interest. This
Appendix presents the method of averaging and the two-variable

expansion procedure.

IIT.1 Method of Averaging

The system equations are written in the form

i

% + 40°X e[e"1 (40° - w12)X + R(j2 + ¥¥) + P cos2qt]

IIT.1.1

i

¥ o+ sz el &t (92 - w22)y + Xy]

oo 2 .
Note, damping terms have been omitted together with the € term in

‘the y equation.

Once again the sinusoidal exciting force is assumed to be of
the same order-in € as the nonlinear terms, permitting the study
of the physically interesting solutions that occur when the frequency
of the exciting force is in the meighbourhood of either of the linear

natural frequencies of the system.

.It is assumed that

492 - w12

<€ ; |92 - w22| <e IIT.1.2
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Choose solutions of the form

X = A (t)eos(2et + ¥, (t)) 5 X = - 204, (t)sin(20t + ¥, (¢))
II1.1.3
¥ = hy(t)cos(t + F,(4)) 5 7 = ~ ea,(t)sin(et + T,(+))
The form of III.1.3 requires that
- &, T sine, + A cos@, = 0
ITI.1.4
- A, T sin6, + Aycos0, = O
where 0, = (20t + ¥,), 0, = (et + V) II1.1.5
From ITI.1.3
¥ == 2@&1 sind, - 204, (20 + 1Ir1 )cose1
‘ ' | I11.1.6
y=- Q.szsine2 - QA2(Q + ?2)00392

Using IIT.1.3, III.1.5 and III.1.6, equations III.1.1 become

- 29.&1 sind, - 20A,F, cos8, = ¢[ & (4e? - w12)A1cos61 - m232cos.292 + Pcos2Qt]
- QA_sin6, - QA \E' cos®, = ¢[ €_1 (92 - w 2)A cosf, - 492A A cos6 éose ]
255, 2 12%9%% % 2 /42005%) 1525555 2
oo I11.1.7

wvhere terms on the right such as €A21.&2, €A2.l.\.1 and €A22&.§'2 have been

dropped because they are of the second order in €,
Combining IIX.1.4 and III.1.7 leads to four variétional equa’cions,

.3.1 = _(e/zQ)[e"1 (40° - w12)A1cose1 sind, - :Rs22A22cos;292sine1 +

+ P cos 2Qtsin®, ]

A, 1}'1 = _(E/zcz)[ez‘1 (492 - w12)A1 cos28, - RO%A 2003262cose + Pcos2Qtcoss, ]

1 2 1
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. 2 T
,81in6, - 49 A1Azcose1cogezsln92]

. - 2

A, = -(€/Q)[e.1(92 - wo“)Azcose
: ~1/.2 2 2 2 ' 2

AZ'Qé =~ (e/Q)[e (a° - w, )Azcos 6, - 4Q7A A cos8, cos 62]

eeo 1I1.1.8

Bquations II11.1.8 can now be written in complex form, suitable

for the application of the method of averaging, thus

iy = —(e/40)[$€" (40% - w Da, (7201 — 70 -
- 4R Q A ( 1(262 + 91) - e—i(292 + 61) _ ei(292 - 91) + e—i(292 - 91))+
1p(ot (208 + 0p) _ mileet + o) _ i(20t - eq) | ~i(20t - 0y)yy

Ty = —(€/40[4€1 (40° - 0, P)n, (2 + %1 4 TP -

2( i(20, + o, ) -i(20, +0,) i(ee, - 0) -i(20, - 0,)y

- 1RQ° A 2
. %P(ei(th + e1)-+ e—i(2Qt + 91)+ ei(ZQt -.91) . éi(ZQt - 91))]
= —(€/21)[$€ (2% - w,%)n, (4% - &%%) -
R (e (20, +8,) _ e-i(zé2 +0,), (26, -0)__-i(2e, -191))j

1, T, = (/203N (@ - w2, (2 + 6120 4+ &712%)

- 0P n, (2670 + 26710 4 o120, + 0,) | -i(26; + 0)) +
o1(205 - 0)  -i(20, - 0,)y;

eeo 1II.1.9

I1I.1.9 are relationships of the form

b
!

Nl CYPI S PR P
TI1.1.10

'(E'n = eGn(A1’ AZ’ —‘I’.'Jls '\2—2, t)'
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The method of averaging introduces new variables an(t) and

Wh(t) such that

1

A =a + €Fn(a1, 85y W}, #é, t)

N III.1.11
¥n = wh * eGn(a1’ 82 qﬁ’ *é’ t)‘
where ﬁn and 5n are the indefinite integrals of Fn and Gn,
excluding those terms in Fn and Gn that are independent of t.
(fg and En are functions of zero order in 6). The functions a
and wh satisfy the following averaged equations,
an =et: {Fn}
. X III.1 '12
¥, = €N {Gn}
: t
where the operator M ig defined thus
t
: . i T
M{Qd = Lim % S Q 4t I1I.1.13
o -
t . T—w oo )

The integration III.1.3 is performed with respect to explicitly

occurring t in Q.

. Consider terms like 31201, ei(262 -161) and ei(ZQt - 91) :

in equations III.1.9, remémbering that now 61 = (20t + W}) and

6, = (et + vz), then
Tl a1 0 ot2(2at + ¥, _)dt >0 ag T o0
‘ : 1 iy, -, ) T od(eet - 20t),, i(2h, - ) as T«
15!5 S0, -0) =Fe 27T e dt+e T2 TN
x I:E,ei(?f”c - 9 )gt - Te -1y I oH20 = 208) 0y L 1V g e

Hence III.1.9 became,
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_ —(€/4iQ)[— %R92a22(— ei(2\y2 - ﬂr1) + 8—1(2\V2 - \V1>) +

> P(- emi\lf1 + ei‘h)]

+ 7
Q

aly = ~(€/a)[ € (40? - 0, D)a, - 1R 2(H PV = V}) 12 -Wy)),

NEYO ) SRR S0Y
a, = -(€/2i0)[- 92a1ag(ei(w2 - Vi) il - %))]

a, ¥, = ~(€/20)[ €7 (6% = wa, - oPayay(siP V1), H2V2 - Wh)y
..o ITI 1,14

It is now assumed that the condition of external resonance holds,

namely that
w1 = 2(02
so that equations II1I.1.14 become, in trigonometric form,
i, = -(€/20,)[$Rw,%a,%sin(2V, - V,) + % Psin ¥, ]
17 /LT o T2 2 1 2 1
a llr = -(€/2v )[251 (Q2 - 2)a - YR %a 2005(24{ - llf ) + & ?cos\b’ ]
1717 2 ; 2 1 2 2 2 1 2 1
. ' 2 .
ay = —(€/2w2)[— 2w, a8, sin(2 \P’Z - 1}!1)]
a ’4’ = -(€/2w )[6-1 (92 -w 2)a - 20,28, 8 cos(2V¥, - V., )]
272~ 2 2 2 2 172 2 1
eee III.1,.15

BEquations III.1.15 may now be transformed using the change of

variables introduced in Chapter 2,

(1/ea,) (PRYZ (0,2 = 97)

)

h]
= (4/e) (PR)T2T ;5 v
' I1I.1.16

(3/R)? b/,

1
2 -
a, = (P/R) b1/m2 4 a,
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This provides the convenient form

o) = - b, sin(2¥, - ¥,) - sin,
b1¢{ = 4yb, + bzzcos(zxyé - wy1) - cos ¥,
b, = (4/R)bybosin(2 ¥, = V)
b2¢; = 2yb, + (4/R)b bycos(2¥, - ¥,)

vee IIT.1.17

vhere primes denote differentiation with respect to slow time T.

This completes the study of the method of averaging, it
can be seen that equations III.1.17 are the same as equations 2.4.29

without the damping terms.

JI1I.2 Two-Variable Expansion Procedure

The equations of motion for the undamped system are

% + 40°x = e[ef1(492 - w12)X + R(y2 + y¥) + P cos29t]

IIT.2.1
[ 2 - 2 2 b M
¥+ 0y =€le Ye® - W, )y + Xy)
(Again G? term in y equation has been omitted.)
It is suitable to rewrite these equations as follovs,
2 - 2 - : #*
4078 + 40%x = e[e7 (40” - w12)X + 4RQ%(F% + ¥#) + P cost' ]
I11.2.2

2 -1, 2 2 24
407 + @7y = e[e” (@7 - v, )y + 4Q7Xy]
*
where primes denote differentiation with respect to time t = 2Qt.

Exact internal resonance is assumed so that w = 2w2,

and with w1/2Q = wz/Q =Q G = P/4£22 equationsg III.2.2 become
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- , , 3
+X= ele 1(1 - QZ)X + R(y2 + y¥) + G cost ]

I111.2.3
-] 2 ”
F+ty=€+e (1 -Q) v+ Xy]
Now choose two time scales t1 and t2 such that
t, = t (1 + E w4 o)
' 111.2.4
+#
t, = €t

and write a solution in the form of an expansion in the two variables

t1 and tz,

* ) " p)
x(¢, €) = Fo(t1, t2) + 6}1(t1, t2) + e.Fz(t1, t2) + oaee
III.2.5

1

% . 2
y(t , €) = E (t,, t,) + €B (8, t,) + €Bylty, t5) + ...

Then

dF  dt AP, dt
X = —2 l + — % + (I

3 4 * Lid
§t1 dt btz d? >m1 dt atz dt

€2F1 at €BF1 dt2

+ oeen

at dt
14 b / 1 Vi 2
R Y b TRl S
M at 3t dt
i 2
, JE dt, DB dt, €YE, dt, €}E, dt,
y = + w + + + Tt eee
Bt1 at ht2 qt bt1 it btz at
at . dt
p) d 1 D 2
F=—[F]—+—[7]1—%
§t1 at btz at
... I11.2.6
- at, dt, ,
Note that —¢ = 1 and —5 = € from II1I1.2.4
at _ at

Substituting the solution (III.2.5, III.2.6) into the equations
I1I.2.3 provides sets of equations in the perturbation functions

Fo’ Eo’ F1, E1, etc.
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Thus to order GP,

¥F, B
> + F = 0 ; 5+ 2 =0
R Y

Bt1

and the solutions for Fo and EO have the form

F, = Ao(tz)cos(t1 + B, (tz))
I11.2.7
E, = Co(tz)cos((t1/2) + Do(tz))
To order Ej ‘
¥, » ) 2¥°F ), 2 YE,
5+F =€ (1 -Q)F - —2 + R{(—) + B —]+ Geost,
)t1 . t1bt2 bt1 3t1
‘II1I.2.8
2 2 2
Y E, - YE Y F
1 o + E =

‘L 2
ht1

+ 3B =460 - d)E, -2

(o]
)t1ht2‘ Bt1

Substituting III.2.7 into III.2.8 and using the usual

trigonometric identities, there results

>+ By o=

3,

+

+ %—Rcozsin(t1 + Bo)sin(ZDo - B)

+

and

-1 2y ;. :
€ (1 -q )Aocos(t1 + Bq) + 28 sm(t1 + Bo)
/ 1 2 .
2A B] cos(t1 + Bo) - % RC cos(t1 + Bo)cos(ZDo - BO)

0

G cos(t1 + Bo)cos B, + G sin(t1 + Bo)sinBo

=41 —.Q2)Co cos((t,/2) + D,) + ¢/ sin((t,/2) + D )
+ CODé cos((t1/2) ; Do) -+ AL, cos((t1/2) + Do)cos(2Do— Bo)
-+aL, sin((t1/2) + D )sin(2D - B ) - % A Ccos((3t,/2)+

+ B + Do)



vhere primes now denote differentiation with respect to tzo

For F, and E; bounded the coefficients of cos(t1 + Bo)

give

-1 2 / 4 2 ‘
e "1 -Q )Ao + 28 B. -7 RC_ cos(2Do - BO) + G cosB_ = 0

Similarly the coefficients of sin (t1 + Bo) give
28 + 4 RC 2sin(zn - B )+ @sinB_ =0
0 ERatY ) 0 o~
While coefficients of cos ((t1/2) + Do) yield

4 =1 2 V; 1 _
+e (1 -9 )co + e -3 AOCocos(2DO - Bo) =0

and those of sin ((t1/2) + DO) give

’ 1 . _
C, -% A000s1n(2D0 - Bo) = 0

Bquations I11.2.9 may be transformed to real time t using

110.

ees III.2.9

4 14
dt, ~ 20€ dt
- Thus, II1.2.9 become
. -1,,.2 2 2.2 :
A B = -(¢/40)[e (40" - )a - R Q7C) cos(2D - BJ) + P cosB]
A = -(e/4Q)[R 0°c %sin(2D_ - B) + P sinB ]
o = o} o) o 0
¢ D, = -(e/20)[e (2" = w,")C - 2Q7A C cos(2p - B,)]
L] 2 .
C, = ~(e/2Q)[ - 2@ A00031n(2D° - Bo)]_

where dots denote differentiation with respect to t.

«eo III.2.10



If the usual transformation of variables is made, namely

1 +
t= W PRZTY 5 v = (1/ew,) ()77 (0, - &%) ;
1 AR
_ 7 . _ Z . _ . .
A= (p/R) b1/w2 3 C, = (?/R) b2/m2 ; B, = WH 3 D, = Qrz
IIT.2.11
then equations I1I.2.10 assume the familiar form
. 2
b1\lf1 = 4yby + b, cos(2 wé - 1&1) - cOs ¢H
b = - D 2sin(2\v - ) - sin
1 2 2 1 1
v
bz\vz = 2Yb, + (4/R)b1b2 cos(2¥, - Vﬁ)
/ .
b, = (4/R)b1b2 s1n(21V2 - qr1)
2.12

o e 0 IIIO

wvhere primes denote differentiation with respect to T.

Equations IIT.2.12, IIT.1.17 and 2.4,29 (without its damping
terms) are the same equations,.showing the equivalence of the two
methods described here to that used in Chapter 2. It then becomes
a matter of preference as to which method to use. The method of
averaging involves lengthy'transfers from trigonometric to complex
functions and #ice versa as well as considerable integration, wvhile
the two-variable technique doés not provide the physical insight of

the asymptotic method.

Thus the asymptotic method used in Chapter 2 emerges as the
best technique both for its brevity and for the physical interpretation
it lends during its application in that it highlights the important

behaviour of the so-called resonant terms.
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APPENDIX IV

A NOTE OR THE BEHAVIOUR OF THE

AVA UNDER RANDOM EXCITATION

Although this present investigation has been limited to a
study of the performance of the AVA under deterministic external
excitation of the main mass system, its response to random
excitation is of considerable interest. No attempt is made here
to present a theoretical analysis of this particular aspect but a
brief suvrvey of the literature would suggest'that & study of systems
with randomly varying parameters under random excitation has been
restricted to the linear case. (See, for example, the series
of papers by Ariaratnam and Graefe). Such linear systems are
governed by a stochastic differential eguation of the form

n-1
d Z)

+ (a_dt + aB.)
dtn—1 n n at

dn-1z

d( n-1

+ .6 + (a1dt + dB1)z = dBo Iv.1

where the coefficients ar(r =1, 2, ¢4, n) are deterministic

constants and Bo(t), Br(t) are random functions of time.

From equation IV.1, a second order system without damping would

be represented by the equation
| . ap ap
- 1 0
Z o+ (a1 + dt)z = —
The form of this equation may be compared with the corresponding

AVA equations to the first order in €,

X+ m12X - er(3% + ¥¥) = 16}

(o}
¥y + .(w22 - Gi)y =0

where Q(t) is a stationary random process.



Clearly the randoﬁly varying nonlinear feedback termeR(:;r2 + ¥,
esseﬁtial for the operation of the AVA, makes the solution of this
set of equations difficult. However, it is possible to obtain
some experimental data on the AVA’s response to a random excitation

of Gaussian distribution.

The AVA’s ability to cope with random excitation was assessed
experimentally by comparing the power spectral densities of the
main mass response with and without absorber action. Basically
the experimental set-up was similar to that described in Chapter 4.
A Hewlett Packard noise generator (model 3722A) replaced the
Muirhead decade oscillator and the output from the linear displacement‘
transducer (which monitors the main mass response) was fed into a
Fenlow spectrum analyser (SAQ) which was coupled to an automatic
plotter (1P1). The noise generator provides a random noise output
which is a continuous analog waveform of approximately Gaussian

amplitude distribution.

The response of the main ﬁass system to this random excitation
is plotted in fhe form of a spectral density by the Fenlow equipment,
(see Fig. Iv.1). Figure IV.2 compares the spectral density ploté
obtained for the absorber locked and with absorber action. It can
be seen that there is a distinct decrease in the power density of
the main mass response when the absorber is acting. While not in
itself a staftling result, it does suggest that the AVA does respond
favourably to random excitation. It wouid be interesting to note
how-the AVA’s performance compares with that of other types of

absorber in this respect.



Fig. IV.1

Fenlow Spectrum Analyser SA2
and Automatic Plotter MPi.
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Abstract

The paper presents the basic features of the steady-state
performance of a two-degree of freedom-system consisting of a main
linear spring mass system under periodic forcing the motion of which
acts parametrically on the motion of an attached absorber system.
' Terms, nonlinear in the absorber motion,-act back on the main mass and
' with appropriate choice of tuning parameters, ’absorption’ of the main
mass response can be obtained.
" Experimental results for this type of device are éompared with
a theoretical solution obtained from a first order asymptotic  approximation.
Cqmparison is also made with thé performance of a linear tuned and

damped absorber.



INTRODUCTION

Within the context of this papef, vibration absorbers are
passive single degree'of freedom systems which are designed for
addition to some larger vibrating system with a view fo reducing its
resonant response under external harmonic excitation. Falling into
this class are such devices as the tuned and damped absorber, the
. gyroscopic vibration absorber and the pendulﬁm absorber and the
effectiveness and response éharactgristics of these is well documented.
They are basically linear devices because although in operation large
amplitudes may introduce nonlinear stiffness or inertial effects the
working of the device is not dependent on these.
| The device described here however, which for reasons that will
be made clear has been termed the ’autoparametric vibration absorber’ —
(contracted t6 AVA), interacts in an esséntially nonlinear manner with
the main system to which it is attached. In the usual forms of absorber
the motion of the main mass acts effegtively as a 'forcing’ term onAthe
absorber.motion. In the autoparametfic absorber however,the main mass
motion causes variations in the absorber spring stiffness, that is, it
. varies one of the parameters of the absorber, Noﬁ it is well knowﬁ
that timevise fariation of a parameter or ’parametric excitation’ of this
kind can'iead to large amplitudes in the excited system particularly-ﬁheﬁ
the'fime variation involved is periodic.

In this case however the timé-variation; arising from tﬁe main
4mas$ motién, is not an explicit function of time, it is'actually
‘dependent on the absorber motion itself-ﬁhich acts back on the main
system through nonlinear termso Thé system ié thus térmed autbparametric,
the_adjective.parametric'béing reserved for-situations where tﬁere is an

explicit time~variation of the parameters.

1.



Mathemaéically the analysis of the autoparameiric absorber
under harmonic excitation of the main system is the study of two
cdupled nonhomogeneous equations of the sécond order with quadratic
nonlinearitiese. A general study of this form of system using the
a&eraging method has been given by Sethna [1], [2]. For the present
particular problem, the asymptotic method described by Struble [3]
Ahas been used in preference but, for this problem at least, the results

are the same.

The classical autoparametric problem is fhat of the elastic
pendulum described by Minorsky [4] but mostl&, this problem has been
discussed as an antonomous (free-vibration) one. The paper by Sevin
[5] and the related ones by Struble and Heinbockel [6] [7] for instance
’are in this category but the system the&'discuss bf‘a vibrating beam
interacting parametricélly with its penduloué'supports is very élose,
mathematically at least, to the system presently under consideration.

" The simple pendulum is oné possible form of AVA,

The absorber-like response of an autoparamgtric system might
have been anticipated from existing analysiéo However in this instance
it wés first noticed in the laboratory vhen during tests on the parametric
éxcitation of simple structures_under foundation motion, it was observed
that in a region of parametric instability the structure could have
cpnsiderablé effect back on the ’foundation’° The foundation vas really
another degree of freedom and autoparametric interaction was involved.

fhe-question naturally arises as to whether the AVA has any )

"~ advantages in application over the more conventional types of absorbere.
This is at present an open question but in most cﬁées it can be

: anticipated that the answer wiil be negative. | In normal operation the'
frequency of the AVA absorber motion is one-half of that of the main
systém aﬁd this,migﬁt be beneficial from a fatigue point-of view, however

the AVA depends in its operation on having relatively large amplitudes

2,



and the corresponding increased stresses in;olved will tend.to nullify
any such advantage. The steady-state performance of the AVA can be
made comparable with that of a tuned and damped absorber of the same
mass ratio but, with the.configurations so far examined, a rather
extreme geometry in the form of an extremely short absorber beam length
in conjunction with a large amplitude of oscillation is required in
order to do this,.

The paper presents the essential steady-state operating

characteristics of the AVA.

Basic System

) A schematic drawving of an AVA mounted on a single degree of
freedom system under external forcing F(t) is shown in Fige. 1. The -
AVA consists of g'weightless cantilever beam of length ¢ and flexural
rigidity EI carrying a concentrated end mass m. The varying ﬁotion
Xd(t) (subscript 4 indicates ’dimensional’, a nondimensional X is
introduced later) of the main mass M.brings about fluctuations in the
effective lateral spring stiffness A §f the cantilever. The X-directed
force back on the main mass from the absorber comes from the fact that -
the absorber mass m_rdoes not move purely laterally (yd) but has an -
associated X~wise or axial displacement which can be related to Y4 from
the geometry, ‘assuming for instance a.static form of displacement
curve for the cantilever. Tﬁis relationship between the axial and
lateral displacements is of prime importance in determihing the éffectivenesé
of the absorber._ - |
" It is not necessary that the absorber should be in the form
of a cantilever beam. An alternative mechénisation for instance,
would be a pendulum pivoted on the main mass and restrained to the axiél
position by springs. |

30



Eguations of Motion

The equations of motion are most readily derived via the
Lagrangian formulation, ABoth the axial and lateral components of
velocity of the absorber mass have to be included in the evaluation
of the kinetic energy and using the statiq deformation curve of the
Vcantilever these components are found to be in the ratio (Gyd/St);

In nondimensional form when the.external forcing is harmonic
F(t) =vFocos29t the equations are .

X+ 26/51(»1 X + w12X -€R(§r2 + y¥) = w12c0329t . )

[ c. 2 4 2 02 .o
Y + 2€3,0, ¥ + (w2 -€X)y +€y(F° + y¥) =0
where dots indicate differentiation with respect to time t and

X, = Fo/k‘; X = xd/xo 5y = yd/X.o; € = 6;{0/52 ;

w22 = Ma ;A= 3B/ ; R = n/(Mn) ; - (2)

©e

| m12 = k/(M+m)

_'G‘.%. ,b1/2(I-I+m)fo1 3 €9, = Ac2/2mw2 .

- The basis Xo of the nondimensionalisation is the static deflecfion
of the main system under force amplitude Fo' 0, is the free undamped
natural frequency of the entire system with the absorber locked (y = 0)
and w,

_ damping € and ¢, are assumed to act on the main mass and absorber mass

is the free undamped natural frequency of the absorber. Viscous

respecfively, R is a mass ratio and € a natural small parameter df the

systems Gravitational effects have been ignored.

Stéady—state Solution

. An approximate solution to equations (1) can be found using o
the asymptotic procedure outlined by Struble [3]. For this purﬁose

the equations are written in the form

4e



X + 40% = e[e (49° - o, 2)x - 23,0, X +RGZ + y¥) + Pcos2Qt ]

(3)

. 2 "'1 2 2 y 4 e '2 [
¥+ 0% =€[€ (@ - w, )y - 29,0y + X,'y-ey(y + y¥)]

vhere associating the small parameter € with the forcing term so that
€P is written for w12, allows the detailed structure of the solution
near external resonance to be obtained.

The solution of (3) is taken in the form

X

it

A(t) cos[w,t +¢(£)] +ex, (+) + €%, (4) + ..
_ (4)

and ¥y

1l

B(t) cos[w,t + 6(t)] +€y, (£) + €2y2(t) + oe

where A, B, 4) and © are slowly varying functions of t.

Substitution of this solu’c:ion, to the second order in € , into

the equations of motion yields the following two equations

[X - A(w1 + %)2]cos(w1t +¢) - [A.d,;+ 2.;&(031 +¢i>)]sin(w1f +¢) + 6.221 + 62552

+ 492 A cos(w1t +9) + 49263{1 + 49262}{2
e, 22 g 2
=e[€ (40" = ) fa cos(w,t + ) +€X, + exz}]
- €2§1m1 [.3. cos (w t + <f>) - A(w +Ci>)éin(w t + qb) +€X ]

| 2 2
+ € R [(BB+B )cos (wt+9)-B (w +9) {cos (wt+6)-—s1n (wt+e)}
- {1320 + 4BB(w + e)} s:.n(w t + 0)cos(w, t o+ e)]
24 o e . o9 -; . 2 o .

+ € R, [{By1 + 2By, + (B -3 (w, + &) )y13 cos(wyt + 6)
- {23&1' (w2 +0)+ (36 + 2B (u)2 + e)) yd' sin(wzt +0) ]
+EP cos 20t | T ()

Se



and

[5 - Blw, + 8)%)cos(w,t + 6) - [B6 + 2B(w, + 0)]sin(uyt + 0) +€¥,
+ 62&'2 + 92Bcos(m2't + 0) + Q2éy1 + 9262y2
— e[ &V - w22-) {Beqs_(wzi +0) +ey, +‘62&2}j
- €29, Beos (wyt + 8) = Blw, + é)giﬁ(mzt +0) +€y,]
el {H - an(oy + §)2} cosluyt + $)ooseyt + 0) - {anb 23hor + ).
Loty + §)oos (st + ©)] |
"+ €[k, cos(uyt + ©) + y, {4 - Aoy + &)?}cos(wﬁ; $) - vy {8+
v 2huq + §)) stnluyt + )
2

- e?[{Bzﬁ + BBS - 3(w2 + é)2} éos3(w2t + 0) +_B3(w2 + é)ZSinz(mét+

+ e)cos(wzt'+ o) - {3°6 + 2 B2}§(w2 + é)}sin(wzt + jSosz(mzf + 0)] -v_ (6)

The teims of order zero iﬁ € iﬁ equatiané (S)Iaﬁd (6) are
referréd to as variational terms and equating these appropriateiy.on
_each side yields four variational equatioﬁs. Higher order terms in_
€ give rise to perturbatioﬁal.equations and any of these having‘resonant

solutions are transferred to the variational equations.

6.



The first order terms in € in (5) and (6) give the first order

perturbation equationsy

[ 2
X1 + w1 X1

= - '2§1w1[.l.xcos(w1t +¢) - A(w1 + (i))sin(wﬁ: +¢)]
' + R . [(BB + ﬁz)cosz(th + 6)—B2(w2+é)2 Ecosz(wzt +

+ 6)=sin(w,t + 0)]

{576 + 483w, + 8)] sin(uyt + 6)cos(u,t + 6)]

+ P cos 20t - (1)

.;1 . m22¥1 - -ijwé[ﬁ cos kw2t + 6) --.B(m2 + é)sin(wzt + O)]
+ [{BA - AB(w1 +é>)2§ cos(w1t + q>)gos(w2t + e) -

- {AB¢+ ZBA(wi + ¢)} sin(wjt + ¢)00s(w2t + 0)] . (8).

The'periodic external'forciné will have moét effect when the
frequency 2Q is close to the s&stem frequency Wy accordingly we assume
that the condition of external resonance holds-(2Q/w1) =1 + o(€),

Fufther, to ensure that the absorber is excited parametrically in its
,principalAregion of instability the internal‘resonance or tuning condition
wy = 2w2 is imposed. Consequently such terms as cbs E(“ﬁ - wz)t + (¢'— 9)}
in (7) and (8) are resonant and must be removed to the variational |
equatioﬁso-’ |

The resulting first order pez_'turbation equations are
X, o+ m. %, =+ R (B'ﬁ +
1 1 1

y1 + 0, y1 —{BA - AB(m +1>) Jcos E(w + @, )+ (¢+ 9)1

c2)

- —[AB¢+ ZBA(w + 4>)]s1n {(w + w, )t o+ (¢+ 6)}



Now as previously stated A, B, ¢ and © are slowly varying
functions of time so tﬁat their first and second derivatives with
respect to time are assumed small, This means that these perturbation
equations need not be treated precisely and the particular integral

solutions can be taken as

ABw

Y, =§(—u-’-1—-_-'_1—2727 cos {(m1 + mz)t + (¢+ 9)}

With these solutions for X, and ¥4 the second order perturbation

1
equations may be written, once again any ’'resonant’ terms are removed

to the variational equations,

The Variational Equations

Returning to equations (5) and (6); thé variatioﬁal equations
comprise the coefficienfs of the fundamental harmonic terms together .
wvith the coefficients of the resonant'terms brought up from the
pefturbation equations, | o

| Thus the coefficients of cos(m1t +-¢) give
L - 2o +3)% + 407k = e[ &' (40° - 0,2)1] - €230,
L. 4 . 2 2 . 2 ’
+ €R.[3(BB + B%) - B(w, + 6)7]cos(20 - ¢)
- ejR',[%Bzé' + 2B}'3(w2 + 6)])sin(20 - ¢) +ePcbs¢ :
2 : s Y-
+ € [Rw1AB/4(m1 + 2w2)][B - B(w2 +0)° 4+ 2B(w2+

¢

+ é)(w1 + wz)]

8.



The coefficients’of sin(w1t + 9) give
- A4~ Z.Z.(w1 +¢) = €29, Lx% A(w1 +<.!5) —éR[—%—BZé. + 2Bf3(w2 + 8)]cos(20 - ¢)
1 es 02 2 . . 2 .
- €R[4(BB + B%) - B (w, + 0)°] sin(26 - ¢)
. 2 e . .
+€EPsing + € [Rw1.lu3/zlr(m1 + 2w2)][Be + 2B(w2 + 6)]
" The coefficients of cos(wét + G) give
” 2 2 P S N
B-Blu,+6) +2B=¢e[& (2" -, )B] - €29,0,B
+€e[1BE - #4B (0, +$)?] cos(20 - ¢)
+€[44BE + Bh(w, + $)] sin(26 - ¢)
+ €2[w AB/4(w, + 2w )][X - Alw, + @)2]—
1 1 2 1 o -
= 4 38 + 385° ~ 287 (w, + 6)°]
Finally, the coefficients of sin(wzt + 0) yield
- BO - 2B(w2 + 8) = e260,B(w, + 6) - e[34BF+ BA(w, + $)]cos(20 - ¢§)
+e[485 - $B(w, +$)%)sin(20 - ¢)
2 . . c-
+ € [w 28/4(0, + 20,)][A 9+ 24(w, +¢)]
+ 4 62[B3§ + 4B2l§(w2 +0)]
Again, taking into accéunt the assuned slow variation of A, B,«#

. and O, these variational equations can be simplified.

9.



The resulting reduced equations are,

e -1,.2 2 . 2 2
ad = (&/20,)[2 € (27 = w,")A = % w0 A - RD 0, cos(26 - ¢)

+ $Pcos ¢ + e(RAB 0y W, (2w + w, )/8(co + 20 ))] (9)

= (e/2(92)['71w1 2 4 1 RB2m22sin(26 - $) + $Psing) , (10)

(G/Zw )[ é-1 (Q - W 2)B - 2’72(0 B - 2ABw cos(29 - qJ)

_G(A B w, 3/2(03 + 2w )) +e¥ 3 22] (11)

B = (G/sz)[2?2w22}3 - 2ABw2231n(26 -$)] |  (12)

The term in A in equation (9) and that in B in (11) can be
eliminated using equations (10) and (12). It is also convenient to

transform the variables as follows,

t = 47fe J_ﬁ Y = (w - 92)/€wé JT"R. ;
' (13)
‘_A:bf‘/mJ‘,B_bJ‘/mIE ¢ = \lf
The resuiting variational equations are, '

b, \lr; = avb, + b22cos(2 Vz - V1) - cos ¥,

s €y, L4y, &/ R by = by sin(2¥, - ¥,) - sin ¥}

-2 (e/R)%b1b22 I - | C (14)
b;': = - 4')1(€/R)% b, - b22 sin(2V¥, - qq) - sin \\f1 (15)
b, \V?f'" ='2yb2 + (4/R)b,bcos(2¥, - V,)

| + egz[— 2;2(65/11)%2 + (4/R)b1b2sin_(2qJ’2 - ¥ )]

+ (2/R)(€/R)%[2b1 2b2 - b23] | - o (16)
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and
. 1 .
/L c/n\Z _ . _ .
b, = 2}2( /R) b, + (4/R)b1b231n(24/é qq) (1)
~ where primes denote differentiation with respect to the slov time To
In this analysis a solution to the first order variational

equations. only will be sought. These are

-b1 V= v, + b22§os(245-- V) = cos by - (18)
b{t = - 49, (6/12)% b, - b, sin(245 - ¥;) - sin ¥, ~(19)
| b, \sz'f.—: 2vb, + (4/R) b bycos(2 ¥, - \h) S "~ (20)
'b2" = - é’}z(e/R)% b, + (4/R) bbsin(2 V¥, - V) (21)

The steady-state solutions for bi s by \VT and \lfz are -fopuid by -

equating the right hand sides of equations (18) to (21) to zero.
- . ’: = . R N
Thus b;' = b?f' = b1 \[f1‘ = b2 ‘4"2, = 0 and after some algebdbra,
" eliminating \lr1 and V7, ‘
S 1 > 2 b '
by =% (R)? [€9," + " R | . (22)

;md b22 = 2[y2 R = é’h’ﬁg] + [1 - 4Y2€R (.4;1 + ’52)2]% _ (23)

By transformation the two nondimensional expressions for the

| X and y amplitudes are

AR, N S LV e

and

i

lGa/2)°] = (8/eRI (G = 0)7ae) - €3,%,]

£ (4R - (1 - 0223 +95F - (25)
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Stability of Steady-State Solutions

Case 1 b2 nonzero.

b1,
) By observing the behaviour of the parameters b,, b,, w}, Wé
when given small displacements about their equilibrium position it is
possible to determine the stability of thé steady~-state solutions,

The following substitutions

b1:=b1°+sb1§ b2 =b20+£b2; ¢/1 =¢'1°+S\V1 §¢/2=qf20+8‘[f2

are made in the varlatlonal equatlons (18) thro’ (21) where b 2, qf1 s
quo are the equilibrium solutions. Retaining the linear terms in

‘ 5b1, sz, S¢] and §¢é'gives a:set of four first order equations.

_Following the usual procedure, the stability determinant provideé

a characteristic equation of the form

4 3 2 - |
‘%x +%)+JQ\+Q)+%=0 : E

The Routh-Hurwitz criteria are, Ji positive and

2
H -—-J1J2J3 J4

Now by inspection J1, J2, J3 and J4 are positive and by

- J0J32 positive for stability.

calculation H is.also positive. The only condition to be considered
is thus J >0

2

i.€o | (bzo) > 2[ygtlﬁi~-;€?132]

is the required stability condition, (c.fo first part of equation.(ZB)).

This means that the sﬁeady—state‘solutions for b1 and b2 both
nonzero, are stable over the frequency range spanned by the upper
branches of the b2 response curves, and are bounded by the points of

".. vertical tangency on these curves.

Case 2 b, nonzero, b, zero.

1 * 2 o
Here 510 =+ 1 y b

: 4['\’2 + (e/R) 71 2]'12—

12.



The characteristic equation is cubic of the form
3 2 _
I X + TN 4 TN+ T =0
‘and the stability criteria are J; positive and J,J, > J

The condition that emerges is that

-

32(<“—/R)2 [(2b,%/R)% = ¥°]

N

" for stability.
Substituting for b1°, the eolution is unstable within the

| frequency range Qefined by
2 _—(e/2r) (3,2 +3,7)  (1/2R)[€%(%,° - 1,2)2 4 172

Agein from equation (23) it is seen that for b2 = O this same
‘expression (26) is ebtained and that %$§ is infinite. Therefore the
boﬁnds‘of zero b, stability coincide with the points of vertical
tangency in the b2 respoﬁse curves. .

One further aspect which emerges is that the ‘cross—-over’ p01nts

found by equatlng the one-degree of freedom solutlon (b 0) to the

" two-degree of freedom solution (equation (22)) thus

- A 1 _ 2. 2 4 | .
._,16[Y2 + (e/R)%Z] (R/4)[€9)_2 . S

© provides the same frequency express1on (26) This meaﬁs that the

?cross-over’ p01nts are the entry points for the absorber system.

The Theoreticél Response Curves

It is now possible to draw a set of theoretical amplitude response

curves for the.quantities.(xd/x') and,(yd/X ) using equations (24) and

(25), together with the stability conditions Just derived. These

nond1mens1onal amplltudes are plotted against the forced frequency ratio,

n ='2Q/w1,for various values of viscous damping 631 andA€72.

13.
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To establish a comparison with experimental results known experimental

values are assigned to $1, 32 and the constants X € and R. (Xo = 0,0029 in,
€= 0,0005, R = 0.0196). '
Fig. 2 shows the theoretlcal response curves for the amplltude

of the main nmass, Included are the one-degree of freedom responses
(absorber locked,yy = 0) for €71 = 0 and €y, = 0,0035 and four response

curves showing the effect of ghsorber action, for

]

(2) e% 0, €49, =0 3 (b) €9, = 0.,0035, €4, = 0.0035

1

(0)6';” 0.0035, €9, = 0.0110 3 (d)e% = 0,0035, €9, = 0,0184

The corresponding response curves'for the absorber system are
shown in Fig. 3. It should be noted that the lower branches of these
curves are unstable as indicated by the broken lines,

The points of verticai tangency on the_absorber response curves
are impoftant as they défine the boundaries of the region of parametric
vinstability of the absorber. They coincide with the discontinuities and
jumps observed in the main mass displacement of Fig. 2. The forcing
fréquency at which a nonzero abéorber amplitude becomes unsfable will
be referred to as a *collapse frequency’ .and the associated main mass
, amplitude'jﬁst prior to this.wili be referred to as its 'collapse
aﬁplitude'., A

Iﬁ Fige 2'the locus of the collapse amplitude for €9, = 0.0035
is shown for varying 32 by the broken line. This loéus has as
asymptotes the one-degree of freedom response for 631.='0 gnd-the two-
degree of freedon response for €31 =0 énd 632 % O. If is seen to have
a minimum value which defines that value of ééz for a given €51 vhich
w111 produce the minimum collapse amplltude.

To follow the detalls of the action of the AVA consider the set of

curves (Q) from Figs. 2 and 3 for €, = 0.0035 and €9, =,0,0110.

14,



From Fig; 2, it is seen that fo;lowing the path of increasing
frequency (indicated by arrovs) the system behaves as a normal one-degree
of freeuom system (region A) until it reaches the cross-over poinf (point
. B) previously discussed. This corresponds to a point of vertical
tangency in the aﬁsorber solution (b2° = 0 solution unstable) and so
absorber action beginse. The main mass system then follows the two-

degree of freedom solution (region C)§ its amplitude reaching a minimum
ualue atn=1. It then climbs sfeedily until the collapse amplitude
is reached (point D). This eorresponds to e vertical tangency in the
absorber solution which marks the bound of absofber action. The reeult
is that absorﬁer action ceases and the main mass amplitude drops to its
one—degree of freedom level (point E)o

Following a path of decreasing frequency (egain arrowed) the'
main system behaves in a similar~fashion tracing the path F, G
(absofber entry point), c, H (collapse amplitude), K, and A,

' Fig; 3" shows the corresponding regions and points on the absorber
response curve, the jumps BB eud GG coinciding with the entry points

B and G on the main mass response.

Experimental Apparatus and Procedure

The experimental apparatus was designed to give a one-degree of
freedom main massjsystem with low damping. Fig; 4 shows the basic
layout. ' - : ;g."; o .

» The main mase is aAselid steel elock supported and restrained to
horizontal motion by feur spring sueel'legs. ;A coil spring provides
the necessary horizontal stiffness giving a natural frequency of 6,92 Hz,.
The absorber system consists of a spring steel beam 0,020 in, thlck by
‘%;ino wide with an adjustable end-mass.  This system is attached to the

main mass by means of a light clamping block.
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The complete system is mounted on an angle bracket which is
strapped to the head of an electromagnetic shaker. To prevent a bending
moment on the shake? head, the deadweight is taken by suspending the
whole assembly on elastic ropes connected to the four support points of
the angle bracket, | |

* The shaker was excited through a power amplifier ffom an accurate
decade oscillator.
' Viscoué damping could be introduced to both main mass and absorbe£
' systems by the addition of light vanes operating in 0il baths.

Thus the experimental rig is basically a spring-mass system
on a moving support (shaker head). Keeping tﬁe amplitude of the
suppért constant ensures a constant exciting force on the system.

Thé instrumentation incorporatéd in the set-ﬁp consisted of

(a) a proximity probe to monitor‘shaker head amplitude;

(b) a linear displacement transducer to measufc ﬁain mass amplitude

“(coupled to an oscilloscope). |
(c) strain gauges éfdthe roof of the absorber cantilever to
neasure absorber end-mass amplitude
(coupled to an ultraviolet-recorder).

ihe oséilloscope and ultraviolet rgcorder provided monitoring and
recording facilities. - The instrumentation was initially calibrated and
appropriate damping rates decided.

The.typicalAtest pfocedﬁré involved the step-wise increase and
decrease of the fofcing frequéncy through the resonaﬁce regione. At
each settiné of frequency the shaker head amplitude was held at.a constant,
predetermined level by means of a potentiometer in the powér amplifier
output and the steady-state amplitudes of the main mass and abéorber systems

were noted.
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The Experimental Response Curves

Fig. 5 shows\four response curves for the main mass systen
labelled (a), (b), (c) and (d)o Curvé’(a) is the response with the
absorber locked (b2 = 0) for €4 = 0.0035.  Curves (b), (c) ana (d}
are the amplitude responses under absorber action for the following

damping ratios,

(b) €9, = 0,0035, €9, = 0.0035.; (c)€, = 0.0035,€E9, = 0,0110;

(a)€9, = 0.0035, €3, = 0.0184.

Fig.‘6 shows fhe corresponding response curves for the
absorber systeme.
Interpretation of these experimental curves follows the same

pattern as outlined for the theoretical case.

Comparison of Theoretical and Experimental Response Curves

Direct comparison between the theoretical and experimental response
curves can be made using Figs. 2, 3, 5 and 6°- The experimental curves
(b), (c), (a) in Fig. 5 compare direcfly with curves (b), (c), (a) in |
A Fig. 2. Similarly curveé (b), (c), (d) in Fig. 6 have their couﬁterparts
(), (e), (a) in <Fig.- 3. - - ' .

The comparison is seen 1o bé quite reaéonable although the
experimental amplitudes of the main ﬁéss are, in'general, greater than
those.predicted theoretically. It~is,‘of;course, difficult to tune the
absorber-précisely to the condition w{ = 2w2, and as é‘result the
experimental curves lack the symmetry displayed by the theoreticai curves

about the n = 1.0 axis;
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This may also in part be attributable to the neglect in the
theory of the nonlinearity in the spring force qf the cantilever which,
with the relatively large amplitudes involved, was quite significant.

The main mass experimental curves of Fig. 5 can also be seen to
exhibit jumps at the points of entry of the absorber which are not

predicted by the first order theory used.

" Comparison of AVA with LTDA

It can be shown from tﬁe analysis that a.more powerful absorber
'actioﬁ is gchieved vhen the value of the parameter €(= 6Xo/5¢t) is
increased., This implies an increase in the ratio of axial motion to
lateral motion of the absorber mass. In practice this can be achieved
by'dimensioning the absorber cantilever beam to provide the same natural
. frequency (wz) with the same mass (m) vhile decreasing the length (L)o

Experiments were carr@ed oﬂt using an absorbér whose length was
one~fifth of that of the system already discuésed.. This increased the
value of € by a factor oflfive. Fig. 7 compares é set of theoretical
and experimental main mass fesponses for.such an absorber, whére 651 = 0,0030
and€572.= 0.0338., Studying Figs. 2, 5 and 7, it can be seen fhat a general
1mprovement in the performance of the absorber has been obtained by |
shortening 1ts length but this improvement is obtalned at the expense of
gregter strain amplitudes in the absorber.

To provide a measure of the éffecti§enesslof this improved AVA
' system.it was decided to effect a theoretical comparison with the linear
tuned and démped absorBer (contracted to LTDA); The theory of the LTDA
is given in reference [8]. | | | |

The experimental mass ratio (m/M) = 0.02 is chosen for bqthAAVA'

and LTDA systems.
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Since this ratio is small compared with unity, the LTDA natural frequency
ratio is taken as unity and the optimum damping between its two mass
systems is found to be 0,09, :

Fig, 8 compares the resulting LTDA main mass response (a) with

" two AVA response curves (b) and (c)o Rgsponse (b) is for €§1 = 0 and
6?2 = 0.0208, while response (c¢) is for Eo“ = 0 and 652 = 0.0360;, Also
shovn is the one-degree of freédom response (d) for the absorber locked.

' The AVA response (e) represents the minimum collaﬁse anplitude attainable
for the stated parameters bﬁt this €72 value does not produce good absorber
action near resonance. Response (b) for a smaller 632 valpe comﬁares
more favourably with the LTDA near resonance but fhe consequent widening

~ of the parametric instabilify zone results in muﬁh higher collapse

aﬁplitudes.

Conclusions

The basic absorbing action of the autoparaﬁetric system

described has been shown experimentally énd the first order asymptotic.
theory developed has effectively fredicted most of the principal
features of the steady-state response, Tﬁe transient response of the
absorber is currently under investigation. | |

: Tﬁé‘comparison described between an autoparametric absorBer and
a linear tuned aﬁd damped absorber of the same‘mass ratio is not
favourable towards the former. However there is a gfegt deal of development
of the autoparametric devicg which might still be carried out and it may '
prove advanfageous in some applications. It is for instance in principle
possible to deéign an absorber vhich will act simultaneously as an
autoparametric and a tuned and damped absorber. If the input consists of
a fundamental frequency (Q) and its first 6vertone (29) then the ,
fundamental component would be absorbed by the tuned and damped action while

the overtone would stimulate the autoparametric action.
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Schematic diagram of autoparametrid

absorber system.
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Fig, 2

Theoretical response amplitude of
main mass under the action of the-

AVA for various values of the
damping ratios.
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Fig, 4
Experimental Apparatus

1o main mass, 2. Spring steel legs,

3¢ c0il spring, 4. absorber cantilever spring,

5. absorber end-mass, 6. absorber clamping block,

7. angle bracket, 8. shaker,

9. support points, 10, proximity probe,
11 linear displacement transducer, 12. strain gauges.
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Fig. 7

Comparison of theoretical and
experimental main mass response
amplitude under the action of
small length AVA, The legend
-—-————0— represents experimental
data.
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Fig. 8

Comparison of main mass response
amplitude of the LTDA with that
of the small length AVA.



