
The autophagic machinery is necessary for removal
of cell corpses from the developing retinal
neuroepithelium
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Autophagy is a homoeostatic process necessary for the clearance of damaged or superfluous proteins and organelles. The
recycling of intracellular constituents also provides energy during periods of metabolic stress, thereby contributing to cell
viability. In addition, disruption of autophagic machinery interferes with embryonic development in several species, although the
underlying cellular processes affected remain unclear. Here, we investigate the role of autophagy during the early stages of chick
retina development, when the retinal neuroepithelium proliferates and starts to generate the first neurons, the retinal ganglion
cells. These two developmental processes are accompanied by programmed cell death. Upon treatment with the autophagic
inhibitor 3-methyladenine, retinas accumulated numerous TdT-mediated dUTP nick-end labelling-positive cells that correlated
with a lack of the ‘eat-me’ signal phosphatidylserine (PS). In consequence, neighbouring cells did not engulf apoptotic bodies
and they persisted as individual cell corpses, a phenotype that was also observed after blockade of phagocytosis with phospho-
L-Serine. Supplying the retinas with methylpyruvate, a cell-permeable substrate for ATP production, restored ATP levels and
the presentation of PS at the cell surface. Hence, engulfment and lysosomal degradation of apoptotic bodies were also
re-established. Together, these data point to a novel role for the autophagic machinery during the development of the central
nervous system.
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Autophagy is a degradative pathway by which cells break

down and recycle cytoplasmic components, such as long-

lived proteins and damaged organelles and proteins. Thus,

this process helps prevent the accumulation of deleterious

products, as well as providing a supply of energy and amino

acids.1,2 The recent identification of regulatory molecules

implicated in autophagy, the Atg proteins, has led to a

resurgence of interest in this process.3 The Atg proteins were

first discovered in yeast and the subsequent identification of

orthologues in all the eukaryotes studied to date indicates that

autophagy has been conserved throughout evolution. Be-

sides its role in maintaining cell homoeostasis, autophagy

fulfils additional roles in multicellular organisms. Indeed, the

mutation of Atg proteins in Drosophila, Arabidopsis, and

Caenorhabditis produces developmental defects.1,4 In mam-

mals, the loss of Beclin (the Atg6 orthologue) produces

lethality at embryonic day 7.5 (E7.5) due to a failure in visceral

endoderm formation.5 Recently, Ambra-1 was identified as a

novel Beclin-interacting protein that is expressed only in

vertebrates and that regulates autophagy by forming a

multiprotein complex with Beclin and Vps34.6 The embryos

of mice with Ambra-1 disruption die at E14.5 and display

defects in neural tube closure, as well as increased prolifera-

tion and cell death.6 Thus, Ambra-1 seems to play a role in

controlling cell proliferation and promoting cell survival during

the development of the nervous system. In addition, knockout

mice for Atg5 also display increased cell death in the retina at

E18.57 and hence, it is clear that deficiencies in autophagy

notably affect nervous system development.

In addition, autophagy has long been considered a type of

programmed cell death, initially described associated with

embryonic development in several species.8 In the nervous

system, programmed cell death occurs from earliest embryo-

nic stages up to adulthood, both under physiological and

pathological conditions.9,10 However, the links between

autophagy and other types of programmed cell death, such

as apoptosis, remain unclear.2,11,12Hereby, we have used the

embryonic chick retina, a well-characterised model of neural

development and cell death, to study the role of autophagy in a

developing multicellular system.13 In the chick retinal neuro-

epithelium at E4, the retinal ganglion cells (RGCs) are the first

neuronal cell types to differentiate, following a centroperiphe-

ral gradient.14 This differentiation coexists with the intense

proliferation of neuroepithelial cells and with cell death in the

central part of the retina.15,16 Thus, the early embryonic chick

retina provides a good model system to characterise the

possible relationship between autophagy and developmental

processes such as proliferation, neural differentiation, and cell
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death. Furthermore, the neuroretina can be manipulated in

organotypic cultures, conditions under which all these develop-

mental processes are faithfully reproduced.15,17 This permits

short-term pharmacological manipulations to be used in an

attempt to define the hierarchy and interconnections between

the ongoing processes. We found that in association with the

cell death that occurs during the development of the retina,

inhibition of autophagy with 3-methyladenine (3-MA) induces

the accumulation of apoptotic bodies in the neuroepithelium,

as visualised by TdT-mediated dUTP nick-end labelling

(TUNEL). This accumulation of apoptotic cell bodies corre-

lates with a reduction in ATP levels necessary for exposure of

phosphatidylserine (PS) on the membrane of apoptotic cells,

so as to induce their engulfment and lysosomal degradation

by neighbouring cells. The inhibition of autophagy can be

bypassed by supplying the retina with methylpyruvate (MP), a

cell-permeable substrate that increases ATP production. In

the presence of MP, the presentation of PS is restored, as is

cell engulfment and the degradation of cell corpses. Thus,

during neurogenesis, the authophagicmachinery provides the

retina with the energy required for proper cell corpse removal

and further degradation of apoptotic cells.

Results

The autophagic machinery is present in the chick

retina. To characterise the possible role of autophagy in

retinal development, we first studied whether the autophagic

machinery was indeed present and active in the E4 chick

retina. RT-PCR analysis identified transcripts of several

genes involved in autophagy, namely, atg5, beclin, lc3a, and

lc3b (Figure 1A). In addition, cytosolic punctate

immunostaining for Beclin and Ambra-1 could be seen in

the retina at this age (Figure 1B) and both partially colocalise

(Figure 1B, panel d), as it has been recently shown.6

Accordingly, the E4 chick retina was able to respond to an

autophagic stimulus. Amino-acid deprivation for 6 h in

organotypic culture induced the conversion of LC3-I to the

autophagosomal form LC3-II (Figure 1C). Moreover,
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Figure 1 The autophagic machinery is active in E4 chick retina and can be inhibited by 3-MA. (A) Autophagy genes are expressed in the retina. Representative RT-PCR of
a pool of E4 chick retinas demonstrating the expression of atg5, beclin-1, lc3a, lc3b, and gapdh as a control. (B) Beclin-1 (a) and Ambra-1 (b) immunostaining in the E4 chick
retinal neuroepithelium, merged in (c). Scale bar, 20mm. (d) Detail of neuroepithelial cells stained with Beclin-1 (green) and Ambra-1 (red). Scale bar, 5 mm. (C) Exposure to 3-
MA inhibits autophagy in E4 retinas. E4 retinas were cultured for 6 h in EBSS or EBSS plus 10mM 3-MA, and the LC3-I and LC3-II forms were identified in extracts by
immunoblotting
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exposure to 10mM 3-MA, a classical inhibitor of autophagy,

blocked this conversion. In conjunction, these data indicate

that autophagy is active in the E4 chick retina and that it can

be inhibited by exposure to 3-MA.

3-MA treatment increases the number of TUNEL-positive

cells. The potential role of autophagy in retinal development

was studied in organotypic culture using a short-term

pharmacological approach. E4 chick retinas were cultured

for 6 h in the presence or absence of 3-MA and subsequently,

the retinas were flat-mounted and apoptosis was visualised

by TUNEL. As described previously,15,16 TUNEL-positive

cells were found throughout the E4 chick retina (Figure 2A,

panel a). Exposure to 3-MA markedly increased the number

of TUNEL-positive cells that were clustered in a well-defined

area of the dorsotemporal retina (Figure 2A, panel b). We

have previously demonstrated that this area corresponds to

the region where prominent cell death is associated with

neural differentiation.16 Higher magnification revealed the

presence of unfragmented TUNEL-stained nuclei that were

bigger than the apoptotic nuclei found in the untreated retina

(Figure 2A, panels c and d). Hence, the cell morphology after

3-MA treatment was further characterised by ultrastructural

electron microscopy of retinal sections (Figure 2B). In the

3-MA-treated retinas, there were numerous neuroepithelial

cells that manifested apoptotic morphologies typical of

different stages of the cell death process. Some cells

displayed mild chromatin condensation at the periphery of

the nucleus with an almost normal cytoplasm (Figure 2B,

panel b, asterisks). Other dead cells had a reduced and

condensed cytoplasm and highly condensed nuclei, whereas

highly electron-dense cells with small nuclei and empty

vesicles in the cytosol were also observed (Figure 2B, panel

d). In the untreated retina, apoptotic cells were less frequent

and presented highly condensed nuclei with slightly

degraded cytosol (Figure 2B, panel c).

Treatment with 3-MA blocks phosphatidylserine

exposure, engulfment, and lysosomal degradation of

apoptotic cells. During apoptosis, PS is transferred to the

outer leaflet of the plasma membrane of dying cells, where it

is recognised by professional phagocytes or neighbouring

cells that engulf the apoptotic bodies and degrade them in

lysosomes.18–20 To assess whether the increase in TUNEL-

labelled cells detected in the presence of 3-MA in our model

system was due to the failure to present PS, we stained

retinas with Annexin-V during the last half an hour of the

culture, before performing the TUNEL reaction. Although the

untreated retina presented a similar level of Annexin-V-

labelled and TUNEL-positive cells (Figure 3A, panels a–c),

exposure to 3-MA reduced the overall intensity of Annexin-V

staining and prevented the appearance of Annexin-V-

labelled cells in the dorsotemporal region of the retina, in

striking contrast with the observed accumulation of TUNEL-

positive cells (Figure 3A, panels d–f). The staining of

Annexin-V at the periphery of the cells was compatible with
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Figure 2 Exposure to 3-MA induces the accumulation of cell corpses in the E4 chick retina. (A) E4 retinas were cultured for 6 h in control medium (a and c) or in the
presence of 10mM 3-MA (b and d), whole-mounted, fixed, and stained for TUNEL followed by confocal microscopy. Perspective of the whole retina (a and b). Dotted lines
represent the limits of the retina and the asterisks mark the optic nerve head. Scale bar, 300mm. 3-MA exposure induces the accumulation of unfragmented TUNEL-stained
nuclei (d) in comparison with untreated retinas (c). Scale bar, 20mm. (B) Representative sections of the untreated (a and c) and 3-MA-treated (b and d) retinas visualised by
electron microscopy. The asterisks (b) mark cells with perinuclear chromatin condensation and the arrows point to highly electrodense apoptotic cells. Photomicrograph of a
representative dead cell in an untreated retina (c) and of several apoptotic cells in a 3-MA-treated retina (d). Scale bar, 20mm (a and b) and 5mm (c and d)
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the presentation of PS in the outer leaflet of the plasma

membrane (Figure 3B). This extreme was confirmed by

double in vivo labelling with Annexin-V and propidium iodide

(PI), to check membrane integrity (Supplementary Figure 1).

The large majority of Annexin-V-positive cells were not

permeable to PI, indicating that they were exposing PS in the

outer leaflet of the plasma membrane. Quantitative analysis

confirmed that the increase in TUNEL-positive cells, when

autophagy was inhibited, was completely dissociated from

the presence of Annexin-V-labelled cells (Figure 3C and D).

Thus, the increase in TUNEL-labelled cells appears to be a con-

sequence of dying cells failing to present PS. The exposure

of PS enables dead cells to be recognised and then engulfed

by neighbouring cells.18–20 Engulfment was visualised in

control retinas, where pyknotic TUNEL-positive nuclei were

surrounded by F-actin from a neighbouring cell (Figure 4A,

panel a).21 Conversely, relatively unfragmented TUNEL-

stained nuclei in the area of prominent cell death induced by

3-MA were never seen to be surrounded by F-actin

(Figure 4A, panel b). Similarly, although dead cells

engulfed by neighbouring cells were often observed by

electron microscopy in the control retinas (Figure 4B, panel

a), we were unable to find a single dead cell engulfed by a

neighbouring cell in the retinas exposed to 3-MA (Figure 4B,

panel b).

After engulfment, apoptotic bodies are degraded inside

lysosomes, which can be visualised using acid lysosomo-

tropic probes such as lysotracker (LTR).19,22 Apoptotic bodies

labelled by both LTR and TUNEL were present in control

retinas confirming that lysosomes were associated with the

engulfed apoptotic bodies (Figure 5A, panels a–c). In

agreement with our previous observations, in the dorsotem-

poral region where cell death accumulates in the retinas

exposed to 3-MA, we were unable to detect TUNEL-labelled

apoptotic bodies in acidic organelles (Figure 5A, panels d–f).

Quantitative analysis demonstrated an increase in the

density of TUNEL-positive cells in the 3-MA-treated retinas

(Figure 5B), again dissociated from the presence of
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Figure 3 Treatment with 3-MA blocks Annexin-V exposure. (A) E4 retinas were cultured for 6 h in the absence (a–c) or presence of 3-MA (d–f), and in presence of
Annexin-V-biotin during the last half an hour in culture. The retinas were flat-mounted, fixed, and double stained for TUNEL (green, a and d) and avidin-Alexa 546 (red, b and
e), followed by confocal microscopy. Merged images are shown in (c) and (f). The dorsotemporal part of the retina is shown. Scale bar, 150mm. (B) Representative staining for
Annexin-V (red), TUNEL (green), and DAPI (blue) in the E4 chick retina. Scale bar, 30 mm. (C and D) Quantification of TUNEL and Annexin-V-positive cell density in E4 retinas
as those shown in (A) (C, untreated; 3-MA, 3-MA-treated). Quantification of maximal projection was performed on confocal series under a � 40 objective
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LTR-positive cells (Figure 5C). Indeed, although 80% of the

TUNEL-positive cells were also positive for LTR staining in

untreated retinas, barely 5% of the TUNEL-positive cells were

associated with LTR staining in retinas exposed to 3-MA in the

dorsotemporal area of the retina (Figure 5D). To confirm that

lysosomes were present in 3-MA-treated retinas and that the

observed LTR labelling in untreated retinas was associated to

lysosomes, we performed double staining for the chick

lysosomal protein LEP-100 in combination with TUNEL or

LTR. LEP-100 immunostaining was more sensitive than LTR

to visualise lysosomes and revealed small lysosome spots in

all cases (Supplementary Figures 2a and b; panels a and d),

as well as lysosomes associated to TUNEL-positive pyknotic

bodies in the untreated retinas (Supplementary Figure 2a,

panels a–c). Confirming our previous observations, LEP-100

immunostaining was not associated to TUNEL-positive

pyknotic bodies in 3-MA-treated retinas (Supplementary

Figure 2a, panels d–f).

To check whether cultured E4 retinas were able to respond

normally to a pro-apoptotic stimulus, we deprived the culture

medium of insulin, a physiological survival signal at these

stages of retinal development in the chick.15,16 As previously

reported, growth factor deprivation over 6 h augmented

TUNEL labelling, which in this case was accompanied by

increased Annexin-V and LTR staining (Figure 6). Thus, the

accumulation of TUNEL-positive, Annexin-V-negative, and

LTR-negative dead cells appears as a selective lack of

phagocytosis induced by 3-MA treatment.

Methylpyruvate restores ATP levels, PS presentation,

engulfment, and degradation after inhibiting

autophagy. It has recently been demonstrated that

autophagy provides energy for PS presentation as an

external source of ATP bypasses the inhibition of

autophagy.7 We first checked whether inhibiting autophagy

affected the ATP levels in the E4 chick retinal
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Figure 4 Exposure to 3-MA prevents the engulfment of dead cells. (A) E4 retinas were cultured for 6 h in the absence (a) or presence of 3-MA (b), flat-mounted and fixed.
The retinas were stained for TUNEL (green), Rhodamine-conjugated Phalloidin to visualise F-actin (red), and DAPI (blue). The retinas were analysed by confocal microscopy
and a series of three sections from 0.5mm confocal planes is shown. Note the apoptotic nuclei (a) surrounded by a ring of F-actin from an engulfing cell in the middle panel (e).
Scale bar, 5 mm. (B) Electron microscopy photomicrograph of a representative apoptotic cell inside another cell in an untreated retina (a) and a representative individual dead
cell in a 3-MA-treated retina (b). Scale bar, 5mm
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neuroepithelium. When compared to untreated retinas, there

was a moderate but significant reduction in ATP levels in

individual retinas exposed to 3-MA (Figure 7A). Certainly,

autophagy is neither the single nor the major metabolic

pathway to provide ATP. We further explored

the possibility that the restricted availability of ATP may be

the cause of our observations by supplying the cultured

retinas with MP, a cell-permeable substrate for ATP

production by mitochondria. As expected, MP restored the

levels of ATP after exposure to 3-MA (Figure 7A) and,

remarkably, it completely abolished the accumulation of

TUNEL-positive cells upon exposure to 3-MA (Figure 7B and

C, panel d). Moreover, MP supplementation restored the

engulfment of apoptotic cells after the inhibition of autophagy

(Figure 7D). Altogether, these results indicate that an

external source of ATP overcomes the inhibition of

autophagy, permitting correct PS exposure and engulfment

of apoptotic bodies.

TUNEL-positive cells accumulate after interference with

phagocytosis. To further confirm that inhibition of

phagocytosis causes accumulation of apoptotic cells, we

tested whether a different type of inhibition would result in

accumulation of TUNEL-positive cells as that observed with

3-MA. Phospho-L-Serine (P-L-Ser) is a PS mimetic molecule

that binds to PS receptor thereby blocking the recognition

sites in the engulfing cell and preventing phagocytosis.23

Incubating the retinas with 20mM P-L-Ser induced an

increase in TUNEL-positive cells (Figure 8A). Moreover,

after phagocytosis inhibition with P-L-Ser, nuclear

morphologies of condensed unfragmented nuclei were also

found (Figure 8A, panel c) similar to the morphologies

observed after exposure to 3-MA (Figure 2A, panel d and

Figure 8A, panel b). The levels of Annexin-V were

unchanged after phagocytosis blockage (Figure 8A, panel

f), and as expected, LTR co-staining was completely absent

from the treated retinas (Figure 8A, panel i). Quantitative

determinations confirmed the significant increase in TUNEL

staining (Figure 8B), a decrease in LTR staining (Figure 8C),

and a reduction in the colocalisation of TUNEL and LTR

staining (Figure 8D). In conclusion, blockage of PS receptor

abolished phagocytosis and induced an accumulation of cell

a bA

C
e
ll

D
e
n
s
it
y

(T
U

N
E

L
 p

o
s
it
iv

e
 n

u
c
le

i/
 m

m
2
)

0

200

400

600

800

1000

C 3-MA

*

C 3-MA

C
e
ll 

D
e
n
s
it
y

(L
T

R
 p

o
s
it
iv

e
 /
 m

m
2
)

0

200

400

*
0

20

40

60

80

100

%
 T

U
N

E
L
-L

T
R

/ 
T

U
N

E
L

C 3-MA

*

B C D

c

d e f

Figure 5 Exposure to 3-MA prevents degradation of dead cells inside lyosomes. (A) E4 retinas cultured for 6 h in the absence (a–c) or presence of 3-MA (d–f) were
incubated with 1 mM LTR for the last 15min in culture, flat-mounted, fixed, stained for TUNEL, and visualised by confocal microscopy. In control retinas, LTR (red, b)
colocalised with TUNEL (green, a; merge in yellow, c). A representative field in the dorsotemporal part of the retina is shown. Scale bar, 20 mm. (B–D) Quantification of the
density of TUNEL-positive (B), LTR-positive (C), and double-labelled cells (D) in E4 retinas as those shown in (A)
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corpses in the retinal neuroepithelium, an observation that

parallels 3-MA treatment. Thus, the accumulation of cell

corpses after 3-MA exposure appears to be related to

phagocytosis blockage and not to an increase in overall cell

death.

Discussion

Our data demonstrate that the removal of dying cells at early

stages of chick retinal development is deeply affected by

inhibition of the autophagic machinery. Exposure to 3-MA

inhibits PS presentation, engulfment and degradation inside

lysosomes, and as a consequence, induces the accumulation

of TUNEL-positive apoptotic bodies in these retinas. All

these effects appear to be the result of diminished ATP

levels, as they are reverted when an external source of ATP is

available.

The E4 chick retina expresses several autophagic genes

and is able to display an autophagic response to amino-acid

starvation. Remarkably, the observed increase in the lipida-

tion of LC3 to form LC3II associated to autophagy was

prevented by 3-MA. These results provide the first molecular

evidence that autophagy is functional at early stages of chick

neural development, as has been found in other species.1
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The dramatic increase in TUNEL-positive cells after 3-MA

treatment occurs selectively in the dorsotemporal region of

the retina and was accompanied by reduced fragmentation of

the TUNEL-labelled nuclei. This observation that may reflect a

blockage in the apoptotic process was confirmed by ultra-

structural analysis of the 3-MA-treated retinas, which revealed

many different, distinct phenotypes of dead cells, which are all

compatible with an arrest in the culmination of the apoptotic

process. Interestingly, a similar phenotype of cell corpse

accumulation was observed in the retinas after blocking the

PS receptor in the engulfing cell with P-L-Ser. Both 3-MA

exposure and phagocytosis blockage with P-L-Ser induce a

fully comparable accumulation of cell corpses during retinal

neurogenesis, discarding the toxic effect of 3-MA treatment.

Our results concur with the recent observation that

inhibition of the autophagic machinery blocks the expression

of the eat-me signals and prevents the elimination of dead

cells during embryoid body formation.7 The retina shows a

highly structured three-dimensional cytoarchitecture and,

similar to embryoid bodies, autophagy-dependent clearance

of apoptotic cells seems to be a feature unique to three-

dimensional tissues. Similarly, cell corpse accumulation is

observedwhen autophagy is inhibited during the development

of the chick otic vesicle, another three-dimensional structure

(unpublished observations in collaboration with I. Varela-Nieto).

Conversely, no accumulation of corpses was observed after

inhibiting autophagy in cultures of dissociated retinal neuro-

blasts (our unpublished observations). Beyond these parallel

findings, our short-term treatment approach also allows for

establishing a hierarchy of biochemical and cellular processes

because compensatory mechanisms, often found in mouse

knockout and long-term studies, have little time to occur.

In the developing E4 chick retina, exposure to 3-MA

significantly reduced the levels of ATP.MP is a cell-permeable

analogue of pyruvate that serves as an alternative substrate

for mitochondrial ATP generation24 and it has previously been

used to restore ATP levels after autophagy inhibition.7,25 In

the retina, MP restored ATP levels in the presence of 3-MA,
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other treatments. (C) E4 retinas were cultured for 6 h without treatment (a), in the presence of 3-MA (b and d), or in the presence of 10mM MP (c and d). Subsequently, the
retinas were flat-mounted, fixed, and stained for TUNEL, and analysed by confocal microscopy. Perspective of the whole retina is shown. Dotted lines represent the limits of
the retina and the asterisks mark the optic nerve head. Scale bar, 300mm. (D) MP restores the engulfment of dead cells after 3-MA treatment. Electron microscopy
photomicrograph of a representative individual dead cell in a 3-MA-treated retina (a), and a representative apoptotic cell inside a neighbouring cell in a retina treated with
10mM 3-MA supplemented with 10mM MP (b). Scale bar, 2 mm
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Figure 8 PS receptor blockade by P-L-Ser in E4 retinas increases the number of TUNEL-positive apoptotic cells in the dorsotemporal region and inhibits LTR staining. (A)
E4 retinas were cultured for 6 h without treatment (a, d, g, j), in the presence of 10mM 3-MA (b, e, h, k) and in the presence of 20mM P-L-Ser (c, f, i, l), incubated with
Annexin-V-biotin and LTR (red) during the last half an hour of culture, flat-mounted, fixed, and double stained for TUNEL (green) and avidin-Alexa 546 (cyan) followed by
confocal microscopy analysis. Merge staining is shown (j–l). Scale bar, 25mm. (B–D) Quantification of the density of TUNEL-positive (B), LTR-positive (C) and double-labelled
cells (D) in E4 retinas as those shown in (A)
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reduced the number of TUNEL-positive cells to basal

numbers, and re-established Annexin-V and LTR staining

(data not shown). Ultimately, engulfed apoptotic cells were

often found in the 3-MA-treated retinas after supplementation

with MP, indicating that ATP deficiency is indeed the primary

effect of inhibiting autophagy, and that all the other effects

appear as a consequence of ATP insufficiency. An interesting

question that deserves further studies is whether a certain

level of basal autophagy is taking place in all retinal cells or

autophagy is active only in cells undergoing PCD.

Mammalian cells have an asymmetric distribution of

phospholipids such that most of the PS is located in the inner

leaflet of the plasma membrane bilayer. This asymmetry is

maintained by the activity of specific lipid transporters such as

the ATP-binding cassette (ABC) transporter family of pro-

teins.26 These transporters use the energy from ATP to

translocate specific substrates across the membrane.26

ABC1 and ABC7, structural orthologues of theCaenorhabditis

elegans ced-7, are necessary for the proper engulfment of

corpses during programmed cell death.27–29 ABC7 knockout

mice are embryonically lethal and ABC1 null mice accumulate

TUNEL-positive cells in areas of prominent cell death (e.g.,

the interdigital tissue of the developing limb), which frequently

remain isolated and unengulfed. These phenotypes closely

resemble our observations in the chick neuroretina when the

autophagic machinery is inhibited. Hence, it is tempting to

speculate that the decrease in ATPmay affect normal function

of the ABC transporters during cell death associated with

retinal neurogenesis.

The 3-MA effects are exquisitely restricted to the dorso-

temporal area of the E4 chick retina. This regional selectivity

supports the specific effect of 3-MA treatment on cell death

that occurs during retinal neurogenesis. In the developing

chick retina, programmed cell death is closely associated with

the generation of RGCs. Blocking cell-survival signals

decreases the number of RGCs whereas interference with

caspases increases their number.16,30,31 The depletion of

growth factors induces an increase in TUNEL-positive cells,

which is accompanied by an increase in Annexin-V staining

and lysosomal degradation. Conversely, 3-MA treatment

causes the accumulation of TUNEL-positive cells with no

increase in Annexin-V staining or lysosomal degradation in

the region where neurons are being generated.14,15 In

conclusion, autophagy inhibition reveals the area of prominent

naturally occurring cell death associated with neurogenesis

and extends previous observations on autophagy require-

ment during morphogenesis (i.e., the formation a hollow

lumen7) to the process of neural differentiation.

In untreated retinas, most TUNEL-positive cells were found

inside the acidic organelles of neighbouring cells, a data that

reveal the magnitude and efficacy of the engulfing process

during naturally occurring cell death. In addition, our data

underlie the importance of optimal autophagy-dependent

clearance of apoptotic cells during development. We have

previously shown that a great number of cells die by apoptosis

during neurogenesis in the retina.32 Thus, effective auto-

phagy-driven clearance of apoptotic cells could avoid the

initiation of a detrimental inflammatory response, as well as

producing physical space for new proliferating neuroblasts

and recently differentiated neurons. In addition, other

interesting roles for engulfment have also recently been

described. Competition among cells may be a way to adjust

and select cell types during tissue development.33 As such,

evidence from Drosophila shows that engulfment genes are

necessary for cell competition and that even wild-type cells

can themselves be killed by cells with elevated engulfing

activity.34 Thus, engulfment may be a more relevant process

in shaping tissue homoeostasis than previously recognised.

The autophagy-dependent clearance of apoptotic cells may

also underlie the observed increase in apoptosis in Ambra-1

knockout mice at stages when neurogenesis is taking place.6

The authors’ interpretations, however, favour other interesting

alternatives, such as autophagic turnover of regulatory

intracellular components and removal of specific key cells

by autophagic cell death. This type of cell death has been

suggested to play a role during development in several

species8 and, indeed, has been observed during retinal

development in the chick retina.35

Our short-term pharmacological approach (a mere 6 h

exposure) suggests that autophagy has a primary and

fundamental role during neuronal development in providing

ATP for correct removal of apoptotic cells. However, this does

not preclude additional, specific roles of autophagy in

development. We believe that in the future, the developing

neuroretina may provide further clues to understand this

intriguing process.

Materials and Methods
Chick embryos. Fertilised White Leghorn eggs from Rodrı́guez-Serrano Farm
(Alba de Tormes, Salamanca, Spain) were incubated at 381C in a humidified
incubator. Embryonic age, referred to in days of embryonic development (E), was
staged according to Hamburger and Hamilton.36 All animal experimentation follows
European Union guidelines and the CSIC bioethics committee approved the
experiments.

Neuroretina organotypic culture. After removal of the eyes, neuroretinas
were dissected free of other tissues and incubated in a chemically defined medium
of DMEM/F12þN2 supplement (Sigma, St Louis, MI, USA) for 6 h at 371C in a 5%
CO2 atmosphere.

17 Where indicated, 10mM 3-MA (Sigma), 10mM MP (Sigma) or
20mM O-P-L-Ser ( Sigma) were added to the medium. Physiological pH after MP
and O-P-L-Ser addition was restored with sodium bicarbonate (Sigma). After
culture, the retinas were washed twice with phosphate-buffered saline (PBS) and
flat-mounted onto nitrocellulose membranes, fixed overnight in 4%
paraformaldehyde (w/v) in 0.1 M phosphate buffer (pH 7.4), and processed.

Detection of apoptosis. TUNEL of fragmented DNA was performed on
whole-mount retinas according to previous methods using FITC-dUTP15 and
following the manufacturer’s instructions (Apoptosis Detection System; Promega,
Madison, WI, USA). Fixed neuroretinas were permeated for 1 h at RT with 1% Triton
X-100 (w/v; Fluka, Buchs, Switzerland), treated with 20 mg/ml collagenase (Sigma)
for 1 h at 371C, and processed for TUNEL staining. At the end of the assay, the
retinas were mounted with DABCO 4% (w/v, Sigma), glycerol 70% (v/v), and
visualised on a confocal microscope (LEICA DMRE2, Heidelberg, Germany). For
more accurate quantification of the apoptotic cells, the retinas were dissociated with
0.05% (w/v) trypsin in PBS-BSA (1 mg/ml) for 10min, and fixed in 4% PFA while
agitating for 1 h. Cells were stained by TUNEL and counterstained with 40,6-
diamidino-2-phenylindole (DAPI) (Invitrogen, Carlsbad, CA, USA) as previously
described. The percentage of apoptotic cells was determined by counting
TUNEL-positive cells with a � 40 objective on a Zeiss inverted microscope
(Zeiss Axioplan, Oberkochen, Germany).

Cryosections. After culture, the retinas were washed twice with PBS, flat-
mounted on nitrocellulose membranes, fixed overnight in 4% paraformaldehyde
(w/v) in 0.1 M phosphate buffer (pH 7.4), washed with PBS, and cryoprotected in
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15% sucrose-PBS for 6 h and 30% sucrose-PBS for 1 week. Retinas were
embedded in OCT (Tissue Tek, Sakura Finetek, Tokyo, Japan) and stored at
�201C until use. Cryostat sections were performed (10 mm; LEICA, CM 1800),
re-fixed in 4% paraformaldehyde (w/v) in 0.1 M phosphate buffer (pH 7.4) for 20min,
washed in PBS, permeated, and stained overnight for Beclin-1 (1/100; Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA) and Ambra-1 (1/100; Covance, Paris,
France). The retinal sections were then incubated for 1 h with an Alexa 546
secondary antibody (Invitrogen), washed in PBS, stained with DAPI, and mounted
with DABCO. Sections were visualised by confocal microscopy.

Staining in whole-mount retinas. Annexin-V staining (Chemicon,
Pittsburg, MA, USA) was performed following the manufacturer’s instructions.
Briefly, Annexin-V-biotin was added to the wells for the last half an hour of
organotypic retinal culture. The retinas were then washed, fixed overnight with 4%
PFA, permeated, and stained for TUNEL as described above. After the TUNEL
reaction, the retinas were further incubated for 1 h with Alexa 546 conjugated to
avidin (Invitrogen), mounted with DABCO, and visualised by confocal microscopy.
LEP-100 immunostaining was performed with an LEP-100 antibody (1/100;
Developmental Studies Hybridoma Bank, Iowa, EE UU) overnight. The retinas were
then washed and incubated for 1 h with Alexa 546 or 488 (Invitrogen). The retinas
were stained with DAPI, mounted in DABCO, and visualised by confocal
microscopy. For live Annexin-V/PI staining, retinas were dissected and incubated
for 15min with Annexin-V-fluorescein. The retinas were then incubated for 1 min
with PI solution (Trevigen, Gaithersburg, MD, USA), mounted in glycerol 70% in
PBS, and immediately visualised by confocal microscopy. F-actin staining was
performed after the TUNEL reaction by incubation with Phalloidin-conjugated
Rhodamine (Invitrogen) for 3 h at 41C. The retinas were stained with DAPI, mounted
in DABCO, and visualised by confocal microscopy. LysoTracker Red (Invitrogen)
staining was performed during the last 15min of retina culture by adding 1mM at
371C. Subsequently, the retinas were washed, permeated, and stained with TUNEL
as described above.

Electron microscopy. Retinas were fixed for 4 h at 4 1C in Karnowsky buffer
(4% paraformaldehyde (w/v) and 2.5% glutaraldehyde (v/v) in 0.1 M phosphate
buffer pH 7.14), washed and fixed again in aqueous 5% (w/v) osmium tetroxide, and
embedded in Epon. Electron microscopy was performed with a Zeiss EM 902
transmission electron microscope, at 90 kV, on ultra-thin sections (50 nm) stained
with uranyl acetate and lead citrate.

Western blotting. Retinas were lysed in a buffer containing 50mM Tris-HCl
pH 6.8, glycerol 10% (v/v), 2% SDS (w/v), 10 mM DTT, and 0.005% blue
bromophenol. Forty micrograms of protein was resolved on a 15% SDS-PAGE gel.
The proteins were then transferred to PVDF membranes (Bio-Rad, Hercules, CA,
USA) that were blocked for 1 h in PBS-Tween 20 (0.05% (v/v)) containing 5% non-
fat milk and probed with antibodies against LC3 (MBL Internacional, Woburn, MA,
USA) and tubulin (Sigma). The antibodies were detected with the appropriate
horseradish peroxidase-labelled secondary antibodies (Pierce, Rockford, IL, USA)
and were visualised with the SuperSignal West Pico chemioluminiscent substrate
(Pierce).

RT-PCR of atg genes. RNA was isolated from a pool of eight retinas using
Trizol reagent (Invitrogen). Reverse transcription was performed on 5 mg of total
RNA using Oligo(dT)18–20 and the Superscript III enzyme (Invitrogen) following the
manufacturer’s instructions. Semiquantitative PCR was performed using Taq
Polymerase (Invitrogen) under similar conditions: an initial step of denaturation at
941C for 2 min; followed by 20–25 cycles of denaturation at 941C for 30 s, annealing
at 581C for 45 s, and extension at 721C for 45 s; and a final step at 721C for 5min.
The primer sequences used were atg5F 50-GAGATAACTGAGAGGGAAGC-30,
atg5R 50-ACTGTGATGCTCCAAGGAAG-30; beclin-1F 50-TGATGTCAACAGAAAG
CGCC-30, beclin-1R 50-GCCACAATCAAGCGGTTCTT-30; lc3aF 50-AAGTACAGCA
GATCCGAGAG-30, lc3aR 50-CTCGTAGATCTCTGAGATGG-30; lc3bF 50-GTACGA
CTGATCCGAGATCAG-30, lc3bR 50-GAGGCATACACCATGTACAG-30; and gapdhF
50-GCAATGCATCGTGCACCACC-30, gapdhR 50-TGTGATGGCATGGACAGTGG-30.

ATP determination. ATP was quantified by using the ATP Bioluminescent
Assay Kit HS II (Roche, Basel, Switzerland) following the manufacturer’s
instructions. The retinas were dissected individually and ATP was extracted and
measured in a luminometer via a luciferase reaction (Td-20/2 Turner Designs,
Sunnyvale, CA, USA). The protein concentration was measured in the same extract

with the BCA Protein Assay Kit (Thermo Scientific, Waltham MA, USA) to correlate
the ATP concentration with the protein concentration in each neuroretina.

Statistical analysis. The data shown in the figures are the means±S.E. of
each treatment group. The differences between treatments were analysed with
Student’s t-test using the JMPIN software.
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