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Abstract. The purpose of this paper is to describe the axisymmetric branching beha-
vior of complete spherical shells subjected to external pressure. By means of an asymptotic
integration technique (based on the smallness of the ratio of the shell thickness to the shell
radius) applied directly to a differential equation formulation, we are able to continue the
solution branches from the immediate vicinity of the bifurcation points, where the solution
has the functional form predicted by the linear buckling theory, to the region where the
solution consists of either one or two " dimples " with the remainder of the shell remaining
nearly spherical. The analysis deals with a novel aspect of bifurcation theory involving
" closely spaced " eigenvalues.

1. Introduction. The field of solid mechanics is a rich source of nonlinear stability
problems, one of the most important of these being the buckling of a complete spherical
shell under uniform pressure. The classical or linear buckling theory yields an eigenvalue
problem with the eigenvalue parameter proportional to the pressure. The spectrum is
discrete and the lowest eigenvalue is usually called the buckling load. Several authors have
analyzed the axisymmetric branching of solutions of a nonlinear theory for loads near the
eigenvalues of the linearized theory [1], Recently it has been shown rigorously that the
standard perturbation expansion in powers of a (where a measures the relative deviation of
the loading parameter from the branch or bifurcation point) is indeed asymptotic [2].
However, Koiter [3] made the very important discovery that this expansion has an ex-
tremely small region of validity (a = o(<5) as S —> 0 where the parameter S measures the ratio
of the thickness to the radius of the undeformed shell).

Now it is well known that an initial postbuckling analysis can provide useful infor-
mation regarding the imperfection-sensitivity of an elastic structure. The fact that the
standard expansion breaks down outside the immediate vicinity of the branch point means
that it is of limited value in assessing the imperfection-sensitivity of complete spherical
shells. Thus it is important for practical as well as theoretical reasons to have a means of
extending the branching solutions beyond the region of validity of the standard pertur-
bation expansions. To this end Koiter [3] performed a refined asymptotic analysis based on

* Received March 12, 1980. The authors wish to thank Prof. Uri Ascher for some helpful discussions con-
cerning the use of the code COLSYS and Mr. John Flinn for assisting with the computational aspects of this
paper. Mr. Flinn was supported by the University of British Columbia Youth Employment Program 1979, Grant
No. 2110-03-02. This work was partially supported by operating grants (Nos. A9239 and A9259) from the
National Research Council of Canada.



146 CHARLES G. LANGE AND GREGORY A. KRIEGSMANN

the general theory of [4], However, because of very serious analytical complications associ-
ated with expressing the solution in terms of a series of the linear eigenfunctions, Koiter was
forced to assume a restrictive functional form for the leading order behavior of the branch-
ing solution. As a consequence, it does not appear that his refined analysis provides the
desired extension. The asymptotic solutions which he constructs do not agree with the
deflection patterns obtained by numerical calculations [5]. In the present work, we develop
a technique which allows us to handle this singular branching problem.

In [5] Bauer, Reiss and Keller used a shooting technique to compute numerically the
solution branches for complete spherical shells. By means of this very powerful procedure
they were able to continue the solution branches for large deformations. It is of particular
mathematical interest that the nontrivial solution branches are all connected. However, it
should be pointed out that the numerical scheme employed in [5] becomes less efficient for
small values of 5 and that the results presented in [5] are for fairly thick shells. On the other
hand, the analytical procedure which we develop is based on the asymptotic limit of 5—> 0;
so, in this sense, our approach complements that presented in [5].

To be more precise, the aim of the present work is to establish the axisymmetric
branching behavior of complete spherical shells under uniform pressure by means of an
asymptotic integration technique applied directly to a differential equation formulation.
We take as the governing equations the set of equations derived by Reissner [6] for the
axisymmetrical deformations of shells of revolution. By means of our asymptotic integra-
tion technique, we are able to follow the solution branches from the immediate neighbor-
hood of the branch point where the solution has the functional form predicted by the linear
buckling theory (a large number of waves directed inward and outward and extending over
the whole shell surface) to the advanced state in which the buckled shape becomes primarily
an inward dimpling at the poles of the shell. The latter deflection state is the one usually
observed in experiments [7] and it has served as the starting point for a number of
investigations (see [3] for a review). Moreover, we are able to show the existence of stable
upward-branching solutions (see Sec. 2 for a definition) from odd eigenvalues for all suf-
ficiently small values of d. The latter result has special physical significance as it indicates
that the shell can deform continuously into a nonspherical shape without jumping. Such
solutions were observed to occur for each of the three values of 6 for which results were
computed in [5].

The singular perturbation technique which we use to solve this particular buckling
problem can be applied to a broad class of related problems in elasticity theory. Moreover,
our approach deals with certain novel aspects of bifurcation theory. In this problem, the
complicated dependence of the branching behavior on the parameter <5 could perhaps be
anticipated; for although the spectrum of the linear eigenvalue problem associated with the
linear buckling theory is discrete, the spacing of the eigenvalues is proportional to 3. Hence,
one can expect a strong nonlinear coupling between the eigenfunctions when <x = O(^).

This feature of "closely spaced" eigenvalues which is responsible for the limited validity
of standard perturbation or iteration procedures has certain beneficial aspects. It actually
allows us to obtain more information concerning the structure of the branching solution
than is usually possible by means of constructive procedures. For further discussion of this
point the reader may wish to refer to [8] where a simpler mathematical model is treated.
The additional mathematical feature which distinguishes the present problem from that in
[8] is that the ordinary differential operator defining the two-point boundary value pro-
blem for the shell problem has regular singular points at the boundary points.
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The layout of this paper is as follows. In Sec. 2, we introduce the basic equations and
briefly discuss the bifurcation results obtained in [2, 3], Sec. 3 is devoted to a discussion of
the proposed asymptotic integration technique. In Sees. 4 and 5 we apply this technique to
the branching problem for simple eigenvalues. In Sec. 6, we provide a brief summary of our
bifurcation results, including a comparison with the results of Koiter's analysis. Numerical
evidence is presented which supports our conclusions.

2. Formulation. The basic equations governing the finite symmetrical deflections of
thin shells of revolution under the assumption of small strain were formulated by Reissner
in [6], Following [6], the middle surface of the undeformed spherical shell of radius a and
thickness h is represented in cylindrical coordinates (r, 6, z) in the parametric form
r = r0(0 = a sin £, z = z0(£) = — a cos £, where £, denotes the polar angle measured from
the south pole and is in the range 0 < ^ < n. Assuming axisymmetric deformations with the
z-axis as axis of symmetry, Reissner formulated the problem of finite deflections in terms of
a coupled pair of integro-differential equations relating to each other a basic deformation
variable and a basic stress variable.

For the undeformed sphere the parameter £ measures the angle between the radial
(horizontal) direction and the ray tangent to the meridian of the middle surface in the
direction of increasing £ at any point with polar angle I;. The corresponding angle,
<p = 4>(£,), at the displaced points (which were originally specified by £) on the deformed
middle surface serves as the basic deformation variable. The basic stress variable ¥ = *P(^)
is defined by

¥ = r0 H = a sin f H,

where H is the horizontal (radial) stress resultant for the deformed shell.
In this work we shall consider only a uniform (external) compressive loading. Such a

loading is often interpreted in two ways: either as a pressure loading or as a centrally
directed (dead) loading. (Following [3, 5] we shall assume that for the initial postbuckling
problem, the governing equations are the same for the two types of loading.) If we let the
parameter p measure the magnitude of the loading, it is easily verified that the uniformly
contracted (membrane) state

0 = {, V = - sin 2£

is a solution of Reissner's equations for all p > 0. Our interest is in studying the branching
of the shell into nonspherical shapes. To facilitate the analysis we introduce new basic
variables /?, ij/ defined by

/J = £-</>, ¥ = ^[-A sin 2t + M, (2.1)

where we have set

p = Apcr, pct = 4ES2 yj 12(1 - v2), 5 = ■ -, (2.2)V 12(1 - v2) a

and where v is Poisson's ratio and E is Young's modulus. The situation where the dimen-
sionless load parameter X = 1 corresponds to the classical critical pressure.
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Although Reissner's equations allow for arbitrarily large deflections subject only to the
condition of small strain, it turns out that it is necessary to retain only quadratic nonlinear
terms involving P and ijj for our consideration of the initial branching problem. (In the case
of large deflections the fully nonlinear equations should be used; see [9] for a boundary
layer analysis.) The equations for the nonlinear eigenvalue problem are

21 __2 e\a _ 1 , MfS" + /?' cot £ + ( — - v - cot2 £ JP + - \p = — cot £,

1 B2
V + iV cot i + (v - cot2 ZW ~-p= - — cot £, (2.3)

for 0 < t, < n, with boundary conditions

P — \\) = 0 at = 0, 7r. (2.4)

In (2.3) primes denote differentiation with respect to £. The system (2.3)-(2.4) is essentially
the same as that considered in [3, 5],

The linear buckling theory is concerned with infinitesimal deviations from the uniform-
ly contracted state. The corresponding linear eigenvalue problem follows upon setting the
terms on right-hand side of (2.3) to zero. To simplify the analysis, we note that it can
readily be shown that omission of the underlined terms in (2.3) results in a relative error of
at most 0(<5) as d—> 0, which is the same error implicit in the shell equations themselves.
Upon setting the right-hand side of (2.3) to zero and omitting the underlined terms, we find
that the resulting linear eigenvalue problem has non-zero solutions if and only if

A = m = ^ n = 1,2,..., (2.5)
2 2 Sn„

where

H„ = n(n + 1) - 1. (2.6)

The corresponding eigenfunctions are

m = ash cos a w) = cos a n = 1,2,..., (2.7)

where A„ ^ 0 are arbitrary constants and Pj,(cos £) is the associated Legendre function of
the first kind of degree n and order 1. If n is even, the corresponding eigenfunction is
symmetric with respect to £ = n/2 and it follows from the definition of P and £ that the
associated deflection shape of the shell takes the form of either both inward or outward
(depending on the sign of A„) dimples at the poles with oscillations (ripples) in between. On
the other hand, if n is odd, the corresponding eigenfunction is antisymmetric and the
associated deflection shape has the form of an inward dimple at one pole and an outward
bulge at the other pole with ripples in between. Furthermore, consideration of (2.5) reveals
that it is possible to have multiple eigenvalues, i.e.,

ln = Xm for n ^ m.

The lowest eigenvalue has the most physical relevance. Since we are assuming that
0 < S 1, the minimum value of in (2.5) will clearly correspond to a large value of/j„, so
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that it proves advantageous to treat nn and n as continuous variables. Setting dX/8^„ = 0 to
find the " critical" value of X, we thus obtain

XCT = 1

nn = Mcr = l/<5. (2.8)

We interpret this result as follows. For a fixed <5, the lowest eigenvalue is greater than or
equal to X„. (Note that it is possible to choose a monotone decreasing sequence {<5m}m=i>
$„-* 0, such that for each member of the sequence the corresponding lowest eigenvalue for
the shell problem is Xm = 1; namely,

<5m = — = ——777—7> m=l, 2, ....)
Hm m(m + 1) - 1

By using (2.5) it is possible to provide a closer relationship between Xcr and the lowest
eigenvalue. In fact, upon solving (2.6) for n as a function of //„ and setting

n„ = ■ • 1 + + 4^c

it follows from (2.5) that

Xn — I = 0(3) as <5—0,

for n = ncr + 0(1). As a corollary we have the result that for two eigenvalues andAm with
n = ncr + 0( 1) and m = ncr + 0(1) their difference satisfies

Xm — /„ = 0(3) as (5 — 0.

This property of the spacing of the eigenvalues tending to zero as <5 — 0 is common in
shell stability problems and is responsible for the limited applicability of standard construc-
tive procedures for determining the branching behavior of many important shells. The
primary purpose of the remainder of this paper is to illustrate a technique for treating such
singular bifurcation problems.

Having briefly discussed the classical linear buckling theory and demonstrated the
feature of closely spaced eigenvalues, we turn now to the nonlinear problem. Before pro-
ceeding to analyze the system (2.3)-(2.4) a few words are in order regarding terminology. A
(buckled) solution of the nonlinear eigenvalue problem represented by /?(£, X), i//(£, X) is said
to branch from the eigenvalue X„ if on some sufficiently small closed interval containing Xn
as an endpoint /?(£, X), <j/(^, X) depend continuously on X with /?(£, 1„) = 0, ip(£, A„) = 0 and
/?(£, X) ̂  0, i/f(£, A) ̂  0 for k ± /„. If Xn is a left (right) endpoint, we say that solutions
bifurcate or branch up (down) from Xn.

To emphasize that we are concerned with deducing the initial branching behavior, we
write

X = X„(\ + ccx), 0 < a « 1, x = 0(1), (2.9)

where X„ is an eigenvalue for the linear buckling problem defined in (2.5). At this point we
introduce a change of variables suggested by (2.7) which will simplify the analysis, namely

y = ils + (P/nn3). (2.10)
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Upon omitting the underlined terms in (2.3), multiplying the first equation by \/n„d and
adding the resulting equation to the second equation in (2.3), we obtain the system which
forms the basis for what follows:

P" + P' cot £ + (/i„ - cot2 £)P + ^ ^ kj + _ JL)j5

„ , , , k . f 1 ,2 r\ 2(*X 1 n P2 COt Z (, . 2 \ . Py COt Zy + y cot £ + —i - cot £ y = - —j A„p - ——— 1 + -j-j + -—-j—
\fi„<5 J H„dz 25 \ nnd J nnd

(2.11)
for 0 < £ < 7i, with boundary conditions

P = y = 0 at f = 0, n. (2.12)
The initial branching behavior of solutions to the nonlinear eigenvalue problem (2.11)-

(2.12) can be deduced by either standard perturbation or iteration methods, and it can be
shown rigorously that the resulting expansions actually are asymptotic approximations to
the solutions [2], However, these expansions involve S as a parameter and their region of
validity tends to zero as 3 tends to zero. Since the reader can find a detailed account of the
regular perturbation and iteration results in [2, 3], we shall be content to simply sketch
those results which will be of use in the sequel.

In order to simplify the presentation we shall restrict our attention to the special case in
which bifurcation occurs at the critical value

An Acr 1,

so that 5 = 1 /n„. Suppose first that n is an even integer. Then it is not difficult to show that
the initial branching behavior is given by

P ~ ap0 + a2/?! + a3/?2 + • • ■, y ~ a2yi + a3y2 + ■■•, (2.13)

for a—► 0. The first few terms for /? are

Po = A0Pj,(cos £),

pi = A, + £ CkP\k(cos (2.14)
k= 1

k^n/2

where A0 Au Ck are constants (which depend on n).
Now the limit S-+ 0 corresponds to n—* oo, since n = + 0(1) from (2.6) and (2.8).

From [10] we have that

2 n V2
P'(COS = ( cos

\n sin £/ (« + iK + \ n
+ 0( —) as n—y oo. (2.15)

This expansion is uniformly valid on any interval [£0> £n] where 0 < £0 < £„ < n; other
expansions apply in small neighborhoods of £, = 0 and £, = n. Hopson derived (2.15) from
an integral representation. It turns out that one can derive the same expansion by applying
the two-variable expansion procedure (multiple scaling) discussed, for example, in [11].
From (2.15) it is clear that the two variables are £ and \ = (n + !)£.
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After considerable algebra and the use of (2.15) one finds that

. 3271 Y'2
p0 = x[ ^cos\21n sin c,J (n + iK + \ n+ 0(4l). (2-16)

sufficiently far from £ = 0 and ^ = n. The dependence on 5 is apparent. In order to estimate
the region of validity of (2.13) it is useful to compare the size of ^ with that of /?0. The
largest contribution in the expression for ^ in (2.14) arises from terms in the sum for
k = (n/2) + 0(1). After a careful asymptotic evaluation one finds that

/?! = 0(l}0/d) as <5—0, (2.17)
uniformly on 0 < £ < n. Comparing with (2.13), this result strongly suggests that the region
of validity of the regular perturbation expansion is

oc = o(<5) as <5—> 0. (2.18)

Further considerations reveal that this is indeed the case.
When n is an odd integer the computations become more complicated. For this case it

can be shown that the appropriate expansions are

£ = a1/% + a/?1+a3/2i?2 + ---, y = *yi + <x3l2y2 + ■ ■ ■, (2.19)

with p0 as given in (2.14). It turns out that

p0 = 0(<53/4) and pi = 0(P0/Jd) as 5—0.

Thus, the expansions (2.19) have the same limited region of validity as for even values of n.
Moreover, it is straightforward to show that analogous results hold for n = ncr + 0(1).

We conclude this section with the observation that results similar to the above have
been derived previously by Koiter [3] by means of a variational approach. In particular,
Koiter discovered the extremely small region of validity of the standard perturbation
expansions for both even and odd values of n represented by (2.18). In order to extend the
branching solution beyond the region a — o(<5) Koiter performed a refined asymptotic
analysis based on the general theory of [4], However, because of very serious analytical
complications associated with expressing the assumed form of the solution in terms of a
series of the linear eigenfunctions, he again took the solution to leading order in a to be a
constant multiple of the Pj,(cos £) corresponding to the lowest eigenvalue. Since he had
already established that this particular functional form was inadequate for describing the
structure of the solution for smaller values of a, it is questionable as to how accurate one
can expect the refined analysis to be. It would seem that a more fruitful approach would be
to leave the structure of the leading-order term to be determined as part of the analysis. Our
method allows for this flexibility and we find, as is shown in the sequel, that this structure
changes as the deviation from the branch point increases.

3. The asymptotic integration technique. The results of Sec. 2 suggest that one must
seek alternative procedures to the standard perturbation and iteration methods in order to
gain significant information concerning the buckling behavior of thin spherical shells. In
this section we describe such a procedure which takes into account ab initio the fact that the
branching problem depends on two small parameters, namely <5, which essentially measures
the ratio of the shell thickness to the radius of the undeformed shell, and a (cf. (2.9)), which
measures the deviation of the loading parameter X from a particular eigenvalue /„. The
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crucial dependence of the branching behavior on the relationship between these two par-
ameters is brought out by the results of Sec. 2.

Ideally one would like to have asymptotic expansions for the branching solution in the
limit a —> 0 which are uniformly valid on an interval 0 < S < S0 for some fixed (50. However,
this does not appear to be feasible; so instead we adopt an analytical procedure which is
based on the construction of asymptotic approximations to the branching solution for a
fixed (order) relationship between a and <5 in the limit as 3—» 0. While the basic idea is quite
simple, perhaps it will prove useful briefly to consider an example which will also serve to
illustrate certain other features of our analysis.

Let the function u be defined by
a2\-l

u(a, S) = y/l + a/S ̂  1 + —J , a > 0, S > 0. (3.1)

Suppose we are interested in the asymptotic behavior of u for a—► 0 with <5 small but fixed.
Then, upon expanding (3.1) in a power series in a we obtain the regular perturbation
expansion

a ,/ 1 1M(M)~l+--a^ + -) + --- as a—► 0. (3.2)

So long as a (5, the first few terms in (3.2) serve as a good approximation to u. However, if
we desire an approximation to u for larger values of a, say M « ^ 1, then (3.2) clearly will
be of no use. We must derive new expansions which account for the nonuniformity. This
situation is similar to that discussed in Sec. 2 for the function /?.

It is a straightforward matter to show how our limit procedure applies to this example.
For instance, suppose we choose the order relationship a = x<53/2, x = 0(1) as (5—* 0. Then
substituting into (3.1) and expanding for small S we obtain

u(xSil2,S)~\ +^-'^-XS2+ ■■■ as (5—> 0. (3.3)
Z o

If we replace x by a/<53/2 and rearrange (3.3) on the basis of a—> 0 with S fixed, we clearly
recover (3.2) (the rearrangement requires only a finite number of transpositions for each
power of a). In Sees. 4 and 5 our study of the branching problem will correspond to
constructing expansions for the function u for the order relationships a = 0((S) and
a = 0(S1'2), respectively.

While it is obvious what one must do in this simple example, the branching problem is
quite another matter. As the mathematical details are fairly complicated, we shall restrict
our attention in this section to the special case of branching from the lowest eigenvalue
which we take to coincide with the critical value and to be even. (This case corresponds to a
study of the branching for a sequence of shells with 6 = Sm= l/fim, m = 2,4, ) Moreover,
we fix the order relationship between a and S to be a = 0(<53/2), as our intention is to
reproduce the results obtained by the regular perturbation method as a test of our necess-
arily formal procedure.

Guided by the form of the solution to the linear buckling problem, we make the
following change of variables:

/= iVsin £, g = yjsin l = (3.4)
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with

£ = ——7, (5 = — = s2( 1 — -7-), a = e3, X = 1 + ie3. (3.5)n +1 V 4 )

In terms of these variables the system (2.11 )-{2.12) becomes

/+(!" Tcsc2 ^V=(1-T

g + \ 1 -^-csc2 = "(l"T

„3.-.r . rt r COt £-2eV + f(f-g)

2 t2tf+f&-9)

Vsin t

cot £
(3.6)

'sin

with the boundary conditions

f=g = 0 at | = 0, 7i/£. (3.7)
In (3.6) dots denote differentiation with respect to

Our aim is to construct an asymptotic approximation to the solution of the system
(3.6)-(3.7) in the limit as e—>0 (equivalently i)—>0). Since the linear operator on the left-
hand side of (3.6) has regular singular points at £ = 0 and £ = 7t, it proves convenient to
express the solution in terms of three different expansions: (1) an "inner" expansion valid
near £ = 0, (2) an "outer" expansion valid away from £ = 0 and £ = n and (3) an "inner"
expansion valid near £ = n. Matching of these expansions determines the arbitrary con-
stants which each contains.

First, we construct the first few terms in the outer expansion. The form of (3.6) suggests
the appropriateness of the method of multiple scales [11, 12]. This method has been
employed successfully in the treatment of other shell buckling problems [13, 14], It turns
out that we require only two variables for this problem (namely, £ and f), whereas the
extension to the case of larger values of | / — | considered in Sec. 5 involves three vari-
ables. According to the method of multiple scales, the derivative with respect to f is
transformed as follows:

d__8_ 8_
dl~ dl + E d?

Thus, (3.6) transforms to

/+ ( 1 - csc2 tjf= —2tf - e2/" + (1 -

-g-2e*xf+f(f-g)
cot £,

J sin cJ

g + ( 1 - csc2 = -2eg' - e2g" - ^1 -

„3 , , f/Af - cot^
(3.8)

2 e'rf + M-g)-
'sin

In (3.8) dots and primes denote partial differentiation with respect to| and respectively.
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The presence of the regular singular points at £ = 0, n/e complicates the determination
of the form of the asymptotic expansions for / and g. Actually, it can be shown that the
change of variables in (2.10) and (3.4) ensures that g = o(f) as e —> 0 provided A — k„ = o(l).
As a consequence, once we determine the order of magnitude off the order of magnitude of
g follows from the necessity of being able to match with the inner expansions. While we
could allow the order of magnitude of/to be arbitrary at the outset and then establish the
correct asymptotic form as part of the analysis, it proves convenient to use the results from
the regular perturbation analysis. From (2.9), (2.13), (2.16), (3.4) and (3.5) it follows that for n
even with a = /£3 we have

/=0(aj?o) = 0(eVv/n) = 0(e7/2z) as e^O. (3.9)

Starting with (3.9) we readily find that the outer expansions have the form

/ ~ e7/2/0 + e9/2/j + e11/2 log e f2 + e11/2/3 + £13'2 log e /4 + e13/2/5 + •",

g ~ £11/203 + £13/2 l°g e 04 + e13/205 + (3.10)

where the need for the terms involving log e will become apparent. As noted above, the size
of g is dictated by the form of the inner equations. On substituting (3.10) into (3.8) and
equating the coefficients of the various terms in the asymptotic sequence appearing in (3.8)
to zero, we obtain the sequence of problems:

0(f.112): f0 +/o = 0

0(e9'2): h +/, = —2/o

0(e11/2 log e): /2+/2 = 0

0(£u/2): 03 + </3=O

h +h = -2/i -fo + l/o esc2 i - g0 (3.11)

0(£13'2 log e): /4 +/4 = —2/'2

04 + 04 = 0

0(e13/2): fs+fs= -2/3 -/1 + 4/1 cos2 ^ - g3 - 2tfo

: 05 + 05 = -203 - 2x/0.

From the first equation in (3.11) it follows that

m, D = AMY* + (*), (3.12)
where /J0 is an arbitrary function and (*) denotes the complex conjugate. With this the
second equation in (3.11) becomes

fi+fi = ~2iA'0er< + (*). (3.13)
Because we require that the outer expansions be uniform except near | = 0 and \ = n/e we
cannot allow/, to contain "secular" terms of the form|e'^ and^e^'f Thus, (3.13) implies
that

A0 = a0(constant), /, = A^)S + (*). (3.14)
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As the procedure should now be clear, we shall be content to simply quote the results that
we need:

/= fi7/2[floe'* + (*)] + e9'2 ^ cot £ + ~ + (*)

+ 0(e11/2 log e),

g = e11/2[(c2 - ixa0£)ert + (*)] + 0(e13/2 log e) + • • •, (3.15)

where a0, ax and c2 are arbitrary constants.
We have computed further terms in (3.15) to check the matching to higher order, but to

record them here would serve no useful purpose. It is easy to verify that /3 and g5 in
(3.10H3.15) involve log(sin £) as a factor, which indicates a potential need for the log e
terms in (3.10) for matching with the inner expansions. The reader should note that the
nonlinear terms do not enter into the outer expansions until theO(e7) terms.

Having considered the outer region in some detail, we turn next to an examination of
the inner region near £ = 0. It is apparent from (3.6) that the choice of £ = as the scaled
variable in the inner region leads to a distinguished limit (cf. [11]). Expanding the variable
coefficients in (3.6) gives rise to the pair of equations

3e2 ( 1 e2   
/ + '-tl?F + T + 0,t4|4)

9 +

-g - 2e3xf + f(f~ g)—3T2 ( 1 - — + 0(£4|4)

3e2 ( 1 e2

'(£|)3/2V 4

J-Tl?F + ;I + 0(e4|4) 9 (3.16)

2e3xf-+/(!/- 9)7^2 ( 1 " -T- +

with the boundary conditions

W2V 4

f=g = 0 at | = 0. (3.17)

The appropriate form of the expansions for the inner region at £ = 0 is

/(I) = F(l) ~ e7/2F0(a + e9I2F^) + e11/2F2(£) + ■■■,

g(l) = G(l) ~ e1 1/2G2(£) + e13/2G3(£) + • • •.
(3.18)

It is clear that we can add terms involving log e to these expansions if it becomes necessary.
Furthermore, from (3.4) it follows that /? and y are larger by a factor of 0(^/n) in the inner
region near £ = 0 than in the outer region. Substituting (3.18) into (3.16H3.17) leads to the
sequence of problems

0(e112): Fo = (^\-~jFo = 0 (3.19)

0(s912): F1+(l—^)f,=0 (3.20)
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0(£11/2): F2 + (i-^)f2 = ^-G2 + || (3.21)

A-\r - 11°
412) 2 ~ i~eG2 + [1-7T2 G2 = --jjt2 (3.22)

with the associated boundary conditions

F0 = Fi = F2 = G2 = ■■■ = 0 at £=0. (3.23)

The solution of (3.19)—(3.20) subject to (3.23) is

F0 = *oy/ZJi(& i(|), (3.24)
where srf0, y are arbitrary constants and Jx is the Bessel function of the first kind of order
1. Having determined F0, it is convenient to express the solution of (3.22) in terms of the
Green's function of the linear differential operator on the left-hand side of (3.22) for the
initial-value problem on | > 0. The solution of (3.22) subject to (3.23) takes the form

c2 = <w^i(i)-^^yi ii(l) ■3,Ji(s) ds - jm)
•(

•2Jt(s)Yi(s) ds
0

(3.25)

where is an arbitrary constant and is the Bessel function of the second kind of order
1.

For the purpose of matching with the outer expansion we rewrite (3.25) as

g2 = S2y/Vi(0 - -fstoSiy/t Y,(I) + -fs/lf2y/Vi(Q

y,(a Jl(s) ds - JjK)
00

'2J?(s)yi(s) ds
<

(3.26)

where

3,

0
Jf(s) ds, J 2 = Ji(s) y,(.s) ds.

From Whittaker and Watson [15, p. 383] we find that

J x = sjljln. (3.27)

Finally, for completeness, we record the solution of (3.21):

f2 = ^2JAl) - |g2(|) +
^3/2~2 In Jitf)

+ 3ttV^- sLji(s)Yii0 _ Jl(|)yl(s)]

J lis) J\(t)Yy(t) dt + y,(s) Ji(t) dt\(s) £./?( ds, (3.28)

where s/2 is an arbitrary constant.
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The inner expansion at £ = n is intimately related to the expansion at £ = 0. The
appropriate scaled variable is

c = (n - o/e, (3.29)
in terms of which

csc £ = csc eC, cot £ = — cot e£.

Thus, the only difference in (3.6) expressed in terms of ( instead of \ is the sign of the
nonlinear terms. It follows that the inner expansions at £ = n are given by

/= fk ~ sii2^0nyjcJi(o + s9,2^ln Vc Ji(o + • • •,

g = Gn ~ + J (3-30)

Ji(s)yf(s) ds]> + -

where s/0n, srflB and 2ft ln are arbitrary constants.
It should be noted that, strictly speaking, the inner expansions are not boundary-layer

expansions as they involve neither exponential decay nor a different length scale from the
outer expansion. Nevertheless, we anticipate that the inner and outer expansions have
overlapping regions of validity and can thus be matched in the usual manner to determine
the arbitrary constants. Since the matching in this problem is relatively straightforward, we
shall not introduce intermediate limits.

For the purpose of ascertaining the limiting behavior of the inner expansions, we need
the following expressions [15]:

J j(x) =

y,(x) =

TlX

1

3 ( 1
sin x — cos x + — (sin x -I- cos x) + OI —r

8x Vx

sin x + cos x — -7- (sin x — cos x) + 0\ —j
8x Vx

as x —* -I- go,

(3.31)
as x —> + oo.

With the aid of (3.31), we find that the inner expansions at £ = 0 have the asymptotic form
(for \ —* oo)

F = e7/2 *s/°

7^ (sin I - cos |) + (sin f + cos |) +

c9/2 fix [(sin £ _ cos £) + ...] 4. 0(£U/2),
71

_ ,11/2G = e ~Jn (sin I - cos |) + ^ (sin f - cos |) +

J x(sin 11 + cos £) + ^2(sin £ — c°s £) + 0[ i + 0(613'2),

(3.32)

where we have simply recorded enough terms to allow for matching to leading order.
Similarly, the inner expansions at £ — n have the asymptotic form (for ( —> + oo)
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Fn = £7'2 -f*V1
(sin C - cos Q + (sin C + cos £) +

+ e9'2 [(sin ( — cos £) + •••] + 0(e11/2),Vtc
(3.33)

=ell/2i s

_ 3y/n
4

(sin C - cos C) + ^ <sin £ " cos 0 +

to* J^sin £ + cos C) + -/2(sin C — cos Q + 0 + 0(£13'2).

Next, we need the asymptotic behavior of the outer expansions both in the limit as £ —* 0
and as £, —> n. Setting £ —»in (3.15) and expanding for small (but \ large), we obtain the
limit behavior for the outer expansions as £ —> 0 as

f= e7/2[(a0 + ag)cos £, + i(a0 - ag)sin |] + e9/2

1 £ . \ , ' _i,_ * ,2 52/

3 i
(fli + a?) + - (a0 - ag)

el ~2 + " / 2 £^C2 ~ C*^ ~ 4 0 + a°^ cos £

+ i(al - at) - t(a0 + ag) I i ^ + ■ ■ •) - ^(c2 + cf) (3.34)e£ 2 J 2

sin £ !> + 0(e11/2 log e), <!; -> 0,- ^ e2l\a0 - ag)

3 = fiU/2{[(c2 + c*) + iX&ao ~ ao)]c°s I + [i(c2 ~ CV) ~ X£Z(ao + ag)]sin 1}

+ 0(e13/2 log e), >0.

In order to match the outer expansion as £ —► n to the inner expansion at f = n, we need
the relations

£ = tr-eC, eri = ei(-? + */e) = e*»+vv*e-K = kie~K, (3.35)
where

k = e'"". (3.36)

With (3.35) we can expand (3.15) for e£ small (but £ large). We obtain

/ = e7/2/c[i(a0 ~ a*)cos ( + (a0 + ag)sin (] + eg'2k i(a1 - at) + &a0 + ag)

cos C

+ (fli + fl?) ~ f (flo ~ ~ J + ''') + '^2 2 ^ ^ ~ B& ^3-37^

- +4 ̂  x(n ~ eQ2 sin c| + 0(e11/2 log e), £-► rc,

3 = e11/2/c{[i(c2 - cf) - /(a0 + agX?t - s()]cos ( + [(c2 + cf) + i^(a0 - ag)

•(7r — eC)]sin (} + 0(e13/2 log e), <!;—> n.
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We are now in a position to match the various expansions. First, we consider the
matching of the inner expansion at £ = 0 with the outer expansion. From (3.32) and (3.34) it
follows that in order for the e7/2 cos | and e1'2 sin \ terms in/to match, we must have

a0 + «o = -^o l\ln, i(a0 ~ «o) = IJ (3-38)
and, in order for the e1 1/2 cos f and e11/2 sin \ terms in g to match, we require

c2 + cf = - J*o(-*l - ^2),
V71 4

3^71
i(c2 _ cf) = -^ + ^ + ^2).

7t 4

(3.39)

Next, we record the analogous expressions for the matching of the inner expansion at £ = 71
with the outer expansion. From (3.33) and (3.37), we obtain

i(a0k - at k*) = - sJ0jJ n, (ka0 + k*a$) = sJ0 J J n, (3.40)

and

i(c2k - cf k*) - nx(a0k + at k*) = - ^ x - ./2),

(c2 k + cf /c*) + nyj(a0 k - at k*) = ^ ^0^1 + 2)•
(3.41)

Eqs. (3.38H3.41) contain sufficient information to permit us to calculate a0, .e/0and ^0*-
Further matching is necessary in order to determine the constants in the higher-order
terms.

Now the reader should note that, while our approach to solving the nonlinear eigen-
value problem in (3.6)—{3.7) is based on the assumption that e is small (equivalently n is
large), nowhere have we made use of the fact that n is an even integer. The reason for the
additional restriction on n will now be established. First, we observe that (3.38) and (3.40)
imply that

a0 = tfo = -tfon = 0 (3.42)

unless k is real. Thus, it follows from (3.36) that n must be an integer. In effect, the matching
condition has led to the eigenvalue relation for the linear buckling problem.

Having determined that k must be real (either + 1) it follows from (3.38H3.40) that

ao — ~ 2 ̂ Jn 0' = — 0 (3.43)

Using these results and eliminating c2 + cf and i(c2 — cf) from (3.39) and (3.41), we obtain

^ ^o(J 1 -^2) = - X-Jn^o + k ^ ks4\{Jx + ./2),

^ + J2) = Xy/ns*o ~ k % - ^ ks/U^i - S2)-
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Adding the two equations in (3.44) we have

3 In
+k)= -2x^/ns/0. (3.45)

If n is odd, then (3.34) implies that k = — 1, and the only solution of (3.45) isj>/0 — 0. This
result suggests that the order of magnitude of the leading term in the expansions in (3.10) is
not valid for n odd. If, on the other hand, n is even, thenfc = + 1 and it follows from (3.45)
that

sf0 = — —for n even, (3.46)
0 3Jl 3^/3

where we have used (3.27).
In order to be able to compare the present results with those established in Sec. 2 by

means of the regular perturbation method, we employ (3.4), (3.10), (3.12), (3.14), (3.43) and
(3.46) to obtain

'=e,,v^cosM|+0(e"2

/ 32ti= ay — —7 cosV 27 n sin q (« +

(3.47)

+ 0(a/«3/2),

where (3.47) holds except near £ = 0 and q = n. The approximation in (3.47) is exactly the
same as that provided by (2.13)-(2.16).

As noted above, further matching must be performed to find the other arbitrary con-
stants. For example, upon computing f3 and g4 in (3.10), we are able to establish that

S>2 = ~^2n = _ "4" 2 ' k.

We conclude this section with the remark that it requires approximately twice as much
algebra to deduce the initial branching behavior for odd n. The appropriate expansions
corresponding to (3.10) would be

f~ £3/o + fi7/2/i + ^2 + '"' >

0~e^3 + a1O/204 + ---. (148)

We shall elaborate on the branching results for odd n in the next section.

4. Branching of solutions for even and odd n. Having described our asymptotic integra-
tion technique in much detail in Sec. 3, we now turn our attention to the problem of
investigating the branching behavior of solutions to the nonlinear eigenvalue problem
(2.11)-(2.12) in the region where the standard perturbation method breaks down; namely,
a = O(d). In the next section, we shall briefly consider the nature of the solution branches
for even larger deviations of the loading parameter X from an eigenvalue Xn. However, the
order relationship a. = 0(<5) is, in a sense, a distinguished order relationship. The solution
which we construct for a = 0(3) contains the standard perturbation results, whereas, for
larger deviations, the corresponding leading-order term does not reduce back to the
leading-order term in the standard perturbation expansion in the limit a—> 0 with S fixed.
We shall elaborate further on this point in Sec. 5.
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With regard to the model function defined in (3.1), the choice of order relationship
a = 0(8) for (2.11)—(2.12) corresponds to setting a = %d, ̂  = 0(1) as <5—> 0, in (3.1) and
expanding for small 8:

Utifo 8) ~ y/l+ill -x2S + x*S2-■■■] as 8-0. (4.1)
Clearly the expansion in (4.1) contains the regular perturbation expansion in (3.2) in the
sense that if we replace x by a/8 and expand (4.1) on the basis of a—>0 with 8 fixed, we
recover (3.2) (the rearrangement requires only a finite number of transpositions for each
power of a). On the other hand, for large % (4.1) suggests that the leading behavior of
u(x8, (5) is given by

u(x8) » Jx- (4.2)
(Of course, from (3.1) we have that (4.2) holds so long as 1 4, x < 8~1/2.)

Although it is possible to utilize our technique to study the branching from any eigen-
value, we shall restrict our attention to the physically relevant class of eigenvalues which are
near the critical value. For a fixed value of 8, the eigenvalues A„ are given by (2.5H2.6) with
the lowest eigenvalue corresponding to that positive integer n which is closest to the
number

AS) = -' + r+^. ,4.3)
Only if

2

5 = = ——77T r> m ~ 1,2,m(m + 1) — 1

is nCI an integer.
As the subsequent analysis will show, the behavior of the solutions branching from the

lowest and neighboring eigenvalues depends in a crucial manner on how close ncr actually is
to the nearest positive integer. In order to incorporate this additional feature into our
asymptotic integration scheme (which is based on the limit (5—>0) we shall construct
approximate solutions for the monotone decreasing sequence i, with the 8n so chosen
that

ncr(8„) = n - t, "=1,2...,

with t a fixed number. From (4.3) it follows that

8„ =■*"[(* + i -t)2 -|]_1, n= 1,2,.... (4.4)

On the other hand, we observe that for a given 8, r is prescribed uniquely to within an
integer by (4.3) and that for |t| < the corresponding Xn is the lowest eigenvalue.

As in Sec. 3, it proves convenient to employ

e = l/(n + i)

as the basic small parameter. In terms of e we have from (2.6) and (4.4) that

1 (\ V 5 1 15
i + (4.5)
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which combined with (2.5) yields

/„ = I + 2t2e2 + 0(e3) as e—> 0. (4.6)

Our aim is to investigate the initial branching behavior for the simple eigenvalues /„
with

/ = /„(l +e2x), 2 = 0(1), as e—> 0. (4.7)

When r = 0 and x = 0(e) we recover the results obtained in the last section. Upon making
the change of variables

sin £, g = yjsin 1 = Z/e (4.8)

and substituting (4.5)—(4.8) into (2.11 )-(2.12), we obtain the system

/+ (j - Y esc2 c)f= [1 - 2ex + 0(£2)]

-g - 2e2xU + 0(e2)]f+f[.g - (1 + 0(e))/] -7==}, (4.9)
Vsin O

g + ( 1 — 4et + 6e2t2 — csc2 £, + 0(e3)jg = — [1 — 4et + 0(e2)]

„ 2-,, . ™ r . f2 COt £ , fg COt2e *(1 + 0(e ))/+ 7= (3 - 2et) - r  , (4.10)
2 ,ysin £ V s'n ? -

with the boundary conditions

f = g = 0 at J = 0,7c/e. (4.11)
Following the approach developed in Sec. 3, we express the solution of (4.9)—(4.11) in

terms of three expansions. The considerations of Sec. 2 suggest that we attempt outer
expansions of the form (for both even and odd n)

/=fi5/2/0 + £7/2/1 +•••, g = E7'2gl+e9l2g2 + --- . (4.12)

Upon substituting (4.12) into (4.9H4.10) and applying the two-variable procedure de-
scribed in Sec. 3, we obtain

/0(<E, I) = A^Qe1* + (*), 9l(i, I) = + (*). (4.13)
In order to avoid the presence of secular terms in fl and g2, we are forced to require A0

and Ci to satisfy

A'0(Z) = I CM C'M) = I [-4tC, + 2xA0l (4.14)2i 21

Solving the equations in (4.14), we obtain

/ = e5/2[(a0ei(a,"tK + V~''to+t)Vl + (*)] + 0(eV2), (4.15)

g = e7/2{2[a0(T - w)ei(tJ-rK + 60(c + o>)e"",B + ,K]e'i + (*)} + 0(e9/2), (4.16)

where a0, are arbitrary complex constants and

co = Jt2 + x/2. (4.17)
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To simplify the presentation, we have recorded only the leading terms in (4.15)—(4.16). It
is important to note that when A — = 0(S) the branching solution no longer has the
functional form predicted by the linear buckling theory. In effect, the two-variable tech-
nique has provided a means for the reordering of the nonuniform regular perturbation
expansion.

The corresponding inner expansions at £ = 0 and £ = n are closely related to those
studied in Sec. 3. It is easy to show that the inner expansions at £ = 0 are given by

m = F& = £5'2i0 + o(s7/2),

g(l) = G(|) = e7/2G2(£) + 0(e912) (4'18)

and that the inner expansions at £ = n are given by

fit) = FJL 0 = yc J AC) + 0(E7'2),
g(Q = 0,(0 = ell2G2n(C) + 0(£9'2), (419)

where and s/0k are arbitrary constants, G2 is given by (3.26) and Gln is the function
contained within the braces in (3.30).

Matching of the above equations proceeds essentially along the lines described in Sec. 3.
Sparing the reader the details, we find that and srf0n are related by the following pair of
algebraic equations (for both real and imaginary values of £u):

lB/o cos am + ks/0n cos zn = (4.20)

stf0n cos cou + kstf0 cos in = —zstf\n, (4.21)

where

3^3 sin am , ( + 1. it even,
;= 16,„ ' " = 1-1. n odd. (4 22)

As Eqs. (4.20H4.21) contain a wealth of information regarding the branching of solu-
tions for complete spherical shells, we shall discuss them in some detail. First of all, it
should be observed that the ansatz in (4.12) breaks down when the parameter z vanishes;
namely, when

= \A2 + x/2 = P, P = 1,2,-... (4.23)

Now the choice of the ansatz in (4.12) was based on the assumption that Xn is a simple
eigenvalue. This assumption, in turn, places a restriction on the permissible values of t in
(4.4). A careful examination of (2.11)—(2.12) suggests that we must restrict % to lie outside of
neighborhoods of 0(e) about the values t = m/2, m = ± 1, ±2,... . These special values of t
correspond to the case of double eigenvalues in (2.5). Although it is a straightforward
matter to study the branching from double eigenvalues by our method, we shall not include
such a discussion for the sake of brevity.

Given the above restriction on t, we find that (4.20H4.21) imply the existence of
branching solutions which are described to leading order by (4.12) for sufficiently small
values of | x I • Suppose we consider an upward-branching solution (similar considerations
hold for downward-branching solutions). Our results suggest that such a branching solu-
tion is actually given to leading order by (4.12) until x > 0 reaches a neighborhood of 0(e) of
Xp, where xP is defined as the minimum value of x > 0 which makes a> an integer (with r
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fixed). A study of the higher-order terms in (4.12) suggests that one should attempt new
expansions in these neighborhoods with / = 0(e2). As the details of the analysis of these
singular regions are quite complicated, we shall not present them here.

Having described the limitations of (4.20)-(4.21), we now proceed to solve them. First,
we consider the case of n even. The only branching solution for this case is given by

COS COTt — COS T7C
s40 = = • (4-24)

2

It is easy to show that this solution reduces back to the branch point as^—> 0. We find that

-tyn/'ij'i as £-»0, (4.25)

subject to the above restriction on z. The expression in (4.25) agrees with the result in (3.46).
Actually, the solution in (4.24) describes two branching solutions, one branching upward
and the other branching downward. Physically, the former (latter) solution corresponds to
outward (inward) deflections of the shell at both poles.

It is clear from (4.24) and the above discussion that with one exception we cannot expect
(4.12) to describe the branching solution for \x\>2. However, based on practical consider-
ations, this exceptional case is the most important. For the lowest even eigenvalue we have
that | r | < 1 and that co does not vanish for the downward-branching solution. Assuming
that the lowest even eigenvalue is simple, it is straightforward to deduce from (4.24) that

~ 2v lTl<L (426^

We conclude our discussion of n even with the observation that (4.20)-(4.21) admit the
additional solution

cos con + cos zn
■^o = ^o^ = > (4-27)z

(cos zn + cos con) 1
= — ± — [(cos zn + cos con) — 4(cos zn + cos core)] ' . (4.28)

2 z 2 z

This solution does not reduce back to the branch point, and, in fact, it is complex unless x is
sufficiently negative. We shall not discuss it further beyond pointing out that it either may
be spurious or may represent a non-branching solution (such solutions were observed to
exist in [5]).

Next, we consider the case of n odd. We note that when k = — 1, (4.20H4.21) admit a
solution

cos con + cos in _ ,
,s/o = -stf0n = . (4.29)

z

However, this solution does not reduce back to the branch point, and so remarks similar to
those for (4.27H4.28) hold for it as well. The solution of (4.27H4.28) which does have the
desired behavior is given by

1/2")cos con — cos zn ,
^ i 1 ±

4 cos zn1 +

cos con — cos zn
2 z

1 + 1 +

cos con — cos zn_

4 cos zn
cos con — cos zn

1/2

(4.30)

(4.31)
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The two possible deflection configurations of the spherical shell predicted by (4.30)-
(4.31) for fixed x are simply reflections about the equator of one another. We shall discuss
these solutions in detail in Sec. 6.

Calculation of higher-order terms in (4.12), (4.18H4.19) is a straightforward but tedious
matter. It is of interest to record the leading terms in the outer expansion for /? (and by
virtue of (2.10) for \jj). For n even we have from (4.12) (with A = A„(l + e2x), £ = (« + i)~x,
n = ncr + t, 0 < | t | < j or \ < \ z \ < 1)

-£ 5/2,
n sin £

sinh( J-[± + t2 Mtz - f) I + sinhl / —I j + r2 ) £

sinh| I -| | + t2 )n

■ cos( - — + ^ ) as £—>0, (4.32)

with s/0 defined in (4.24), and for n odd we have

j8~ -£5/2
7i sin £

srfo sinhf J-(| + t2J(tt - m + si0jt sinhf /+ t2 )^

sinh( ./-I ^ +

•cos^- — as E—>0, (4.33)

with s/0 and s/0x defined in (4.30H4.31). The approximations in (4.32)-(4.33) are valid
except in neighborhoods of 0(e) of ^ = 0 and £ = n.

We emphasize that upon replacing x by xE with x = ^(1) in (4-32) and using (4.25) we
recover the approximation in (3.47) for n even. On the other hand, the above leading-order
behavior (along with further consideration of higher-order terms in (4.12)) shows that the
deflection pattern (for I — A„ = 0(l/n2)) is quite distinct from that predicted by the linear
buckling theory. We defer further interpretation of these results to Sec. 6.

5. Continuation of the solution branches. Examination of the higher order terms in
(4.12) reveals that the expansions for /J and y become disordered when x = OOA/d), i.e.,
when / — /„ = 0(^/(5). This situation is analogous to that arising in the expansion (4.1) for
the simple model function u(a, <5). In order to determine the asymptotic behavior of u(a, <5)
for larger values of a we set a = x^/d, x = 0(1) as (5—> 0 in (3.1) and expand for small <5:

"(ZxA <5) ~ (jj
1/4 j

1 + f
as (5—>0. (5.1)

Now, while this expansion is valid for any positive value of jf, it does become disordered as
X~> 0. In contrast with (4.1), we cannot recover the regular perturbation expansion (3.2) by
replacing x by a/y/S and expanding (5.1) on the basis of a—> 0 with 6 fixed. In particular, the
leading term in (5.1) does not reduce back to the leading term in the regular perturbation
expansion. Nevertheless, the expansions in (4.1) and (5.1) do have overlapping regions of
validity corresponding to x = a/<5 > 1 with x = ^
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For the buckling problem, the asymptotic integration technique employed in the pre-
vious sections must be modified slightly in order to continue the solution branches for
k — /„ = O(JS). We shall illustrate the requisite modification by considering the special
case in which

k = kn(\ +ex), £ = —j-r, x = 0( 1) (5.2)n + i

with

n = nCI + r, 0<|t|<i or -j<|t|<1, t fixed, as <5—> 0. (5.3)

The restriction on t in (5.2) allows us to study the downward-branching from the lowest
even and odd eigenvalue while avoiding the complications associated with the branching
problem for the higher eigenvalues and double eigenvalues.

The governing equations for this case are (4.9H4.11) with e2x replaced by ex to reflect
(5.3). Now (4.26) and (4.31) suggest that/ = 0(e2) for deviations of k from k„ in the range
given in (5.3). Further study indicates that we should attempt outer expansions of the form
(for both even and odd n)

/= E2f0 + e5/2/! + £3/2 + •••, g = esi2gl + e3g2 + ■■■ ■ (5.4)

On substituting (5.4) into the governing equations, one finds that it is necessary to introduce
a new " slow " variable, namely

I = Z/y/e. (5.5)
Thus, in the outer region,/and g depend on the three variables | and According to the
method of multiple scales, the derivatives with respect to \ in (4.9H4.10) are transformed as
follows:

d d , 8 8
Tf — Ti + v £ 75 + £ TZ- (5-6)

Applying the multiple scaling procedure, we obtain

m, 11) = mz, be* + n, 0i = cm, be* + n (s.i)
In order to avoid the presence of secular terms of the form £e±,? in /i and g2, we must

set

dA0/dl = CJ2i, dcjdl = (x/i)A0, (5.8)

from which it follows that

A0(£, |) = a0(^)exviJ-x/21) + M£)exp( - J-%/21), (5.9)

CM, I) = 2'V-| [3o exp(J-x/ll) ~ b0(c)exp(~^J~x/2|)]. (5.10)

In (5.9H5.10), the functions a0 and b0 are as yet undetermined. Furthermore,

fy = AM, be* + (*), 02 = CM, i)er( + (*)■ (5.11)
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Continuing, we find that in order to avoid secular terms of the form | exp(±>/—x/2|) in
A.! and C2 we must choose

dajdt, = i(ix ~ T)a0. = i(fx - t)S0 , (5.12)

which implies that

a0(£) = a0 exp

where a0 and b0 are arbitrary constants. Thus

b0 = exp[i(fx - t)a (5.13)

/= e2{[a0 exp(x/-i/2^ + i(fjt - *)£)

+ b0 exp( — 1 + id* - T)£)]exp(i|) + (*)} + 0(e5/2). (5.14)

The corresponding inner expansions at <* = 0 have the form

/(I) = F(|) = e2s/0 JUAl) + 0(e5/2),
... - , (5.15)

g(0 = G(^) = e ' G2(£) + 0(e3),

and the expansions at £ = n are given by

M) = fjl;o = ^o, VCJi(0 = 0(£5'2),
0(1) = 0,(0 = £5/2g2,(c) + o(£3), (516)

where s/0 and are arbitrary constants, G2 is given by (3.25) and G2lt is the function
contained within the braces in (3.30).

Matching of the inner and outer expansions leads to the following pair of algebraic
equations relating s/0 and stf0n

s/0 cosh 7t^+ fcs/07t c°s(fx - T)7t = Zstfl, (5-17)

<Wcoshl /- — n I + k.s/0 cos(fx - z)n = -Zs/qk, (5.18)

where

3^3 sinh / — — 7c (
z k.\+ ■ "ev;;- ,5.19)

8^ -2/ 1-1, n odd.
We find that for n even

= — s/0 = 2 + as £~*0, (5.20)

and for n odd, either

"•-V-Pi+0(?> (5'21)
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or

g|+o(£) (.22,

as e—» 0. Moreover, it is not difficult to verify that the leading-order behaviour of the outer
expansions is given by (A = A„(l + e^), £ = 1 /(n + -j), n = nCT + x, 0 < | t | < ^or j < | t |
< 1)

P ~ -16e2 /- *. [exp( — v/—(£/2e) <^) + exp(^ - (x/2e)(^ - tt))]V 2/n sin c

cos - + (Ix - t)£ + ̂e 4 (5.23)

as e—»0 for n even and by either

P ~ — 16e /———t— exp( - V( - x/2e)£) cosV 21n sin

or

/?- 16e2 1 exp(v/( — x/2£)(te — 0) cos
v 21n sin c

- + (fx - j8 4
as £—>0, (5-24)

as £ -»0

(5.25)

for n odd The approximations in (5.23)—(5.25) are valid except in neighborhoods of 0(e) of
£ = 0 and £ = n.

It is of some interest to compare the functional form of the outer approximations (4.32)
and (5.23) keeping in mind that x = ^X- F°r IX M 1 the factor in the argument of the
cosine in (5.23) becomes negligible, while for |jj| > 1 the exponential part of (4.32) ap-
proaches that of (5.23). Moreover, the limiting behavior of the coefficient es/2jtf0 in (4.32) as
X—> — oo agrees with that of the coefficient in (5.23) as x—*• 0~. Thus, to leading order the
expansions in (4.15) and (5.14) have overlapping regions of validity. Examination of higher-
order terms in both expansions supports this conclusion. However, when t =/= 0, it is not
difficult to show that the expansion in (5.14) becomes disordered when % = O(e). Basically
the disordering arises because the approximation t2 + (x/2e) ~ (x/2e) does not hold for
X —► 0 ~~ (with t =/= 0 fixed). Similar remarks hold for the n-odd case. The situation is very
similar to that described above for the simple model function w(a, (5) and it provides further
evidence of the complex dependence of the branching behavior of the spherical shell on the
two parameters 3 and A — A„.

We conclude this section with a few remarks on the further continuation of the solution
branches. Suppose that A satisfies the condition

^ = ^n(l+Xy£v), e = ~TT' Xy = 0( 1), 0 < y < 1. (5.26)
n + j

Consider the inner expansions at £ = 0, n. These expansions will have the form (say at
S = 0)

M) = m = e3/2[ey/2F0 + eyF i + ■ ••], (5.27)

g{l) = G(|) = e3'VGx + •■■], (5.28)
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where F0 satisfies a linear equation. However, as y—> 0, the nonlinear terms in the govern-
ing equations become as important as the linear terms and, as a result, (5.27)—(5.28) become
of little value. When y = 0, the problem can still be viewed as a perturbation problem with <5
playing the role of the small parameter. In the inner region near £ = 0 the governing
equations are given (upon replacing e3% by x) by (3.16H3.17) for the case when t = 0. The
appropriate expansions are given by

M) = F(D = £3/2[f o + s2F, + ■••], (5.29)
= G(|) = £3/2[G0 + e2Gi + ••]> (5.30)

where F0 and G0 satisfy a coupled pair of nonlinear equations. Furthermore, F0and G0
must decay exponentially as | —» oo in order to match with the outer solutions. Many
authors, e.g., [16, 17, 18], have considered the zeroth-order part of this nonlinear "bound-
ary layer " problem.

6. Discussion of branching results. Our purpose in the preceeding sections was to
demonstrate a method for extending the branching solutions for complete spherical shells
beyond the region of validity of the standard perturbation approximations (i.e., \k — k„\
4: 6 or, equivalently, \k — kn\ 1 /n2). As pointed out in the introduction, Koiter [3] has
also developed and applied an asymptotic method to this problem. While we both recover
the standard results in the limit k —> k„, there is a considerable difference between Koiter's
and our asymptotic solutions outside of the regime | k — k„ | S. Since Koiter's and our
methods of analysis are both formal it is not easy to resolve this disagreement. In this
section we summarize our branching results and present numerical evidence which sup-
ports our conclusions.

First we shall discuss the branching situation for the case of the lowest even (simple)
eigenvalue k„ where n = ncr -I- t (0 < | t | < \ or j < | t | < 1) is an even integer. It is con-
venient to express our results in terms of a bifurcation diagram of ||/?|| vs. A, where we define

|| 0|| = max \P(Z, A)|. (6.1)
0<^<7t

The asymptotic analysis in Sees. 3-5 reveals that for sufficiently small values of | X — | the
maximum of | /}(£, A) \ is taken on in the vicinity of the poles. Since the solutions which we
have constructed for n even are symmetric with respect to = n/2, we shall focus on the
hemispherical region 0 < £ < n/2. Near the south pole

^ ~ (n + tf Jl + 2)*) " °\(n + V) ^ " °(n + i'' ^
with

COS (Oil — COS T7T
f0 =16 m • ,  , (0 =

3^3 sin (D7i
t2 + I n +

1\2 k-k.
2k.

1/2

(6.3)

Away from the poles the magnitude of 0 is smaller than that near the poles by at least a
factor of(n + i)~1/2.

As established in Sec. 4, Eqs. (6.2)—(6.3) contain the standard perturbation results. Under
the restriction | k - k„ \ <| 1/n2 (equivalently | k - kn \ ^) the leading order behavior of j/0
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is given by
A<JT 2   JJ

•^o ~ ~~— (" + i)2' n_> 00; (6-4)
3v/3 A,

so that

^'A)~373 Jl((" + iK)' U - ^1 ^ I/"2. £ = °(~l) (6-5)

Using the fact that max^o |^i(x)| = 0.58187 (occurring at x = 1.84118) it follows that

Hill ~ 1.4072 U - KN 1 In2. (6.6)
*■n

We shall refer to (6.6) as the standard perturbation approximation to \\/}\\ for n even.
As far as the structure of the bifurcation curves are concerned, the standard pertur-

bation approximation is valid only within a neighborhood of o(<5) of the branch point where
the curve is locally "linear" with an 0(1) slope. (Typically for thin shells 6 is numerically
0(10~3).) An examination of (6.2H6.3) shows that near the branch point the curvature of
the bifurcation curve is very large. Under the restriction \/n2 -4 X„ — X <? 1, we again obtain
a simple expression for the leading order behavior of ||/?|| vs. X for the downward branching
solution. We find that

+ ,6'7)

The results of Sees. 4-5 (see, in particular, (5.23)) along with further calculations indicate
that (3 is transcendentally small away from the poles in this regime. Thus, we conclude that

(« + i) V K
which should be compared with the standard perturbation approximation (6.6).

Eq. (6.8) has a very important consequence. One expects that the smaller \ d\\fl\\ldk \ is
(i.e., the steeper the drop of the " load-deflection " curve), the more disastrous will be the
effect of axisymmetric imperfections on the buckling of thin spherical shells. On this basis
we see that (6.8) describes a much greater imperfection-sensitivity than does the standard
perturbation approximation. We should mention that we have carried out a detailed
asymptotic analysis of the buckling of a slightly imperfect spherical shell, and after con-
siderable calculation we derived the appropriate modification of (4.20H4.21). In particular
we found that the standard approximation for the reduction in buckling load is only valid
for extremely small initial imperfections (0(d312) of the shell thickness). For larger (and more
realistic) initial imperfections one must resort to our uniformly valid formulas which do,
indeed, describe a much greater imperfection-sensitivity.

To facilitate a physical interpretation of our branching results we introduce the dimen-
sionless, auxiliary variable w(£) defined by

w(t)-w0 m - v)
W(£ = 7 , Wo = / 7, 6.9h v 3(1 - v2)
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where W(q) is the radial displacement (positive inwards) of the buckled state and the
quantity W0 is the radial displacement of the uniformly contracted or unbuckled state. To
the same order of accuracy as the governing equations (2.3) we obtain from [6] the follow-
ing approximation to w:

"4
COS £

w(£) = -
v2) it / 2

B2
P cos r] + — sin r] + v<5i//(sin r\ — /? cos r]) dr)

[ —i)/' sin £ + Av/?2 sin £ + vi/^cos <5; + /? sin £)]. (6.10)
yj 12(1 — V2)

Provided | | and | ip | are sufficiently small, the underlined terms in (6.10) yield the domi-
nant contribution to w.

In general it is difficult to obtain a simple representation for w from (6.10). The difficulty
is compounded in our case since our asymptotic solution for /? (and i//) consists of three
different expansions: inner expansions valid near £ = 0, n, and an outer expansion valid
away from the poles. However, in the regime 1/n2 4 Xn — X 1 we can derive an especially
simple expression for the leading order behavior of w. Upon setting!^ ~ — /?, using (6.7) for
/? near the south pole and neglecting the exponentially small contribution of /? away from
the poles, we obtain from (6.10)

Moreover, w is transcendentally small away from the poles.
The conclusion we draw from (6.11) is that the deflection pattern in the post-buckled

state (for n even with \/n2 <£ — A 4 1) consists mainly of two equally deep inward dim-
ples at the poles and little disturbance over the remainder of the shell. In particular, the
dimensionless displacement at the poles is given by

s (612»
A striking feature of the present result (6.12) is that the displacement at the poles represen-
ted as a fraction of the shell thickness is independent (to leading order) of the degree n of the
buckling mode, and thus independent of the ratio h/a, in marked contrast to the corre-
sponding result for the initial post-buckling state [3]:

w(°) ~ + 2\ —2 |1„ - A|« 1 In2. (6.13)
9^/1 — v K

In order to obtain a direct check on our asymptotic results we carried out extensive
numerical calculations of the branching solutions for the boundary value problem (2.3)-
(2.4) for various values of S and n. In each case the numerical solution for /? and \p was used
to determine w(<^) from (6.10). We employed a recently developed code (COLSYS) which
uses the method of spline-collocation at Gaussian points with a B-spline basis [19, 20], The
code uses a variable mesh and places more points in regions of rapid change in the solution.

As mentioned previously, Bauer, Reiss and Keller [5] computed branching solutions for
(2.3H2.4) by a modified shooting technique. Unfortunately, the numerical results presented
in [5] are in terms of w or integrals of w. Moreover, most of the results are for a rather thick
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shell (a/h — 9.13, corresponding to ncr % 5), with few calculations recorded for thinner shells
near the branch points. Still, where possible, we compared our numerical solutions with
those presented in [5] and found very close agreement. The interested reader will find a
detailed account of our numerical studies in [21] which, in particular, contains an interest-
ing comparison of the solutions of the quadratic nonlinear system (2.3}-{1.4) and of Re-
issner's fully nonlinear equations [6] for 0(1) deviations X — X„.

So as to keep the discussion brief we shall present a comparison between our asymptotic
and numerical results for one case of a moderately thin shell with

<5 = 0.003315, (6.14)

which corresponds to k = 10 5 in [5] and a/h = 91.288 with v = 0.3. The results for this
case are typical of those obtained for other values of S. By definition

H0II -TTTTTTl^ol, 0<a16-A«1, (6.18)

"cr = 1 + y5 + 4/3 = 16.9043, (6.15)

so that the lowest even eigenvalue is Xlb and t = —0.9043. From (2.5) we obtain

x16 = 1.00575. (6.16)

The standard perturbation approximation (6.6) takes the form

\\p|| ~ 1.3992|X- 1.00575|, \X-Xl6\< 1/256; (6.17)
while our extended formula is given by (using maxx>0 |Ji(x)| = 0.58187)

0.58187
(16.5)2

with «a/0 defined by (6.3).
It is clear from Fig. 1 that the region of validity of the standard perturbation approxi-

mation (6.17) is indeed restricted to a very small neighborhood of the branch point. On the
other hand, we see that the extended perturbation approximation (6.18) is in reasonably
close agreement with the numerical approximation—the difference being consistent with
the asymptotic error bound in (6.2). In fact, the agreement is similar to that which one
typically achieves by standard perturbation procedures in bifurcation problems which do
not involve the complicating feature of closely spaced eigenvalues.

In order to illustrate further the accuracy of our extended perturbation solution, we
present in Fig. 2 graphs of /? vs. £ for X = 0.95 with 8 given by (6.14). As we shall explain
later these graphs serve to describe the solution branching from the lowest odd eigenvalue
/i 7 as well as that branching from the even eigenvalue Xl6. Our asymptotic solution for the
interval shown in Fig. 2 consists of two parts. Near ^ = 0 we have the leading-order term of
the inner expansion given by (6.7) with n = 16:

£(£, 0.95) ~ 0.031068 16.5£), (6.19)
where for practical purposes we are assuming that 1/256 < X16 — 0.95 1. Away from
^ = 0 the outer expansion is valid. From (5.23) it follows that the leading-order behavior of
the outer expansion is given by

/?(£ 9.5) ~ ~°^2 [2 7548« + e2-7548(4-i)]cos (17.06£ + ^. (6.20)
Vsin € \ 4/
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"16 in4^^ \STANDARD PERTUBATION'•u_l ^APPROXIMATION (6.17)

NUMERICAL APPROXIMATION

EXTENDED PERTUBATION,
APPROXIMATION (6.18)

1 1 1 1 ' r>n a ii0 .01 .02 .03 .04 .05 .06 I'/3"

Fig. 1. Graph ofAvs. ||/?|| corresponding to the lowest even eigenvalue with (5 = 0.003315.

As expected, the inner expansion provides a good approximation to the branching
solution near £ = 0, whereas the same is true of the outer expansion away from £ = 0.
Observe that the ratio of the magnitude of the numerical approximation to /? near S, — 0 to
that away from £ = 0 is much greater than the corresponding ratio for the linear eigenfunc-
tion P}6(cos £). The presence of the exponential factor in the outer expansion (6.20) reflects
this behavior as well.

Next we shall discuss the branching situation for the case of the lowest odd (simple)
eigenvalue /„ where n = ncr + z (0 < | x | < \ or ^ < | t | < 1) is an odd integer. For this case
the solution of the nonlinear problem does not exhibit symmetry and so we must consider
the interval 0 < £ < n. Near the south pole

with sio defined in (4.30), while near the north pole

j*
(n + ^)2 \(n + i)3/' \n + 2
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with s/0x defined in (4.31). Away from the poles the magnitude of is smaller than that near
the poles by at least a factor of(n + £)~1/2.

Under the restriction | A — | <^ 1 /n1 (equivalently | X — A„ | (5) we find that the
leading-order behaviors of stf0 and 0n are given by

, M" + |) /(A„ - A)t cot tn ^ ^
^(623)

We should point out that Koiter [3] essentially derived (6.23) for the special case t = 0.
Without loss of generality we shall consider only the solution corresponding to the plus
sign in (6.23) in what follows. For this solution the associated deflection shape has the form
of an inward dimple at the south pole and an outward bulge at the north pole. It follows
from (6.1) and (6.21H6.23) that

_ ^78 o,,» („ 24)
(n + 2) V K

We shall refer to (6.24) as the standard perturbation approximation to ||/?|| for n odd.
(Actually (6.24) holds for all odd eigenvalues provided | x \ £ m/2, m = 1,2, )

The standard perturbation approximation serves to describe the structure of the bifur-
cation curve only within a neighborhood of o(<5) of the branch point where the curve is
locally "parabolic," with a very large curvature (due to the factor (n + i)_1.) There is

.NUMERICAL APPROXIMATION

LEADING ORDER TERM IN THE
INNER EXPANSION (6.19)

.01 -

LEADING ORDER TERM
IN THE OUTER EXPANSION
(6.20)

-.0

Fig. 2. Graph of () vs. { for A = 0.95 corresponding to the lowest even and odd eigenvalues (/16and /, 7,
respectively) with 6 = 0.003315.
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NUMERICAL APPROXIMATION

EXTENDED PERTUBATION
APPROXIMATION (6.28)

'STANDARD . PERTUBATION
APPROXIMATION (6.27)

o H 1 1 1 1 1 1—>
O .01 .0 2 .03 .04 .05 .06 11/3,1

Fig. 3. Graph of/vs. ||/?|| corresponding to the lowest odd eigenvalue with S = 0.003315.

another important difference between the n even and odd cases as recorded in (6.6) and
(6.24), respectively. For sufficiently small deviations \X — X„\ the branching solutions for n
even have a weak dependence on t, whereas the branching behavior for n odd depends
crucially on the deviation of Xn from the critical value. Clearly the value of t affects the
amplitude of the branching solution; but, even more importantly, it determines the direc-
tion of the branching. For example, if | r | < j, corresponding to the lowest eigenvalue being
odd, then it follows from (6.24) that the branching is downward (see Fig. 3). On the other
hand, for \ < | t | < 1, the branching is upward. Of course, whenever the lowest odd eigen-
value corresponds to \ < 111 < 1, the lowest eigenvalue is even, so that the branching from
the lowest eigenvalue is always downward.

As far as the authors are aware, the result in (6.24) which predicts this phenomenon of
alternating upward and downward branching from the odd eigenvalues is new. We should
mention that formula (6.24) correctly predicts the direction of the branching both in our
numerical studies and in those of Bauer, Reiss and Keller [5]. It is interesting that calculat-
ion of the energy expression in [5] indicates that in many instances the upward-branching
solutions are stable equilibrium solutions.
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Under the restriction | x \ < \ and \/n2 <| Xn — X <4 1 we are able to compute a simple
asymptotic approximation to and 0n. From (4.30) and (4.31) we obtain

t0 ~ 2 (n + i)^ /p ^ k, $40n = O^exp ^-7r(n + ^ < K ~ ^

(6.25)
which agrees, as it should, with (5.21)—(5.22). Comparing (6.21) and (6.25) with (6.7), we
conclude that in the regime \/n2 Xn — X 1 the downward-branching solutions for the
lowest even and odd eigenvalues have the same leading-order behavior near the south pole.
Also, in both cases /? is transcendentally small away from the poles (see (5.23)-(5.24)).
However, whereas /? is symmetrical with respect to £ = nil for n even, for n odd we have
that (3 is transcendentally small near the north pole. It is clear that (6.8) also serves to
describe the bifurcation curve in the case of n odd with | x \ <

The above result has a very interesting physical interpretation. It is not difficult to see
that when the (loading) deviation Xn — X is large compared to h/a then the radial displace-
ment near the south pole is given by (6.11). Furthermore, w is transcendentally small away
from the south pole. The ripples between the poles and the outward bulge at the north pole
have disappeared. Thus the deflection pattern in the post-buckled state (for n odd, with
| x | < j and l/n2 <? Xn — / < 1) consists mainly of a single inward dimple and little disturb-
ance over the remainder of the shell. Such a deflection pattern is often observed in experi-
ments. Moreover, our numerical results [21] as well as those of Bauer, Reiss and Keller [5]
(see, in particular, their Fig. 7a) confirm this behavior. In fact, it is shown in [9, 21] that this
deflection pattern is maintained until X = O(yJS) at which point the dimple takes on the
form of a large inverted spherical cap joined to the remainder of the essentially undeformed
spherical shell by a boundary layer region.

For completeness we shall briefly compare our asymptotic and numerical results for the
value of <5 given in (6.14). The lowest odd eigenvalue is

X17 = 1.00006, (6.26)

with x = 0.0957. The standard perturbation approximation in (6.24) takes the form

||0|| ~ 0.05041 v71.00006 - /, 0 < A17 — X « 1/289; (6.27)
while our extended formula is given by

0 58187
WW 0<A17-A«1, (6.28)

with defined by (4.30).
From Fig. 3 we observe that the extended approximation is in reasonably close agree-

ment with the numerical approximation in the region specified in (6.28). For thinner shells
(corresponding to smaller values of S and larger values of n) the agreement is even better. It
is also clear from Figs. 1 and 3 that outside of the immediate vicinity of the branch points
the numerical approximations to the bifurcation curves for the lowest even and odd eigen-
values are almost identical. In fact, this behavior is maintained until X is approximately 0.1.
Moreover, the spatial structures of the branching solutions for the lowest even and odd
eigenvalues are very similar near the south pole. For example, the numerical approximation
of the solution branching from Xl7 with X = 0.95 agrees to within 0.1 % with that portion of
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the corresponding curve for A16 shown in Fig. 2 (see also Table 1). As pointed out above,
our extended perturbation approximations exhibit this behavior as well.

We conclude our discussion with a few remarks regarding Koiter's refined asymptotic
analysis as presented in [3]. While we are in basic agreement with Koiter regarding the
qualitative nature of the post-buckling behavior for even eigenvalues, there is a consider-
able difference between our results for odd eigenvalues. He finds that (for t = 0,n = nCT) the
radial displacement at the poles satisfies

w(0) ~ w(n) ~ + j===Q, <| 1 — X 1, (6.29)
" v ^

for both even and odd eigenvalues. In other words, he contends that the post-buckled state
associated with the lowest eigenvalue always consists of two equally deep inward dimples at
the poles in the regime designated in (6.29). Although it is very difficult to resolve this
disagreement, we suspect that the expansion in (8.6) in [3] is nonuniform in S, just as the
standard perturbation expansion itself is. (Koiter actually alludes to this possibility on page
100 of [3].)

In Table 1 we present numerical evidence supporting our claim that the post-buckling
state for the lowest odd eigenvalue (with | z \ < j) involves a single inward dimple. The value
of S is that given in (6.14). The fact that our branching results both agree with numerical
calculations and accurately predict the deflection patterns observed in experiments pro-
vides a convincing argument for their validity. Thus, one can with confidence apply our
asymptotic integration technique to more complicated problems (involving several par-
ameters or non-axisymmetrical buckling shapes).

Table 1. Radial deflection at the poles for solutions bifurcating from the lowest
two eigenvalues A,7 = 1.00006 and 116 = 1.00575 with 5 = 0.003315.

I w(0) for A16 w(0) for A17 w(7t) for A17

1.001890 0.2592- 10"1 — —

1.000015 0.4105 • 10"1 0.3431 • 10~2 -0.2848 • 10"2

0.999015 0.4671 • 10"1 0.2049 • 10"1 -0.8136 • 10"2

0.99 0.8249 • 10"1 0.7907-10-' -0.2505 • 10"2

0.975 0.1322 0.1312 -0.4028 • 10"3

0.95 0.2017 0.2012 -0.1351 • 10"4

0.9 0.3254 0.3246 -0.5853 • 10"5

0.7 0.8367 0.8351 -0.5168 • 10"6

0.5 1.587 1.584 0.8867 • 10"8

0.3 3.385 3.379 0.1758 - 10-7
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