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Abstract. For singular corank 1 surfaces in R3 we introduce a distinguished
normal vector called the axial vector. Using this vector and the curvature
parabola we define a new type of curvature called the axial curvature, which
generalizes the singular curvature for frontal type singularities. We then study
contact properties of the surface with respect to the plane orthogonal to the
axial vector and show how they are related to the axial curvature. Finally, for
certain fold type singularities, we relate the axial curvature with the Gaussian
curvature of an appropriate blow up.

1. Introduction

Singularities of surfaces or singular surfaces in 3-space have been of interest for a
very long time. However, in the last 15 years the study of the differential geometry
of singular surfaces has seen a huge development due to the growing number of
situations in which this type of surfaces appear. In fact, these object are not
only cherished by singularity theorists but also by differential geometers. The
introduction of singularity theory techniques has been crucial in the development
of the area. Papers such as [11] or [18], which introduce new types of curvature and
study the behaviour of the Gaussian curvature near singular points for wave-fronts,
have become seminal papers in the area.

Wave-fronts, or frontals in general, have a well-defined normal vector even at the
singular points, so it is in a way easier to study geometrical properties for these
kinds of singularities. For different types of singularities such as the cross-cap,
which is the only type of singularity a stable map germ f : (R2, 0) → (R3, 0) can
have, this is not the case. In [12], corank 1 singularities are studied in general (by
corank we mean the corank of the differential of the local parametrisation of the
surface). The authors define a curvature parabola in the normal plane similar to
the curvature ellipse for regular surfaces in R4, which encodes all the second order
geometry of the surface at the singular point. In the case the parabola is degenerate
(when the singular point is not a cross-cap) they define the umbilic curvature κu as
the projection of the parabola to a certain distinguished normal direction, which
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captures degenerate contact with spheres. This curvature generalizes the normal
curvature for fronts ([18], [13]). In [19] it is shown that the normal curvature is a
kind of bounded principal curvature for front singularities, so the umbilic curvature
can be seen as a principal curvature for corank 1 singularities.

The idea of obtaining the principal curvatures in a certain normal direction by
projections comes from the curvature ellipse of surfaces in R4 ([15]). In fact, in [6]
the authors introduce the concept of lines of axial curvature as the lines of curvature
corresponding to the principal curvatures in the normal direction corresponding to
the axis of the ellipse. Inspired by these ideas we define in Section 3 the axial
curvature κa as the minimum value of the projection of the curvature parabola on
the axial vector va, where va is the axis of symmetry of the parabola when it is
non-degenerate or the direction of the line which contains the parabola when it
is degenerate but not a point. We prove that this curvature is intrinsic and give
coordinate free expressions for it. In Section 4 we show that it generalizes the
singular curvature for fronts ([11]). Considering the amount of applications that
the singular curvature has in generalizing concepts and results of regular surfaces
to frontals, this gives an idea of the potential of the axial curvature.

Section 5 is devoted to the study of the contact of a surface with the plane
orthogonal to the axial vector by analyzing the height function in the direction of
va. We characterize the type of contact by the axial curvature and give criteria to
distinguish when a singular point is elliptic, hyperbolic or parabolic by looking at
the curves of intersection of the surface with the plane orthogonal to va. Section
2 contains the preliminaries about corank 1 surfaces in R3 from [12]. Finally, in
Section 6, for certain fold type singularities (i.e. j2f(0) ∼A2 (x, y2, 0)) we relate the
axial curvature to the Gaussian curvature of an appropriate blow up and we justify
why we cannot obtain a good Koenderink type formula due to the appearance
of a certain term. As a by-product we prove that this term is an obstruction to
frontality.

2. Preliminaries

We state some definitions and results about corank 1 surfaces in R3 (see [12] for
details). Given a surface M ⊂ R3 with a corank 1 singularity at p ∈ M , we shall
assume it as the image of a smooth map f : R2 → R3, such that f(q) = p ∈ M ,

where q is a corank 1 singular point of f . Notice that we are taking M̃ = R2 and
ϕ = id in the construction in [12].

The tangent line to M at p is the set TpM = im(dfq), where dfq : TqR2 → TpR3

and the normal plane NpM satisfies TpR3 = TpM ⊕NpM . The first fundamental
form I : TqR2 × TqR2 → R is given by

I(X,Y ) = 〈dfq(X), dfq(Y )〉, ∀ X,Y ∈ TqR2.
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With the parametrisation f and if {∂u, ∂v} is a basis for TqR2, the coefficients of
the first fundamental form are:

E(q) = I(∂u, ∂u) = 〈fu, fu〉(q), F (q) = I(∂u, ∂v) = 〈fu, fv〉(q)
G(q) = I(∂v, ∂v) = 〈fv, fv〉(q),

and taking X = a∂u + b∂v ∈ TqR2, I(X,X) = a2E(q) + 2abF (q) + b2G(q). This
induces a pseudometric in TqR2. Let⊥: TpR3 → NpM , be the orthogonal projection
onto the normal plane. The second fundamental form ofM at p, II : TqR2×TqR2 →
NpM , is the symmetric bilinear map such that

II(∂u, ∂u) = f⊥uu(q), II(∂u, ∂v) = f⊥uv(q) and II(∂v, ∂v) = f⊥vv(q).

Given a vector ν ∈ NpM , the second fundamental form in the direction ν of
M at p: IIν : TqR2 × TqR2 → R is defined as IIν(X,Y ) = 〈II(X,Y ), ν〉, for all
X,Y ∈ TqR2. The coefficients of IIν in coordinates are

lν(q) = 〈f⊥uu, ν〉(q), mν(q) = 〈f⊥uv, ν〉(q) and nν(q) = 〈f⊥vv, ν〉(q).

For X = a∂u + b∂v ∈ TqR2, we have IIν(X,X) = a2lν(q) + 2abmν(q) + b2nν(q) and
fixing an orthonormal frame {ν1, ν2} of NpM ,

II(X,X) = IIν1(X,X) + IIν2(X,X)
= (a2lν1 + 2abmν1 + b2nν1)ν1 + (a2lν2 + 2abmν2 + b2nν2)ν2,

with the coefficients calculated in q. The second fundamental form can also be
represented by the matrix of coefficients(

lν1 mν1 nν1
lν2 mν2 nν2

)
.

We identify R2 and TqR2 by (x, y) 7→ x∂u + y∂v. Let Cq ⊂ TqR2 be the subset of
unit vectors:

Cq = {(x, y) ∈ TqR2 |x2E(q) + 2xyF (q) + y2G(q) = 1},

and let ηq : Cq → NpM be the map defined by

ηq(X) = II(X,X).

Definition 2.1. The image ηq(Cq) ⊂ NpM is called the curvature parabola and is
denoted by ∆p.

The curvature parabola is a plane curve that may degenerate into a line, a
half-line or a point. Since f has corank 1 at q ∈ R2, by changes of coordi-
nates in the source and isometries in the target it can be written as f(u, v) =
(u, f2(u, v), f3(u, v)) with (fi)u(q) = (fi)v(q) = 0 for i = 2, 3. Therefore E = 1,
F = G = 0 and so Cq = {X = (±1, y)| y ∈ R}. Fixing an orthonormal frame
{ν1, ν2} of NpM ,

(2.1) η(y) = (lν1 + 2mν1y + nν1y
2)ν1 + (lν2 + 2mν2y + nν2y

2)ν2

is a parametrisation for ∆p in NpM .
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Theorem 2.2 ([12]). Let M ⊂ R3 be a surface with a singularity of corank 1 at
p ∈ M . We assume for simplicity that p is the origin of R3 and denote by j2f(0)
the 2-jet of a local parametrisation f : (R2, 0)→ (R3, 0) of M . Then the following
holds:

(i) ∆p is a non-degenerate parabola if and only if j2f(0) ∼A2 (u, v2, uv);
(ii) ∆p is a half-line if and only if j2f(0) ∼A2 (u, v2, 0);
(iii) ∆p is a line if and only if j2f(0) ∼A2 (u, uv, 0);
(iv) ∆p is a point if and only if j2f(0) ∼A2 (u, 0, 0).

Furthermore, if f is given in Monge form such that

j2f(0) =

(
u,

1

2
(a20u

2 + 2a11uv + a02v
2),

1

2
(b20u

2 + 2b11uv + b02v
2)

)
,

then the curvature parabola is parametrised by

η(y) = (0, a20 + 2a11y + a02y
2, b20 + 2b11y + b02y

2)

and

(a) j2f(0) ∼A2 (u, v2, uv) if and only if a11b02 − a02b11 6= 0;
(b) j2f(0) ∼A2 (u, v2, 0) if and only if a11b02 − a02b11 = 0 and a202 + b202 > 0;
(c) j2f(0) ∼A2 (u, uv, 0) if and only if a02 = b02 = 0 and a211 + b211 > 0;
(d) j2f(0) ∼A2 (u, 0, 0) if and only if a02 = b02 = a11 = b11 = 0.

A non zero tangent direction X ∈ TqR2 is asymptotic if there is a non zero
normal vector ν ∈ NpM such that IIν(X,Y ) = 0, for any Y ∈ TqR2. Such a ν is
called a binormal direction.

The parameter value y ∈ R corresponds to a unit tangent direction X = ∂u +
y∂v ∈ Cq. Denote by y∞ the parameter value corresponding to the null tangent
directionX = ∂v. If ∆p degenerates to a line or a half-line, define η(y∞) = η′(y∞) =
η′(y)/|η′(y)|, where y > 0 is any value such that η′(y) 6= 0. If ∆p degenerates to a
point ν, then define η(y∞) = ν and η′(y∞) = 0. If ∆p is a non-degenerate parabola,
η(y∞) and η′(y∞) are not defined.

Lemma 2.3 ([12]). A tangent direction in TqR2 given by a parameter value y ∈
R∪ [y∞] is asymptotic if and only if η(y) and η′(y) are collinear (provided they are
defined).

The parameter y ∈ R∪ [y∞] corresponding to an asymptotic direction X ∈ TqR2

is also called an asymptotic direction. The number of asymptotic directions is
characterized by the topological type of the curvature parabola and when ∆p is
degenerate y∞ is an asymptotic direction (see also [2] for an explanation):

(i) If ∆p is a non-degenerate parabola, there are 0, 1 or 2 asymptotic direc-
tions, according to the position of p: outside, on or outside the parabola,
respectively;

(ii) If ∆p is a half-line such that the line that contains it does not pass through
p, then there are two asymptotic directions, [yν , y∞], with η(yν) being the
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vertex of ∆p, and if the line that contains it passes through p, then every
y ∈ R ∪ [y∞] is an asymptotic direction;

(iii) If ∆p is a line which does not pass through p then y∞ is the only asymptotic
direction, and if it passes through p then every y ∈ R∪[y∞] is an asymptotic
direction;

(iv) If ∆p is a point, every y ∈ R ∪ [y∞] is an asymptotic direction.

2.1. The umbilic curvature. When M is not a cross-cap singularity at p the
curvature parabola is degenerate. In this case a curvature can be defined.

We need to consider special frames on NpM . When ∆p is not a point (i.e. a
half-line or a line), y∞ is well defined. Let v∞ be the binormal direction such that
{η(y∞), v∞} is an orthonormal positively oriented frame of NpM . If ∆p is a point
which is not the origin then η(y) is a non zero constant and we can consider the
orthonormal frame given by {v, η(y)/|η(y)|}, where v is a binormal direction. We
call these frames adapted frames of NpM . When ∆p is the origin, any frame is an
adapted frame.

Given an adapted frame {ν1, ν2} and X ∈ Cq we have

II(X,X) = IIν1(X,X)ν1 + IIν2(X,X)ν2.

Notice that IIν2(X,X) does not depend on X up to sign.

Definition 2.4 ([12]). Given X ∈ Cq and an adapted frame {ν1, ν2} of NpM the
umbilic curvature of M at p is

κu = |〈II(X,X), ν2〉| = |IIν2(X,X)|.
Geometrically, κu(p) measures the length of the projection of ∆p on the infinity

binormal direction when ∆p is a line or a half-line and it is the distance between
∆p and p when ∆p is a point.

3. The axial curvature

When ∆p is a non-degenerate parabola, an adapted frame can be defined too. Let
vd ∈ NpM be the unitary vector in the direction of the directrix of the parabola
and consider va ∈ NpM such that {va, vd} is a positively oriented orthonormal
frame of NpM . We call va the axial vector as it shares the direction of the axis
of symmetry of the parabola when pointing towards the “interior” of the parabola
(see Figure 1). When ∆p is line or a half-line take va = η(y∞) and when ∆p is
a point which is not the origin va is such that {va, η(y)/|η(y)|} is an orthonormal
positively oriented frame of NpM .

Definition 3.1. Given an adapted frame {va, ν2} of NpM and X ∈ TqR2 we define
the axial normal curvature function as

Kva(X) = 〈II(X,X), va〉 = IIva(X,X).

If X ∈ Cq, X = ∂u + y∂v and II(X,X) = η(y) so we can consider Kva(X) as a
function on the parameter y. We call the number

κa(p) = min{Kva(X) : X ∈ Cq} = min{〈η(y), va〉 : y ∈ R}
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directrix

symmetry
axis

∆p

va
vd

N Mp

Figure 1. Adapted frame for a non-degenerate parabola.

the axial curvature of M at p (when it exists).

Geometrically we have the following interpretations:

i) When ∆p is a non-degenerate parabola or a half-line, κa(p) is the signed
value of the extremal point of the projection of ∆p on the direction given
by va.

ii) When ∆p is a line, the projection of ∆p on the direction given by va is the
whole line and so κa(p) is not bounded.

iii) When ∆p is a point, the projection of ∆p on the direction given by va is
the origin and so κa(p) = 0.

Remark 3.2. In the case of regular surfaces in R4, the extremal points of the
projection of the curvature ellipse in the direction orthogonal to a given normal
direction ν are equal to the maximum and minimum values of the normal curvature
in the direction ν and are therefore the ν-principal curvatures (see Lemma 4.1 in
[15]). In this sense κa can be considered a (va-)principal curvature for M . This
interpretation will be studied further in Section 4.

From the definition and geometrical interpretation it follows that

Proposition 3.3. κa(p) = 0 if and only if ∆p is a point, or η(y0) is parallel to ν2,
where y0 is a critical point of Kva (see Figure 2).

For any X ∈ TqR2, IIva(X,X) = |X|2IIva( X
|X| ,

X
|X|). So

κa(p) = min{IIva(X,X)

I(X,X)
: X ∈ TqR2} = min{Kva(X)

I(X,X)
: X ∈ TqR2}.

Proposition 3.4. Let M be given by the image of f in Monge form such that
j2f(0) =

(
u, 12(a20u

2 + 2a11uv + a02v
2), 12(b20u

2 + 2b11uv + b02v
2)
)

and such that

p ∈ M is the origin in R3. Suppose that ∆p is a non-degenerate parabola or a
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∆p

va

vd

N Mp

∆p

va

ν2

N Mp

η(y )0

∆p

va

N Mp

η(y )0

ν2 ∆p

va

N Mp

η(y )0

ν2
.

η(y )0

Figure 2. Situations when the axial curvature is 0.

half-line, then

(3.1) κa(p) =
1√

a202 + b202

(
(a20a02 + b20b02)−

(a11a02 + b11b02)
2

a202 + b202

)
.

Proof. When f is given as above, the curvature parabola is parameterised by

η(y) = (0, a20 + 2a11y + a02y
2, b20 + 2b11y + b02y

2).

If ∆p is a non-degenerate parabola or a half-line, then va = 1√
a202+b

2
02

(a02, b02). (For

completion we point out that in view of part 2 of Theorem 2.2, when ∆p is a line we
can take va = 1√

a211+b
2
11

(a11, b11) and when ∆p is a point different from the origin

we take va = 1√
a220+b

2
20

(−b20, a20).) So

Kva(y) = 〈η(y), va〉

=
1√

a202 + b202

(
(a20a02 + b20b02) + 2(a11a02 + b11b02)y + (a202 + b202)y

2
)
.

We differentiate Kva with respect to y and equal to 0 to obtain the singular point

y0 = −(a11a02+b11b02)
a202+b

2
02

. Notice that y0 is infinite if ∆p is a line. Finally

κa(p) = Kva(y0) =
1√

a202 + b202

(
(a20a02 + b20b02)−

(a11a02 + b11b02)
2

a202 + b202

)
.

�

Furthermore, we have the following expression.



8 R. OSET SINHA, K. SAJI

Proposition 3.5. If f satisfies that ∆p is a non-degenerate parabola or a half-line,
and a coordinate system (u, v) satisfies fu(q) 6= 0 and fv(q) = 0, then

κa =
(
〈fu, fu〉

(
〈fu, fu〉 〈fvv, fvv〉 − 〈fu, fvv〉2

))−3/2
((
〈fu, fuu〉 〈fu, fvv〉 − 〈fu, fu〉 〈fuu, fvv〉

)(
〈fu, fvv〉2 − 〈fu, fu〉 〈fvv, fvv〉

)
−
(
〈fu, fuv〉 〈fu, fvv〉 − 〈fu, fu〉 〈fuv, fvv〉

)2)
at q.

To prove this proposition, we show the following lemma.

Lemma 3.6. If f satisfies that ∆p is a non-degenerate parabola or a half-line, and
a coordinate system (u, v) satisfies fu(q) 6= 0, fv(q) = 0, |fu(q)| = |fvv(q)| = 1 and
〈fu(q), fvv(q)〉 = 0, then

(3.2) κa(p) =
(
〈fuu, fvv〉 − 〈fuv, fvv〉2

)
(q).

Proof. Firstly we show (3.2) does not depend on the choice of the coordinate sys-
tems satisfying the assumption of the lemma. Let (x, y) = (x(u, v), y(u, v)) be an-
other coordinate system satisfying that fx(q) 6= 0, fy(q) = 0, |fx(q)| = |fyy(q)| = 1
and 〈fx(q), fyy(q)〉 = 0. Since

fu = fxxu + fyyu, fv = fxxv + fyyv,

and fy(q) = fv(q) = 0, it holds that xv(q) = 0. Moreover, since |fx(q)| = 1 we have
xu(q)2 = 1. Furthermore, since

fvv(q) = fx(q)xvv(q) + fyy(q)yv(q)
2

and |fyy(q)| = |fvv(q)| = 1, 〈fx(q), fyy(q)〉 = 〈fu(q), fvv(q)〉 = 0, we have xvv(q) =
0, yv(q) = 1. Substituting

fuu =fxxx
2
u + 2fxyxuyu + fyyy

2
u + fxxuu,

fuv =fxyxuyv + fyyyuyv + fxxuv,

into (3.2), we see

〈fuu, fvv〉 − 〈fuv, fvv〉2 = 〈fxx, fyy〉 − 〈fxy, fyy〉2 .

Thus (3.2) does not depend on the coordinate system satisfying the assumption of
the lemma. If f(x, y) satisfies

j2f(0) =

(
x,
a20
2
x2 +

2a11

(a202 + b202)
1/4

xy +
a02

2(a202 + b202)
1/2

y2,

b20
2
x2 +

2b11

(a202 + b202)
1/4

xy +
b02

2(a202 + b202)
1/2

y2

)
,
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then this satisfies the assumption of the lemma. Under this coordinate system, we
easily see that

〈fuu, fvv〉 − 〈fuv, fvv〉2

is equal to (3.1). This shows the assertion. �

We remark that the existence of a coordinate system of Lemma 3.6 can be shown
easily.

Proof of Proposition 3.5. Let (u, v) be a coordinate system satisfying

fu(q) 6= 0, fv(q) = 0, |fu(q)| = |fvv(q)| = 1 and 〈fu(q), fvv(q)〉 = 0,

and let (x, y) = (x(u, v), y(u, v)) be another coordinate system satisfying fy(q) = 0.
Then xv(q) = 0. By

(3.3)

fu =fxxu

fuu =yu(fyyyu + xufxy) + xu(yufxy + xufxx) + fxxuu

fuv =yvfyyyu + yvxufxy + fxxuv

fvv =y2vfyy + xvvfx,

at q, we have

(3.4)

xu =± 1/
√
〈fx, fx〉,

yv =

(
〈fx, fx〉

〈fx, fx〉 〈fyy, fyy〉 − 〈fx, fyy〉2

)1/4

,

xvv =−

(
〈fx, fx〉

〈fx, fx〉 〈fyy, fyy〉 − 〈fx, fyy〉2

)1/2
〈fx, fyy〉
〈fx, fx〉

Substituting (3.3) using (3.4) into (3.2), we have the assertion. �

Example 3.7. i) Consider the cross-cap singularity parameterised by (u, u2+
v2, 2u2 + uv). The curvature parabola is a non-degenerate parabola and is
parameterised by η(y) = (2 + 2y2, 4 + 2y). In this case va = (1, 0) and
κa = 2.

ii) Consider the cuspidal edge parameterised by f(u, v) = (u, a202 u
2+v2, b202 u

2+

v3). The curvature parabola is a half-line parameterised by η(y) = (a20 +
2y2, b20). Here va = (1, 0) and κu = b20, κa = a20.

Remark 3.8. Similarly to κu, κa is independent of the choice of adapted frame
of NpM and of parametrisation of ∆p but may depend on the parametrisation of
M . In fact, for the cuspidal edge parameterised by f(u, v) = (u, u2 + v2, v3) the
curvature parabola is parameterised by η(y) = (2 + 2y2, 0) and κu = 0, κa = 2.
On the other hand, for the same cuspidal edge parameterised by f(u, v) = (u, u2 +
(v3 + u)2, (v3 + u)3) the curvature parabola is the point (4, 0) and κu = 4, κa = 0.
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In [7], it is proven that, taking a generic normal form for the cross-cap singularity

f(u, v) = (u, c20u
2 + c11uv + c02v

2 +O(3)(u, v), uv +O(3)(v)),

the coefficients c20, c11, c02 are intrinsic invariants. Therefore, using Proposition

3.4 for this normal form, we get κa(p) = 2c20 −
c211
2c02

, which means that the axial
curvature is an intrinsic invariant for cross-cap singularities. On the other hand,
we will prove in the next section that the axial curvature is equal to the singular
curvature for frontals, which is also an intrinsic invariant (see [18]). Therefore,
the axial curvature is an intrinsic invariant for frontals too. We can prove this in
general.

Proposition 3.9 (Intrinsic formula for the axial curvature). If f satisfies that ∆p

is a non-degenerate parabola or a half-line, and E,F and G are the coefficients of
the first fundamental form

κa(p) =

((
Eu
2 Fv − E(Fuv − Evv

2 )
)(
F 2
v − EGvv

2

)
−
(
Ev
2 Fv − E

Guv
2

)2)(
E
(
EGvv

2 − F 2
v

))3/2
where Eu = ∂E

∂u and so on.

Proof. The formula follows by direct calculation and substitution in the formula of
Proposition 3.5. For instance, Evv = 2 〈fu, fuvv〉+2 〈fuv, fuv〉 and Fuv = 〈fv, fuuv〉+
〈fuu, fvv〉 + 〈fuv, fuv〉 + 〈fu, fuvv〉, so taking into account that in this coordinate
system fv = 0 we get 〈fuu, fvv〉 = Fuv − Evv

2 . �

4. The axial curvature for frontals: relation to the singular
curvature

In this section we will show that the axial curvature is a generalization of the
singular curvature for frontals.

A map-germ f : (R2, 0)→ (R3, 0) is a frontal if there exists a well defined normal
unit vector field ν along f , namely, |ν| = 1 and for any X ∈ TqR2, dfq(X) ·ν(q) = 0.
A frontal f with a normal unit vector field ν is a front if the pair (f, ν) is an
immersion. Since at a cuspidal edge f : (R2, 0) → (R3, 0), there is always a well
defined normal unit vector field ν along f , and the pair (f, ν) is an immersion, a
cuspidal edge is a front. On the other hand, at a cuspidal cross-cap f : (R2, 0) →
(R3, 0), there is always a well defined normal unit vector field ν along f , but
the pair (f, ν) is not an immersion, a cuspidal cross-cap is a frontal but not a
front. Let f : (R2, 0) → (R3, 0) be a frontal with a normal unit vector field ν.
Consider the function λ = det(fx, fy, ν), where (x, y) are the coordinates of R2.
Then S(f) = {λ−1(0)}, where S(f) is the set of singular point of f . A singular
point q is non-degenerate if dλ(q) 6= 0. If q is a non-degenerate singular point,
there is a well defined vector field η in R2, such that df(η) = 0 on S(f). Such a
vector field is called a null vector field. A singular point q is called of first kind if
ηλ(q) 6= 0. A singular point q is of first kind of a front if f is a cuspidal edge ([11]).
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Let f : (R2, 0) → (R3, 0) be a frontal with a normal unit vector field ν, and 0
a singular point of the first kind. Since η is transversal to S(f), we can consider
another vector field ξ which is tangent to S(f) and such that (ξ, η) is positively
oriented. Such a pair of vector fields is called an adapted pair. An adapted coor-
dinate system (u, v) of R2 is a coordinate system such that S(f) is the u-axis, ∂v
is the null vector field and there are no singular points besides the u-axis. Let γ
be a parametrisation of the singular curve S(f) and let γ̂ = f ◦ γ. If (u, v) is an
adapted coordinate system, then fuv = 0 holds on S(f) and {fu, fvv, ν} is linearly
independent (in particular fvv(q) 6= 0).

In [13] certain geometric invariants of cuspidal edges are studied. Amongst them
are the singular curvature and the limiting normal curvature (κs and κν), and these
are given as follows:

(4.1) κs(t) = sgn(dλ(η))
det(γ̂′(t), γ̂′′(t), ν(γ(t)))

|γ̂′(t)|3
, κν(t) =

〈γ̂′′(t), ν(γ(t))〉
|γ̂′(t)|2

,

A detailed description and geometrical interpretation of κs and κν can be found
in [18]. In that paper, it is also shown that if (u, v) is an adapted coordinate system,
then

κs(u, 0) = sgn(λv)
det(fu, fuu, ν)

|fu|3
(u, 0).

There is a strong relation between the limiting normal curvature and the umbilic
curvature, in fact, κu is a generalization of κν for non frontal singularities different
from a cross-cap.

Theorem 4.1 ([13]). Let f : (R2, q) → (R3, p) be a map-germ, q a cuspidal edge,
and ν a unit normal vector field along f . Then the following hold:

i) ν(q) is orthogonal to the line that contains ∆p (i.e. ν = ν2 of the adapted
frame of NpM).

ii) κu(p) = |κν(q)|
iii) κs(q) = 0 if and only if II(X,X) is parallel to ν at p, where X is a non-zero

tangent vector to S(f) at q.
iv) κs(q) = 0 = κu(p) if and only if II(X,X) = 0 where X is a non-zero

tangent vector to S(f) at q.

In the same spirit there is a strong relation between the axial curvature and the
singular curvature:

Theorem 4.2. Let f : (R2, q)→ (R3, p) be a map-germ, q a non-degenerate frontal
singularity, and ν a unit normal vector field along f . Then the following hold:

i) ν(q) is orthogonal to va
ii) κa(p) = 0 if and only if ∆p is a point, or II(X,X) is parallel to ν at p,

where X is a non-zero tangent vector to S(f) at q.
iii) |κa(p)| = |κs(q)|.



12 R. OSET SINHA, K. SAJI

Proof. From the definition of va, for the particular case of frontals, which have
degenerate curvature parabola, va = ν1 where {ν1, ν2} is an adapted frame of
NpM . From item i) in Theorem 4.1, ν(q) = ν2, so va is orthogonal to ν(q).

When ∆p is a point, κa = 0 by definition. If ∆p is a line, then κa is not
bounded and item ii) does not apply. If ∆p is a half-line then the minimum of
Kva is attained at the point where η′(y) = 0. We consider an adapted coordinate
system (u, v). Recall that this implies that fuv = 0 holds on S(f) and fvv(q) 6= 0.
The curvature parabola is the image of Cq by the second fundamental form. We

have II(∂u + y∂v, ∂u + y∂v) = f⊥uu(q) + 2yf⊥uv(q) + y2f⊥vv(q) = f⊥uu(q) + y2f⊥vv(q),
so η′(y) = 2yf⊥vv(q), which is 0 if and only if y = 0. Therefore, the unitary
tangent direction X for which II(X,X) is the extremal point of the half-line is ∂u,
which is tangent to S(f) in the adapted coordinate system. On the other hand

κa(p) = min{Kva(X) : X ∈ Cq} = 〈 II(∂u,∂u)I(∂u,∂u)
, va〉 = 〈 II(∂u,∂u)E , va〉, since ∂u is the

direction for which Kva is minimum. Item ii) follows form

1

E
II(∂u, ∂u) = 〈II(∂u, ∂u)

E
, ν〉ν + 〈II(∂u, ∂u)

E
, va〉va = κuν + κava.

Now, for an adapted coordinate system we have

κs(u, 0) = sgn(λv)
det(fu, fuu, ν)

|fu|3
(u, 0) = sgn(λv)〈

f⊥uu
|fu|2

, ν × fu
|fu|
〉.

From i) ν × fu
|fu| = va so the above equation is equal to

sgn(λv)〈
f⊥uu
E
, va〉 = sgn(λv)〈

II(∂u, ∂u)

I(∂u, ∂u)
, va〉 = sgn(λv)κa(p).

�

Remark 4.3. An alternative way to prove iii) in Theorem 4.2 is using the formula
(3.2) since when f is a frontal,

ν = fu × fvv/|fu × fvv|.

So by direct calculation, κa is equal to κs in the case non-degenerate frontals.

By Corollary 1.14 of [18], for non-degenerate front singularities of the second
kind (swallowtail), the singular curvature is unbounded. In fact, this is a corollary
of the above Theorem too since the 2-jet of such a singularity is A -equivalent to
(x, xy, 0) and the curvature parabola is a line, so the minimum of the projection
to va (i.e. κa) is unbounded.

Remark 4.4. In [19] the author defines some principal curvatures for wave fronts
and in Theorem 3.1 he proves that when the singularity is of first or second kind
then one of these principal curvatures is bounded and in fact is equal to κν . By
Theorem 4.1 κu = κν and ν = ν2 of the adapted frame of NpM , so κu can be seen
as a ν2-principal curvature for M . κu is the projection on the direction given by
ν2 and κa is the extremal point of the projection on the direction given by va, so
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it makes sense to consider κa as a kind of va-principal curvature for wave fronts,
which is consistent with the interpretation given in Remark 3.2.

Remark 4.5. If f is given in Monge form and ∆p is not a line or a non-degenerate
parabola (when ∆p is a line, κa is unbounded and when ∆p is a non-degenerate
parabola, κu is not defined), then a211 + b211 = 0 and κ2a + κ2u = a220 + b220. This
corresponds to the curvature of the curve γ(t) = f(t, 0). For the case of frontals in
an adapted coordinate system this curve is the cuspidal edge and its curvature κ
satisfies κ2 = κ2a + κ2u (see [13]).

5. Contact with planes

In this section we consider the contact of M with the plane orthogonal to va,
which we denote by v⊥a . The contact of M with a plane orthogonal to a vector v
is measured by the singularities of the height function in the direction v

hv : M → R, hv(p) = 〈p, v〉.

We study the height function in the direction va and obtain geometric interpreta-
tions for the axial curvature.

We first show the following lemma.

Lemma 5.1. If ∆p is a non-degenerate parabola or a half-line (i.e. j2f is equivalent
to (x, y2, xy) or (x, y2, 0)), then for a coordinate system as in Proposition 3.5,

va = (fu×fvv)×fu
|(fu×fvv)×fu|(q), and in the coordinate system of Lemma 3.6, va = fvv(q).

Proof. Let (u, v) be a coordinate system as in Proposition 3.5. Since j2f is equiv-
alent to (x, y2, xy) or (x, y2, 0), fu × fvv 6= 0 at q, and NpM = 〈V1, V2〉R, where

V1 =
fu(q)× fvv(q)
|fu(q)× fvv(q)|

, V2 =
(fu(q)× fvv(q))× fu(q)

|(fu(q)× fvv(q))× fu(q)|
.

Since fv(q) = 0, the condition I(a∂u + b∂v, a∂u + b∂v) = 1 is equivalent to a =

1/ 〈fu(q), fu(q)〉1/2. Thus the curvature parabola is{(
〈fuu(q), V1〉

E(q)
+

2b 〈fuv(q), V1〉
E(q)1/2

+ b2 〈fvv(q), V1〉
)
V1

+

(
〈fuu(q), V2〉

E(q)
+

2b 〈fuv(q), V2〉
E(q)1/2

+ b2 〈fvv(q), V2〉
)
V2

∣∣∣∣∣b ∈ R

}
.

Since 〈fvv(q), V1〉 = 0, there is no b2-term in the coefficient of V1. Therefore the
curvature parabola is a parabola whose axis is parallel to the direction of V2, and
we obtain

va = V2 =
(fu(q)× fvv(q))× fu(q)

|(fu(q)× fvv(q))× fu(q)|
.

Thus the second assertion is shown. The first assertion immediately follows from
the second assertion. �
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Proposition 5.2. If f satisfies that ∆p is a non-degenerate parabola or a half-line,
the singularities of hva, the height function in the direction va, are

i) A+
1 if and only if κa(p) > 0,

ii) A−1 if and only if κa(p) < 0,
iii) A≥2 if and only if κa(p) = 0. In particular, A2 if and only if κa = 0 and(

− 〈fuuu, fvv〉+ 3 〈fuuv, fvv〉 〈fuv, fvv〉

− 3 〈fuvv, fvv〉 〈fuv, fvv〉2 + 〈fvvv, fvv〉 〈fuv, fvv〉3
)

(q) 6= 0

Proof. If a coordinate system (u, v) satisfies fu(q) 6= 0, fv(q) = 0, |fu(q)| =
|fvv(q)| = 1 and 〈fu(q), fvv(q)〉 = 0, then, by Lemma 3.6,

κa(p) =
(
〈fuu, fvv〉 − 〈fuv, fvv〉2

)
(q).

Since 〈fvv, fvv〉 (q) = 1, the Hessian matrix of hva at q is

H =

(
〈fuu, fvv〉 〈fuv, fvv〉
〈fuv, fvv〉 1

)
(q).

Notice that, detH is precisely κa(p). Thus, assertions i) and ii) are shown.
We assume detH = 0. Since 〈fvv, fvv〉 (q) 6= 0, rankH = 1. We set kH =

(−1, 〈fuv, fvv〉). Then kH spans the kernel of H. It is known that hva is an A2-
singularity at p if and only if((

− ∂u + 〈fuv, fvv〉 (q)∂v
)

detH
)

(q) 6= 0

By a straightforward calculation, it is equivalent to

− 〈fuuu, fvv〉+ 3 〈fuuv, fvv〉 〈fuv, fvv〉 − 〈fuvv, fvv〉 〈fuu, fvv〉

− 2 〈fuvv, fvv〉 〈fuv, fvv〉2 + 〈fvvv, fvv〉 〈fuv, fvv〉 〈fuu, fvv〉 6= 0

at q. By the assumption κa = 〈fuu, fvv〉 − 〈fuv, fvv〉2 = 0, so we get assertion
iii). �

Corollary 5.3. If f satisfies that ∆p is a non-degenerate parabola or a half-line,
then the surface M is (locally) only on one side of the osculating plane if and only
if κa > 0

Example 5.4. Given a cuspidal edge f(u, v) = (u, a202 u
2 + v

2 , v
3), then κa = κs =

a20. When a20 > 0 (resp. a20 < 0) the cuspidal edge is positively curved (resp.
negatively curved). See Figure 3.

Proposition 5.5. Suppose κa(p) is defined (i.e. ∆p is not a line), then κa(p) = 0
if and only if va is a binormal direction.

Proof. By Proposition 3.3, κa(p) = 0 if and only if ∆p is a point, or η(y0) is
parallel to ν2, where y0 is a critical point of Kva . When ∆p is a point, all directions
are asymptotic and by definition va is orthogonal to η(y) for any y, thus, va is a
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Figure 3. The left one is positively curved and the right one is
negatively curved.

binormal direction. When ∆p is not a point, {va, ν2} is an adapted frame. If η(y0)
is parallel to ν2, and y0 is a critical point of Kva , this means that y0 is an asymptotic
direction, and since η(y0) and va are orthogonal, va is a binormal direction. �

With this we can recover part of Theorem 2.15 in [12] and give some more
information:

Proposition 5.6. hva has a degenerate singularity if and only if va is a binormal
direction. Moreover, the singularity is of corank 2 if and only if ∆p is degenerate
and κa(p) = κu(p) = 0.

Proof. The first assertion follows directly from Propositions 5.2 and 5.5 and is also
found in Theorem 2.15 in [12]. On the other hand, their result states that the
singularity of the height function in a direction v is of corank 2 if and only if ∆p

is degenerate and κu(p) = 0 and v is an infinite binormal direction. This, together
with Proposition 5.5 give that the singularity of hva is of corank 2 if and only if ∆p

is degenerate and κa(p) = κu(p) = 0. �

Given a surface M ⊂ R3 with corank 1 singularity at p ∈M , the point p is called
elliptic, hyperbolic, parabolic or inflection according to whether there are 0, 2, 1 or
infinite asymptotic directions at that point (see [1]). Equivalently in [17], the point
is elliptic, hyperbolic or parabolic according to whether the GL(2,R)×GL(2,R)-
orbit of the pair (j2f2(u, v), j2f3(u, v)) is of elliptic, hyperbolic or parabolic type.
These two definitions coincide. Differently from the regular case, for a singular
point, being elliptic or hyperbolic does not ensure the existence of an osculating
plane such that the surface is locally on one side of the plane. This is distinguished
by the sign of κa. In fact, the sign of κa does not always imply whether the point is
elliptic or hyperbolic, however it does imply the “ellipticity” or “hyperbolicity” in
the “regular sense”, that is, whether the surface is only on one side of the osculating
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Figure 4. Both the elliptic cross-cap (left) and the hyperbolic
cross-cap (right) lie on both sides of v⊥a .

plane or on both. If ∆p is a non-degenerate parabola (i.e. p is a cross-cap ) and
κa > 0 then p is a hyperbolic point (since there are two asymptotic directions), but
if κa < 0, then it can be hyperbolic, elliptic or parabolic. If κa = 0, the point can
be hyperbolic or parabolic.

Example 5.7. In [3] and [20] it is proven that with changes of coordinates in the
source and isometries in the target a cross-cap can be parametrised by f(u, v) =
(u, c20u

2 + c11uv + c02v
2 + O(3)(u, v), uv + O(3)(v)), with c02 6= 0. The cross-

cap is called hyperbolic, elliptic or parabolic if c20 is negative, positive or zero
([20]). A cross-cap is hyperbolic, elliptic or parabolic if and only if the singular
point is elliptic, hyperbolic or parabolic in the above sense ([16],[17]). Consider
the case f(u, v) = (u, u2 − 3uv + v2, uv) which is an elliptic cross-cap (hyperbolic
point) and has two asymptotic directions. Here κa = −5

2 is negative and so, by

Corollary 5.3 the surface is on both sides of v⊥a . On the other hand, consider
f(u, v) = (u,−u2 + v2, uv), which is a hyperbolic cross-cap (elliptic point) and has
no asymptotic directions. Here κa = −2 is also negative and so the surface is also
on both sides of v⊥a . See Figure 4.

In order to distinguish when a cross-cap with negative axial curvature is an
elliptic, hyperbolic or parabolic cross-cap we have the following criteria.

Proposition 5.8. Let f be such that ∆p is a non-degenerate parabola and suppose
κa < 0. Then p is an elliptic cross-cap (resp. hyperbolic cross-cap) if and only if
the intersection of M with the plane v⊥a is two tangent quadratic curves which lie
in the same half-plane (resp. in different half-planes). Moreover, p is a parabolic
cross-cap if and only if one of the curves is a straight line.
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Proof. Consider the parametrisation of type f(u, v) = (u, c20u
2 + c11uv + c02v

2 +
O(3)(u, v), uv + O(3)(v)), then the coordinate system of Lemma 3.6 is satisfied.
The intersection of v⊥a with M is given by 〈fvv, f〉 = 0. This is equal to the height
function in the direction va, hva , which we denote by h. The Hessian of the height
function is equal to κa and there is an A−1 singularity when it is negative. The two
solutions for the intersection of M with the osculating plane are given by

−huv ±
√
−κa

huu
=
−huv ±

√
h2uv − huuhvv
huu

.

We denote these solutions by a1 and a2. So the zero level curves of the height
function in the source (h−1(0)) are parameterised by (ait+ . . . , t) for i = 1, 2, where
. . . represents higher order terms. The image of these two curves is f(ait+ . . . , t) =
(ait+ . . . , . . . , ait

2 + . . .), so we get two tangent quadratic curves in the osculating
plane if ai 6= 0 for i = 1, 2. If one of the solutions is zero (i.e. huuhvv = 0), then
one of the curves is parameterised by (t, 0) and the image is a straight line (t, 0, 0).

On the other hand the solutions a1 and a2 have the same sign (resp. opposite)
if huuhvv > 0 (resp. huuhvv < 0). Using 〈fvv, fvv〉 = 1, we get huuhvv = 〈fuu, fvv〉
and 〈fuu, fvv〉 > 0 (resp. 〈fuu, fvv〉 < 0) if and only if c20 > 0 (resp. c20 < 0).
This means that the curves lie in the same half-plane if and only if the cross-cap
is elliptic and in different half-planes if and only if the cross-cap is hyperbolic.
Moreover, one of the solution is 0 if and only if huuhvv = 〈fuu, fvv〉 = c20 = 0
(which means that the cross-cap is parabolic). �

Example 5.9. i) Considering the cross-caps of the above example, the inter-
section of M with v⊥a for the elliptic cross-cap f(u, v) = (u, u2−3uv+v2, uv)

is given by the curves (3±
√
5

2 t, 0, 3±
√
5

2 t2), both of which are in the same
half-plane. On the other hand, for the hyperbolic cross-cap f(u, v) =
(u,−u2 + v2, uv) the curves are given by (t, 0,±t2), which are in different
half-planes. See Figure 5.

ii) Consider the parabolic cross-cap given by f(u, v) = (u,−3uv + v2, uv).
Here κa = −9

2 < 0. The intersection of M with v⊥a is given by the curves

(t, 0, 3t2) and (t, 0, 0).

Similarly to above, when ∆p is a half-line and κa < 0, then the singular point
p can be hyperbolic (if the line that contains ∆p does not pass through p, i.e. it
has two asymptotic directions) or an inflection point (if the line that contains ∆p

passes through p, i.e. it has infinite asymptotic directions). There are criteria
to distinguish these two situations, however these criteria depend on the type of
singularity. For example, for cuspidal edges we have the following

Proposition 5.10. Let f be cuspidal edge and suppose κa < 0. Then p is a
hyperbolic point if and only if the intersection of M with v⊥a is two tangent cubic
curves which meet at two local maxima or two local minima (i.e. they lie in the
same half-plane). Moreover, p is an inflection point if and only if at least one of
the curves has an inflection point at the origin of v⊥a .
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Figure 5. The left one is the elliptic cross-cap and the right one
the hyperbolic one.

Proof. The proof is similar to that of Proposition 5.8 but in some ways gives more
information.

If f is a cuspidal edge then ∆p is a half-line. Then there exists a coordinate
system such that |fu(q)| = |fvv(q)| = 1, fv(q) = 0, 〈fu, fvv〉 (q) = 0. Notice that
va = fvv(q).

Then on this coordinate system, det(fu, fuv, fvv)(q) = 0. This condition together
with |fvv(q)| = 1 is equivalent to item b) in Theorem 2.2.

We define hva = h = 〈f, va〉. Then hu(p) = hv(p) = 0, and by the assumption
κa < 0, it holds that det Hessh(p) < 0. Thus h−1(0) is two transversal curves.
Moreover, if 〈fvv, fvv〉 (q) 6= 0, these curves are not tangent to the v-axis. Thus
these curves can be parametrized as

(u, c(u)).

This c satisfies hu + hvc
′ = 0, and huu + 2huvc

′ + hvv(c
′)2 = 0. Since hvv(p) 6= 0,

(5.1) c′(0) =
−huv ±

√
h2uv − huuhvv
hvv

.

We denote by c+(u) the case of c(u) which satisfies (c+)′(0) is equal to (5.1) with
the “+” sign, and by c−(u) the case when (c−)′(0) is equal to (5.1) with the “−”
sign. The intersection curves of v⊥a and f are c̃±(u) = f(u, c±(u)). We have
(c̃±)′(0) = fu(0, 0)( 6= 0), therefore these curves lie on one half plane if and only if
the signs of a+(u) and a−(u) are the same for u small, where

a±(u) = det(fu(q), (c̃±)(u), fvv(q)).
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We see that (a±)′(0) = 0. On the other hand, since

(c̃±)′′(u) = fuu(q) + 2fuv(q)c
′(0) + fvv(q)(c

′(0))2,

and det(fu, fuv, fvv)(q) = 0,

(a±)′′(0) = det(fu(q), fuu(q), fvv(q)).

If det(fu(q), fuu(q), fvv(q)) 6= 0, then the sign of (a±)′′(0) is equal to the sign of
det(fu(q), fuu(q), fvv(q)), namely, (a±)′′(0) does not depend on the sign ±. Thus
both c̃± lie on one half-plane. In fact, they meet tangentially at local minima or
maxima.

The condition det(fu(q), fuu(q), fvv(q)) = 0 means that fuu and fvv are parallel.
On the other hand, det(fu(q), fuv(q), fvv(q)) = 0 means that fuv is parallel to fvv
too. So II(∂u + y∂v, ∂u + y∂v) = f⊥uu(q) + 2yf⊥uv(q) + y2f⊥vv(q) = φ(y)fvv(q),
which means that the line containing ∆p passes through p. This means that p
is an inflection point. Similarly det(fu(q), fuu(q), fvv(q)) 6= 0 means that p is a
hyperbolic point.

If det(fu(q), fuu(q), fvv(q)) = 0, we have to look at (a±)′′′(0).

(a±)′′′(0) = det
(
fu(q), fuuu(q) + 3fuuv(q)c

′(0)

+ 3fuvv(q)(c
′(0))2 + fvvv(q)(c

′(0))3, fvv(q)
)
.(5.2)

For the case of cuspidal edges we take the normal form given in [13], which is
invariant under changes of coordinates in the source and isometries in the target

(u,
a20
2
u2 +

a30
6
u3 +

1

2
v2 + o(4)(u),

b20
2
u2 +

b30
6
u3 +

b12
2
uv2 +

b03
6
v3 + o(4)(u, v)).

Here κa = a20 and c′(0) = ±
√
−a20, therefore

(a±)′′′(0) = b30 − 3b12a20 ± b03(−a20)3/2.
Since b03 6= 0 6= a20, (a+)′′′(0) and (a−)′′′(0) cannot be zero at the same time.
Suppose it is (a+)′′′(0) which is different from zero, this means that the function
a+ has an inflection point at 0 and changes sign when when u goes from negative
to positive. This implies that c̃+ also changes sign when u goes from negative to
positive. In fact, det(fu(q), fuu(q), fvv(q)) = 0 implies b20 = 0, and so c̃+(u) =
f(u, c+(u)) has an inflection point at the origin. �

Remark 5.11. Most of the proof above is valid for any singularity such that ∆p

is a half-line. This includes all the fold singularities in Mond’s list or most non-
degenerate frontal singularities. However, the value of (a±)′′′(0) in (5.2) may vary
from one singularity to another. The criterion for hyperbolic points is always the
same, however, for inflection points it may vary as the examples below suggest. At
inflection points, the curves of intersection of M with the osculating plane have
contact order higher than two with one of the axis of coordinates of the plane,
however the type of contact depends on (a±)′′′(0) and the following derivatives, so
a general statement would be too vague.
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Example 5.12. i) Consider the cuspidal edge given by f(u, v) = (u,−u2 +
v2, u2 + v3), the curvature parabola is parameterised by (−2 + 2y2, 2) and
κa = −2 < 0, so p is a hyperbolic point. The intersection of M with the
osculating plane is given by the curves (t, 0, t2 + t3) and (−t, 0, t2 + t3),
which meet tangentially at two local minima.

ii) Consider the cuspidal edges given by f1(u, v) = (u,−u2 + v2, v3) and
f2(u, v) = (u,−u2+v2, u3+uv2+v3). In both cases the curvature parabola
is parameterised by (−2 + 2y2, 0) and both have negative axial curvature,
therefore the point p is an inflection point. The intersection curves for the
first case are given by (t, 0, t3) and (−t, 0, t3) which meet tangentially at
inflection points of the curves. Notice that for t small these curves lie on
opposite half-planes. The intersection curves for the second case are given
by (t, 0, 3t3) and (−t, 0,−t3). These two curves also meet tangentially at
inflection points but, differently from the first case, both curves always lie
in the same half-plane for t small.

iii) Consider the cuspidal edge given by h(u, v) = (u,−u2 + u3 + v2, u3 + v3).

Here (a−)′′′(0) = 0. The intersection curves are given by (t, 0, t3±(t2−t3)
3
2 ),

one of which has an inflection point at the origin.
iv) Consider the cuspidal cross-caps given by g1(u, v) = (u,−u2 + v2, uv3) and

g2(u, v) = (u,−u2 + v2, u2 + uv3). The first case is an inflection point and
the intersection curves of M with the osculating plane are given by (t, 0, t4)
and (−t, 0,−t4), which meet tangentially at a local minimum and a local
maximum. The curves lie in different half-planes. The second case is a
hyperbolic point and the intersection curves are given by (t, 0, t2 + t4) and
(−t, 0, t2 − t4). These two curves meet at local minima and both lie in the
same half-plane.

6. Relation of the Gaussian curvature with the axial curvature for
certain fold singularities

In order to consider the Gaussian curvature a unit normal vector field is needed.
This is natural for frontal type singularities, but for other types of singulari-
ties we need to use certain blow ups as in [3, 4]. For the cross-cap singularity
(j2f(0) ∼A2 (u, v2, uv)), Koenderink and Gauss-Bonnet type formulas have been
obtained already (see [5] and [8]). When j2f(0) ∼A2 (u, uv, 0) the axial curvature is
not bounded and when j2f(0) ∼A2 (u, 0, 0) the axial curvature is 0, so we consider
only the case j2f(0) ∼A2 (u, v2, 0). These singularities are called fold singularities
by Mond in [14] and include the Sk, Bk and Ck singularities in his list, amongst
others.

Let us assume j2f(0) ∼A2 (u, v2, 0). Then by a coordinate change on the source
space and by an action of O(3) in the target space, f can be written in the following
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form. For any k ≥ 1,

f(u, v) =

(
u,
u2

2
a0(u) +

ukv

2
a1(u) +

v2

2
a2(u, v),

u2

2
b0(u) +

u2v

2
b1(u) +

uv2

2
b3(u) +

v3

6
b4(u, v)

)
, (a2(0, 0) = 1)(6.1)

for some functions a0, a1, a2, b0, b1, b3, b4. See [20, 3, 4]. We assume that b1(0) 6= 0,
which includes S1 or Bk singularities in Mond’s list, for example.

Let us set Π : R× S1 → R2 by

Π(r, θ) = (r cos θ, r2 cos θ sin θ/2).

Then

Π∗(fu × fv) =
r2

2
cos θ

(
O(r3),−b1(0) cos θ +O(r3), a2(0, 0) sin θ +O(r3)

)
.

Thus if we set

ν̃(r, θ) =
Π∗(fu × fv)
r2 cos θ

and
ν(r, θ) = ν̃/

√
ν̃ · ν̃,

then the unit normal of f is well-defined on the set (R× S1; (r, θ)).

Remark 6.1. The assumption b1(0) 6= 0 can be weakened by considering b1(0) =

· · · = (b1)
(k)(0) = 0, (b1)

(k+1)(0) 6= 0 instead. Then the blow up should be changed
to u = r cos θ, v = rk+1 cosk θ sin θ/(k + 1)! ([4]).

We set E(r, θ) = Π∗(fu ·fu), F (r, θ) = Π∗(fu ·fv), G(r, θ) = Π∗(fv ·fv), L(r, θ) =
Π∗(fuu)·ν, M(r, θ) = Π∗(fuv)·ν, N(r, θ) = Π∗(fvv)·ν, and K = (LN−M2)/(EG−
F 2). On this coordinate system, the Gaussian curvature K can be computed as

K =
a2(0, 0)b1(0)

(
a0(0)b1(0) cos θ − a2(0, 0)b0(0) sin θ

)
+O(r)

r4 cos θ
(
b1(0)2 cos2 θ + a2(0, 0)2 sin2 θ

)2
/4 +O(r5)

.

Since a2(0, 0) = 1, we can observe that the boundedness of the Gaussian curvature
is firstly controlled by the term

b1(0)
(
a0(0)b1(0) cos θ − b0(0) sin θ

)
.

We set K̃ = b1(0)
(
a0(0)b1(0) cos θ − b0(0) sin θ

)
.

Since the axial curvature κa is a0(0), and the umbilic curvature κu is b0(0), we
have

Proposition 6.2. Suppose that j2f(0) ∼A2 (u, v2, 0) and that b1(0) 6= 0, then the
boundedness of the Gaussian curvature depends on the term

K̃ = b1(0)
(
κab1(0) cos θ − κu sin θ

)
.
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Remark 6.3. Koenderink type formulas relate the Gaussian curvature with the
curvature of a section of the surface and the curvature of the apparent contour of a
certain projection ([10]). Let us set ξ = (0, cosϕ, sinϕ) ∈ N0M (sinϕ 6= 0), and set
πξ(X) = X − (X · ξ)ξ, πξ : R3 → ξ⊥. A point p is a singular point of πξ ◦ f if and
only if det(fu(p), fv(p), ξ) = 0. We set A(u, v) = det(fu, fv, ξ). Then Av(0, 0) =
a2(0, 0) sinϕ 6= 0. Thus there exists a function v1(u) such that A(u, v1(u)) =
0. Then the contour of f by πξ is c(u) = πξ ◦ f(u, v1(u)). Since Au(0, 0) = 0,
v′1(0) = 0, and v′′1(0) = −Auu(0, 0)/Av(0, 0) = b1(0) cosϕ/(a2(0, 0) sinϕ). We have
c(u) = u(1, 0, 0) + u2(b0(0) cosϕ− a0(0) sinϕ)/2 +O(u3). Thus the curvature of c
is

−b0(0) cosϕ+ a0(0) sinϕ+O(u).

We set κ1 = −b0(0) cosϕ + a0(0) sinϕ. Since the axial curvature κa is a0(0), and
the umbilic curvature κu is b0(0), we see κ1 = −κu cosϕ+ κa sinϕ, and

K̃ = b1(0)
(
κab1(0) cos θ − κa sinϕ− κ1

cosϕ
sin θ

)
.

Thus, we can obtain a Koenderink type formula if we can get b1(0) as a curvature
of a slice of M , however, this seems very difficult and we have not been able to do
so.

6.1. Obstruction to being a frontal. Here we consider the geometric meaning
of b1(0). Let f = (f1, f2, f3) : R2 → R3 be a germ, and j2f(0) ∼A2 (u, v2, 0). Then
we have a vector field η such that η generates the kernel of df on the singular set
S(f). In this case, one can see S(f) ⊂ {v = 0} by a suitable coordinate change, in
particular, the regular set of f is dense. It is known that f is a frontal if and only if
the Jacobian ideal is principal (generated by a single element) [9, Lemma 2.3]. Let
f be written in the form (u, f2(u, v), f3(u, v)). Then we can choose η = ∂v. By the
assumption j2f(0) ∼A2 (u, v2, 0) and fv = 0, we have fvv 6= 0. This means that one
of (f2)v, (f3)v does not have a critical point at (0, 0). Let us assume that it is (f2)v,
i.e. (f2)vv(0, 0) 6= 0. Then there exists a function v(u) such that (f2)v(u, v(u)) = 0
for all u.

Proposition 6.4. The map f is a frontal near (0, 0) if and only if (f3)v(u, v(u)) =
0 for all u.

Proof. Being a frontal or not does not depend on the choice of coordinate systems,
we can change the coordinate systems on the source and the target. We may
change (u, v) so that (u, v(u)) is the u-axis. Then f has the form f = (u, a(u) +

v2f̃2(u, v), f̃3(u, v)), (where f̃3(u, v) = f3(u, v − v(u))). By a coordinate change

on the target, we may assume f = (u, v2f̃2(u, v), f̃3(u, v)). We may change (u, v)

so that f has the form f = (u, v2, f̃3(u, v)). f̃3 can be written by f̃3(u, v) =
b(u) + vc1(u, v

2) + v2c2(u, v
2). By a coordinate change on the target, we may

assume f = (u, v2f̃2(u, v), vc1(u, v
2)). Then fu × fv is (2v,−2v(c1)v + c1, 2v

2).
Thus f is a frontal if and only if c1 can be divided by v, namely c1(u, 0) = 0. This
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is equivalent to (f̃3)v(u, 0) = 0. This is equivalent to (f3)v(u, v(u)) = 0 for all
u. �

Taking f written by (6.1), we see that a necessary condition that (f3)v(u, v(u)) =
0 is b1(0) = 0.

Corollary 6.5. Consider f as in (6.1), then b1(0) 6= 0 implies that f is not a
frontal.

We define the first obstruction of frontality κf as κf = b1(0).
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