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Abstract

The flow of apolystyrene Boger fluid through axisymmetric contraction-expansions having various
contractionratios (2 #b #8) and degrees of re-entrant corner curvatures are studied experimentaly over
alarge range of Deborah numbers. Theided eadtic fluid is dilute, monodisperse and well characterized
in both shear and transient uniaxia extenson. A large enhanced pressure drop above that of aNewtonian
fluid is observed independent of contraction ratio and re-entrant corner curvature. Streak images, laser
Doppler velocimetry and digitad particle image velocimetry are used to investigate the flow kinematics
upstream of the contraction plane. LDV isused to measure velocity fluctuation in the mean flow field and
to characterize agloba dadtic flow ingtability which occurs at large Deborah numbers. For acontraction
raioof b =2 adeady eadticlip vortex isobserved whilefor contractionratiosof 4# b # 8nolip vortex
is observed and a corner vortex is seen. Rounding the re-entrant corner leads to shifts in the onset of the
flow trangtions at larger Deborah numbers, but does not quditatively change the overdl dructure of the
flow fidd. We describe a smple rescaling of the deformation rate which incorporates the effects of lip
curvature and alows measurements of vortex size, enhanced pressure drop and critical Deborah number
for the onset of dastic ingtability to be collapsed onto master curves. Transent extensona rheology
measurements are utilized to explain the sgnificant differencesin vortex growth pathways (i.e. dastic corner
vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in thisresearch and
polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments. We show
that the role of contraction ratio on vortex growth dynamics can be rationalized by considering the
dimensonlessratio of the eagtic normal stress difference in steady shear flow to thosein trandent uniaxia
extenson. It gppearsthat the differencesin this normd sressratio for different fluids at agiven Deborah
number arise from variationsin solvent qudity or excluded volume effects.

Keywords: axisymmetric contraction-expansion, entrance pressure drop, dissipative stress, polystyrene
Boger fluid, PIV, LDV, vortex growth dynamics, entrance lip singularity, extensond rheology



1. Introduction

The flow of aviscodadtic fluid through an axisymmetric contraction-expansion is a complex flow
containing regions of srong shearing near thewalls, nonhomogeneous uniaxid extensgon aong the centerline
upstream of the contraction plane and nonhomogeneous biaxia expanson downstream of the expangon.
The contraction flow is along-standing numerical benchmark for computation of non-Newtonian fluids[1;
2] and isthe subject of severd excellent review articles[3; 4]. The present paper, in conjunction with our
previous work focusing on the 4:1:4 axisymmetric abrupt contraction-expangon [5], is intended to
condtitute a comprehendve set of quantitative experimenta measurements to which theory and numerica
smulaions can berigoroudy compared. To meet thisgod, anided monodisperse, dilute Boger fluidisfirst
thoroughly characterized in both shear and extension. Thisided dadtic fluid isthen used to investigate the
kinematics of the flow through severd axisymmetric contraction-expansons of different contraction ratios
and varying lip curvatures over awide range of Deborah numbers. The experimenta measurementsinclude
globa pressure drop and locd velocity measurements aswell as stresk images of the dastically-enhanced
upstream vortex structures.

Experimenta measurements of the pressure drop for polymer solutions flowing through abrupt
axisymmetric contraction-expansons have shown a substantia extra pressure drop well above the vaue
observed for a Newtonian fluid with equd viscosity at the sameflow rates[5; 6]. In neither case wasthe
observed viscod agtic enhancement of the pressure drop associated with the onset of an elagtic or aninertid
flowingability; however, itisnot even quditatively predicted by existing steady-state or trangent numerica
computetions with ample dumbbell modds[7-9]. In fact, these modds predict a Sgnificant viscodastic

decrease in the pressure drop with addition of polymer to a Newtonian solvent. The failure of these



congtitutive modelsto predict the correct evolution in the properties of complex flowswith Deborah number
may be due to an inadequate description of the interna molecular conformations of the polymer chainsthat
arise during rgpid dretching. This is evident in measurements of trandent uniaxiad extenson where the
exisence of astress-conformation-hysteresis has been experimentally observed [10; 11] and computed
in bead-rod and bead-spring computations[10; 12] but hasyet to be quantitatively predicted by any smple
closed-formdifferential conditutivemodd. A complete discussion of previous experimenta and numerica
sudiesinvolving pressure drop measurementsin contraction flows can befound in Rothstein and McKinley
[5]. One of the mgor gods of the present Sudy is to determine what effects systematic changesin the
contraction ratio and the curvature of the re-entrant corner will have on the magnitude and the onset of this
enhanced pressure drop. Investigation of the role of lip curvatureis especidly important becauseamajor
computationa impediment to smulations of the viscodadtic flow through a contraction-expansion is the
development of singular stress fields near a sharp re-entrant corner.

Measurements of the evolution in the pressure drop generate information about the globa state of
viscoelagtic diress in the flow and are an excellent comparative tool when utilized in conjunction with
measurements of the flow kinematics such as streek images and vel ocity measurements. There have been
agreat number of experimenta investigations deding with the kinematics of the flow through a contraction
over awide range of Deborah numbers, contraction ratios and re-entrant corner curvatures using alarge
variety of different viscodadtic fluids [3; 4; 13]. In experimentswith eastic polymer solutionstwo distinct
pathways for evolution of the vortex growth with Deborah number have been observed, which lead to flow
structurestypicaly described in the literature as corner and lip vortices. 1n each case, aweak, Newtonian

‘Moffatt eddy’ ispresent inthe upstream stagnant corner at low Deborah numbers. Intheregimeof corner



vortex growth, the upstream vortex near the stagnant corner increases in strength and grows radialy
inward. Upon reaching the re-entrant corner, the vortex proceeds to grow steadily upstream with
increasing Deborah number. This pathway can be accurately captured by smulations with appropriate
viscodagtic condtitutive models [8; 14]. By contrast, the lip vortex growth regime is characterized by a
decrease in the corner vortex size as the Deborah number is increased and the formation of a separate,
diginct elasticaly-dominated ‘lip’ vortex near the re-entrant corner [15]. The vortex spreads radialy
outward toward the stagnant corner and subsequently grows upstream in a manner quite smilar to the
corner vortex growth described above. At very high Deborah numbers, the large upstream vortex
observed for both of the vortex growth patterns becomes ungtable to a globa dynamicad mode that isa
sengitive, non-monotonic function of the contraction ratio [16; 17].

The sequence of flow patterns chosen by the viscodadtic fluid is a complex function of the
contraction ratio and the re-entrant lip curvature. Results prior to 1987 are summarized in Boger [3] and
Table 1 summarizes more recent observationsfor severd different Boger fluid formulations. Ingenerd, as
the contraction ratio is increased, the flow moves fromthelip vortex to the corner vortex flow regime, but
the critical contraction ratio for this crossover in vortex evolution pathway is strongly dependent on the
properties of thetest fluid and impossibleto predicta priori. So, why do two dastic fluids such asPIB/PB
and PAA/CS Boger fluids, which have very smilar viscod agtic properties, act so differently in this and
other complex flows? Many researchers have postulated that the answer must arise from differencesinthe
trangent extensond rheology [5; 13; 16; 18]. Until quite recently, reliable measurements of theextensiond
stress of dilute polymer solutions undergoing ided uniaxia extensgon were not possible, but with the advent

of thefilament stretching rheometer, trandent uniaxia extendond rheology measurementsare now tainable



[19], making it possible to test the vaidity of such assartions.

Sharp Re-Entrant Corner Rounded Re-Entrant Corner
Boger Huid Corner Vortex | Lip Vortex Corner Vortex Lip Vortex
PIB/PB [13; 16] b$8 2#b #6.8 b$8 2# b #6.8
PAA/CS[3;13;20] |b$4 b #2 b >4 b #4
PS/PS [5] b=4

Table 1: Vortex growth dynamics for several Boger fluids at various contraction ratios (b = R,/R,, where
R, isthe upstream radius and R, is the radius of the contraction) and re-entrant corner radii of curvature.

The effect of lip curvature on the vortex growth dynamicsis aso summarized in Table 1. Boger
and Binnington [13] presented a systematic photographic study using PIB/PB and PAA/CS Boger fluids
while the vortex growth dynamics observed using a smilar PIB/PB Boger fluid were discussed by
McKinleyetd.[16]. Thesepreviousstudiesshow thet, for the PIB/PB Boger fluid at the contraction ratios
examined, rounding the re-entrant corner leads to increases in the critical Deborah numbers for flow
trangtions, but does not quditatively change the kinematics of the flow fidd. However, rounding the re-
entrant corner of the 4:1 contraction with aradius of curvature equa to 36% of the contraction radius (R,
=0.36R,) resultsin adramatic changein thevortex evolution for the PAA/CS solution [13]. Stresk images
recorded upstream of the sharp re-entrant corner, clearly demondrate the growth dynamics of a corner
vortex. However, the nature of the contraction flow was completely changed by rounding the re-entrant
corner. The formation of the expected corner vortex is suppressed and supplanted by alip vortex [13].
Boger and Binnington thus argue that the evidence suggeststhat rounding the re-entrant corner isequivaent
to decreasing the contraction ratio.

In addition to investigating the evolution of the pressure drop, ancther god of the present Study is



to determine which vortex evolution path isfollowed by adilute and monodisperse polystyrene Boger fluid
that has been well characterized in both extension and in Seady and transent shear flows. To date, we
have reported measurements for flow through a4:1:4 contraction-expansion, but a detailed andysis of the
effect of contraction ratio and re-entrant corner radii of curvature will generate additiond ingght into the
trends observed in the published dataon PIB/PB and PAA/CS Boger fluidslisted in Table 1 when andyzed
in conjunction with measurements of the trandent extensond rheology.

We describe our experimenta gpparatus and techniquesin 82 and report both the steady shear and
trandent uniaxid extensond rheology of the fluid. 1n 83, we first present observation of the enhanced
pressure drop through severd different contraction-expansons. Flow visudization, digitd particleimage
velocimetry (DPIV) and laser Doppler velocimetry (LDV) arethen combined to characterize the evolution
in the kinemétics of the fluid motion with increesng Deborah number. LDV measurements of fluctuations
in the fluid velocity are then used to document the onset of an dadtic indability that eventudly leads to
globd oscillationsin theflow and the devel opment of an interesting jetting indability asthe Deborah number
isincreased. Findly, in 84 we discusstheimplications of our findingsfor smulation and modeling of eadtic
flows through contractions.

2. Experimental
2.1. Flow geometry

A schematic diagram of the axisymmetric contraction-expanson and the important length scdes
associated with itisshownin Figure 1. Theradii of the cylindrical tubes upstream and downstream of the
contraction-expansion are equa and remain condant at R, (=1.27cm) whiletheradiuswithinthe throat of

the contraction isgiven by R,. Severd different orifice plate configurations yielding various contraction



raios (3 / R,/ R,), contraction lengths (L) and re-entrant corner radii of curvature (R, are used in this

sudy and arelisted in dimengonlessform in Table 2.

Description Contraction Ratio | Re-entrant Lip Curvature Contraction Length
B/ R/R) (R/R) (L/R)

212 2 <0.01 0.5

414 4 <0.01 1

4:1:4 Rounded 4 0.5 upstream only 1

818 8 <0.01 2

8:1:8 Rounded 8 0.18 upstream and downstream 2

Table 2: Description of orifice plate geometries used in this study. In each case the value of the upstream
radiusisR, = 1.3cm.

In order to quantify the upstream vortex growth dynamics, it is necessary to define severa
dimensonless length scales to describe both the size and position of the vortex: the distance to the
separation point (? / L,/ R,) and the coordinates of the center of the recirculation denoted by the distance
from the contraction plane (?/ Z,/ R,) and from the centerline (? / R,/ R,).

Asdescribed in Rothgtein and McKinley [5], the fluid isforced a a congtant volume flow rate, Q,
past two flush mounted pressure transduces, here denoted P, and P, located a podtions
z, = 17.62cm far upstream and  z; = 8.26cm far downstream of the contraction plane (located at
z = 0). Under geady flow conditions, the pressure difference measured between the upstream and
downstream transducers results from a combination of the pressure drop dueto Poiseuilleflow inthetube
and an extra pressure drop caused by the presence of the contraction-expanson,
PP = Py ! Py = ?Ppgissiitie t ?Peoqra-  TO iS0late the extra pressure drop across the contraction-

expanson, the pressure drop resulting from the Poiseuille flow in the upstream and downstream tubing as



well as the Poiseuille flow within the throat of the contraction-expangon are removed

pRg =pp, - SN T, LO (1)
p éR' Rg
whereL / (z, ! z;) ! L isthetotd length of straight pipe of radius R, between the pressure transducers
and ? isthe viscosty of the fluid. When the re-entrant corner of the contraction-expansionisrounded, the
flow within the throat is no longer Poiseuille-like over the entire contraction length. An gpproximate
numerica solution to the flow past the rounded re-entrant corner can be calculated for creeping flow of a
Newtonian fluid using lubrication theory or dternatively the exact vaue could be computed numericdly;
however, for smplicity of presentation, the pressure drop resulting from the Poiseuille flow over the entire
contraction length (L) is removed from the experimenta pressure drop measurements irrespective of the

degree of re-entrant lip curvature. Findly, we define a dimensionless pressure drop

DR$(Q.De R.b) @
DP¢(Q.De=0,R=0,b=4)’

P (DeR,b)=

where the pressure drop resulting from the flow of a Newtonian fluid across a 4:1:4 sharp axisymmetric
contraction-expanson a agiven flow rate, ? PN,y (Q, De=0, R,= 0, b = 0), isused in the denominator
to non-dimensionaizethe pressure drop resulting from the flow of the non-Newtonian test fluid acrosseach
of the contraction-expansions a the sameflow rate, regardless of aspect ratio and re-entrant lip curvature.
2.2. Measurement Techniques

The flow fidd upstream of the axisymmetric abrupt contraction isinvestigated using severd different
techniques. digital particle image velocimetry (DPIV); laser Doppler velocimetry (LDV); and flow

visudization through computer-generated streek images. A complete discussion of the DPIV and flow



visuaization techniques used in this paper can be found in Rothstein and McKinley [5].

In the present sudy, LDV measurements are used to supplement the globa veocity vector fidd
measurementsobtained with DPIV. Primarily, weutilize LDV to take pointwise messurements of velocities
near and within the throat of the contraction-expansion where DPIV measurements are not possible due
to the loss of cross-corration between sequentid images in subregions where the velocity or velocity
gradient of the particles become too large. To facilitate these measurements, an acrylic 4:1:4 orifice plate
was created to form the contraction-expanson. LDV can generate time-resolved point velocity
measurements which can be used to search for the onset of dadtic flow ingtabilities near the contraction
plane[15]. Thetest fluid is seeded with the same 50mm diameter slvered hollow glass spheres (Potters
Industry) used for DPIV and flow visudization purposes [5]. Utilizing afast Fourier transform technique,
a spectrum andyzer (Dantec Burst Spectrum Andyzer) is used to compute the vel ocity from the Doppler
shifted frequency signa collected from asingle-colored, fiber optic LDV system (Dantec Electronicsinc.)
coupled with a 300mwW argon-ion laser (lon Laser Technologies). A detailed description of the LDV
system used in this research is presented by Arigo et d. [21]. The spectrum andyzer is an excdlent tool
for extracting average vel ocities from ensembles of Doppler burstsfor dow flows, even in the presence of
noise, but because of the discrete nature and randomarriva times of the Doppler bursts, spectrd andyss
cannot aways be used to effectively resolve dow time-varying vel ocity profiles such asthose that develop
beyond the onset of flow ingtabilities. A Doppler frequency tracker (DISA, Model 55 N 21) istherefore
used to lock into and measure the frequency and amplitude of velocity fluctuations resulting from eagtic
flowingtabilities. Theselocd velocity measurements areamore sendtiveindicator of the critical conditions

for the onset of the dadtic flow ingtability than the globa measurements of the pressure drop used in our



previous study [5].
2.3. Fluid Rheology

The viscodadtic test fluid used in these experiments conssts of an 0.025 wt% solution of
monodisperse polystyrene (PS) (Scientific Polymer Products, Inc.) with amolecular weight of 2.25x10°
o/mol and polydispergity of 1.03 dissolved in oligomeric styrene (Hercules). The solution isadilute Boger
fludwithc/c* =0.24[22]. For completeness, amaster curve of the rheological propertiesfor the 0.025%
PS/PS solution a T, = 25EC, measured with a controlled stress device (TA Instruments, Model
ARI1000N), isreproduced in Figure 2 [5]. Theviscodagtic propertiesof thefluid are characterized in small
amplitude oscillatory shear flow by the dynamic viscosty AN(?) and the dynamic rigidity 220(?)/? while
insteady shear flow, thefluid is characterized by the first normal stress coefficient ? 1(9= (t11( 1 t(J)/?
and viscosty A9). The use of the Rouse-Zimm [23] and the FENE-P model [24] fits plotted in Figure 2
have been discussed in great detail in Rothstein and McKinley [5]. Table 3 contains the parameters
describing the viscometric properties of the PS/PS solution.  As shown in Figure 2, the viscosty of the
solutionis gpproximately constant over severa decades of shear rate. Thefluid is strongly dastic and the
fird norma stress coefficient shear-thins monotonicaly throughout the entire range over which datacan be
obtained. By contrast, the Rouse-Zimm bead-spring model predicts a congtant value of the first normal
stress coefficient as a consequence of the pre-averaging of hydrodynamic interactions [25]. The dash
dotted linesin Figure 2 represent the predictions of the FENE-P modd for the steady shear data The
vaue of the finite extensibility parameter, L2, used in the FENE-P modd is computed from molecular
quantities rather than from fitting and clearly leads to an overprediction of the viscometric properties. An

improved description requires a more detailed trestment of hydrodynamic interactions between segments



of a polymer chain undergoing a steady shearing deformation. One such mode that accounts for the
anisotropy in the hydrodynamic drag forces in gpproximate form is the encapsulated dumbbell modd of

Bird and DeAguiar [26]. The evolution equations of the Bird-DeAguiar model can be re-written as

| A, =- gf (rA)A-1g+3(1- sb)% - (1- sb)1, ®)
t, =-nkgT gf (trA)A Iy + 2nkBT(1 b)StrA IH, (4)
where f (trA) = o ©

wherekg isthe Boltzman congtant, n is the number of springs, | isthe rdaxation time of the fluid, L isthe
finiteextenghility of the polymer chain and the polymer conformation is given by the dimensionless second
moment tensor A = <RR>, where R isthe end-to-end vector of the polymer chain scaled with the root
mean square end-to-end length of the chain. The extent of anisotropy in the viscous drag on the beadsis
givenby s and theanisotropy inthe velocity distribution of the beads arising from Brownian motionisgiven
by 3. When s = 3= 1, the FENE-P modd is recovered. Our exploratory caculations suggest that to
quantitatively describe the viscometric properties of dilute polymer solutions in viscous solvents, the
anisotropy in the viscous drag the primary effect of importance. The Brownian motion of the beads can
thus be assumed to be isotropic with 3= 1. Inthislimit, Equation 4 reducesto the familiar expresson for

the ressin an ensemble of FENE-P dumbells while the evolution equation reduces to

'}f(trA)-MﬂA-slé, (6)

I A = -
W T tr A i;

@ D D
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The solid lines in Figure 2 represent the predictions of the Bird-DeAguiar modd fit and are in good

agreement with both the viscogity and first normal stress difference measurements.

Notation Description Parameter
Known: c Concentration of High Molecular Weight 0.025%
Polystyrene
M, "M, Polydispersity 1.03
M,, Molecular Weight [g/mol] 2.0x10°
b=1L? Extensbility Parameter 26900
To Reference Temperature [K] 298
Fitted: % Zero Shear Rate Viscosty [Pais] 22.75
2 Solvent Viscosty [Pais] 21
P Solvent Relaxation Time [ 2.5x10*
h* Hydrodynamic Interaction Parameter 0.1
S Extent of Anisotropy in Stokes' Law 0.63
£ Extent of Anisotropy in Brownian Motion Forces 1
Caculated: ?, Zimm (Longest) Relaxation Time [ 3.24
2 Oldroyd Relaxation Time[s] 0.146
? 10 First Norma Stress Coefficient [Pais?] 6.66

Table 3: Parameters characterizing the viscometric properties of the 0.025wt% PS/PS solution.

To understand the kinematics of the complex flow through axisymmetric contraction-expansons,
it is important to characterize the behavior of the test fluid in both shear and extenson. The filament
dretching rheometer and techniques developed by Anna et d. [27] were used to measure the transient

extensonal viscosity of the PS/PS solution. In Figure 3, the Troutonratio, Tr =R /h,,, isplotted against

the Hencky dtrain, e = ét, for agtrainrateofe = 9.1s™*. Oneimportant point to noteisthat a high Deborah

numbers, De=1 & = 29.5, the Trouton retio is relatively insengtive to changesin extendonrate. Atlow
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Hencky drains, the extensona viscosity behaves in a Newtonian-like manner and the Trouton rétio is
approximately equa to Tr A 3%,/ 7,. Asthe Hencky strain increases, the PS/PS solution strain-hardens,
reaching an equilibrium a a Trouton retio of Tr —1000. The FENE-P and Bird-DeAguiar modd fitsare
plotted with the experimenta data. Neither of these modelsfit the experimentd datawell, overpredicting
the critical Hencky strain for the onset of strain-hardening and overpredicting the equilibrium vaue of the
extensond viscogty. It isinteresting to note that the anisotropy introduced by the Bird-DeAguiar modd
has very limited effect in uniaxid extension even though it hasa profound effect on the prediction of thefirst
normal stress differencesin shear.
2.4. Dimensionless Parameters

Inthisresearch, the characteristic Reynol ds number based on the flow conditions at the contraction
planeisgivenby Re=2?,,,R,/?,, where+v,,, = Q/ pR? isthe average axid velocity in the throat of
the contraction, Q is the volume flow rate and ? = 1.026 g/cn?® is the dengity of the fluid. For dl the
experiments performed the Reynolds number is Re < 1x107, thusinertid effects are negligible.

The Deborah number, De = 8/T, characterizes the rdative importance of dadtic effectsto viscous
effects in the flow. To determine the Deborah number a characteristic flow timescale, T, and a
characteridtic rdaxation time of the fluid, 8, must be sdlected. The characteristic convective timescae of

the flow can then be taken to be the inverse of the deformation rate in the vicinity of the throat of the

contractionplane, T / R,/ +v,,, = 2. The choice of the appropriate rdaxation time of the fluid is

discussed in depth in Rothgtein and McKinley [5]. Thiswork will follow the same convention, choosing

the zero-shear-rate relaxation time, 2, = ? 1,/ 27,. Thus, the Deborah number used in presentation of the
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results of this research is given by De = 7, +v,,, / R,. Aswe show in 84, the quditative effects of lip
curvature can aso be incorporated by a single reconsideration of the resdence time of the fluid dement
near the contraction plane.
3. Results
3.1. Pressure Drop Measurements

The evolution in the tota pressuredrop (? Py) of the 0.025% PS/PS solution flowing through the
four contraction-expansion geometries described in 82.1 was measured for Deborah numbers De #10.5.
Inour previous study [5], it was shown that the Stokes flow solution provided by Sampson for the pressure
drop through aninfinitesmaly thin circular holein an unbounded rigid wal [28] wasin good agreement with
the pressure drop measurements for the flow of the Newtonian oligomeric polystyrene into a 4:1:4
contraction-expanson (corrected using Equation 1)

- IQ
mpson R23 ! (7)

DP¢ (Q,De=0,R, =0,b =4) @DP,,
and this value was thus used to generate the dimens onless pressure drop defined in Equation 2.
3.1.1. Effect of Contraction Ratio
The effect of contraction ratio on the dimensionless extra pressure drop is shown in Figure 4. In

the absence of dadticity, the pressure drop across the various contraction-expansions should be equal to

that of aNewtonian fluid. Inother words, inthelimitDe6 0 we expect P 6 ( 3/ 4)3. Thisistruefor both

the 4:1:4 and 8:1:8 contraction-expansion, however, for a contraction ratio of 3 = 2, the Sampson flow
assumption of upstream and downstream fluid reservoirs with infinite latera extent is no longer a good

goproximation.  The presence of the upsiream and downstream walls result in a dimengonless pressure
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drop considerably smaller than expected,

P(De<<1, 3=2) .0.08. Asthe Deborah number isincreased, the measurements for each of the

contraction ratios examined show amonotonic increase in the dimens onless pressure drop beginning at a
critical Deborah number. Thevaueof the critical Deborah number increases dightly with contraction ratio,
0.3 . De,;; - 0.8, but is consgtently close to the Deborah number a whichthe coil-stretch transition
occursin ahomogeneous extensond flow, De = 0.5. Asthe Deborah number isincreased il further the
rate of increase in the dimensionless pressure drop is greetly reduced. Thesetrendsin the evolution of the
entrance pressure drop have been observed previoudy in experimental studies of polyacrylamide-based
[6] and polystyrene-based fluids flowing [5] through 4:1:4 axisymmetric contraction-expansons, the latter
being reproduced in Figure 4. As stated previoudy, these large additiond pressure drops associated with
the addition of very smal amounts of high molecular weight polymers to Newtonian solvents have yet to
be even quditatively smulated numericaly [7-9].

The onsat of an dadtic flow ingability isaso indicated in the pressure drop datain Figure 4. A
complete discussion of the nature of thisdadtic flow instability is presented in 83.4. A hypothetica sketch
of theline of neutra stability motivated by previous studies of PIB/PB fluids[16] is superimposed over the
4:1:4 and 8 1:8 data. Limitaionsin the hardware and the sensitivity of our measurement techniques made
it impossible to reach Deborah numbers large enough to observe an dadtic indability in the 2:1:2
contraction-expangon. It isimportant to note that, in each case, the enhanced pressure drops measured
experimentaly are not directly connected with the onset of any eagtic indabilities. Thus, regardless of
whether a numerical smulation can predict the onset of an eadtic ingability, the congtitutive mode should
dill be able to predict the large enhanced pressure drops associ ated with steady viscoel astic entrance flow

14



before any flow ingtabilities occur.
3.1.2. Effect of Re-entrant Corner Curvature

The effect of re-entrant corner curvature on the dimensonless pressure drop isshown in Figure 5
for the 4:1.:4 contraction-expanson with sharp (R. < 0.01R,) and rounded (R, = 0.5R,) re-entrant corners.
The resulting plots are very amilar to Figure 4, showing al the same qualitative features. At low Deborah
numbers, the dimensionless pressure drop is Newtonian-like for both re-entrant corner curvatures. The
limiting value of the dimensionless pressure drop at low Deborah number for the rounded re-entrant corner

issmdl, P . 0.35, because the presence of the re-entrant corner curvature has essentialy been ignored in

Equations4 and 5. The regions of strong enhanced pressure drop and the onset of the dastic ingtability
are il present even when the re-entrant corner has been rounded. In fact, the only noticeable effectisa
shift of onset conditions for different flow regimes to higher Deborah numbers with increasing re-entrant
corner curvature. Thisis consstent with an overprediction of the characteristic deformation rate near the
throat, which is at present taken to be the deformation rate within the contraction throat, ?= +v,,, / R,
independent of re-entrant corner curvature. We return to this shift in onset conditionsin &4.

These experiments show that the existence of enhanced pressure drop measurements above and

beyond the Newtonian pressure drop (P > 1) do not depend qualitatively on re-entrant corner curvature

nor ontheonset of dadticingabilities. Thus, numerica smulations should be ableto removethe sngularity
associated with the sharp re-entrant corner and without hindering the ability of the condtitutive modd to

predict the large enhanced pressure drop seen in experiments.

3.2. Vortex Growth Dynamics
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Flow visudization was used to observe the vortex growth dynamics upstream of the contraction
for the four geometries describe in 82.2 for Deborah numbers De . 11. A detailed description of the
vortex growth and development in the 4:1:4 contraction-expansion with increasing Deborah number has
been presented in Rothstein and McKinley [5] and herewe focus on changesresulting from varying thelip
curvature and the contraction retio.

3.2.1. Effect of Re-entrant Corner Curvature

The pseudo-streak images on the left-hand side of Figure 6 show the vortex growth and
development of the vortex upstream of the sharp 4:1:4 contraction-expangon at Deborah numbers of De
= 1.6, 2.6 and 3.6 while the images on the right-hand sde show the vortex development upstream of the
4:1:4 rounded contraction-expanson at the same Deborah numbers.  These images demondtrate the
dramatic delay in corner vortex development that resultsfrom the introduction of curvatureto the re-entrant
corner. Atlow Deborah numbersthe PS/PS solutionisessentidly Newtonian and small, week recirculation
zones known as ‘Moffait vortices , which characterigticdly have concave dividing streamlines, exist inthe
sagnant cornersjust upstream of the contraction plane. An example of the flow patterns observed before
the vortex growth and the increase in the pressure drop is shown in Figure 6(d). Asthe Deborah number
is increased, the corner vortices increase in Sze and strength, Figure 6(a) and 6(e). The corner vortex
‘fingers out towards the contraction entrance and the dividing streamline becomes convex. As the
Deborah number is increased Hill further, a pronounced increase in the dimensionless pressure drop is
observed and the corner vortex begins to grow upstream, Figure 6(b) and 6(f). In Figure 6(c), the
presence of a globd ingahility in the flow is evident from the non-symmetric corner vortex. Visud

obsarvations and LDV measurements of this vortex show that the vortex boundary precesses in the
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azimutha direction so thet fluid ementsin fact follow ahdlicd path into the orifice.

The vortex growth dynamics of the 4:1:4 rounded contraction-expanson are quantified in Figure
7 through measurements of the dimens onless reattachment length and coordinates of the vortex center as
a function of Deborah number. To motivate the discusson of re-entrant corner curvature effects, the
reattachment length of the 4:1:4 sharp contraction-expansion has been superimposed over the complete
et of 4:1:4 rounded contraction-expanson data. At low Deborah numbers, the dimend onlessresttachment
lengthis constant with the expected value for cregping Newtonian flow. Astheflow rateisincreased, the
reattachment length and the axia location of the vortex center begin to increase monotonicaly with Deborah
number. Theradid location of the vortex center movesinward from the stagnant corner to aposition ? -
2 which then remains congtant as the vortex grows upstream with increasing Deborah number. Upon the
onset of the dadtic flow ingtahility, al of the measured lengths begin to oscillate with the unsteady motion
of the vortex. Thesedatashow the same generd functiona dependence on Deborah number asour earlier
measurements for the sharp 4:1:4 contraction-expansion [5]. The principd result of rounding of the re-
entrant corner isto cause adeay of the vortex growth dynamics to higher Deborah number.
3.2.2. Effect of Contraction Ratio

InFigure 8, the dimens onless reattachment length and coordinates of the vortex center are shown
for the 8:1:8 contraction-expanson. The vortex growth dynamicsfor the 8:1:8 contraction expanson are
smilar to those described above; dominated by the presence and upstream growth of an astic corner
vortex. The principa difference arises from the onset conditions for the trangtions into different vortex
growth regimes. For both the 4:1:4 and the 8:1:8 contraction-expansonsthe critica Deborah number for

the onset of observable corner vortex growth is approximately 20% larger than that for the onset of
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enhanced pressure drop growth. The kinematics of these two effects appear to be quite strongly
correlated.

In Figure 9, pseudo streak images upstream of the 2:1:2 contraction-expansion are shown for
Deborahnumbersof De= 0.6, 0.9, 1.1 and 1.5. Asobserved for both the 4:1:4 and the 8:1:8 contraction-
expansons, a low Deborah numbersaMoffatt vortex is present in the upstream stagnant corner as shown
in Figure 9(a). However, in contrast to the results presented for the previous contraction ratios, as the
Deborah number gpproaches unity, the corner vortex decreases in Size and a separate and digtinct ‘lip’
vortex forms near there-entrant corner, Figure 9(b). Thelip vortex then proceedsto grow outward, Figure
9(c), until it reaches the stagnant corner a which point it grows upstream in amanner congstent with the
corner vortex growth dynamics described above for larger contraction ratios.

Digitd particle image velocimetry (DPIV) measurements for Deborah numbers of De = 0.9 and
1.5 areshown in Figure 10. These velocity vector field measurements correspond to the streak images
shown in Figures 9(b) and 9(c). The vectors are scded such that an arrow of length
| / R,=0.25 corresponds to aveocity magnitude of v/ <v>, = 1. The DPIV measurements in Figure
10(a) demondtrate the complete suppression of the corner vortex with the presence of the lip vortex. In
fact, the fluid flowsinto the stagnant corner and then reverses direction in order to flow back upstream,
around the lip vortex and into the contraction. Thevector fidd in Figure 10(b) isvery similar to the vector
fidd measurements of eastic corner vortices upstream of a4:1:4 sharp contraction-expansion presented
previoudy [5]. This reinforces our previous observations which indicate that once the lip vortex has
reached the stagnant corner, the dynamics of the subsequent elagtic vortex growth are identicd to those

observed in contraction ratios that do not demonstrate formation of adistinct lip vortex.
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The dimensionless regttachment length and coordinates of the vortex center are shown in Figure
11. Thesemeasurementsquantify the spatia characteristics observed in the pseudo streak images. At low
Deborah numbers, the dimensonless reattachment length is again constant with the expected vauefor the
Newtonian Moffatt vortex. As the Deborah number is increased, the reattachment length decreases
dragticdly asthelip vortex beginsto develop. At thispoint, the coordinates reported in Figure 11 shift from
the disappearing Moffatt vortex to the center of the now-dominant and topologically-digtinct lip vortex. As
the lip vortex grows outward, the reattachment length remains quite smdl and the axid position of the lip
vortex center remains relatively congtant. Once the lip vortex has reached the stagnant corner, the radia
location of the vortex center saturates at ? — 1.5 and the large eastic corner vortex begins to grow
upstream. Previous experimental measurements[16; 17] indicate that thelip vortices are unsteady intime
and three dimengond in nature, but within the sengtivity of our velocity and pressure measurement
techniques, thelip vortex resulting from the flow of a PS/PS solution through a2:1:2 contraction-expanson
is found to be steady in time. The difference may be a consequence of the difference in operating
procedure; earler studiesimposed aconstant pressure difference? P4 across the contraction geometry and
determined an average flow rate or velocity, whereas in the present experiments we use a fixed

displacement rate and measure the ensuing pressure drop.

3.3. Laser Doppler Velocimetry Measurements
Axid veocity measurements taken aong the centerline of the 4:1:4 axisymmetric abrupt
contraction-expangon are shown in Figure 12. The dimensionless velocity measurements, v,/<v,>,, are

plotted from locations far upstream of the contraction plane, /R, > ! 10, to positionsinsgde thethroat, ZR,
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=0.25. InaPoisauilleflow, the velocity on the centerlineis equd to twice the average velocity in the tube
v,(r = 0) = 2<v,>. Therefore, one would expect that for a constant viscosity fluid, the dimensonless
centerline velocity well upstream of the contraction planewould beequal tov,/<v,>, = 2/R? = 0.125, while
the dimensionless velocity within the throat would be equal to
v,/<v,>, = 2. Thisisconfirmed far upstream, where the shear rate is quite low and where there are no
extensond effectsinfluencing the velocity profile. As the fluid approaches the contraction, the velocity
increases to conserve mass as the radius of the tube abruptly contracts. At low Deborah numbers, this
increase is observed to occur smoothly, beginning at an axia podtion of z/R, . 12.5. With the initid
increasein Deborah number, the vel ocity increase shiftsdightly downstream towards the contraction plane;
however, asthe flow rate is increased further, the velocity gradient along the centerlineis reduced and the
influence of the contraction is felt by the flow further and further upstream. This latter effect takes place
in conjunction with the elastic vortex growth observed in 83.2. As the fluid enters the throat, there is a
sharp elastic overshoot in the velocity a al Deborah numbers, including asmall jump in the low Deborah
number case, De=0.5. The magnitude of thisovershoot increases with Deborah number, but the location
of the maximum does not change. Further downstream, the centerline vel ocity reducesto avaue consstent
with Poiseuilleflow, for dl but the highest Deborah numbersin which the velocity remains dightly high than
v,/<v,>, = 2 for the range of axid pogtionsthat can be measured with the present apparatus. Additiona
LDV measurements show that, the non-monotonic trend in the evolution of the centerline velocity profile
is independent of contraction ratio and re-entrant corner curvature.

3.4. Flow Sability

While studying the flow of the PS solution into both the 4:1:4 and the 8:1:8 contraction-expansions,
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a dow non-symmetric precession of the enlarged corner vortex was visualy observed at large Deborah
numbers. It should be reiterated here that within the sengtivity of our LDV and pressure measurements
the 2:1:2 contraction-expansion was found to be stable at all Deborah numbers tested. This does not
preclude the possibility of observing the ingability a a higher Deborah number or possibly with more
sengtive measurement techniques.

The onsat of an dadtic ingahility is firgt indicated by smal amplitude oscillations in the globa
pressure drop and loca velocity measurements which are observed to grow in magnitude with increasing
Deborah number. In Figure 13(a), two samples of the tempord variaion of the radid, v, (t), and axid,
V,(t), velocity for the flow of the PS/PS Boger fluid into the 4:1:4 sharp contraction-expanson are shown
at Deborah numbersof De= 3.5 and 7.0. These two measurements were taken at aposition, (r/'R,, ZR,)
= (0.63, -1.26), just above the re-entrant corner. A fast Fourier transform (FFT) of the velocity data
dlows a quantitative determination of the frequency and amplitude of the velocity fluctuations. In Figure
13(b) we show the power spectra density (PSD) at De = 3.5. The Fourier spectrum indicates that the
eadtic flow ingability has a strong fundamenta osaillation frequency, f; = 0.15Hz, and the existence of a
smdl pesk a thefirst harmonic. Asthe Deborah number is further increased, the intengty of the velocity
fluctuations grows in amplitude, the fundamentd frequency of oscillation dowly increases and the higher
harmonics of the fundamenta frequency begin to gppear. At aDeborah number of De= 7.0, the PSD plot
in Figure 13(c) contains four detectable harmonics of the fundamenta frequency.

The variaion in the amplitude and frequency of oscillation determined from the Fourier spectrum,
such asthose shown in Figure 13(a) and (b) can be used to determine the critical Deborah number for the

onset of this supercritica Hopf bifurcation, are shown in Figures 14 and 15 respectively. The critica
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Deborah number for the onset of the periodic flow is accurately determined by fitting the these results to

the asymptotic results for a supercritica Hopf bifurcation [29]

v(r.a,zt)|u (De- De,, )", ®
f :C1+C2(DE' Decrit)’ ©)

where ¢; and ¢, ae condants. These expressons are vdid only in the linear limit, such that
(De ! De,;) << 1. Theoreticdly, in this limit only the fundamenta frequency will exist in the Fourier
spectrum, however, a smdl first harmonic pesk is present in the experiments a dl but the very lowest
ungable flow rate. To circumvent this difficulty, a cutoff for linearity is defined such that only deata taken
a Deborah numbers for which the amplitude of veocity fluctuations of the fundamentd frequency are an

order of magnitude grester than those of thefirst harmonic, |v(r,q, z t)|, >10|v(r,q, z t)|,, , are used

to determine De,;; from Equations 8 and 9. The results of these fits are superimposed on the data in

Figures 14 and 15 and the critica Deborah numbers are tabulated in Table 4.

Critical Deborah Number for the Onset of the Elastic
Fow Ingtability

4:1:4 Sharp Contraction-Expansion 24+01

4:1:4 Rounded Contraction-Expansion 31+0.2

8:1:8 Contraction-Expansion 42+0.2

Table 4: Critical conditions for the onset of the supercritical Hopf bifurcation.
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The initid deviaion from axisymmetric sable flow conditions is well describe by linear gability
andyds. However, when De >> De,;; nonlinear dynamics begin to dominate the flow kinematics. These
nonlinear effects are first observed in the Fourier spectrum as higher harmonics of the fundamental
frequency and the trangtion from a periodic to a period-doubling ingability [16]. Another manifestation
of these nonlinear dynamics observed in the present experiments is the development of a high speed
‘jetting’ ingtability near the lip of the contraction in the 4:1:4 contraction-expangon, which has not been
reported previoudy. After the onset of the dadtic flow ingtability, the upstream vortex bresks symmetry
and beginsto precessin the azimuthd direction. The extent of this symmetry bresking in the vortex height
increases with Deborah number. 1n conjunction with the break in symmetry, astrong jet of high speed fluid
appears, originating from the base of the upstream vortex and flowing directly into the throat just upstream
of the contraction plane. By focusing the LDV probe a a position (I/R,, ZR,) = (1.57, -0.16) within the
vortex and just upstream of the contraction plane, it is possible to quantify this jetting flow ingtability.
Measurements of thetime-varying radid velocity are shownin Figure 16(a). Theflow isinitialy steady with
avdocity v, . 3.5 mm/s(v,/<v,>, . 0.063) directed radidly outward, indicating that the probeisfocused
within the recirculating region of the corner vortex. Astheflow deveops, thejetting flow gppearsaslarge
amplitude periodic spikes in the velocity measurements. These spikes are larger in magnitude, v, . 110
mmv's (v,/<v,>, . 0.18), than the stable recirculating flow velocity and directed inward toward the
contraction entrance. The Fourier spectrum presented in Figure 16(b) contains severd higher harmonics
of the fundamenta frequency including afirg harmonic sgnd, the amplitude of which is nearly equivdent
to that of the fundamentd frequency. The fundamentd frequency of the jetting ingability isidenticd to the

frequency of the upstream vortex precesson. Wetherefore postulate that thisingtability isinfact ahelica
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jet of fluid running the entire axid length of the upsiream vortex.

Two dreek imagesand aDPIV vector field showing thisingtability can befoundin Figure 17. The
globa structure of the unstable vortex is seen in Figures 17(a) and a box is sketched around the location
of thejetting ingtability which appearsat the base of the precessing asymmetric upstream vortex at the point
of its greatest upstream extent. This box aso indicates the field of view blown up in the stresk image of
Fgure 17(b) and the vector field in Figure 17(c). Although these close-up images were taken at the same
Deborah number as the full field of view, the images were not collected smultaneoudy and a dight
difference in the tempora development of the jetting ingtability was unavoidable. The vectorsin Figure
17(c) are scded such that an arrow of length I/R, = 0.5 corresponds to a velocity of v/i<v,>, =1 and
clearly demondtrate the strong localized nature of thisingability. For abrief video dlip of thisingtability we

encourage the reader to ether vist our website [30] or to contact the authors directly.
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4. Discussion

Inthiswork, we have presented acomprehendve set of experimenta measurements of the complex
flow of a dilute monodisperse polystyrene solution into axisymmetric contraction-expangons of various
contraction ratios and re-entrant corner curvatures. Therheologica properties of the test fluid have been
well characterized in both shear and extension, making these experiments a demanding comparétive tool
for condtitutive models and numerical Smulations.

An enhanced pressure drop associated with the extensond flow of the viscodastic fluid acrossan
axisymmetric contraction-expanson but not directly connected with the onset of an dadtic indability was
observed for al geometries tested. Measurements of the flow kinematics for each geometry were dso
made with streak images, LDV and DPIV. The generd evolution of the pressure drop measurements and
the flow kinematics were found to be independent of the radius of curvature of the re-entrant corner,
athough the criticd conditionsfor the trangitionsin pressure drop and vortex growth are afunction of both
the lip curvature and the contraction ratio. LDV and pressure drop measurements were used to
characterize a supercritica Hopf bifurcation at large Deborah numbers which resulted in a globd dastic
ingahility, bresking the symmetry of the large enhanced upstream vortex and precessing in the azimuthd
direction. Thisingtability was observed for the 4:1:4 and 8:1:8 contraction-expansons irrespective of lip
curvature. The 2:1:2 contraction-expansion was found to be stable up to the maximum Deborah numbers
that could be tested.

4.1. Scaling of the Effects of Lip Curvature
The experiments with curved re-entrant corners support earlier observationsin PIB/PB [13; 16]

and PAA/CS dadtic fluids [3; 13; 20] and suggest that numerica smulations should be ableto removethe
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sgngularity associated with the sharp re-entrant corner without affecting the ability of the condtitutive model
to predict thelarge enhanced viscod agtic pressure drop seenin experiments. The quditative smilarity seen
in Figures 5, 6 and 7 between the evolution in the vortex dimensons (7, ? and ?) and the extra pressure

drop (P) with increasing Deborah number in the 4:1:4 contraction-expans ons with sharp and rounded re-

entrant corners suggest that it should be possible to collapse the data into a Single generic response for a
given contraction ratio. The principa effect of smoothing the re-entrant corner isto increase the radius of
curvature and decrease the rate of deformation aong the streamlines entering the contraction by removing
the re-entrant corner sngularity. For alow Reynolds number flow, an appropriate estimate of theresidence

time for a fluid eement in the vicinity of the curved throat region isgivenby T . (R+R)/<v,>,. The

Deborah number then becomes De = <v,>,/(R+R). This smple scaling of the abscissa does a
remarkable job of collapsing the vortex growth data for the 4:1:4 sharp and rounded re-entrant corners
onto a single curve, as shown in Figures 18(a), even matching the trangtion to time-dependent flow.
Changing thelocdl curvature of thelip entrance dso affectsthe va ue of the entrance pressure drop
for the creeping flow of aNewtonian fluid that isused to scale the ordinate axisin Figure 18(b). Asdefined

in Equation 2, the dimensionless pressure drop tends to be underpredicted (P < 1) for geometries with

curved re-entrant lips.  Comparison of the dimensionless pressure drop data after gppropriately shifting
the Deborah number in the manner described above supports the expectation that the extra pressure drop
at high Deborah numbersfollowing upstream vortex growth isindependent of the specific detailsof thelocal
lip curvature. The principd effect of the lip is experienced at low Deborah number when the converging

flow near the contraction planeisof the Sampsontype. The dimensionless pressure drop (which weaways
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scale with the Sampson flow solution for entrance in asharp orifice ? Ps = 32,Q/RS) can thus be adjusted

through the addition of a Couette-like, cregping flow correction, C4(3, R) = Pgap(De=0) ! Pyeq(DeE=

0), to take into account the pressure drop corresponding to the Newtonian flow through the curved
entrance region. In Figure 18(b), the results of this scaling of the dimensionless pressure drop

Pgitied = Parvea T Co(3, R) is shown for two cases: the 4:1:4 sharp and rounded contraction-expansions

where the Couette-like correction was found from experiments to be C(R/R, = 0.5, 3=4) =0.35 and
the sharp and rounded 8:1:8 contraction-expansons where C(R/R, = 0.18, 3= 8) = 4.6. Thelatter data
are presented to demondtrate the robustness of this scaling over severa contraction ratios and radii of
curvature. It is dangerous to generdize based on experimenta data with only two vaues of radius of
curvature (R, = 0.18R, and 0.5R,), but this rescdling of the Deborah number also collapses quitewdl the
trends of vortex reattachment length reported in the literature for PIB/PB Boger fluids[16]. It would be
very interesting to seeif this Smple incorporation of curvature effects on vortex Sze and pressure drop is
supported by numericd cdculaions in which the radius of curvature of the re-entrant corner is
systematicaly varied over abroad range.
4.2. The Role of Transient Extensional Viscosity

With variations in the contraction retio, the flow field upstream of the contraction-expansion was
found to evolve dong two digtinct vortex growth pathways. For a contraction ratio of b = 2 a steady
eladtic lip vortex was observed, while for contraction ratiosof 4 # b # 8 acorner vortex wasseen. The
presence or the absence of alip vortex has been noted in many different studies and depends not only on
the contraction ratio through which the fluid is forced, but dso on the formulation of the fluid used. These

observations are summarized in Table 2 which, when completed with the vortex growth datafor the PS/PS
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Boger fluid from this study, shows amarked smilarity between the behavior of the PS/PS and PAA/CS
test fluids. 1t has been conjectured that the differencesin flow trangtionsfor fluids with ogtensibly identical
shear properties question must arise from differencesin extensgond rheology [5; 16; 31]. Thishypothess
suggests that the differences observed in contraction flows and other complex flows arise from changesin
the molecular characteristics of the equilibrium conformations of the polymer chains resulting from solvent
quaity or diffness of the polymer backbone [13; 18; 32]. It follows that these initid equilibrium
conformationd differenceswill dso have alarge effect on the evolution of non-equilibrium properties such
asthe trandent extensond stress growth in the fluid. With the advent of the filament stretching rheometer
and the advancesin smulation techniquesfor bead-rod and bead-spring modds, it isnow possibleto probe
such hypotheses both experimentaly and numericaly [33].

A fluid filament experiencing a congtant uniaxid extension rate in a filament stretching rheometer
should, a least qualitatively, describethe uniaxid eongation of thefluid eement flowing dong the centerline
into the contraction-expansion even if the extenson ratein this caseis not congtant. 1f one assumesafully
developed Poisauille flow in the throat of the axisymmetric contraction-expanson, then one can caculate

the total Hencky strain experienced by afluid ement moving adong the centerline from far upstream into

the middle of the throat as
ty V,(z=0.5L;)
e=Cgdt= O ~=2Inb. (10)
0 Vv, (z=-¥) z

Dotted lines representing the tota accumulated strain of afluid ement traveling dong the centerline into
each of the geometries tested are superimposed over the extensiona rheology datain Figure 19. These

measurements seem to reinforce our previous conjecture. The PS/PS solution flowing into the 2:1:2
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contraction-expansion demondrates no sgnificant strain-hardening while the extensond viscosty of the
PS/PS solution flowing into the 4:1:4 and especidly the 8:1:8 contraction-expansonsis greatly enhanced.
Thus, in the case of a PSPS test fluid, a smple doubling of the extensond viscodty dong the centerline
is enough to diminate the lip vortex. If this result could be generdized to other polymeric fluids, red
physica indgght might be achieved. Unfortunately, in smilar extensona rheology tests of the same PIB/PB
Boger fluid used by McKinley et d. [16] which are dso shown in Figure 19, thelip vortex is present at all
contraction ratios, 13 < 8, corresponding to Trouton ratiosup to Tr . 150; well past the Trouton ratio at
which the flow of the PS/PS Boger fluid begins to demonstrate elastic corner vortex growth.

Although these two fluids demongtrate Smilar behaviorsin extenson, itistill important to point out
their differences. The Trouton ratio of the monodisperse, dilute PS/PS solution grows more quickly and
can be up to 50% larger than the Trouton ratio of polydisperse, semidilute PIB/PB a moderate Hencky
grains. Li and Larson [33] used a bead-spring smulation to show that for adilute high molecular weight
polymer dissolved in agood solvent, both the stress and the birefringence rise much more rgpidly with strain
than for the same polymer dissolved in a theta solvent. Differences in solvent quaity between these two
Boger fluid formulations, the PS being dissolved in adightly better solvent than the PIB, may ill hold the
key to differences in the kinematics and the dynamics of the flow. The effect of solvent qudity has been
sysemdicdly investigated in severa model complex flows, for example viscodagtic flow past faling
spheres. In aseries of experiments performed by Solomon and Muller [32] using high molecular weight
PS fluids, the increase in the drag coefficient above that expected for a Newtonian fluid was found to
increase with increasing solvent qudity. Unfortunately, this argument is not entirely consstent throughout
the literature. Chmidewski et d. [18] compared the drag past a fdling sphere for two different Boger

fluids. They found that the drag increased over the Newtonian vauefor the PIB solutionin acloseto theta
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solvent (polybutene), but the drag decreased below Newtonian for aPAA solutionin agood solvent (corn
syrup/water). These results are not cons stent with our argument which would hold that because the PAA
is dissolved in a better solvent than the PIB and it should demongtrate a more rgpidly strain hardening
extensond viscodity and alarger drag coefficient. Thedifferencein thiscase may bethe result of the shear
thinning inthe solution viscosity of the PAA/CSH, O fluid which is of the same order of magnitude (25%)
asthe reduction in drag.

Inour experiments, the enhanced pressure drop measurements across the contraction-expansions
were found to be qudlitatively independent of both the contraction ratio and the radii of curvature of there-
entrant corner. However, even with rounded re-entrant corners, these large additiona pressuredropshave
not been predicted by any existing numerical smulationsusing smple dumbbel models[7-9]. Theevidence
suggests that these discrepancies arise because of the inability of current bead-spring congtitutive models
to properly describe the extensona rheology of the polymer solutions. Most notableisthefailure of these
condtitutive modd sto quditatively predict the stress-conformation hysteresisfirst observed by Doyleet dl.
in measurements of uniaxid transent eongation [10; 11]. To capture such effects it may be necessary to
resolve the non-equilibriuminterna dynamica structure of the polymer chainsrecently observed by Perkins
et d. [34] by performing smulations with bead-rod chain models that can capture such * configurational
hysteress. However, an excellent description of the extensond viscosity done might not be adequate to
accurately model the flow into an axisymmetric contraction-expanson. Observations of the polystyrene
Boger fluid in transent uniaxia extensona demondrate no sign of srain hardening or of the disspative
stress suggested by stress-conformation hysteress at the small strains achieved by afluid ement traveling
aong the centerline of the 2:1:2 axisymmetric contraction-expansion (e= 1.386) and yet the pressure drop

measurements gill show a dramatic enhancement.  Presumably, this results from the much larger
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deformations experienced by fluid dements passing near the re-entrant corner singularity but this cannot
be confirmed until smulation are performed using a suitable condtitutive modd.
4.3. The Normal Stress Ratio

A combined knowledge of the shear and extensiond properties of these polymeric fluids should
idedly provide a means of predicting the vortex growth dynamics a priori. As the contraction ratio is
increased at afixed Deborah number, the sheer rate at the tube wal s upstream of the contraction decreases
asg, U % while & the sametime, the accumulated strain aong the centerlineincreasesase % InR. Thus,
there are two competing effects which contribute to the fluid' s choice of vortex growth evolution; namdly,
extensiond stresses and shear induced normal stresses. It is clear from these Smple estimates of the strain
and deformation that alip vortex is present for eadtic test fluids for contraction ratios which generate very
little extension of the polymer chain aong the centerling; they may therefore be consdered to be dadticaly
shear-dominated. For a given contraction ratio, the extensona stresses increase dramatically as the
Deborah number isincreased; whereas, for most Boger fluids, the first norma stress difference tends to
saturate due to shear thinning arising from finite extensbility effects. A large dadtic vortex then supplants
the lip vortex. Similarly, asthe contraction ratio isincreased, the extensiond stresses developed withinthe
contraction flow dominate the normd stress difference arising from shear and, once again, acorner vortex
replaces the lip vortex.

We have argued that the flow kinematics associated with the trangition from lip to corner vortex
appear to be driven by a change in the dynamicsfrom ashear dominated to an extension dominated flow.
A possiblemeansof quantifying thistrangtion isto compare the norma stresses generated by the shear flow
adong thewadlsto the extensond stressesresulting from the e ongationd flow dong the centerline. Wethus

consder adimensonless normal stress ratio defined as
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N,/hog  _ SR(9)
(t,-t.)/he Tr(e)

(11)

where TR(e) isthe Trouton ratio evaluated at the total Hencky strain accumulated dong the centerline of
the contraction-expanson and SR(?) is the shear-rate-dependent stressratio.  Although, we differentiate
explicitly between the extension rate @and the shear rate 2 in a nonhomogeneous flow, such as the one
considered here, it issufficient to gpproximatebothas? . . <v>,/(R, + R). Arigoand McKinley [37]

used this dimensionless group to help rationalize the differences in the wake developing downstream of
spheres sedimenting in dilute and concentrated viscodadtic fluids, however, to our knowledge it has not
been used to compare differences between different ided eagtic Boger fluids. In Figure 20, the norma

dressratio (A) isplotted as a function of contraction ratio for the PS/PS, PIB/PB and PAA/CS Boger
fluids used in contraction flow publications [5; 13; 16; 20]. Of course, this normal dressratioisaso a
function of deformation rate and should be represented as a two-dimensiond surface, A(b,De). Here
we have chosen to evduate the norma stress number at the deformation rate (<v,>,/R,) corresponding to
the onset of the firgt Sgnificant adtic vortex growth: The shear and extensiond rheological data used to
caculate the norma stress number for the PIB/PB and PS/PS Boger fluids can be found in Figures 2, 3
and 19 and in McKinley et d. [16], while andogous shear and extensona rheology data for PAA/CS
Boger fluids can be found in Stokes [38]. The PAA/CS Boger fluids characterized by Stokes [38] are
samilar, but not identical, to thetest fluids used by Nguyen and Boger [20], so two representative solutions
denoted Huid C (?,= 1.5Pa-s) and Fluid E (7, = 23Pa-s) by the author have been chosenfor comparison.

Note that the extensgond rheology of PAA/CS solutions is extremdy difficult to measure in a filament

sretching rheometer because of the tendency of the corn syrup solvent to crystdlize a the surface of the

flud filament. At low Hencky dtrains, the resulting ‘skin’ on the PAA/CS filament results in an
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overprediction of the Trouton retio and alarge uncertainty inthe norma stressretio for the 2:1 contraction.
At moderate to large Hencky strains (e $3), however, the skin does not affect the extensona data

It can be seen from Figure 20, that there is a marked difference between the norma dress ratio
calculated for the PS/PS and the PAA/CS solutions and for the PIB/PB solution. The normal stressretio
decreases monotonicaly with contraction ratio. For an ided dadtic liquid, which can be modeled at the
most elementary level by the Oldroyd-B model, N can be expressed andyticaly for De > 0.5 by the

following expression

2h | ,g? ) 2(h,/h,)De

(h,/hy) . e
#e_lexnge(l- (2De) )H

h.é . - (12)
. p -1
he+ g 1exnge (l- (21 8) )H 3+

where ?. €. <v>/(R, + R) and e= 2InR. The magnitude of this ratio thus depends on the ratio 7,/?,
(which depends on solvent quality and polymer concentration), the Deborah number and the contraction
ratio.

Over the entire range of contraction ratios examined, the normd sress ratio of the PS/PS and
PAA/CS solutions are sgnificantly smaler than the normal stressratio of the PIB/PB solution. A line can
be drawn through the dataat anormal stressratio of X . 0.055 + 0.005 which dividesthe datainto regimes
of elagtic corner vortex growth (X . 0.055) and lip vortex growth (X / 0.055). Asthe Deborah number,
and subsequently the tendle norma stress difference in extension, increase, we expect the norma stress
ratio to decrease monaotonicaly and the lip vortex regime to eventudly give way to eastic corner vortex
growth. Thisisthefirst quantitative evidence to suggest thet the kinematics of the flow can be sysematicaly
rationdized on the basis of rheologicd information. 1t would beinteresting to compare these observations

with Brownian dynamics computations of theratio of dastic stressdifferencesin shear tofirst norma stress
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differencesin extension as the solvent qudity or excluded volume is systematically modified.

The pressure drop measurements, LDV and DPIV measurements, and the streak images coupled
with the use of amonodisperse dilute polymer solution, well characterized in shear and extenson, make
this set of experiments, in conjunction with our previous work [5], a useful tool for forming comparisons
with theoretical and numerical work. The principa remaining difference between different experimenta
observations of the lip vortex is now the time-dependent characteristic observed in different agtic fluids.
Possible explanations here may include the method of observation used (eg. time-averaged stresk
photography or time-resolved LDV and DPIV measurements) and, perhaps more importantly, thedriving
mechanism used. In the present work, we use a constant volumetric displacement rate, whereas the
mgority of previous studies have imposed a constant globa pressure drop acrossthe test geometry. This
important difference in experimenta control parameters leads to different dynamics in many other
bifurcating systems (e.g. spurt and gtick dip in mdt extrusion) and may prove to be a useful avenue for
future research studies.

Acknowledgments

The authors wish to acknowledge financia support from NASA under grant NCC3-610, Dr.

Shelley Anna of Harvard University for kindly supplying us with the trandent uniaxid dongation

measurements and Professor D.P. Hart of MIT for the use of hisDPIV dgorithm.

Refer ences

[1] O. Hassager. Working group on numerical techniques, Fifth Internationa Workshop on Numerica
Methods in Non-Newtonian flows, Lake Arrowhead, USA, J. Non-Newtonian Fluid Mech., 29
(1988) 2-5.

[2] B. Caswell. Report on the I Xth Internationa Workshop on Numerica Methodsin Non-Newtonian

34



[3]
[4]
[3]
[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Flows, J. Non-Newtonian Fluid Mech., 62 (1996) 99-110.

D.V. Boger. Viscodadtic flows through contractions, Annual Review of FHuid Mechanics, 19
(1987) 157-182.

S.A. White, A.D. Gotss and D.G. Baird. Review of the entry flow problem: experimenta and
numerical, J. Non-Newtonian FHuid Mech., 24 (1987) 121-160.

JP. Rothgtein and G.H. McKinley. Extensiond flow of a polystyrene Boger fluid through a4:1:4
axisymmetric contraction/expansion, J. Non-Newtonian Fuid Mech., 86 (1999) 61-88.

U. Cartadlos and J.M. Piau. Creeping flow regimes of low concentration polymer solutionsin thick
solvents through an orifice die, J. Non-Newtonian FHuid Mech., 45 (1992) 231-285.

P. Szabo, JM. Rdlison and E.J. Hinch. Start-up of flow of a FENE-fluid through a 4:1:4
condriction in atube, J. Non-Newtonian Huid Mech., 72 (1997) 73-86.

P.J. Coates, R.C. Armstrong and R.A. Brown. Caculation of steady-state viscodlagtic flow
through axisymmetric contractions with the EEME formulation, J. Non-Newtonian Huid Mech.,
42 (1992) 141-188.

RA. Keller. Entry-flow cdculationsfor the Oldroyd-B and FENE equations, J. Non-Newtonian
Fluid Mech., 46 (1993) 143-178.

P.S. Doyle, E.S.G. Shagfeh, G.H. McKinley and SH. Spiegelberg. Relaxation of dilute polymer
solutions following extensond flow, J. Non-Newtonian Huid Mech., 76 (1998) 79-110.

T. Sridhar, D.A. Nguyen and G.G. Fuller. Birefringence and stress growth in uniaxia extenson of
polymer solutions, J. Non-Newtonian Fuid Mech., 90 (2000) 299-315.

L.Li, RG. Lasonand T. Sridhar. Brownian dynamics smulations of dilute polystyrene solutions,
J. Rheol., 44 (2000) 291-322.

D.V. Boger and R.J. Binnington. Experimenta remova of there-entrant corner sngularity intubular
entry flows, J. Rhedl., 38 (1994) 333-349.

B. Purnode and M.J. Crochet. Flows of plymer solutions through contractions. Part 1. Flows of
polyacrylamide sol utionsthrough planar contractions., J. Non-Newtonian Fluid Mech., 65 (1996)
269-289.

JV. Lawler, S. J. Muller, R. A. Brown and R.C. Armgtrong. Laser Doppler Veocimetry
Measurements of Ve ocity Fidds and Trangtionsin Viscoe astic Huids, J. Non-Newtonian Huid
Mech., 20 (1986) 51-92.

G.H. McKinley, W.P. Raford, RA. Brown and R.C. Armgtrong. Nonlinear dynamics of
viscodadtic flow in axisymmetric aborupt contractions, J. Huid Mech., 223 (1991) 411-456.
D.V. Boger and R.J. Binnington. Circular entry flowsinfluid M1, J. Non-Newtonian Fluid Mech.,
35 (1990) 339-360.

C. Chmidlewski, K.L. Nichalsand K. Jayaraman. A comparison of thedrag coefficients of spheres
trandating in corn-syrup-based and plybutene-based Boger fluids, J. Non-Newtonian Fluid Mech.,
35 (1990) 37-49.

S.L. Anna, G.H. McKinley, D.A. Nguyen, T. Sridhar, S.J. Muller, J. Huang and D.F. James. An
inter-laboratory comparison of messurements from filament stretching rheometers usng common
test fluids, J. Rheol., (2000) (In Preparation).

H. Nguyenand D.V. Boger. The Kinematics and Stability of Die Entry Flows, J. Non-Newtonian
Huid Mech., 5 (1979) 353-368.

M.T. Arigo, D. Rgagopaan, N. Shapley and G.H. McKinley. The sedimentation of sphere

35



[22]
[23]
[24]
[29]

[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]
[34]

[39]

[36]

[37]
[38]

through an eadtic fluid .1. Steady motion, J. Non-Newtonian Fluid Mech., 60 (1995) 225-257.
D.V. Boger. A highly dastic constant-viscosty fluid, J. Non-Newtonian Huid Mech., 3 (1977/78)
87-91.

B.H. Zimm. Dynamics of polymer molecules in dilute solution: viscodadticity, flow birefringence
and didlectric loss, J. Chem. Phys,, 24 (1956) 269-278.

R.B. Bird, R.C. Armstrong and O. Hassager. Dynamics of Polymeric Liquids. Volume 1 Huid
Mechanics, John Wiley & Sons, New Y ork, 1987.

H.C. Ottinger. Generdized Zimm modd for dilute polymer-solutions under theta-conditions, J.
Chem. Phys,, 86 (1987) 3731-3749.

R.B. Birdand JR. DeAguiar. An encapsulated dumbell model for concentrated polymer solutions
and mdts |. Theoretica development and congtitutive equation, J. Non-Newtonian Fluid Mech.,
13 (1983) 149-160.

S.L. Anna, C.B. Rogersand G.H. McKinley. On controlling the kinematics of afilament stretching
rheometer using ared-time active control mechanism, J. Non-Newtonian Fluid Mech., 87 (1999)
307-335.

J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1965.

G. looss and D.D. Joseph. Elementary Stability and Bifurcation Theory, Springer, New Y ork,
1980.

http://web.mit.edu/nnf/jetting_ingtability.avi

D.V. Boger, D.U. Hur and R.J. Binnington. Further observations of dadtic effectsin tubular entry
flows, J. Non-Newtonian Fluid Mech., 20 (1986) 31-49.

M.J. Solomon and S.J. Muller. Flow past a sphere in polystyrene-based Boger fluids: the effect
onthedrag coefficient of finite extengbility, solvent quality and polymer molecular weight., J. Nor-
Newtonian Huid Mech., 62 (1996) 81-94.

L. Li and R. Larson. Excluded volume effects on the birefringence and stress of dilute polymer
solutions in extensiond flow, Rheol. Acta, In Press (2000)

T.T. Perkins, D.E. Smithand S. Chu. Single Polymer Dynamicsin an Elongational Flow, Science,
276 (1997) 2016-2021.

S.L. Anna and G.H. McKinley. The evolution of tensile stresses and birefringence in uniaxia
elongationa flows of dilute polymer solutions subjected to aknown preshear history, Proceedings
of the XIlIth International Congress on Rheology, (2000)

R.G. Larson. The role of molecular folds and "pre-conditioning” in the unraveling of polymer
molecules during extensond flow, J. Rheal., in Press (2000)

M.T. Arigo and G.H. McKinley. An experimenta investigation of negative wakes behind spheres
Seitling in ashear-thinning viscod astic fluid, Rheol. Acta, 37 (1998) 307-327.

JR. Stokes, Swirling flow of viscodadtic fluids, Ph.D. Thes's, Mebourne, 1998.

36



A. Lig of Figure Captions
Figure 1: Schematic diagram of contraction geometry including definitions of important length scales.

Figure 2 Rheologicd materid functions of the 0.025wt% monodisperse polystyrene in oligomeric
polystyrene solution. The datainclude: 4, steady shear viscosity, A?) [Pals]; ~, dynamic viscogty, AN(?)
[Pais]; **, dynamic rigidity, 220(?)/? [Pais?]; !, first norma stress coefficient, ? ,(?) [Pais?; and the
corresponding fits of the FENE-P, — - —, Bird-DeAguiar, —, and Zimm model, ——, respectively.

Figure 3: Measurements of the dimensionlesstrangent uniaxia extenson,h* /h , asafunction of Hencky
drain, e = ét. Thedaaindude: &, experimenta measurements of the 0.025wt% PS/PS solution taken at
adrainrate ofé =9.1s*; and ——, FENE-Pmodd fit. The maximum strain achieved dong the centerline
of the three contraction ratios tested is also shown.

Figure 4: Dimensonless pressure drop measurements, P(De, 3, R) = ?PNy(De, 3, R) / ?PN (Q, De=
0, R.=0, b =0), of the 0.025wt% PS/PS solution across several axisymmetric contraction-expansons
asafunction of Deborah number, De = 2, ? Thefigureindudes **, 3=8; ~,3=4;and®,3=2. The
hollow symbol s represent stable flow conditionswhilethefilled symbol srepresent unstable flow conditions.

Figure 5: Dimengonless pressure drop measurements, P(De, 13, R), of the 0.025wt% PS/PS solution
across two 4:1:4 axisymmetric contraction-expangons with different entrance lip curvature as a function
of Deborah number, De= 7, 2. Thefigureindudes ~,R=4andR.=0;and"",R=4and R.=05R..
The hollow symboals represent stable flow conditions while the filled symbols represent unstable flow
conditions.

Figure 6: Streak images comparing the flow upstream of a4:1:4 axisymmetric contraction-expanson with
(a)-(c) asharp entrance lip, R. =0, and (d)-(f) arounded entrance lip, R.= 0.5 R,, taken at identica
Deborah numbers of (a),(d) De = 1.6, (b),(e) De = 2.6, and (¢),(f) De = 3.6.

Figure 7: Characterigtics of the upstream vortex growth dynamics as a function of Deborah number for
the 4:1:4 axisymmetric contraction-expanson with rounded entrance lip, R, = 0.5 R,: I, vortex
resttachment length, ?= L, / R,; &, radid location of thevortex center,?=R, / R,; ~, the upstream location
of thevortex center, ?=2, / R,; and C, vortex reattachment length for the 4:1:4 contraction-expanson with
sharp entrance lip, R. = 0.

Figure 8: Characterigtics of the upsiream vortex growth dynamics as a function of Deborah number for
the 8:1:8 axisymmetric contraction-expansion: !, vortex resttachment length, ?=L, / R,; 2, radid location
of the vortex center, 7= R, / R,; and ~, the upstream location of the vortex center, ?7=2Z, / R,

Figure 9: Streak images of flow upstream of a 2:1:2 axisymmetric contraction-expansion for Deborah

numbers of (a) De = 0.6, (b) De = 0.9, (¢) De = 1.1 and (d) De = 1.5 showing the development and
growth of the lip vortex.

37



Figure 10: Particle Image Vdocimetry (PIV) measurements of the vector fields for the recirculating flow
upstream of a2:1:2 axisymmetric contraction-expanson a Deborah numbers of (@) De = 0.9 and (b) De
=15.

Figure 11: Characteridtics of the upstream vortex growth dynamics as a function of Deborah number for
the 2:1:2 axisymmetric contraction-expanson: !, vortex reattachment length, =L, / R,; &, radia location
of the vortex center, ?= R, / R,; and ~, the upstream location of the vortex center, ?=2,/ R,

Figure 12: Laser Doppler Vdocimetry (LDV) measurements showing the dimensionless axia velocity
aong the centerline, v,/<v,>,, asafunction of dimensonlessaxid pogtion, zZR,, for theflow through a4:1:4
axisymmetric contraction-expanson. The figureincludes. ~, Deborah number of De=0.5; **, De = 1.0;
a De=15; «, De=20; & De=3.0; -, De=4.0; and -, De=5.0.

Figure 13: The onsat of a supercriticd eadtic ingability seen in (8) Laser Doppler Velocimetry (LDV)
measurements of the flow upstream of a 4:1:4 axisymmetric contraction-expanson and power spectra
density plots of (b) radia velocity measurements, v,, a a Deborah number of De = 3.5 and (c) axia
velocity measurements, v, at a Deborah number of De = 7.0.

Figure 14: Amplitude of veocity fluctuations in the ungtable upstream flow into a 4:1:4 axisymmetric
contraction-expansionasafunction of Deborah number. The datainclude: 4, experimental measurements,
and —, the theoretical prediction for a supercritical Hopft bifurcation, v| -(De - Dei)Y2

Figure 15: Fundamenta frequency of velocity and pressure drop fluctuationsin the unstable upstiream flow
into the axisymmetric contraction-expang ons asafunction of Deborah number. Thedatainclude: 4, v, for
the 4:1:4 sharp contraction-expangon; -, v, for the 4:1:4 sharp contraction-expansion;>, v, for the 8:1.8
contraction-expanson; 2, v, for the 8:1:8 contraction-expansion; e, ?p for the 4:1:4 rounded contraction-
expangon; and —, the theoretica prediction for asupercritical Hopf bifurcation, f —(De - De,;).

Figure 16: Nonlinear dynamics of jetting flow observed in (8) LDV measurements of the radid velocity
at apogtion r/R, = 1.57 and zZ/R, = 10.16 upstream of the 4:1:4 axisymmetric contraction-expansion and
the corresponding (b) power spectral density plot at a Deborah number of De = 4.5.

Figure 17: Streek images of the jetting ingtability upstream of a4:1:4 axisymmetric contraction-expanson
for Deborah numbers of De = 3.5 showing the (a) full view of the unstable upstream vortex and (b) a
closeup of the jetting ingability dongwith (c) PIV velocity vector field generated from the closeup images.

Figure 18: Master curves of (a) reattachment lengthand (b) dimensionless pressure drop measurements,
P(De, 3, R), for the flow of the 0.025wWt% PS/PS solution across two 4:1:4 axisymmetric contraction-
expansons withdifferent entrancelip curvature as afunction of Deborah number shifted to account for re-
entrant corner curvature (seetext for details). Thefiguresindude ~, R=4and R.=0; ", 3=4and R
=05R;3 R=8andR.=0;and &,3=8and R.=05R..

Figure 19: Uniaxia extensona measurementsof Trandent Troutonratio, A /h ,, asafunction of Hencky
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drain, e = et, for the 0.31wt% PIB/PB solution, ~, and the 0.025wt% PS/PS solution, €, taken at a
Deborah number of | ,€ = 27, where ?, isthe Zimm relaxation time. The maximum strain achieved dong
the centerline of the 2:1:2, 4:1:4 and 8:1:8 contractions-expansions are indicated by the dashed lines.

Figure 20: The norma dress ratio, X = SR/TR, as a function of contraction ratio evaluated at the
deformation rate corresponding to the onset conditionsfor upstream vortex growth. Thedataincludes: A,

the 0.025wt% PS/PS solution (<v,>,/R, = 5.1s%); C, the 0.31wt% PIB/PB solution (<v,>,/R, = 9.2s?)
from[16]; and two PAA/CS solutions >, Fluid C (<v,>,/R, = 0.14s%) and ?, Fluid E (<v,>,/R, = 2.55%)
from [38].
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