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Abstract
The flow of a polystyrene Boger fluid through axisymmetric contraction-expansions having various

contraction ratios (2 #β #8) and degrees of re-entrant corner curvatures are studied experimentally over
a large range of Deborah numbers.  The ideal elastic fluid is dilute, monodisperse and well characterized
in both shear and transient uniaxial extension.  A large enhanced pressure drop above that of a Newtonian
fluid is observed independent of contraction ratio and re-entrant corner curvature.  Streak images, laser
Doppler velocimetry and digital particle image velocimetry are used to investigate the flow kinematics
upstream of the contraction plane.  LDV is used to measure velocity fluctuation in the mean flow field and
to characterize a global elastic flow instability which occurs at large Deborah numbers.  For a contraction
ratio of β  = 2 a steady elastic lip vortex is observed while for contraction ratios of 4 # β  # 8 no lip vortex
is observed and a corner vortex is seen.  Rounding the re-entrant corner leads to shifts in the onset of the
flow transitions at larger Deborah numbers, but does not qualitatively change the overall structure of the
flow field.  We describe a simple rescaling of the deformation rate which incorporates the effects of lip
curvature and allows measurements of vortex size, enhanced pressure drop and critical Deborah number
for the onset of elastic instability to be collapsed onto master curves.  Transient extensional rheology
measurements are utilized to explain the significant differences in vortex growth pathways (i.e. elastic corner
vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in this research and
polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments.  We show
that the role of contraction ratio on vortex growth dynamics can be rationalized by considering the
dimensionless ratio of the elastic normal stress difference in steady shear flow to those in transient uniaxial
extension.  It appears that the differences in this normal stress ratio for different fluids at a given Deborah
number arise from variations in solvent quality or excluded volume effects.

Keywords: axisymmetric contraction-expansion, entrance pressure drop, dissipative stress, polystyrene
Boger fluid, PIV, LDV, vortex growth dynamics, entrance lip singularity, extensional rheology
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1.  Introduction

The flow of a viscoelastic fluid through an axisymmetric contraction-expansion is a complex flow

containing regions of strong shearing near the walls, nonhomogeneous uniaxial extension along the centerline

upstream of the contraction plane and nonhomogeneous biaxial expansion downstream of the expansion.

The contraction flow is a long-standing numerical benchmark for computation of non-Newtonian fluids [1;

2] and is the subject of several excellent review articles [3; 4].  The present paper, in conjunction with our

previous work focusing on the 4:1:4 axisymmetric abrupt contraction-expansion [5], is intended to

constitute a comprehensive set of quantitative experimental measurements to which theory and numerical

simulations can be rigorously compared.  To meet this goal, an ideal monodisperse, dilute Boger fluid is first

thoroughly characterized in both shear and extension.  This ideal elastic fluid is then used to investigate the

kinematics of the flow through several axisymmetric contraction-expansions of different contraction ratios

and varying lip curvatures over a wide range of Deborah numbers.  The experimental measurements include

global pressure drop and local velocity measurements as well as streak images of the elastically-enhanced

upstream vortex structures. 

Experimental measurements of the pressure drop for polymer solutions flowing through abrupt

axisymmetric contraction-expansions have shown a substantial extra pressure drop well above the value

observed for a Newtonian fluid with equal viscosity at the same flow rates [5; 6].  In neither case was the

observed viscoelastic enhancement of the pressure drop associated with the onset of an elastic or an inertial

flow instability; however, it is not even qualitatively predicted by existing steady-state or transient numerical

computations with simple dumbbell models [7-9].  In fact, these models predict a significant viscoelastic

decrease in the pressure drop with addition of polymer to a Newtonian solvent.  The failure of these
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constitutive models to predict the correct evolution in the properties of complex flows with Deborah number

may be due to an inadequate description of the internal molecular conformations of the polymer chains that

arise during rapid stretching.  This is evident in measurements of transient uniaxial extension where the

existence of a stress-conformation-hysteresis has been experimentally observed [10; 11] and computed

in bead-rod and bead-spring computations [10; 12] but has yet to be quantitatively predicted by any simple

closed-form differential constitutive model.  A complete discussion of previous experimental and numerical

studies involving pressure drop measurements in contraction flows can be found in Rothstein and McKinley

[5].  One of the major goals of the present study is to determine what effects systematic changes in the

contraction ratio and the curvature of the re-entrant corner will have on the magnitude and the onset of this

enhanced pressure drop.  Investigation of the role of lip curvature is especially important because a major

computational impediment to simulations of the viscoelastic flow through a contraction-expansion is the

development of singular stress fields near a sharp re-entrant corner.

Measurements of the evolution in the pressure drop generate information about the global state of

viscoelastic stress in the flow and are an excellent comparative tool when utilized in conjunction with

measurements of the flow kinematics such as streak images and velocity measurements.  There have been

a great number of experimental investigations dealing with the kinematics of the flow through a contraction

over a wide range of Deborah numbers, contraction ratios and re-entrant corner curvatures using a large

variety of different viscoelastic fluids [3; 4; 13].  In experiments with elastic polymer solutions two distinct

pathways for evolution of the vortex growth with Deborah number have been observed, which lead to flow

structures typically described in the literature as corner and lip vortices.  In each case, a weak, Newtonian

‘Moffatt eddy’ is present in the upstream stagnant corner at low Deborah numbers.  In the regime of corner
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vortex growth, the upstream vortex near the stagnant corner increases in strength and grows radially

inward.  Upon reaching the re-entrant corner, the vortex proceeds to grow steadily upstream with

increasing Deborah number.  This pathway can be accurately captured by simulations with appropriate

viscoelastic constitutive models [8; 14].  By contrast, the lip vortex growth regime is characterized by a

decrease in the corner vortex size as the Deborah number is increased and the formation of a separate,

distinct elastically-dominated ‘lip’ vortex near the re-entrant corner [15].  The vortex spreads radially

outward toward the stagnant corner and subsequently grows upstream in a manner quite similar to the

corner vortex growth described above.   At very high Deborah numbers, the large upstream vortex

observed for both of the vortex growth patterns becomes unstable to a global dynamical mode that is a

sensitive, non-monotonic function of the contraction ratio [16; 17].  

The sequence of flow patterns chosen by the viscoelastic fluid is a complex function of the

contraction ratio and the re-entrant lip curvature.  Results prior to 1987 are summarized in Boger [3] and

Table 1 summarizes more recent observations for several different Boger fluid formulations.  In general, as

the contraction ratio is increased, the flow moves from the lip vortex to the corner vortex flow regime, but

the critical contraction ratio for this crossover in vortex evolution pathway is strongly dependent on the

properties of the test fluid and impossible to predict a priori.  So, why do two elastic fluids such as PIB/PB

and PAA/CS Boger fluids, which have very similar viscoelastic properties, act so differently in this and

other complex flows?  Many researchers have postulated that the answer must arise from differences in the

transient extensional rheology [5; 13; 16; 18].  Until quite recently, reliable measurements of the extensional

stress of dilute polymer solutions undergoing ideal uniaxial extension were not possible, but with the advent

of the filament stretching rheometer, transient uniaxial extensional rheology measurements are now attainable



4

[19], making it possible to test the validity of such assertions.  

Sharp Re-Entrant Corner Rounded Re-Entrant Corner

Boger Fluid Corner Vortex Lip Vortex Corner Vortex Lip Vortex

PIB/PB [13; 16]  β  $ 8 2 # β  #6.8  β  $ 8 2 # β  #6.8

PAA/CS [3; 13; 20] β  $ 4 β  # 2 β  > 4 β  #4

PS/PS [5] β  = 4
Table 1: Vortex growth dynamics for several Boger fluids at various contraction ratios (β = R1/R2, where
R1 is the upstream radius and R2 is the radius of the contraction) and re-entrant corner radii of curvature.

The effect of lip curvature on the vortex growth dynamics is also summarized in Table 1.  Boger

and Binnington [13] presented a systematic photographic study using PIB/PB and PAA/CS Boger fluids

while the vortex growth dynamics observed using a similar PIB/PB Boger fluid were discussed by

McKinley et al. [16].  These previous studies show that, for the PIB/PB Boger fluid at the contraction ratios

examined, rounding the re-entrant corner leads to increases in the critical Deborah numbers for flow

transitions, but does not qualitatively change the kinematics of the flow field.  However, rounding the re-

entrant corner of the 4:1 contraction with a radius of curvature equal to 36% of the contraction radius (Rc

= 0.36R2) results in a dramatic change in the vortex evolution for the PAA/CS solution [13].  Streak images

recorded upstream of the sharp re-entrant corner, clearly demonstrate the growth dynamics of a corner

vortex.  However, the nature of the contraction flow was completely changed by rounding the re-entrant

corner.  The formation of the expected corner vortex is suppressed and supplanted by a lip vortex [13].

Boger and Binnington thus argue that the evidence suggests that rounding the re-entrant corner is equivalent

to decreasing the contraction ratio. 

In addition to investigating the evolution of the pressure drop, another goal of the present study is
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to determine which vortex evolution path is followed by a dilute and monodisperse polystyrene Boger fluid

that has been well characterized in both extension and in steady and transient shear flows.  To date, we

have reported measurements for flow through a 4:1:4 contraction-expansion, but a detailed analysis of the

effect of contraction ratio and re-entrant corner radii of curvature will generate additional insight into the

trends observed in the published data on PIB/PB and PAA/CS Boger fluids listed in Table 1 when analyzed

in conjunction with measurements of the transient extensional rheology.  

We describe our experimental apparatus and techniques in §2 and report both the steady shear and

transient uniaxial extensional rheology of the fluid.  In §3, we first present observation of the enhanced

pressure drop through several different contraction-expansions.  Flow visualization, digital particle image

velocimetry (DPIV) and laser Doppler velocimetry (LDV) are then combined to characterize the evolution

in the kinematics of the fluid motion with increasing Deborah number.  LDV measurements of fluctuations

in the fluid velocity are then used to document the onset of an elastic instability that eventually leads to

global oscillations in the flow and the development of an interesting jetting instability as the Deborah number

is increased.  Finally, in §4 we discuss the implications of our findings for simulation and modeling of elastic

flows through contractions.  

2.  Experimental

2.1.  Flow geometry 

A schematic diagram of the axisymmetric contraction-expansion and the important length scales

associated with it is shown in Figure 1.  The radii of the cylindrical tubes upstream and downstream of the

contraction-expansion are equal and remain constant at R1 (=1.27cm) while the radius within the throat of

the contraction is given by R2.  Several different orifice plate configurations yielding various contraction
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ratios (ß / R1 / R2), contraction lengths (Lc) and re-entrant corner radii of curvature (Rc) are used in this

study and are listed in dimensionless form in Table 2.

Description Contraction Ratio
(ß / R1 / R2)

Re-entrant Lip Curvature
(Rc / R2)

Contraction Length
(Lc / R2)

2:1:2 2 < 0.01 0.5

4:1:4 4 < 0.01 1

4:1:4 Rounded 4 0.5 upstream only 1

8:1:8 8 < 0.01 2

8:1:8 Rounded 8 0.18 upstream and downstream 2
Table 2: Description of orifice plate geometries used in this study.  In each case the value of the upstream
radius is R1 = 1.3cm.

In order to quantify the upstream vortex growth dynamics, it is necessary to define several

dimensionless length scales to describe both the size and position of the vortex: the distance to the

separation point (? / Lv / R2) and the coordinates of the center of the recirculation denoted by the distance

from the contraction plane (? / Zv / R2) and from the centerline (? / Rv / R2).  

As described in Rothstein and McKinley [5], the fluid is forced at a constant volume flow rate, Q,

past two flush mounted pressure transduces, here denoted Pu and Pd, located at positions

zu = !7.62cm far upstream and  zd = 8.26cm far downstream of the contraction plane (located at

z = 0).  Under steady flow conditions, the pressure difference measured between the upstream and

downstream transducers results from a combination of the pressure drop due to Poiseuille flow in the tube

and an extra pressure drop caused by the presence of the contraction-expansion,

? Pud = Pu ! Pd = ? PPoiseuille + ? Pextra.  To isolate the extra pressure drop across the contraction-

expansion, the pressure drop resulting from the Poiseuille flow in the upstream and downstream tubing as
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well as the Poiseuille flow within the throat of the contraction-expansion are removed

where L / ( zu ! zd ) ! Lc is the total length of straight pipe of radius R1 between the pressure transducers

and ? is the viscosity of the fluid.  When the re-entrant corner of the contraction-expansion is rounded, the

flow within the throat is no longer Poiseuille-like over the entire contraction length.  An approximate

numerical solution to the flow past the rounded re-entrant corner can be calculated for creeping flow of a

Newtonian fluid using lubrication theory or alternatively the exact value could be computed numerically;

however, for simplicity of presentation, the pressure drop resulting from the Poiseuille flow over the entire

contraction length (Lc) is removed from the experimental pressure drop measurements irrespective of the

degree of re-entrant lip curvature.  Finally, we define a dimensionless pressure drop

where the pressure drop resulting from the flow of a Newtonian fluid across a 4:1:4 sharp axisymmetric

contraction-expansion at a given flow rate, ? PNud (Q, De = 0, Rc = 0, β  = 0), is used in the denominator

to non-dimensionalize the pressure drop resulting from the flow of the non-Newtonian test fluid across each

of the contraction-expansions at the same flow rate, regardless of aspect ratio and re-entrant lip curvature.

2.2.  Measurement Techniques

The flow field upstream of the axisymmetric abrupt contraction is investigated using several different

techniques: digital particle image velocimetry (DPIV); laser Doppler velocimetry (LDV); and flow

visualization through computer-generated streak images.  A complete discussion of the DPIV and flow
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visualization techniques used in this paper can be found in Rothstein and McKinley [5].

In the present study, LDV measurements are used to supplement the global velocity vector field

measurements obtained with DPIV.  Primarily, we utilize LDV to take pointwise measurements of velocities

near and within the throat of the contraction-expansion where DPIV measurements are not possible due

to the loss of cross-correlation between sequential images in subregions where the velocity or velocity

gradient of the particles become too large.  To facilitate these measurements, an acrylic 4:1:4 orifice plate

was created to form the contraction-expansion.  LDV can generate time-resolved point velocity

measurements which can be used to search for the onset of elastic flow instabilities near the contraction

plane [15].  The test fluid is seeded with the same 50µm diameter silvered hollow glass spheres (Potters

Industry) used for DPIV and flow visualization purposes [5].  Utilizing a fast Fourier transform technique,

a spectrum analyzer (Dantec Burst Spectrum Analyzer) is used to compute the velocity from the Doppler

shifted frequency signal collected from a single-colored, fiber optic LDV system (Dantec Electronics Inc.)

coupled with a 300mW argon-ion laser (Ion Laser Technologies).  A detailed description of the LDV

system used in this research is presented by Arigo et al. [21].  The spectrum analyzer is an excellent tool

for extracting average velocities from ensembles of Doppler bursts for slow flows, even in the presence of

noise, but because of the discrete nature and random arrival times of the Doppler bursts, spectral analysis

cannot always be used to effectively resolve slow time-varying velocity profiles such as those that develop

beyond the onset of flow instabilities.  A Doppler frequency tracker (DISA, Model 55 N 21) is therefore

used to lock into and measure the frequency and amplitude of velocity fluctuations resulting from elastic

flow instabilities.  These local velocity measurements are a more sensitive indicator of the critical conditions

for the onset of the elastic flow instability than the global measurements of the pressure drop used in our
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previous study [5]. 

2.3.  Fluid Rheology

The viscoelastic test fluid used in these experiments consists of an 0.025 wt% solution of

monodisperse polystyrene (PS) (Scientific Polymer Products, Inc.) with a molecular weight of 2.25×106

g/mol and polydispersity of 1.03 dissolved in oligomeric styrene (Hercules).  The solution is a dilute Boger

fluid with c/c* = 0.24 [22].  For completeness, a master curve of the rheological properties for the 0.025%

PS/PS solution at T0 = 25EC, measured with a controlled stress device (TA Instruments, Model

AR1000N), is reproduced in Figure 2 [5].  The viscoelastic properties of the fluid are characterized in small

amplitude oscillatory shear flow by the dynamic viscosity ?N(? ) and the dynamic rigidity 2?O(? )/?  while

in steady shear flow, the fluid is characterized by the first normal stress coefficient ? 1(??)= (t 11(??)!t 22(??))/??2

and viscosity ?(??).  The use of the Rouse-Zimm [23] and the FENE-P model [24] fits plotted in Figure 2

have been discussed in great detail in Rothstein and McKinley [5].  Table 3 contains the parameters

describing the viscometric properties of the PS/PS solution.  As shown in Figure 2, the viscosity of the

solution is approximately constant over several decades of shear rate.  The fluid is strongly elastic and the

first normal stress coefficient shear-thins monotonically throughout the entire range over which data can be

obtained.  By contrast, the Rouse-Zimm bead-spring model predicts a constant value of the first normal

stress coefficient as a consequence of the pre-averaging of hydrodynamic interactions [25].  The dash-

dotted lines in Figure 2 represent the predictions of the FENE-P model for the steady shear data.  The

value of the finite extensibility parameter, L2, used in the FENE-P model is computed from molecular

quantities rather than from fitting and clearly leads to an overprediction of the viscometric properties.  An

improved description requires a more detailed treatment of hydrodynamic interactions between segments
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of a polymer chain undergoing a steady shearing deformation.  One such model that accounts for the

anisotropy in the hydrodynamic drag forces in approximate form is the encapsulated dumbbell model of

Bird and DeAguiar [26].  The evolution equations of the Bird-DeAguiar model can be re-written as

where kB is the Boltzman constant, n is the number of springs, λ is the relaxation time of the fluid, L is the

finite extensibility of the polymer chain and the polymer conformation is given by the dimensionless second

moment tensor A = <RR>, where R is the end-to-end vector of the polymer chain scaled with the root

mean square end-to-end length of the chain.  The extent of anisotropy in the viscous drag on the beads is

given by s  and the anisotropy in the velocity distribution of the beads arising from Brownian motion is given

by ß.  When s  = ß = 1, the FENE-P model is recovered.  Our exploratory calculations suggest that to

quantitatively describe the viscometric properties of dilute polymer solutions in viscous solvents,  the

anisotropy in the viscous drag the primary effect of importance.  The Brownian motion of the beads can

thus be assumed to be isotropic with  ß = 1.  In this limit, Equation 4 reduces to the familiar expression for

the stress in an ensemble of FENE-P dumbells while the evolution equation reduces to 
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The solid lines in Figure 2 represent the predictions of the Bird-DeAguiar model fit and are in good

agreement with both the viscosity and first normal stress difference measurements.  

Notation Description Parameter

Known: c Concentration of High Molecular Weight
Polystyrene

0.025%

Mw 'Mn Polydispersity 1.03
Mw Molecular Weight [g/mol] 2.0×106

b = L2 Extensibility Parameter 26900
T0 Reference Temperature [K] 298

Fitted: ?0 Zero Shear Rate Viscosity [Pa@s] 22.75
?s Solvent Viscosity [Pa@s] 21
?ps Solvent Relaxation Time [s] 2.5×10-4

h* Hydrodynamic Interaction Parameter 0.1
s Extent of Anisotropy in Stokes’ Law 0.63
ß Extent of Anisotropy in Brownian Motion Forces 1

Calculated: ?z Zimm (Longest) Relaxation Time [s] 3.24

?̄ Oldroyd Relaxation Time [s] 0.146

? 10 First Normal Stress Coefficient [Pa@s2] 6.66

Table 3: Parameters characterizing the viscometric properties of the 0.025wt% PS/PS solution.

To understand the kinematics of the complex flow through axisymmetric contraction-expansions,

it is important to characterize the behavior of the test fluid in both shear and extension.  The filament

stretching rheometer and techniques developed by Anna et al. [27] were used to measure the transient

extensional viscosity of the PS/PS solution.  In Figure 3, the Trouton ratio, is plotted against0/ ,Tr η η+=

the Hencky strain, for a strain rate of  One important point to note is that at high Deborah,tε ε= & 19.1s .ε −=&

numbers,  the Trouton ratio is relatively insensitive to changes in extension rate.  At low29.5,zDe λ ε= =&
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Hencky strains, the extensional viscosity behaves in a Newtonian-like manner and the Trouton ratio is

approximately equal to Tr ñ 3?s / ?0. As the Hencky strain increases, the PS/PS solution strain-hardens,

reaching an equilibrium at a Trouton ratio of Tr -1000.  The FENE-P and Bird-DeAguiar model fits are

plotted with the experimental data.  Neither of these models fit the experimental data well, overpredicting

the critical Hencky strain for the onset of strain-hardening and overpredicting the equilibrium value of the

extensional viscosity.  It is interesting to note that the anisotropy introduced by the Bird-DeAguiar model

has very limited effect in uniaxial extension even though it has a profound effect on the prediction of the first

normal stress differences in shear.

2.4.  Dimensionless Parameters

In this research, the characteristic Reynolds number based on the flow conditions at the contraction

plane is given by  Re = 2?+vz,2 R2 /?0 , where +vz,2 = Q / pR2  2 is the average axial velocity in the throat of

the contraction, Q is the volume flow rate and  ? = 1.026 g/cm3 is the density of the fluid.  For all the

experiments performed the Reynolds number is Re < 1×10-2, thus inertial effects are negligible.

The Deborah number, De = 8/T, characterizes the relative importance of elastic effects to viscous

effects in the flow.  To determine the Deborah number a characteristic flow timescale, T, and a

characteristic relaxation time of the fluid, 8, must be selected. The characteristic convective timescale of

the flow can then be taken to be the inverse of the deformation rate in the vicinity of the throat of the

contraction plane, T   /  R2 / +vz,2 = ??!1.  The choice of the appropriate relaxation time of the fluid is

discussed in depth in Rothstein and McKinley [5].  This work will follow the same convention, choosing

the zero-shear-rate relaxation time, ?0 = ? 10 / 2?0.  Thus, the Deborah number used in presentation of the
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results of this research is given by De = ?0 +vz,2 / R2.  As we show in §4, the qualitative effects of lip

curvature can also be incorporated by a single reconsideration of the residence time of the fluid element

near the contraction plane.

3.  Results

3.1.  Pressure Drop Measurements

The evolution in the total pressure drop (? Pud) of the 0.025% PS/PS solution flowing through the

four contraction-expansion geometries described in §2.1 was measured for Deborah numbers De #10.5.

In our previous study [5], it was shown that the Stokes flow solution provided by Sampson for the pressure

drop through an infinitesimally thin circular hole in an unbounded rigid wall [28] was in good agreement with

the pressure drop measurements for the flow of the Newtonian oligomeric polystyrene into a 4:1:4

contraction-expansion (corrected using Equation 1)

and this value was thus used to generate the dimensionless pressure drop defined in Equation 2.  

3.1.1.  Effect of Contraction Ratio 

The effect of contraction ratio on the dimensionless extra pressure drop is shown in Figure 4.  In

the absence of elasticity, the pressure drop across the various contraction-expansions should be equal to

that of a Newtonian fluid.  In other words, in the limit De 6 0 we expect P 6 ( ß / 4 )3.  This is true for both

the 4:1:4 and 8:1:8 contraction-expansion, however, for a contraction ratio of ß = 2, the  Sampson flow

assumption of upstream and downstream fluid reservoirs with infinite lateral extent is no longer a good

approximation.  The presence of the upstream and downstream walls result in a dimensionless pressure
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d r o p  c o n s i d e r a b l y  s m a l l e r  t h a n  e x p e c t e d ,

P (De << 1, ß = 2) .0.08.  As the Deborah number is increased, the measurements for each of the

contraction ratios examined show a monotonic increase in the dimensionless pressure drop beginning at a

critical Deborah number.  The value of the critical Deborah number increases slightly with contraction ratio,

0.3 . Decrit . 0.8, but is consistently close to the Deborah number at which the coil-stretch transition

occurs in a homogeneous extensional flow, De = 0.5.  As the Deborah number is increased still further the

rate of increase in the dimensionless pressure drop is greatly reduced.  These trends in the evolution of the

entrance pressure drop have been observed previously in experimental studies of polyacrylamide-based

[6] and polystyrene-based fluids flowing [5] through 4:1:4 axisymmetric contraction-expansions, the latter

being reproduced in Figure 4. As stated previously, these large additional pressure drops associated with

the addition of very small amounts of high molecular weight polymers to Newtonian solvents have yet to

be even qualitatively simulated numerically [7-9]. 

The onset of an elastic flow instability is also indicated in the pressure drop data in Figure 4.  A

complete discussion of the nature of this elastic flow instability is presented in §3.4.  A hypothetical sketch

of the line of neutral stability motivated by previous studies of PIB/PB fluids [16] is superimposed over the

4:1:4 and 8:1:8 data.  Limitations in the hardware and the sensitivity of our measurement techniques made

it impossible to reach Deborah numbers large enough to observe an elastic instability in the 2:1:2

contraction-expansion. It is important to note that, in each case, the enhanced pressure drops measured

experimentally are not directly connected with the onset of any elastic instabilities.  Thus, regardless of

whether a numerical simulation can predict the onset of an elastic instability, the constitutive model should

still be able to predict the large enhanced pressure drops associated with steady viscoelastic entrance flow
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before any flow instabilities occur.

3.1.2.  Effect of Re-entrant Corner Curvature

The effect of re-entrant corner curvature on the dimensionless pressure drop is shown in Figure 5

for the 4:1:4 contraction-expansion with sharp (Rc < 0.01R2) and rounded (Rc = 0.5R2) re-entrant corners.

The resulting plots are very similar to Figure 4, showing all the same qualitative features.  At low Deborah

numbers, the dimensionless pressure drop is Newtonian-like for both re-entrant corner curvatures.  The

limiting value of the dimensionless pressure drop at low Deborah number for the rounded re-entrant corner

is small, P .0.35, because the presence of the re-entrant corner curvature has essentially been ignored in

Equations 4 and 5.  The regions of strong enhanced pressure drop and the onset of the elastic instability

are still present even when the re-entrant corner has been rounded.  In fact, the only noticeable effect is a

shift of onset conditions for different flow regimes to higher Deborah numbers with increasing re-entrant

corner curvature.  This is consistent with an overprediction of the characteristic deformation rate near the

throat, which is at present taken to be the deformation rate within the contraction throat, ?? = +vz,2 / R2,

independent of re-entrant corner curvature.  We return to this shift in onset conditions in §4. 

These experiments show that the existence of enhanced pressure drop measurements above and

beyond the Newtonian pressure drop (P > 1) do not depend qualitatively on re-entrant corner curvature

nor on the onset of elastic instabilities.  Thus, numerical simulations should be able to remove the singularity

associated with the sharp re-entrant corner and without hindering the  ability of the constitutive model to

predict the large enhanced pressure drop seen in experiments.

3.2.  Vortex Growth Dynamics
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Flow visualization was used to observe the vortex growth dynamics upstream of the contraction

for the four geometries describe in §2.2 for Deborah numbers De . 11.  A detailed description of the

vortex growth and development in the 4:1:4 contraction-expansion with increasing Deborah number has

been presented in Rothstein and McKinley [5] and here we focus on changes resulting from varying the lip

curvature and the contraction ratio. 

3.2.1.  Effect of Re-entrant Corner Curvature

The pseudo-streak images on the left-hand side of Figure 6 show the vortex growth and

development of the vortex upstream of the sharp 4:1:4 contraction-expansion at Deborah numbers of De

= 1.6, 2.6 and 3.6 while the images on the right-hand side show the vortex development upstream of the

4:1:4 rounded contraction-expansion at the same Deborah numbers.  These images demonstrate the

dramatic delay in corner vortex development that results from the introduction of curvature to the re-entrant

corner.  At low Deborah numbers the PS/PS solution is essentially Newtonian and small, weak recirculation

zones known as ‘Moffatt vortices’, which characteristically have concave dividing streamlines, exist in the

stagnant corners just upstream of the contraction plane.  An example of the flow patterns observed before

the vortex growth and the increase in the pressure drop is shown in Figure 6(d).  As the Deborah number

is increased, the corner vortices increase in size and strength, Figure 6(a) and 6(e).  The corner vortex

‘fingers’ out towards the contraction entrance and the dividing streamline becomes convex.  As the

Deborah number is increased still further, a pronounced increase in the dimensionless pressure drop is

observed and the corner vortex begins to grow upstream, Figure 6(b) and 6(f).  In Figure 6(c), the

presence of a global instability in the flow is evident from the non-symmetric corner vortex.  Visual

observations and LDV measurements of this vortex show that the vortex boundary precesses in the
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azimuthal direction so that fluid elements in fact follow a helical path into the orifice. 

The vortex growth dynamics of the 4:1:4 rounded contraction-expansion are quantified in Figure

7 through measurements of the dimensionless reattachment length and coordinates of the vortex center as

a function of Deborah number.  To motivate the discussion of re-entrant corner curvature effects, the

reattachment length of the 4:1:4 sharp contraction-expansion has been superimposed over the complete

set of 4:1:4 rounded contraction-expansion data.  At low Deborah numbers, the dimensionless reattachment

length is constant with the expected value for creeping Newtonian flow.  As the flow rate is increased, the

reattachment length and the axial location of the vortex center begin to increase monotonically with Deborah

number.  The radial location of the vortex center moves inward from the stagnant corner to a position ? -

2 which then remains constant as the vortex grows upstream with increasing Deborah number. Upon the

onset of the elastic flow instability, all of the measured lengths begin to oscillate with the unsteady motion

of the vortex.  These data show the same general functional dependence on Deborah number as our earlier

measurements for the sharp 4:1:4 contraction-expansion [5].  The principal result of rounding of the re-

entrant corner is to cause a delay of the vortex growth dynamics to higher Deborah number.

3.2.2.  Effect of Contraction Ratio 

In Figure 8, the dimensionless reattachment length and coordinates of the vortex center are shown

for the 8:1:8 contraction-expansion.  The vortex growth dynamics for the 8:1:8 contraction expansion are

similar to those described above; dominated by the presence and upstream growth of an elastic corner

vortex.  The principal difference arises from the onset conditions for the transitions into different vortex

growth regimes.  For both the 4:1:4 and the 8:1:8 contraction-expansions the critical Deborah number for

the onset of observable corner vortex growth is approximately 20% larger than that for the onset of
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enhanced pressure drop growth.  The kinematics of these two effects appear to be quite strongly

correlated.

In Figure 9, pseudo streak images upstream of the 2:1:2 contraction-expansion are shown  for

Deborah numbers of De = 0.6, 0.9, 1.1 and 1.5.  As observed for both the 4:1:4 and the 8:1:8 contraction-

expansions, at low Deborah numbers a Moffatt vortex is present in the upstream stagnant corner as shown

in Figure 9(a).  However, in contrast to the results presented for the previous contraction ratios, as the

Deborah number approaches unity, the corner vortex decreases in size and a separate and distinct ‘lip’

vortex forms near the re-entrant corner, Figure 9(b).  The lip vortex then proceeds to grow outward, Figure

9(c), until it reaches the stagnant corner at which point it grows upstream in a manner consistent with the

corner vortex growth dynamics described above for larger contraction ratios.   

Digital particle image velocimetry (DPIV) measurements for Deborah numbers of De = 0.9 and

1.5 are shown in Figure 10.  These velocity vector field measurements correspond to the streak images

shown in Figures 9(b) and 9(c).  The vectors are scaled such that an arrow of length

l / R2 = 0.25 corresponds to a velocity magnitude of v / <vz>2 = 1.  The DPIV measurements in Figure

10(a) demonstrate the complete suppression of the corner vortex with the presence of the lip vortex.  In

fact, the fluid flows into the stagnant corner and then reverses direction in order to flow back upstream,

around the lip vortex and into the contraction.  The vector field in Figure 10(b) is very similar to the vector

field measurements of elastic corner vortices upstream of a 4:1:4 sharp contraction-expansion presented

previously [5].  This reinforces our previous observations which indicate that once the lip vortex has

reached the stagnant corner, the dynamics of the subsequent elastic vortex growth are identical to those

observed in contraction ratios that do not demonstrate formation of a distinct lip vortex.
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The dimensionless reattachment length and coordinates of the vortex center are shown in Figure

11.  These measurements quantify the spatial characteristics observed in the pseudo streak images.  At low

Deborah numbers, the dimensionless reattachment length is again constant with the expected value for the

Newtonian Moffatt vortex.  As the Deborah number is increased, the reattachment length decreases

drastically as the lip vortex begins to develop.  At this point, the coordinates reported in Figure 11 shift from

the disappearing Moffatt vortex to the center of the now-dominant and topologically-distinct lip vortex. As

the lip vortex grows outward, the reattachment length remains quite small and the axial position of the lip

vortex center remains relatively constant.  Once the lip vortex has reached the stagnant corner, the radial

location of the vortex center saturates at ? - 1.5 and the large elastic corner vortex begins to grow

upstream.  Previous experimental measurements [16; 17] indicate that the lip vortices are unsteady in time

and three dimensional in nature, but within the sensitivity of our velocity and pressure measurement

techniques, the lip vortex resulting from the flow of a PS/PS solution through a 2:1:2 contraction-expansion

is found to be steady in time. The difference may be a consequence of the difference in operating

procedure; earler studies imposed a constant pressure difference ? Pud across the contraction geometry and

determined an average flow rate or velocity, whereas in the present experiments we use a fixed

displacement rate and measure the ensuing pressure drop.

3.3.  Laser Doppler Velocimetry Measurements

Axial velocity measurements taken along the centerline of the 4:1:4 axisymmetric abrupt

contraction-expansion are shown in Figure 12.  The dimensionless velocity measurements, vz/<vz>2, are

plotted from locations far upstream of the contraction plane, z/R2 > !10, to positions inside the throat, z/R2
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= 0.25.  In a Poiseuille flow, the velocity on the centerline is equal to twice the average velocity in the tube

vz(r = 0) = 2<vz>.  Therefore, one would expect that for a constant viscosity fluid, the dimensionless

centerline velocity well upstream of the contraction plane would be equal to vz/<vz>2 = 2/ß2 = 0.125, while

the  d imens ion less  ve loc i ty  wi th in  the  th roa t  would  be  equa l  to

vz/<vz>2 = 2.  This is confirmed far upstream, where the shear rate is quite low and where there are no

extensional effects influencing the velocity profile.  As the fluid approaches the contraction, the velocity

increases to conserve mass as the radius of the tube abruptly contracts.  At low Deborah numbers, this

increase is observed to occur smoothly, beginning at an axial position of  z/R2 .!2.5.  With the initial

increase in Deborah number, the velocity increase shifts slightly downstream towards the contraction plane;

however, as the flow rate is increased further, the velocity gradient along the centerline is reduced and the

influence of the contraction is felt by the flow further and further upstream.  This latter effect takes place

in conjunction with the elastic vortex growth observed in §3.2.  As the fluid enters the throat, there is a

sharp elastic overshoot in the velocity at all Deborah numbers, including a small jump in the low Deborah

number case, De = 0.5.  The magnitude of this overshoot increases with Deborah number, but the location

of the maximum does not change.  Further downstream, the centerline velocity reduces to a value consistent

with Poiseuille flow, for all but the highest Deborah numbers in which the velocity remains slightly high than

vz/<vz>2 = 2 for the range of axial positions that can be measured with the present apparatus. Additional

LDV measurements show that, the non-monotonic trend in the evolution of the  centerline velocity profile

is independent of contraction ratio and re-entrant corner curvature. 

3.4.  Flow Stability

While studying the flow of the PS solution into both the 4:1:4 and the 8:1:8 contraction-expansions,
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a slow non-symmetric precession of the enlarged corner vortex was visually observed at large Deborah

numbers.  It should be reiterated here that within the sensitivity of our LDV and pressure measurements

the 2:1:2 contraction-expansion was found to be stable at all Deborah numbers tested.  This does not

preclude the possibility of observing the instability at a higher Deborah number or possibly with more

sensitive measurement techniques.  

The onset of an elastic instability is first indicated by small amplitude oscillations in the global

pressure drop and local velocity measurements which are observed to grow in magnitude with increasing

Deborah number.  In Figure 13(a), two samples of the temporal variation of the radial, vr(t), and axial,

vz(t), velocity for the flow of the PS/PS Boger fluid into the 4:1:4 sharp contraction-expansion are shown

at Deborah numbers of De = 3.5 and 7.0.  These two measurements were taken at a position, (r/R2, z/R2)

= (0.63, -1.26), just above the re-entrant corner.  A fast Fourier transform (FFT) of the velocity data

allows a quantitative determination of the frequency and amplitude of the velocity fluctuations.  In Figure

13(b) we show the power spectral density (PSD) at De = 3.5.  The Fourier spectrum indicates that the

elastic flow instability has a strong fundamental oscillation frequency, f1 = 0.15Hz, and the existence of a

small peak at the first harmonic.  As the Deborah number is further increased, the intensity of the velocity

fluctuations grows in amplitude, the fundamental frequency of oscillation slowly increases and the higher

harmonics of the fundamental frequency begin to appear.  At a Deborah number of De = 7.0, the PSD plot

in Figure 13(c) contains four detectable harmonics of the fundamental frequency.

The variation in the amplitude and frequency of oscillation determined from the Fourier spectrum,

such as those shown in Figure 13(a) and (b) can be used to determine the critical Deborah number for the

onset of this supercritical Hopf bifurcation, are shown in Figures 14 and 15 respectively. The critical
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( )1 / 2( , , , ) ,critr z t De D eθ ∝ −v (8)

( )1 2c c ,critf D e D e= + − (9)

Deborah number for the onset of the periodic flow is accurately determined by fitting the these results to

the asymptotic results for a supercritical Hopf bifurcation [29]  

where c1 and c2 are constants.  These expressions are valid only in the linear limit, such that

(De ! Decrit) << 1.  Theoretically, in this limit only the fundamental frequency will exist in the Fourier

spectrum, however, a small first harmonic peak is present in the experiments at all but the very lowest

unstable flow rate.  To circumvent this difficulty, a cutoff for linearity is defined such that only data taken

at Deborah numbers for which the amplitude of velocity fluctuations of the fundamental frequency are an

order of magnitude greater than those of  the first harmonic,  are used
0 02

( , , , ) 10 ( , , , ) ,
f f

r z t r z tθ θ>v v

to determine Decrit from Equations 8 and 9.  The results of these fits are superimposed on the data in

Figures 14 and 15 and the critical Deborah numbers are tabulated in Table 4.   

Critical Deborah Number for the Onset of the Elastic
Flow Instability

4:1:4 Sharp Contraction-Expansion 2.4 ± 0.1

4:1:4 Rounded Contraction-Expansion 3.1 ± 0.2

8:1:8 Contraction-Expansion 4.2 ± 0.2

Table 4: Critical conditions for the onset of the supercritical Hopf bifurcation.
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The initial deviation from axisymmetric stable flow conditions is well describe by linear stability

analysis.  However, when De >> Decrit nonlinear dynamics begin to dominate the flow kinematics.  These

nonlinear effects are first observed in the Fourier spectrum as higher harmonics of the fundamental

frequency and the transition from a periodic to a period-doubling instability [16].  Another manifestation

of these nonlinear dynamics observed in the present experiments is the development of a high speed

‘jetting’ instability near the lip of the contraction in the 4:1:4 contraction-expansion, which has not been

reported previously.  After the onset of the elastic flow instability, the upstream vortex breaks symmetry

and begins to precess in the azimuthal direction.  The extent of this symmetry breaking in the vortex height

increases with Deborah number.  In conjunction with the break in symmetry, a strong jet of high speed fluid

appears, originating from the base of the upstream vortex and flowing directly into the throat just upstream

of the contraction plane.  By focusing the LDV probe at a position (r/R2, z/R2) = (1.57, -0.16) within the

vortex and just upstream of the contraction plane, it is possible to quantify this jetting flow instability.

Measurements of the time-varying radial velocity are shown in Figure 16(a).  The flow is initially steady with

a velocity vr .3.5 mm/s (vr/<vr>2 . 0.063) directed radially outward, indicating that the probe is focused

within the recirculating region of the corner vortex.  As the flow develops, the jetting flow appears as large

amplitude periodic spikes in the velocity measurements.  These spikes are larger in magnitude, vr . !10

mm/s (vr/<vr>2 . 0.18), than the stable recirculating flow velocity and directed inward toward the

contraction entrance.  The Fourier spectrum presented in Figure 16(b) contains several higher harmonics

of the fundamental frequency including a first harmonic signal, the amplitude of which is nearly equivalent

to that of the fundamental frequency.  The fundamental frequency of the jetting instability is identical to the

frequency of the upstream vortex precession.  We therefore postulate that this instability is in fact a helical
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jet of fluid running the entire axial length of the upstream vortex.   

Two streak images and a DPIV vector field showing this instability can be found in Figure 17.  The

global structure of the unstable vortex is seen in Figures 17(a) and a box is sketched around the location

of the jetting instability which appears at the base of the precessing asymmetric upstream vortex at the point

of its greatest upstream extent.  This box also indicates the field of view blown up in the streak image of

Figure 17(b) and the vector field in Figure 17(c).  Although these close-up images were taken at the same

Deborah number as the full field of view, the images were not collected simultaneously and a slight

difference in the temporal development of the jetting instability was unavoidable.  The vectors in Figure

17(c) are scaled such that an arrow of length l/R2 = 0.5 corresponds to a velocity of v/<vz>2 = 1 and

clearly demonstrate the strong localized nature of this instability.  For a brief video clip of this instability we

encourage the reader to either visit our website [30] or to contact the authors directly.  
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4.  Discussion

In this work, we have presented a comprehensive set of experimental measurements of the complex

flow of a dilute monodisperse polystyrene solution into axisymmetric contraction-expansions of various

contraction ratios and re-entrant corner curvatures.  The rheological properties of the test fluid have been

well characterized in both shear and extension, making these experiments a demanding comparative tool

for constitutive models and numerical simulations.

An enhanced pressure drop associated with the extensional flow of the viscoelastic fluid across an

axisymmetric contraction-expansion but not directly connected with the onset of an elastic instability was

observed for all geometries tested.  Measurements of the flow kinematics for each geometry were also

made with streak images, LDV and DPIV.  The general evolution of the pressure drop measurements and

the flow kinematics were found to be independent of the radius of curvature of the re-entrant corner,

although the critical conditions for the transitions in pressure drop and vortex growth are a function of both

the lip curvature and the contraction ratio.  LDV and pressure drop measurements were used to

characterize a supercritical Hopf bifurcation at large Deborah numbers which resulted in a global elastic

instability, breaking the symmetry of the large enhanced upstream vortex and precessing in the azimuthal

direction.  This instability was observed for the 4:1:4 and 8:1:8 contraction-expansions irrespective of lip

curvature.  The 2:1:2 contraction-expansion was found to be stable up to the maximum Deborah numbers

that could be tested.

4.1.  Scaling of the Effects of Lip Curvature

The experiments with curved re-entrant corners support earlier observations in PIB/PB  [13; 16]

and PAA/CS elastic fluids [3; 13; 20] and suggest that numerical simulations should be able to remove the



26

singularity associated with the sharp re-entrant corner without affecting the ability of the constitutive model

to predict the large enhanced viscoelastic pressure drop seen in experiments.  The qualitative similarity seen

in Figures 5, 6 and 7 between the evolution in the vortex dimensions (?, ? and ?) and the extra pressure

drop (P) with increasing Deborah number in the 4:1:4 contraction-expansions with sharp and rounded re-

entrant corners suggest that it should be possible to collapse the data into a single generic response for a

given contraction ratio.  The principal effect of smoothing the re-entrant corner is to increase the radius of

curvature and decrease the rate of deformation along the streamlines entering the contraction by removing

the re-entrant corner singularity.  For a low Reynolds number flow, an appropriate estimate of the residence

time for a fluid element in the vicinity of the curved throat region is given by T . (R2+Rc)/<vz>2.  The

Deborah number then becomes De = ?<vz>2/(R2+Rc).  This simple scaling of the abscissa does a

remarkable job of collapsing the vortex growth data for the 4:1:4 sharp and rounded re-entrant corners

onto a single curve, as shown in Figures 18(a), even matching the transition to time-dependent flow.

Changing the local curvature of the lip entrance also affects the value of the entrance pressure drop

for the creeping flow of a Newtonian fluid that is used to scale the ordinate axis in Figure 18(b).  As defined

in Equation 2, the dimensionless pressure drop tends to be underpredicted (P < 1) for geometries with

curved re-entrant lips.   Comparison of the dimensionless pressure drop data after appropriately shifting

the Deborah number in the manner described above supports the expectation that the extra pressure drop

at high Deborah numbers following upstream vortex growth is independent of the specific details of the local

lip curvature.  The principal effect of the lip is experienced at low Deborah number when the converging

flow near the contraction plane is of the Sampson type.  The dimensionless pressure drop (which we always
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scale with the Sampson flow solution for entrance in a sharp orifice ? PS = 3?0Q/R2  3) can thus be adjusted

through the addition of a Couette-like, creeping flow correction, Cs(ß, Rc) = Psharp(De = 0) ! Pcurved(De =

0), to take into account the pressure drop corresponding to the Newtonian flow through the curved

entrance region.  In Figure 18(b), the results of this scaling of the dimensionless pressure drop

Pshifted = Pcurved + Cs(ß, Rc) is shown for two cases: the 4:1:4 sharp and rounded contraction-expansions

where the Couette-like correction was found from experiments to be Cs(Rc/R2 = 0.5, ß = 4) = 0.35 and

the sharp and rounded 8:1:8 contraction-expansions where Cs(Rc/R2 = 0.18, ß = 8) = 4.6.  The latter data

are presented to demonstrate the robustness of this scaling over several contraction ratios and radii of

curvature.  It is dangerous to generalize based on experimental data with only two values of radius of

curvature (Rc = 0.18R2 and 0.5R2), but this rescaling of the Deborah number also collapses quite well the

trends of vortex reattachment length reported in the literature for PIB/PB Boger fluids [16].  It would be

very interesting to see if this simple incorporation of curvature effects on vortex size and pressure drop is

supported by numerical calculations in which the radius of curvature of the re-entrant corner is

systematically varied over a broad range.

4.2.  The Role of Transient Extensional Viscosity

With variations in the contraction ratio, the flow field upstream of the contraction-expansion was

found to evolve along two distinct vortex growth pathways.  For a contraction ratio of β  = 2 a steady

elastic lip vortex was observed, while for contraction ratios of 4 # β  # 8 a corner vortex was seen.  The

presence or the absence of a lip vortex has been noted in many different studies and depends not only on

the contraction ratio through which the fluid is forced, but also on the formulation of the fluid used.  These

observations are summarized in Table 2 which, when completed with the vortex growth data for the PS/PS
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Boger fluid from this study, shows a marked similarity between the behavior of the PS/PS and PAA/CS

test fluids.  It has been conjectured that the differences in flow transitions for fluids with ostensibly identical

shear properties question must arise from differences in extensional rheology [5; 16; 31].  This hypothesis

suggests that the differences observed in contraction flows and other complex flows arise from changes in

the molecular characteristics of the equilibrium conformations of the polymer chains resulting from solvent

quality or stiffness of the polymer backbone [13; 18; 32].  It follows that these initial equilibrium

conformational differences will also have a large effect on the evolution of non-equilibrium properties such

as the transient extensional stress growth in the fluid. With the advent of the filament stretching rheometer

and the advances in simulation techniques for bead-rod and bead-spring models, it is now possible to probe

such hypotheses both experimentally and numerically [33]. 

A fluid filament experiencing a constant uniaxial extension rate in a filament stretching rheometer

should, at least qualitatively, describe the uniaxial elongation of the fluid element flowing along the centerline

into the contraction-expansion even if the extension rate in this case is not constant.  If one assumes a fully

developed Poiseuille flow in the throat of the axisymmetric contraction-expansion, then one can calculate

the total Hencky strain experienced by a fluid element moving along the centerline from far upstream into

the middle of the throat as

Dotted lines representing the total accumulated strain of a fluid element traveling along the centerline into

each of the geometries tested are superimposed over the extensional rheology data in Figure 19.  These

measurements seem to reinforce our previous conjecture.  The PS/PS solution flowing into the 2:1:2
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contraction-expansion demonstrates no significant strain-hardening while the extensional viscosity of the

PS/PS solution flowing into the 4:1:4 and especially the 8:1:8 contraction-expansions is greatly enhanced.

Thus, in the case of a PS/PS test fluid, a simple doubling of the extensional viscosity along the centerline

is enough to eliminate the lip vortex.  If this result could be generalized to other polymeric fluids, real

physical insight might be achieved.  Unfortunately, in similar extensional rheology tests of the same PIB/PB

Boger fluid used by McKinley et al. [16] which are also shown in Figure 19, the lip vortex is present at all

contraction ratios, ß < 8, corresponding to Trouton ratios up to Tr . 150; well past the Trouton ratio at

which the flow of the PS/PS Boger fluid begins to demonstrate elastic corner vortex growth.  

Although these two fluids demonstrate similar behaviors in extension, it is still important to point out

their differences.  The Trouton ratio of the monodisperse, dilute PS/PS solution grows more quickly and

can be up to 50% larger than the Trouton ratio of polydisperse, semidilute PIB/PB at moderate Hencky

strains.  Li and Larson [33] used a bead-spring simulation to show that for a dilute high molecular weight

polymer dissolved in a good solvent, both the stress and the birefringence rise much more rapidly with strain

than for the same polymer dissolved in a theta solvent.  Differences in solvent quality between these two

Boger fluid formulations, the PS being dissolved in a slightly better solvent than the PIB, may still hold the

key to differences in the kinematics and the dynamics of the flow.  The effect of solvent quality has been

systematically investigated in several model complex flows, for example viscoelastic flow past falling

spheres.  In a series of experiments performed by Solomon and Muller [32] using high molecular weight

PS fluids, the increase in the drag coefficient above that expected for a Newtonian fluid was found to

increase with increasing solvent quality.  Unfortunately, this argument is not entirely consistent throughout

the literature.  Chmielewski et al. [18] compared the drag past a falling sphere for two different Boger

fluids.  They found that the drag increased over the Newtonian value for the PIB solution in a close to theta
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solvent (polybutene), but the drag decreased below Newtonian for a PAA solution in a good solvent (corn

syrup/water).  These results are not consistent with our argument which would hold that because the PAA

is dissolved in a better solvent than the PIB and it should demonstrate a more rapidly strain hardening

extensional viscosity and a larger drag coefficient.  The difference in this case may be the result of the shear

thinning in the solution viscosity of the PAA/CS/H2O fluid which is of the same order of magnitude (25%)

as the reduction in drag.

In our experiments, the enhanced pressure drop measurements across the contraction-expansions

were found to be qualitatively independent of both the contraction ratio and the radii of curvature of the re-

entrant corner.  However, even with rounded re-entrant corners, these large additional pressure drops have

not been predicted by any existing numerical simulations using simple dumbbell models [7-9].  The evidence

suggests that these discrepancies arise because of the inability of current bead-spring constitutive models

to properly describe the extensional rheology of the polymer solutions.  Most notable is the failure of these

constitutive models to qualitatively predict the stress-conformation hysteresis first observed by Doyle et al.

in measurements of uniaxial transient elongation [10; 11].  To capture such effects it may be necessary to

resolve the non-equilibrium internal dynamical structure of the polymer chains recently observed by Perkins

et al. [34] by performing simulations with bead-rod chain models that can capture such ‘configurational

hysteresis’.  However, an excellent description of the extensional viscosity alone might not be adequate to

accurately model the flow into an axisymmetric contraction-expansion.  Observations of the polystyrene

Boger fluid in transient uniaxial extensional demonstrate no sign of strain hardening or of the dissipative

stress suggested by stress-conformation hysteresis at the small strains achieved by a fluid element traveling

along the centerline of the 2:1:2 axisymmetric contraction-expansion (e = 1.386) and yet the pressure drop

measurements still show a dramatic enhancement.  Presumably, this results from the much larger
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deformations experienced by fluid elements passing near the re-entrant corner singularity but this cannot

be confirmed until simulation are performed using a suitable constitutive model.

4.3.  The Normal Stress Ratio

A combined knowledge of the shear and extensional properties of these polymeric fluids should

ideally provide a means of predicting the vortex growth dynamics a priori.  As the contraction ratio is

increased at a fixed Deborah number, the shear rate at the tube walls upstream of the contraction decreases

as  while at the same time, the accumulated strain along the centerline increases as e % lnß.  Thus,1 3

1
,γ

β
∝&

there are two competing effects which contribute to the fluid’s choice of vortex growth evolution; namely,

extensional stresses and shear induced normal stresses.  It is clear from these simple estimates of the strain

and deformation that a lip vortex is present for elastic test fluids for contraction ratios which generate very

little extension of the polymer chain along the centerline; they may therefore be considered to be elastically

shear-dominated.  For a given contraction ratio, the extensional stresses increase dramatically as the

Deborah number is increased; whereas, for most Boger fluids, the first normal stress difference tends to

saturate due to shear thinning arising from finite extensibility effects.  A large elastic vortex then supplants

the lip vortex.  Similarly, as the contraction ratio is increased, the extensional stresses developed within the

contraction flow dominate the normal stress difference arising from shear and, once again, a corner vortex

replaces the lip vortex.   

We have argued that the flow kinematics associated with the transition from lip to corner vortex

appear to be driven by a change in the dynamics from a shear dominated to an extension dominated flow.

A possible means of quantifying this transition is to compare the normal stresses generated by the shear flow

along the walls to the extensional stresses resulting from the elongational flow along the centerline.  We thus

consider a dimensionless normal stress ratio defined as
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where TR(e) is the Trouton ratio evaluated at the total Hencky strain accumulated along the centerline of

the contraction-expansion and SR(??) is the shear-rate-dependent stress ratio.  Although, we differentiate

explicitly between the extension rate ?e and the shear rate ??, in a nonhomogeneous flow, such as the one

considered here, it is sufficient to approximate both as ?? . ?e . <vz>2/(R2 + Rc).  Arigo and McKinley [37]

used this dimensionless group to help rationalize the differences in the wake developing downstream of

spheres sedimenting in dilute and concentrated viscoelastic fluids, however, to our knowledge it has not

been used to compare differences between different ideal elastic Boger fluids.  In Figure 20, the normal

stress ratio is plotted as a function of contraction ratio for the PS/PS, PIB/PB and PAA/CS Boger( )ℵ

fluids used in contraction flow publications [5; 13; 16; 20].  Of course, this normal stress ratio is also a

function of deformation rate and should be represented as a two-dimensional surface,   Here( , ).Deβℵ

we have chosen to evaluate the normal stress number at the deformation rate (<vz>2/R2) corresponding to

the onset of the first significant elastic vortex growth.  The shear and extensional rheological data used to

calculate the normal stress number for the PIB/PB and PS/PS Boger fluids can be found in Figures 2, 3

and 19 and in McKinley et al. [16], while analogous shear and extensional rheology data for PAA/CS

Boger fluids can be found in Stokes [38].  The PAA/CS Boger fluids characterized by Stokes [38] are

similar, but not identical, to the test fluids used by Nguyen and Boger [20], so two representative solutions

denoted Fluid C (?0 = 1.5Pa·s) and Fluid E (?0 = 23Pa·s) by the author have been chosen for comparison.

Note that the extensional rheology of PAA/CS solutions is extremely difficult to measure in a filament

stretching rheometer because of the tendency of the corn syrup solvent to crystallize at the surface of the

fluid filament.  At low Hencky strains, the resulting ‘skin’ on the PAA/CS filament results in an
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overprediction of the Trouton ratio and a large uncertainty in the normal stress ratio for the 2:1 contraction.

At moderate to large Hencky strains (e $3), however, the skin does not affect the extensional data.  

It can be seen from Figure 20, that there is a marked difference between the normal stress ratio

calculated for the PS/PS and the PAA/CS solutions and for the PIB/PB solution.  The normal stress ratio

decreases monotonically with contraction ratio.  For an ideal elastic liquid, which can be modeled at the

most elementary level by the Oldroyd-B model, ! can be expressed analytically for De > 0.5 by the

following expression

where  ?? . ?e . <vz>2/(R2 + Rc) and e = 2lnß.  The magnitude of this ratio thus depends on the ratio ?p/?s

(which depends on solvent quality and polymer concentration), the Deborah number and the contraction

ratio.

Over the entire range of contraction ratios examined, the normal stress ratio of the PS/PS and

PAA/CS solutions are significantly smaller than the normal stress ratio of the PIB/PB solution.  A line can

be drawn through the data at a normal stress ratio of ! .0.055 ± 0.005 which divides the data into regimes

of elastic corner vortex growth (! . 0.055) and lip vortex growth (! / 0.055).  As the Deborah number,

and subsequently the tensile normal stress difference in extension, increase, we expect the normal stress

ratio to decrease monotonically and the lip vortex regime to eventually give way to elastic corner vortex

growth. This is the first quantitative evidence to suggest that the kinematics of the flow can be systematically

rationalized on the basis of rheological information.  It would be interesting to compare these observations

with Brownian dynamics computations of the ratio of elastic stress differences in shear to first normal stress
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differences in extension as the solvent quality or excluded volume is systematically modified.

The pressure drop measurements, LDV and DPIV measurements, and the streak images coupled

with the use of a monodisperse dilute polymer solution, well characterized in shear and extension, make

this set of experiments, in conjunction with our previous work [5], a useful tool for forming comparisons

with theoretical and numerical work.  The principal remaining difference between different experimental

observations of the lip vortex is now the time-dependent characteristic observed in different elastic fluids.

Possible explanations here may include the method of observation used (e.g. time-averaged streak

photography or time-resolved LDV and DPIV measurements) and, perhaps more importantly, the driving

mechanism used.  In the present work, we use a constant volumetric displacement rate, whereas the

majority of previous studies have imposed a constant global pressure drop across the test geometry.  This

important difference in experimental control parameters leads to different dynamics in many other

bifurcating systems (e.g. spurt and stick slip in melt extrusion) and may prove to be a useful avenue for

future research studies.
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A.  List of Figure Captions

Figure 1: Schematic diagram of contraction geometry including definitions of important length scales.

Figure 2: Rheological material functions of the 0.025wt% monodisperse polystyrene in oligomeric
polystyrene solution. The data include: Ä, steady shear viscosity, ?( ) [Pa@s]; ~, dynamic viscosity, ?N(? )??
[Pa@s]; " , dynamic rigidity, 2?O(? )/?  [Pa@s2]; !, first normal stress coefficient, ? 1( ) [Pa@s2]; and the??
corresponding fits of the FENE-P, – · –, Bird-DeAguiar, ––, and Zimm model, – –, respectively.

Figure  3: Measurements of the dimensionless transient uniaxial extension, as a function of Hencky0/ ,η η+

strain,  The data include: è, experimental measurements of the 0.025wt% PS/PS solution taken at.tε ε= &
a strain rate of  and – –, FENE-P model fit.  The maximum strain achieved along the centerline-19.1s ;ε =&
of the three contraction ratios tested is also shown.

Figure 4: Dimensionless pressure drop measurements, P(De, ß, Rc) = ? PNud(De, ß, Rc) / ? PNud (Q, De =
0, Rc = 0, β  = 0), of the 0.025wt% PS/PS solution across several axisymmetric contraction-expansions
as a function of Deborah number, De = ?0 .  The figure includes: ", ß = 8; ~, ß = 4; and ª, ß = 2.  The??
hollow symbols represent stable flow conditions while the filled symbols represent unstable flow conditions.

Figure 5: Dimensionless pressure drop measurements, P(De, ß, Rc), of the 0.025wt% PS/PS solution
across two 4:1:4 axisymmetric contraction-expansions with different entrance lip curvature as a function
of Deborah number, De = ?0 .  The figure includes: ~, ß = 4 and Rc = 0; and ", ß = 4 and  Rc = 0.5 R2.??
The hollow symbols represent stable flow conditions while the filled symbols represent unstable flow
conditions.

Figure 6: Streak images comparing the flow upstream of a 4:1:4 axisymmetric contraction-expansion with
(a)-(c) a sharp entrance lip, Rc = 0, and (d)-(f) a rounded entrance lip,  Rc = 0.5 R2, taken at identical
Deborah numbers of (a),(d) De = 1.6, (b),(e) De = 2.6, and (c),(f) De = 3.6.

Figure 7: Characteristics of the upstream vortex growth dynamics as a function of Deborah number for
the 4:1:4 axisymmetric contraction-expansion with rounded entrance lip, Rc = 0.5 R2,: !, vortex
reattachment length, ? = Lv / R2; ª, radial location of the vortex center, ? = Rv / R2; ~, the upstream location
of the vortex center, ? = Zv / R2; and Ç, vortex reattachment length for the 4:1:4 contraction-expansion with
sharp entrance lip, Rc = 0.

Figure 8: Characteristics of the upstream vortex growth dynamics as a function of Deborah number for
the 8:1:8 axisymmetric contraction-expansion: !, vortex reattachment length, ? = Lv / R2; ª, radial location
of the vortex center, ? = Rv / R2; and ~, the upstream location of the vortex center, ? = Zv / R2.

Figure 9: Streak images of flow upstream of a 2:1:2 axisymmetric contraction-expansion for Deborah
numbers of (a) De = 0.6, (b) De = 0.9, (c) De = 1.1 and (d) De = 1.5 showing the development and
growth of the lip vortex.



38

Figure 10: Particle Image Velocimetry (PIV) measurements of the vector fields for the recirculating flow
upstream of a 2:1:2 axisymmetric contraction-expansion at Deborah numbers of (a) De = 0.9 and (b) De
= 1.5.

Figure 11: Characteristics of the upstream vortex growth dynamics as a function of Deborah number for
the 2:1:2 axisymmetric contraction-expansion: !, vortex reattachment length, ? = Lv / R2; ª, radial location
of the vortex center, ? = Rv / R2; and ~, the upstream location of the vortex center, ? = Zv / R2.

Figure 12: Laser Doppler Velocimetry (LDV) measurements showing the dimensionless axial velocity
along the centerline, vz/<vz>2, as a function of dimensionless axial position, z/R2, for the flow through a 4:1:4
axisymmetric contraction-expansion.  The figure includes: ~, Deborah number of De = 0.5; ", De = 1.0;
ª, De = 1.5; «, De = 2.0; ë, De = 3.0; ¬, De = 4.0; and  ­, De = 5.0.

Figure 13: The onset of a supercritical elastic instability seen in (a) Laser Doppler Velocimetry (LDV)
measurements of the flow upstream of a 4:1:4 axisymmetric contraction-expansion and power spectral
density plots of (b) radial velocity measurements, vr, at a Deborah number of De = 3.5 and (c) axial
velocity measurements, vz, at a Deborah number of De = 7.0.  

Figure 14: Amplitude of velocity fluctuations in the unstable upstream flow into a 4:1:4 axisymmetric
contraction-expansion as a function of Deborah number.  The data include: Ä, experimental measurements,
and ––, the theoretical prediction for a supercritical Hopft bifurcation, |v| -(De - Decrit)1/2.

Figure 15: Fundamental frequency of velocity and pressure drop fluctuations in the unstable upstream flow
into the axisymmetric contraction-expansions as a function of Deborah number.  The data include: Ä, vz for
the 4:1:4 sharp contraction-expansion; ~, vr for the 4:1:4 sharp contraction-expansion;>, vz for the 8:1:8
contraction-expansion;ª, v? for the 8:1:8 contraction-expansion;è,  ? p for the 4:1:4 rounded contraction-
expansion; and ––, the theoretical prediction for a supercritical Hopf bifurcation, f -(De - Decrit).

Figure 16: Nonlinear dynamics of jetting flow observed in (a) LDV measurements of the radial velocity
at a position r/R2 = 1.57 and z/R2 = !0.16 upstream of the 4:1:4 axisymmetric contraction-expansion and
the corresponding (b) power spectral density plot at a Deborah number of De = 4.5.

Figure 17: Streak images of the jetting instability upstream of a 4:1:4 axisymmetric contraction-expansion
for Deborah numbers of De = 3.5 showing the (a) full view of the unstable upstream vortex and (b) a
closeup of the jetting instability along with (c) PIV velocity vector field generated from the closeup images.

Figure 18: Master curves of (a) reattachment length and (b) dimensionless pressure drop measurements,
P(De, ß, Rc), for the flow of the 0.025wt% PS/PS solution across two 4:1:4 axisymmetric contraction-
expansions with different entrance lip curvature as a function of Deborah number shifted to account for re-
entrant corner curvature (see text for details).  The figures include: ~, ß = 4 and Rc = 0; ", ß = 4 and  Rc

= 0.5 R2; ª, ß = 8 and Rc = 0; and ë, ß = 8 and  Rc = 0.5 R2.

Figure  19: Uniaxial extensional measurements of Transient Trouton ratio, as a function of Hencky0/ ,η η+
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strain,  for the 0.31wt% PIB/PB solution, ~, and the 0.025wt% PS/PS solution, è, taken at a,tε ε= &
Deborah number of where ?Z is the Zimm relaxation time. The maximum strain achieved along27,Zλ ε =&
the centerline of the 2:1:2, 4:1:4 and 8:1:8 contractions-expansions are indicated by the dashed lines.

Figure  20: The normal stress ratio, ! = SR/TR, as a function of contraction ratio evaluated at the
deformation rate corresponding to the onset conditions for upstream vortex growth.  The data includes: Ä,
the 0.025wt% PS/PS solution (<vz>2/R2 = 5.1s-1); C, the 0.31wt% PIB/PB solution (<vz>2/R2 = 9.2s-1)
from [16]; and two PAA/CS solutions >, Fluid C (<vz>2/R2 = 0.14s-1) and ?, Fluid E (<vz>2/R2 = 2.5s-1)
from [38].
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