
The AVANTSSAR Platform for the Automated

Validation of Trust and Security
of Service-Oriented Architectures

Alessandro Armando1, Wihem Arsac2, Tigran Avanesov3, Michele Barletta4,
Alberto Calvi4, Alessandro Cappai1, Roberto Carbone1, Yannick Chevalier5,

Luca Compagna2, Jorge Cuéllar6, Gabriel Erzse7, Simone Frau8,
Marius Minea7, Sebastian Mödersheim9, David von Oheimb6,

Giancarlo Pellegrino2, Serena Elisa Ponta1,2, Marco Rocchetto4,
Michael Rusinowitch3, Mohammad Torabi Dashti8,

Mathieu Turuani3, and Luca Viganò4

1 AI-Lab, DIST, Università di Genova, Italy
2 SAP Research, Mougins, France

3 LORIA & INRIA Nancy Grand Est, France
4 Department of Computer Science, University of Verona, Italy

5 IRIT, Université Paul Sabatier, France
6 Siemens AG, Corporate Technology, Munich, Germany

7 Institute e-Austria and Politehnica University, Timişoara, Romania
8 Institute of Information Security, ETH Zurich, Switzerland

9 IBM Zurich Research Laboratory, Switzerland and DTU, Lyngby, Denmark
www.avantssar.eu

Abstract. The AVANTSSAR Platform is an integrated toolset for the
formal specification and automated validation of trust and security of
service-oriented architectures and other applications in the Internet of
Services. The platform supports application-level specification languages
(such as BPMN and our custom languages) and features three valida-
tion backends (CL-AtSe, OFMC, and SATMC), which provide a range
of complementary automated reasoning techniques (including service or-
chestration, compositional reasoning, model checking, and abstract in-
terpretation). We have applied the platform to a large number of indus-
trial case studies, collected into the AVANTSSAR Library of validated
problem cases. In doing so, we unveiled a number of problems and vul-
nerabilities in deployed services. These include, most notably, a serious
flaw in the SAML-based Single Sign-On for Google Apps (now corrected
by Google as a result of our findings). We also report on the migration
of the platform to industry.

1 Introduction

Driven by rapidly changing requirements and business needs, IT systems and
applications are undergoing a paradigm shift: components are replaced by ser-
vices distributed over the network, and composed and reconfigured dynamically
in a demand-driven way into Service-Oriented Architectures (SOAs).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 267–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.avantssar.eu


268 A. Armando et al.

Deploying services in future network infrastructures such as SOAs or, even
more generally, the Internet of Services (IoS), obviously entails a wide range of
trust and security issues. Modeling and reasoning about these trust and secu-
rity issues is complex due to three main characteristics of service orientation.
First, SOAs are heterogeneous : their components are built using different tech-
nology and run in different environments, yet interact and may interfere with
each other. Second, SOAs are also distributed systems, with functionality and re-
sources distributed over several machines or processes. The resulting exponential
state-space complexity makes their design and efficient validation difficult, even
more so in hostile situations perhaps unforeseen at design time. Third, SOAs
and their security requirements are continuously evolving: services may be com-
posed at runtime, agents may join or leave, and client credentials are affected by
dynamic changes in security policies (e.g., for incidents or emergencies). Hence,
security policies must be regarded as part of the service specification and as first-
class objects exchanged and processed by services. The trust and security prop-
erties that SOAs should provide to the users are, moreover, very diverse in type
and scope, ranging from basic properties like confidentiality and authentication
to complex dynamic and domain-specific requirements (e.g., non-repudiation or
separation and binding of duty).

In this paper, we present the AVANTSSAR Platform, an integrated toolset
for the formal specification and automated validation of trust and security of
SOAs and, in general, of applications in the IoS. It has been developed in the
context of the FP7 project “AVANTSSAR: Automated Validation of Trust and
Security in Service-Oriented Architectures”.

To handle the complexity of trust and security in service orientation, the
platform integrates different technologies into a single tool, so they can inter-
act and benefit from each other. More specifically, the platform comprises three
back-ends (CL-AtSe [6,36], OFMC [15,22,33], and SATMC [3,5]), which oper-
ate on the same input specification (written in the AVANTSSAR Specification
Language ASLan) and provide complementary automated reasoning techniques
(including service orchestration and compositional reasoning, model checking,
and abstraction-based validation). A connectors layer provides an interface to
application-level specification languages (such as the standard BPMN, and our
custom languages ASLan++, AnB and HLPSL++), which can be translated
into the core ASLan language and vice versa.

We have applied the platform to a large number of exemplary industrial case
studies, which we have collected into the AVANTSSAR Library of validated
problem cases. In doing so, we have been able to uncover a number of problems
and vulnerabilities in deployed services including, most notably, the detection
of a serious flaw in the SAML-based SSO solution for Google Apps. Finally, we
also report on our successful activities in migrating the platform to industry. As
we describe in more detail in the following, to the best of our knowledge, no
other tool exhibits the same scope and expressiveness while achieving the same
performance and scalability.



The AVANTSSAR Platform 269

We have implemented the AVANTSSAR Platform as a SOA itself, where
each component service is offered as a web service. The platform also has a
web-based graphical interface that allows the user to choose between three in-
teraction modes of increasing level of sophistication and to execute, monitor and
inspect the results of the platform in a user-friendly way. The web services and
the associated documentation (a tutorial, guidelines, the Library and other ex-
amples, scientific papers and deliverables, and a users mailing list) are available
at www.avantssar.eu, where one can also download the binaries and/or source
code of the validation back-ends and play online with the platform through a
prototype, web-based graphical user interface.

The platform is a successor to the AVISPA Tool [2], a push-button tool for
the formal analysis of security protocols. The AVANTSSAR Platform signifi-
cantly extends its predecessor’s scope, effectiveness, and performance by scaling
up to the trust and security of SOAs and the IoS. We thus expect that the
AVANTSSAR Platform will inherit and considerably widen the user basis of
AVISPA, which already comprises not only the members of the AVANTSSAR
consortium but also several dozens of other academic and industrial practition-
ers, who have published a large number of works in which AVISPA is used. Our
first, and positive, experience with the integration of the AVANTSSAR Platform
within industrial practice indicates a strong potential for its wide take up.

It is important to note that this is the first comprehensive description of the
platform, including the results of the experiments that we carried out. Descrip-
tions of some of the different platform components have already been given and
we will often refer to the corresponding documents for additional information.

2 The AVANTSSAR Platform

2.1 Description and Architecture

Fig. 1 shows the main components of the AVANTSSAR Platform, where the
arrows represent the most general information flow, from input specification to
validated output. In this flow, the platform takes as input specifications of the
available services (including their security-relevant behavior and possibly the
local policies they satisfy) together with a policy stating the functional and se-
curity requirements of the target service. In the orchestration phase, the platform
applies automated reasoning techniques to build a validated orchestration of the
available services that meets the security requirements. More specifically, the Or-
chestrator (short for Trust and Security Orchestrator) looks for a composition of
the available services in a way that is expected but not yet guaranteed to satisfy
the input policy (it may additionally receive as input a counterexample found
by the Validator, if any) and outputs a specification of the target service that is
guaranteed to satisfy the functional goals. Then, the Validator (short for Trust
and Security Validator), which comprises the three back-ends CL-AtSe, OFMC
and SATMC, checks whether the orchestration satisfies the security goals. If so,
the orchestrated service is returned as output, otherwise, a counterexample is re-
turned to the Orchestrator to provide a different orchestration, until it succeeds,

www.avantssar.eu


270 A. Armando et al.

Vulnerability

: Policy
: Tool input/output

P

: Trust and SecurityTS
: Composed ServiceCS
: Composed PolicyCP
: ServiceS

insecure

P

Policy

Composed service/policy

CP

CS

Secured service/policy

TS Wrapper

CS

CP

secure

Services

feedback

BPMN + Annotations
CONN

CONN
HLPSL++

CONN
AnB

CONNECTOR
ASLan++

orchestration/
composition

validation
problem

TS VALIDATORTS ORCHESTRATOR

Specification of the available services (new) Service specified

ASLan ASLan

TS Wrapper

The AVANTSSAR Validation Platform

Fig. 1. The AVANTSSAR Validation Platform

or no suitable orchestration can be found. Instead of using the Orchestrator, a
user may manually generate the target service and simply invoke the Validator,
providing as input the service and its security goals. In this case, the platform
outputs either validation success or the counterexample found.

To ease its usage and pave the way for its adoption by industry, the connectors
layer of the platform provides a set of software modules that carry out both

(C1) the translation from application-level (e.g., our own ASLan++, AnB and
HLPSL++) and industrially-suited specification languages (e.g., BPMN)
into the low-level AVANTSSAR Specification Language (ASLan) [9], the
common input language of formal analysis by the validator back-ends, and

(C2) the reverse translation from the common output format of the validator
back-ends into a higher-level MSC-like output format to ease the interpre-
tation of the results for the user.

Moreover, the connectors layer is open to the integration of other translations.
In the following subsections, we describe the different platform components in

more detail, starting with the specification languages and the connectors layer,
and then considering the Orchestrator and the Validator.



The AVANTSSAR Platform 271

2.2 The Specification Languages ASLan and ASLan++

As observed in the introduction, modeling and reasoning about trust and security
of SOAs is complex due to the fact that SOAs are heterogeneous, distributed
and continuously evolving, and should guarantee security properties that are,
typically, very diverse. Besides the classical data security requirements including
confidentiality and authentication/integrity, more elaborate goals are authoriza-
tion (with respect to a policy), separation or binding of duty, and accountability
or non-repudiation. Some applications may also have domain-specific goals (e.g.,
correct processing of orders). Finally, one may consider liveness properties under
certain fairness conditions) e.g., one may require that a web service for online
shopping eventually processes every order if the intruder cannot block the com-
munication indefinitely. This diversity of goals cannot be formulated with a fixed
repertoire of generic properties (like authentication); instead, it suggests the need
for specification of properties in an expressive logic.

Various languages have been proposed to model trust and security of SOAs,
e.g., BPEL [34], π calculus [28], F# [17], to name a few. Each of them, however,
focuses only on some aspects of SOAs, and cannot cover all previously described
features, except perhaps in an artificial way. One needs a language fully dedi-
cated to specifying trust and security aspects of services, their composition, the
properties that they should satisfy and the policies they manipulate and abide
by. Moreover, the language must go beyond static service structure: a key chal-
lenge is to integrate policies that are dynamic (e.g., changing with the workflow
context) with services that can be added and composed dynamically themselves.

We have designed ASLan so as to satisfy all these desiderata. At its core,
ASLan describes a transition system, where states are sets of typed ground terms
(facts), and transitions are specified as rewriting rules over sets of terms. A fact
iknows , true of any message (term) known to the intruder, is used to model com-
munication as we consider a general Dolev-Yao intruder [26] that is in complete
control of the network and can compose, send, and intercept messages at will,
yet cannot break cryptography (following the perfect cryptography assumption).
A key feature of ASLan is the integration of this transition system that expresses
the dynamics of the model with Horn clauses, which are used to describe policies
in a clear, logical way. The execution model alternates transition steps with a
transitive closure of Horn clause applications. This allows us to model the ef-
fects of policies in different states: for instance, agents can become members of
a group or leave it, with immediate consequences for their access rights.

Moreover, to carry out the formal analysis of services, we need to model the
security goals. While this can be done by using different languages, in ASLan
we have chosen to employ a variant of linear temporal logic (LTL, e.g. [27]),
with backwards operators and ASLan facts as propositions. This logic gives us
the desired flexibility for the specification of complex goals, as illustrated by the
problem cases that are part of the AVANTSSAR Library.

ASLan is a low-level formal language and is thus easily usable only by experts,
so we have developed the higher-level language ASLan++ to achieve three main
design goals:



272 A. Armando et al.

– the language should be expressive enough to model a wide range of SOAs
while allowing for succinct specifications;

– it should facilitate the specification of services at a high level of abstraction
in order to reduce model complexity as much as possible; and

– it should be close to specification languages for security protocols and web
services, but also to procedural and object-oriented programming languages,
so that it can be employed by users who are not formal specification experts.

For reasons of space, we refer to [13,37] for details on ASLan and ASLan++
including a tutorial with many modeling examples.

2.3 The Connectors Layer

As remarked above, writing formal specifications of complex systems at the low
conceptual level of ASLan is not practically feasible and reasonable. The same
applies to the activity of interpreting and understanding the raw output format
returned by the validator back-ends. Industry, in particular, is used to higher-
level modeling languages typically targeting very specific domain areas. That is
why we have devised an open connectors layer, which currently comprises four
connectors carrying out automatic translations.

The ASLan++ connector provides translations from ASLan++ specifications
to ASLan and in the reverse direction for attack traces. Security protocol/service
practitioners who are used to the more accessible but less expressive Alice-and-
Bob notation or message sequence charts (MSCs) may prefer to use the AnB
connector, which is based on an extended Alice-and-Bob notation [30,32,33],
or the HLPSL++ connector, which is based on an extension of the High-Level
Protocol Specification Language HLPSL [23], developed in the context of the
AVISPA project [2,14].

Business process (BP) practitioners are used to standard languages such as
the Business Process Modeling Notation (BPMN ), the Business Process Exe-
cution Language (BPEL), etc. For them, even the usage of ASLan++ (or AnB
or HLPSL++) may not be so easy, or they might already have specifications
written in their favorite BP language that they do not wish to put aside to then
repeat the modeling activity with another language. We have thus developed two
connectors for BPMN (see [12]): a public connector that can be used in open-
source environments such as Oryx to evaluate control flow properties of a BP
modeled in BPMN, and a proprietary SAP NetWeaver BPM connector that is a
plug-in of the SAP NetWeaver Development Studio that allows BP analysts to
take advantage of the AVANTSSAR Platform via a security validation service.
The business analyst provides the security requirements that are critical for the
compliance of the BP (e.g., need-to-know in executing a task, data confiden-
tiality with respect to certain users or roles) through easy-to-access UIs of the
security validator that returns answers in a nice graphical BPMN-like format.

Connectors for other BP languages may be developed similarly. In fact, thanks
to the openness of the connectors layer, new connectors for other application
level and/or industrially-suited specification languages can be added by creating



The AVANTSSAR Platform 273

proper software modules implementing (C1) and (C2). To alleviate this task,
we have devised, for both the common input language ASLan and the common
output format of the validator back-ends, XML representations and software
modules generating these XML representations [10].

2.4 The Orchestrator

Composability, one of the basic principles and design objectives of SOAs, ex-
presses the need for providing simple scenarios where already available services
can be reused to derive new added-value services. In their SOAP incarnation,
based on XML messaging and relying on a rich stack of related standards, SOAs
provide a flexible yet highly inter-operable solution to describe and implement
a variety of e-business scenarios possibly bound to complex security policies.

It can be very complex to discover or even to adequately describe composi-
tion scenarios respecting overall security constraints. This motivates introducing
automated solutions to scalable services composition. Two key approaches for
composing web services have been considered, which differ by their architecture:
orchestration is centralized and all traffic is routed through a mediator, whereas
choreography is distributed and all web services can communicate directly.

Several “orchestration” notions have been advocated (see, e.g., [29]). However,
in inter-organizational BPs it is crucial to protect sensitive data of each orga-
nization; and our main motivation is to take into account the security policies
while computing an orchestration. The AVANTSSAR Platform implements an
idea presented in [24] to automatically generate a mediator. We specify a web
service profile from its XML Schema and WS-SecurityPolicy using first-order
terms (including cryptographic functions). The mediator can use cryptography
to produce new messages, and is constructed with respect to security goals using
the techniques we developed for the verification of security protocols.

We highlight here the most important distinguishing features of our approach.
First, several tools have addressed the WS orchestration problem but, to our
knowledge, previous works abstract away the security policies attached to the
services, while we consider them as an additional constraint. Second, most auto-
matic orchestration approaches work by computing products of (communicating)
finite-state automata, where messages are restricted to a finite alphabet. How-
ever, by specifying web services in ASLan, we can express a richer set of messages
using first-order terms (including symbols for cryptographic functions). Third,
we have applied the AVANTSSAR Orchestrator to several industrial case stud-
ies (cf. Table 1) that cannot be handled by other tools because the messages
exchanged by services are too complex (e.g., they are non-atomic and built with
cryptographic primitives) and require some automatic adaptation. For example,
the Orchestrator has automatically generated a Security Server in the Digital
Contract Signing case study (which originated from a commercial product), while
in the Car Registration Process case study, the Orchestrator has been able to
cope with additional constraints imposed by the authorization policies of the
available services, specified as a set of Horn clauses.



274 A. Armando et al.

Finally, and most importantly, the orchestration output can be automatically
checked for security by the Validator as described below. If the specification
meets the validation goals, i.e., no attack is found, the orchestration solution is
considered as the final, validated, result of orchestration. Otherwise the Validator
returns a goal violation report including an attack trace, which may be fed back
to the Orchestrator, requesting it to backtrack and try an alternative solution.

2.5 The Validator

A specification in ASLan may be the result of an orchestration or of the trans-
lation of a specification given in some higher-level language such as ASLan++.
The Validator takes any ASLan model of a system and its security goals and
automatically checks whether the system meets its goals under the assumption
that the network is controlled by a Dolev-Yao intruder.

Currently, the functionality of the Validator is supported by the three different
back-ends CL-AtSe, OFMC and SATMC, but, again, the platform is open to the
integration of additional validation back-ends.

The user can select which back-end is used for the validation process. By de-
fault, all three are invoked in parallel on the same input specification, so that
the user can compare the results of the validation carried out by the comple-
mentary automated reasoning techniques that the back-ends provide (including
compositional reasoning, model checking, and abstract interpretation).

CL-AtSe. The Constraint-Logic-based Attack Searcher for security protocols
and services takes as input a service specified as a set of rewriting rules, and
applies rewriting and constraint solving techniques to model all states that are
reachable by the participants and decides if an attack exists with respect to the
Dolev-Yao intruder. The main idea in CL-AtSe consists in running the services
in all possible ways by representing families of traces with positive or negative
constraints on the intruder knowledge, variable values or sets, etc. Each service
step execution adds new constraints on the current intruder and environment
state. Constraints are kept reduced to a normal form for which satisfiability is
easily checked. This allows one to decide whether some security property has
been violated up to this point. CL-AtSe requires a bound on the number of
service calls in case the specification allows for loops in system execution. It
implements several preprocessing modules to simplify and optimize input spec-
ifications before starting a verification. If a security property is violated then
CL-AtSe outputs a trace that gives a detailed account of the attack scenario.

OFMC. The Open-source Fixedpoint Model Checker (which extends the On-
the-fly model checker, the previous OFMC) consists of two modules. The classi-
cal module performs verification for a bounded number of transitions of honest
agents using a constraint-based representation of the intruder behavior. The
fixedpoint module allows verification without restricting the number of steps by
working on an over-approximation of the search space that is specified by a set of



The AVANTSSAR Platform 275

Horn clauses using abstract interpretation techniques and counterexample-based
refinement of abstractions. Running both modules in parallel, OFMC stops as
soon as the classic module has found an attack or the fixedpoint module has
verified the specification, so as soon as there is a definitive result. Otherwise,
OFMC can just report the bounded verification results and the potential at-
tacks that the fixedpoint module has found. In case of a positive result, we can
use the computed fixedpoint to automatically generate a proof certificate for the
Isabelle interactive theorem prover. The idea behind the automatic proof gener-
ator OFMC/Isabelle [22] is to gain a high reliability, since after this step the cor-
rectness of the verification result no longer depends on the correctness of OFMC
and the correct use of abstractions. Rather, it only relies on: (i) the correctness of
the small Isabelle core that checks the proof generated by OFMC/Isabelle, and
(ii) that the original ASLan specification (without over-approximations) indeed
faithfully models the system and properties that are to be verified.

SATMC. The SAT-based Model Checker is an open, flexible platform for SAT-
based bounded model checking of security services. Under the standard assump-
tion of strong typing, SATMC performs a bounded analysis of the problem by
considering scenarios with a finite number of sessions. At the core of SATMC
lies a procedure that, given a security problem, automatically generates a propo-
sitional formula whose satisfying assignments (if any) correspond to counterex-
amples on the security problem of length bounded by some integer k. Intuitively,
the formula represents all the possible evolutions, up to depth k, of the tran-
sition system described by the security problem. Finding attacks (of length k)
on the service therefore reduces to solving propositional satisfiability problems.
For this task, SATMC relies on state-of-the-art SAT solvers, which can handle
propositional satisfiability problems with hundreds of thousands of variables and
clauses or more. SATMC can also be instructed to perform an iterative deep-
ening on the number k of steps. As soon as a satisfiable formula is found, the
corresponding model is translated back into a partial-order plan (i.e., a partially
ordered set of rules whose applications lead the system from the initial state to
a state witnessing the violation of the expected security property).

As we remarked above, to the best of our knowledge, no other tool exhibits
the same scope and expressiveness while achieving the same performance and
scalability of the AVANTSSAR Platform. We have already discussed the ex-
pressiveness of the AVANTSSAR languages and the possibility of carrying out
automated orchestration under security constraints, so now we briefly describe
related work on automated analysis (and then discuss industrial case studies and
industry migration in the following sections).

Service analysis methods based on abstract interpretation have become in-
creasingly popular, e.g., [16,18,19,20,25,38]. For instance, TulaFale [16], a tool
by Microsoft Research based on ProVerif [18], exploits abstract interpretation for
verification of web services that use SOAP messaging, using logical predicates
to relate the concrete SOAP messages to a less technical representation that
is easier to reason about. ProVerif implements a form of static analysis based



276 A. Armando et al.

on abstract interpretation that supports unbounded verification but does not
support the modeling of many aspects that occur in problems of real-world com-
plexity such as revocation of keys at a key-server. In contrast, the AVANTSSAR
Platform supports the formal modeling and automatic analysis of a large class
of systems and properties, albeit for a bounded number of sessions. Two recent
tools, namely the AIF framework [31] and StatVerif [1], have overcome some of
the limitations of ProVerif, but they do not (yet) cover the full scope of what is
specifiable and analyzable with the AVANTSSAR Platform.

2.6 The AVANTSSAR Platform: Web Services and Web Interface

We have implemented the AVANTSSAR Platform as a SOA itself, where each
component service is offered as a web service (the URLs where each service, and
its WSDL interface, can be accessed are given at www.avantssar.eu; binaries
of each platform component are also available there, together with the source
codes of OFMC and SATMC). The platform service is implemented in PHP5,
by using the WSO2 Web Services Framework for PHP (WSO2 WSF/PHP) [39],
an open source, enterprise grade, PHP extension for providing and consuming
Web Services in PHP. The framework provides base communication functional-
ity in SOAP, XML, and other message formats carried over various transports
including HTTP, SMTP, XMPP and TCP. SOAP and HTTP are the standards
used for the current Web Services implementation.

The platform also comes with a web-based graphical user interface that al-
lows the user to execute, monitor and inspect the results of the platform in a
user-friendly way. Scalable vector graphics and AJAX are suitably coupled to
provide the user with an enhanced user experience. Fig. 2 shows a screenshot
of the interface. Since the number of functionalities offered by the platform can
discourage newcomers, the web interface supports three interaction modes with
increasing level of sophistication: demo mode, basic mode, and expert mode.

3 AVANTSSAR Library and Experimental Results

As proof of concept, we have applied the AVANTSSAR Platform to the case
studies that are now part of the so-called AVANTSSAR Library. In this way,
we have been able to detect a considerable number of goal violations in the
considered services and provide the required corrections. Moreover, the formal
modeling of case studies has allowed us to consolidate our specification languages
and has driven the evolution of the platform, both in terms of support for the
new language and modeling features, as well as in efficiency improvements needed
for the validation of the significantly more complex models. We expect that the
library will provide a useful test suite for similar validation technologies.

As terminology, we say that an application scenario is composed of one or
more scenes that focus on different use cases of the considered system, service,
protocol, or the like. Each scene contains at least one goal formalizing a desired
security property or security aspect, which we call a problem case.

www.avantssar.eu


The AVANTSSAR Platform 277

Fig. 2. The web interface of the AVANTSSAR Platform

The AVANTSSAR Library contains the formalization of 10 application sce-
narios of SOAs from the e-Business, e-Government and e-Health application
areas. For these application scenarios we have written 26 specifications (in one
of the application-level languages ASLan++, HLPSL++, annotated BPMN, or
in the more low level specification language ASLan). Each of these specifications
may address different security aspects, for a total of 94 problem cases. Among
the 26 specifications, 4 involve orchestration, resulting in 13 problem cases that
have to be orchestrated prior to validation.

Table 1 provides an overview of the problem cases formalized and validated by
the AVANTSSAR Platform. It contains, for each application scenario, informa-
tion about the connector used to translate high-level specifications into ASLan
(for NW BPM see Section 4) and, if applicable, about the orchestration carried
out (column “Orch.”). For what concerns the families of problem cases, “f” indi-
cates that a formalization of the problem case is present in the specification but
was not validated, whereas “v” indicates its validation. Table 2 describes CPU
times spent by each back-end on each application scenario. S/NS/TOUT are
abbreviations for Supported/Not Supported/Timeout ; times are totals (in sec-
onds) for successful runs. Moreover, for each scenario, the total number of Horn
Clauses (HC) and transitions (i.e., ASLan steps) contained in the specifications
are shown.

Since we lack space to describe all the application scenarios, problem cases
and corresponding trust and security requirements in detail, we point the reader
to [11] and here focus only on the SAML Single Sign-On scenario. It is repre-
sentative for the effectiveness of the AVANTSSAR methods and tools, since we
have succeeded in detecting vulnerabilities both in deployed SAML-based SSO
solutions and in the use case described in the SAML Technical Overview [35].
Though well specified and thoroughly documented, the OASIS SAML security
standard is written in natural language that is often subject to interpretation.



278 A. Armando et al.

Table 1. The AVANTSSAR Library: formalization and validation status

Areas Scenarios Scene Specification Connector Orch. Problem Cases

F
ed

er
a
ti
o
n

A
u
th
o
ri
za
ti
o
n
P
o
li
ci
es

A
cc
o
u
n
ta
b
il
it
y

T
ru
st

M
a
n
a
g
em

en
t

W
o
rk
fl
ow

S
ec
u
ri
ty

P
ri
va

cy
A
p
p
li
ca
ti
o
n
D
a
ta

P
ro
te
ct
io
n

C
o
m
m
u
n
ic
a
ti
o
n
S
ec
u
ri
ty

E-Business

Banking
Services

Loan Origination 1 lop-scene1.aslan No No v
2 lop-scene2.aslan NW BPM No v v v

Electronic
Commerce

Anonymous Shopping 1 IDMXScene1 Safe.aslan++ ASLan++ No v v
2 IDMXScene2 Safe.aslan++ ASLan++ No v v
3 IDMXScene3 Safe.aslan++ ASLan++ No f f

E-Government

Citizen and
Service Portals

Visa Application 1 PTD VisaBank.aslan++ ASLan++ No v v v v v v v
Car Registration 1 CRP.dyn.aslan++ ASLan++ Yes v v v v v v v

Document
Exchange
Procedures

Public Bidding 1 pb scene1.aslan++ ASLan++ No f f f f
2 pb scene2.aslan++ ASLan++ No v v v v
3 pb-elig.aslan++ ASLan++ No v
4 PB alt.aslan No Yes v v v v

Digital Contract Signing 1 dcs-scene1.aslan++ ASLan++ No f f f f f
2 dcs-scene2.aslan++ ASLan++ No v v v v v
3 dcs-scene3.aslan++ ASLan++ No v v v v v
4 DCS.ORCH.aslan No Yes f
5 DCS-GoalStyleInput.ORCH.aslan No Yes f

E-Health

Personal Health
Information

Electronic Health Records 1 ECR.aslan++ ASLan++ No v v v v v v
Process Task Delegation 1 PTD.aslan++ ASLan++ No v v v v v v

2 PTD PC.aslan++ ASLan++ No v v v v v v v
Access Control Management 1 eHRMS.txt No No f f f
SAML Single Sign-On 1 SP init-FC-one channel.hlpsl++ HLPSL++ No v v v

2 SP init-BC-two channels.hlpsl++ HLPSL++ No v v v
3 IdP init-FC.hlpsl++ HLPSL++ No v v v
4 IdP init-BC.hlpsl++ HLPSL++ No v v v
5 SAML-based SSO for GoogleApp.hlpsl++ HLPSL++ No v v v
6 SAML-based SSO for GoogleApp.aslan++ ASLan++ No v v v

Table 2. CPU analysis times for each back-end on the application scenarios

Dimensions SATMC OFMC CL-AtSe

Application Scenario HC Steps Time S/NS/TOUT Time S/NS/TOUT Time S/NS/TOUT

Anonymous Shopping 180 94 0 0/6/0 57.83 2/0/4 5.91 4/0/2

Car Registration 349 258 60.54 7/1/4 1001.31 2/1/9 69.35 10/0/2

Digital Contract Signing 238 52 10504.87 9/5/1 0 0/13/2 906.77 9/0/6

Electronic Health Records 89 48 19.33 1/1/0 5.08 1/0/1 125.37 1/1/0

Loan Origination 303 418 767.80 9/0/0 0 0/9/0 7175.26 6/0/3

Process Task Delegation 90 39 1.68 0/0/2 0 0/2/0 1092.43 2/0/0

Public Bidding 117 631 6747.37 12/0/3 9781.38 8/2/5 9298.7 14/1/0

SAML Single Sign-On 21 215 1989.49 15/0/1 22.77 1/15/0 1.85 1/15/0

Visa Application 38 19 44.83 1/0/0 3.12 1/0/0 9.86 1/0/0

Total 1425 1774 20135.84 52/15/16 10871.49 11/42/30 18685.50 51/17/15

Since the many configuration options, profiles, protocols, bindings, exceptions,
and recommendations are laid out in different, interconnected documents, it is
not always easy to establish which message fields are mandatory in a given profile
and which are not. Moreover, SAML-based solution providers may have internal
requirements that may result in small deviations from the standard. For instance,
internal requirements (or DoS considerations) may lead the service provider to
avoid checking the match between the ID field in the AuthResp and in the pre-
viously sent AuthReq. The consequences of such a choice must be examined in
detail.



The AVANTSSAR Platform 279

The SAML-based SSO for Google Apps in operation until June 2008 deviated
from the standard in a few, seemingly minor ways. By using the AVANTSSAR
Platform, we discovered a serious authentication flaw in the service, which a dis-
honest service provider could use to impersonate the victim user on Google Apps,
granting unauthorized access to private data and services (email, docs, etc.) [5].
The vulnerability was detected by SATMC and the attack was reproduced in an
actual deployment of SAML-based SSO for Google Apps. We readily informed
Google and the US Computer Emergency Readiness Team (US-CERT) of the
problem. Google developed a new version of the authentication service and asked
their customers to update their applications accordingly. The vulnerability re-
port released by US-CERT is available at http://www.kb.cert.org/vuls/id/
612636. The severity of the vulnerability has been rated High by the National
Institute of Standard and Technology (http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2008-3891).

By using the AVANTSSAR Platform we also discovered an authentication flaw
in the prototypical SAML SSO use case (as described in the SAML Technical
Overview) [4]. This flaw allows a malicious service provider to hijack a client au-
thentication attempt and force the latter to access a resource without its consent.
It also allows an attacker to launch Cross-Site Scripting (XSS) and Cross-Site
Request Forgery (XSRF) attacks. This last type of attack is even more pernicious
than classic XSRF, because XSRF requires the client to have an active session
with the service provider, whereas in this case the session is created automati-
cally, hijacking the client’s authentication attempt. This may have serious con-
sequences, as witnessed by the new XSS attack that we identified in the SAML-
based SSO for Google Apps and that could have allowed a malicious web server
to impersonate a user on any Google application. The problem has been reported
to OASIS, and a proposal for an errata to the SAML standard is currently be-
ing discussed within OASIS (http://tools.oasis-open.org/issues/browse/
SECURITY-12 ).

4 Technology Migration

Formal validation of trust and security will become a reality in SOAs and the IoS
only if and when the available technologies will have migrated to industry and
to standardization bodies (which are mostly driven by industry and influence
the future of industrial development). Such a migration has to face the gap
between advanced formal methods and their real exploitation within industry
and standardization bodies.

To ease the adoption of formal methods, several obstacles have to be overcome,
in particular: (i) the lack of automated technology supporting formal methods,
(ii) the gap between the problem case that needs to be solved in industry and
the abstract specification provided by formal methods, and (iii) the differences
between formal languages and models and the languages used in industrial design
and development environments (e.g., BPMN, Java, ABAP).

AVANTSSAR has addressed these issues by devising industrially-suited spec-
ification languages (model-driven languages), equipped with easy-to-use GUIs

http://www.kb.cert.org/vuls/id/612636
http://www.kb.cert.org/vuls/id/612636
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3891
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3891
http://tools.oasis-open.org/issues/browse/SECURITY-12
http://tools.oasis-open.org/issues/browse/SECURITY-12


280 A. Armando et al.

and translators to and from the core formal models, and migrating them to the
selected development environments. This enables designers and developers from
industry and standardization bodies to check more rapidly the correctness of the
proposed solutions without having a strong mathematical background.

A concrete example is the industry migration of the AVANTSSAR Platform
to the SAP environment. Two valuable migration activities have been carried
out by building contacts with core business units. First, in the trail of the suc-
cessful analysis of Google’s SAML-based SSO, the AVANTSSAR Platform has
been exploited to formally validate relevant scenarios where the SAP NetWeaver
SAML Next Generation Single Sign On services (NW NG SSO) are employed.
More than 50 formal specifications capturing these scenarios, the variety of con-
figuration options, and SAP internal design and implementation choices have
been formalized. Unsafe service compositions and configurations have been de-
tected, and safe compositions and configurations have been put forward for use
by SAP in setting up the NW NG SSO services on customer production systems.

The AVANTSSAR technology has been also integrated via a plug-in into the
SAP NetWeaver BPM (NW BPM) product [7,8] to formally validate if a busi-
ness process together with its access control policy complies with security-critical
requirements, e.g., separation and binding of duty, need-to-know principle, etc.
The plug-in provides a push-button technology with accessible user interfaces,
bridging the gap between business process modeling languages and formal spec-
ifications. Thus, a BP modeler can easily specify the security goals to validate
against the business process and access control policy; any violation of the se-
curity properties is depicted in a graphical way, enabling the modeler to take
countermeasures.

5 Concluding Remarks

As exemplified by the case studies and success stories mentioned above, formal
validation technologies can have a decisive impact for the trust and security
of SOAs and the IoS. The research innovation put forth by the AVANTSSAR
Platform aims at ensuring global security of dynamically composed services and
their integration into complex SOAs by developing an integrated platform of
automated reasoning techniques and tools. Similar technologies are being devel-
oped by other research teams (although none has yet the scale and depth of our
platform, which is the reason why we could not compare scope and efficiency).
Brought together, these research efforts will result in a new generation of tools for
automated security validation at design time, which is a stepping stone for the
development of similar tools for validation at service provision and consump-
tion time. For instance, part of the AVANTSSAR consortium is developing a
security testing toolset in the context of the FP7 project “SPaCIoS: Secure Pro-
vision and Consumption in the Internet of Services” (www.spacios.eu). These
advances will significantly improve the all-round security of SOAs and the IoS,
and thus boost their trustworthy development and public acceptance.

www.spacios.eu


The AVANTSSAR Platform 281

References

1. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: Verification of Stateful Processes.
In: Proc. CSF 2011, pp. 33–47. IEEE CS Press (2011)

2. Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar,
J., Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vi-
gneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

3. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. Journal of Applied Non-Classical Logics 19(4), 403–429 (2009)

4. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Pellegrino, G., Sorniotti, A.:
From Multiple Credentials to Browser-Based Single Sign-On: Are We More Secure?
In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C.
(eds.) SEC 2011. IFIP Advances in Information and Communication Technology,
vol. 354, pp. 68–79. Springer, Heidelberg (2011)

5. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra Abad, L.: Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In: Proc. FMSE 2008. ACM Press (2008)

6. Arora, C., Turuani, M.: Validating Integrity for the Ephemerizer’s Protocol with
CL-Atse. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to
Practical Security. LNCS, vol. 5458, pp. 21–32. Springer, Heidelberg (2009)

7. Arsac, W., Compagna, L., Kaluvuri, S., Ponta, S.E.: Security Validation Tool for
Business Processes. In: Proc. SACMAT 2011, pp. 143–144. ACM (2011)

8. Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security Validation of Busi-
ness Processes via Model-Checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

9. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1 (2008)
10. AVANTSSAR. Deliverable 4.2: AVANTSSAR Validation Platform v.2 (2010)
11. AVANTSSAR. Deliverable 5.4: Assessment of the AVANTSSAR Validation Plat-

form (2010)
12. AVANTSSAR. Deliverable 6.2.3: Migration to industrial development environ-

ments: lessons learned and best practices (2010)
13. AVANTSSAR. Deliverable 2.3: ASLan++ specification and tutorial (2011)
14. AVISPA: Automated Validation of Internet Security Protocols and Applications,

http://www.avispa-project.org

15. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for se-
curity protocols. IJIS 4(3), 181–208 (2005)

16. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A Security Tool
for Web Services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

17. Bhargavan, K., Fournet, C., Gordon, A.: Verified Reference Implementations of
WS-Security Protocols. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 88–106. Springer, Heidelberg (2006)

18. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. CSFW 2001, pp. 82–96. IEEE CS Press (2001)

19. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Automatic
validation of protocol narration. In: Proc. CSFW 2003, pp. 126–140. IEEE CS
Press (2003)

http://www.avispa-project.org


282 A. Armando et al.

20. Boichut, Y., Heam, P.-C., Kouchnarenko, O.: TA4SP: Tree Automata based on
Automatic Approximations for the Analysis of Security Protocols (2004)

21. Boichut, Y., Heam, P.-C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet
and Klay Technique to Automatically Verify Security Protocols. In: Proc. AVIS
2004. ENTCS (2004)

22. Brucker, A., Mödersheim, S.: Integrating Automated and Interactive Protocol Ver-
ification. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp.
248–262. Springer, Heidelberg (2010)

23. Chevalier, Y., Compagna, L., Cuéllar, J., Hankes Drielsma, P., Mantovani, J.,
Mödersheim, S., Vigneron, L.: A High Level Protocol Specification Language for
Industrial Security-Sensitive Protocols. In: Proc. SAPS 2004, pp. 193–205 (2004)

24. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Automatic Composition of Services
with Security Policies. In: Proc. WSCA, pp. 529–537. IEEE CS Press (2008)

25. Comon-Lundh, H., Cortier, V.: New Decidability Results for Fragments of First-
order Logic and Application to Cryptographic protocols. TR LSV-03-3, Laboratoire
Specification and Verification, ENS de Cachan, France (2003)

26. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory 2(29) (1983)

27. Hodkinson, I., Reynolds, M.: Temporal Logic. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, pp. 655–720. Elsevier (2006)

28. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Log.
Algebr. Program. 70(1), 96–118 (2007)

29. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

30. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: Proc. Ares
2009, pp. 433–440. IEEE CS Press (2009)

31. Mödersheim, S.: Abstraction by Set-Membership: Verifying Security Protocols and
Web Services with Databases. In: Proc. CCS 17, pp. 351–360. ACM Press (2010)

32. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

33. Mödersheim, S., Viganò, L.: The Open-source Fixed-point Model Checker for Sym-
bolic Analysis of Security Protocols. In: Aldini, A., Barth, G., Gorrieri, R. (eds.)
FOSAD 2007. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009)

34. OASIS. Web Services Business Process Execution Language Version 2.0. (April 11,
2007), http://docs.asis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

35. OASIS. SAML v2.0 – Technical Overview (March 2007),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

36. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

37. von Oheimb, D., Mödersheim, S.: ASLan++ — A Formal Security Specification
Language for Distributed Systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 1–22. Springer, Heidelberg (2011)

38. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp.
314–328. Springer, Heidelberg (1999)

39. WSO2. Web Services Framework for PHP (2006),
http://wso2.org/projects/wsf/php

http://docs.asis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://wso2.org/projects/wsf/php

	The AVANTSSAR Platform for the AutomatedValidation of Trust and Security of Service-Oriented Architectures
	Introduction
	The AVANTSSAR Platform
	Description and Architecture
	The Specification Languages ASLan and ASLan++
	The Connectors Layer
	The Orchestrator
	The Validator
	The AVANTSSAR Platform: Web Services and Web Interface

	AVANTSSAR Library and Experimental Results
	Technology Migration
	Concluding Remarks
	References


