THE AXIOM OF SPHERES IN RIEMANNIAN GEOMETRY

DOMINIC S. LEUNG \& KATSUMI NOMIZU

In his book on Riemannian geometry [1] Elie Cartan defined the axiom of r-planes as follows. A Riemannian manifold M of dimension $n \geq 3$ satisfies the axiom of r-planes, where r is a fixed integer $2 \leq r<n$, if for each point p of M and any r-dimensional subspace S of the tangent space $T_{p}(M)$ there exists an r-dimensional totally geodesic submanifold V containing p such that $T_{p}(V)$ $=S$. He proved that if M satisfies the axiom of r-planes for some r, then M has constant sectional curvature [1, § 211].

We propose
Axiom of r-spheres. For each point p of M and any r-dimensional subspace S of $T_{p}(M)$, there exists an r-dimensional umbilical submanifold V with parallel mean curvature vector field such that $p \in V$ and $T_{p}(V)=S$.

We shall prove
Theorem. If a Riemannian manifold M of dimension $n \geq 3$ satisfies the axiom of r-spheres for some $r, 2 \leq r<n$, then M has constant sectional curvature.

The special case where $r=n-1$ was proved by J. A. Schouten (see [3, p. 180]). In this case the condition of parallel mean curvature vector field simply means constancy of the mean curvature.

1. Preliminaries

Let M be a Riemannian manifold of class C^{∞}, and let V be a submanifold. The Riemannian connections of M and V are denoted by ∇ and ∇^{\prime}, respectively, whereas the normal connection (in the normal bundle of V in M) is denoted by ∇^{\perp}. The second fundamental form α is defined by

$$
\nabla_{X} Y=\nabla_{X}^{\prime} Y+\alpha(X, Y)
$$

where X and Y are vector fields tangent to V. On the other hand, for any vector field ξ normal to V, the tensor field A_{ξ} of type $(1,1)$ on V is given by

$$
\nabla_{X} \xi=-A_{\xi}(X)+\nabla_{X}^{\perp} \xi,
$$

where X is a vector field tangent to V. We have

[^0]$$
g(\alpha(X, Y), \xi)=g\left(A_{\xi} X, Y\right)
$$
for X and Y tangent to V and ξ normal to V, where g is the Riemannian metric on M.

Among the fundamental facts we recall the following equation of Codazzi (which is essentially equivalent to that given in [2, p. 25]):
(*) For X and Y tangent to V and ξ normal to V, the tangential component of $R(X, Y) \xi$ is equal to

$$
\left(\nabla_{Y}^{\prime} A_{\xi}\right)(X)-\left(\nabla_{X}^{\prime} A_{\xi}\right)(Y)+A_{\nabla_{X}^{\frac{1}{\xi}}}(Y)-A_{\nabla_{Y}^{\frac{1}{\xi}}}(X) .
$$

Here R is the curvature tensor of M.
The mean curvature vector field η of V in M is defined by the relation

$$
\text { trace } A_{\xi} / r=g(\xi, \eta) \quad \text { for all } \xi \text { normal to } V
$$

where $r=\operatorname{dim} V$. We say that η is parallel (with respect to the normal connection) if $\nabla^{\perp} \eta=0$.

We say that V is umbilical in M if

$$
\alpha(X, Y)=g(X, Y)_{\eta} \quad \text { for all } X \text { and } Y \text { tangent to } V .
$$

Equivalently, V is umbilical in M if

$$
A_{\xi}=g(\xi, \eta) I \quad \text { for all } \xi \text { normal to } V
$$

where I is the identity transformation. An umbilical submanifold is totally geodesic if and only if η vanishes on V.

A word of explanation may be in order. If M is a space of constant sectional curvature, then an umbilical submanifold V has parallel mean curvature vector field. V is also contained in a totally geodesic submanifold of M of one higher dimension. When M is one of the standard models of spaces of constant sectional curvature, that is, R^{n}, S^{n} and H^{n}, one can thus determine all connected, complete umbilical submanifolds.

2. Proof of theorem

To prove that M has constant sectional curvature we use
Lemma [1, § 212]. If $g(R(X, Y) Z, X)=0$ whenever X, Y and Z are three orthonormal tangent vectors of M, then M has constant sectional curvature.

For the sake of completeness we give a simple proof of this lemma. For X, Y, and Z orthonormal, let

$$
Y^{\prime}=(Y+Z) / \sqrt{2} \quad \text { and } \quad Z^{\prime}=(Y-Z) / \sqrt{2}
$$

Since X, Y^{\prime} and Z^{\prime} are again orthonormal, we have

$$
g\left(R\left(X, Y^{\prime}\right) Z^{\prime}, X\right)=0
$$

from which we get

$$
g(R(X, Y) Y, X)=g(R(X, Z) Z, X)
$$

This means that the sectional cnrvature for the 2-plane $X \wedge Y$ is equal to that of the 2-plane $X \wedge Z$. It is easily seen that all the 2-planes (at each point) have the same sectional curvature. By Schur's theorem, M is a space of constant sectional curvature ($\operatorname{dim} M \geq 3$).

Now, in order to prove the theorem, let X, Y and Z be three orthonormal vectors in $T_{p}(M)$, where p is an arbitrary point of M, and let S be an r-dimensional subspace of $T_{p}(M)$ containing X and Y and normal to Z. By the axiom there exists an r-dimensional umbilical submanifold V with parallel mean curvature vector field η such that $p \in V$ and $T_{p}(V)=S$. Let U be a normal neighborhood of p in V. For each point $q \in U$, let ξ_{q} be the normal vector at q to V which is parallel to Z with respect to the normal connection ∇^{\perp} along the geodesic from p to q in U. Along each geodesic we have $g(\xi, \eta)=$ constant, say, λ, so that $A_{\xi}=\lambda I$ at every point of U. Thus

$$
\nabla_{X}^{\prime} A_{\xi}=\nabla_{Y}^{\prime} A_{\xi}=0 \quad \text { at } p .
$$

We have also

$$
\nabla_{X}^{\perp} \xi=\nabla_{Y}^{\perp} \xi=0 \quad \text { at } p .
$$

Now the equation of Codazzi $\left(^{*}\right)$ implies that the tangential component (namely, the S-component) of $R(X, Y) Z$ is 0 . In particular, $g(R(X, Y) Z, X)$ $=0$. By the lemma we conclude that M has constant sectional curvature.

We wish to conclude with the following remark. If we drop in the axiom of spheres the requirement that V has parallel mean curvature vector field, then this weaker axiom for $n \geq 4$ and $r=n-1$ implies that M is conformally flat (see [3, p. 180]). It is easy to extend this result to the case $3 \leq r<n$.

References

[1] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.
[2] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. II, WileyInterscience, New York, 1969.
[3] J. A. Schouten, Der Ricci-Kalkül, Springer, Berlin, 1924.

[^0]: Received December 7, 1970.

