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Salamanders boast an illustrious history in biological research as the 
animal in which the Spemann organizer1 and Sperry’s chemoaffinity  
theory of axonal guidance2 were discovered. Since 1768, when 
Spallanzani discovered tail and limb regeneration, researchers have 
probed this animal’s remarkable regenerative capabilities with increasing  
molecular resolution. A. mexicanum (Fig. 1a) was first collected by von 
Humboldt, and has been cultivated in the laboratory since 1864 as a 
model for investigating phenomena such as nuclear reprogramming, 
the embryology of germ-cell induction, retinal neuron processing  
and regeneration3. Owing to the ease with which A. mexicanum 
can be bred in the laboratory, a sophisticated molecular toolkit has 
been  developed for this species, including germline transgenesis and 
CRISPR-mediated gene mutation as well as viral and other transfection 
methods. These tools have enabled discoveries such as the identification 
of the source cells of regeneration and molecular pathways that  control 
regeneration4,5. A full exploitation of the axolotl model, including  
understanding regeneration and why it is limited in other tetrapods, 
requires analysis of its genome regulation and evolution. However, 
efforts towards comprehensive assembly of salamander genomes have 
been challenging owing to their large genome sizes (14–120 Gb) and 
the large number of repetitive regions they contain; the 32-Gb axolotl 
genome is ten times the size of the human genome. Here we report the 
sequencing, assembly and analysis of the axolotl genome.

A long-read assembler for large genomes
Our aim was to generate a genome sequence assembly for the d/d  axolotl 
strain (Fig. 1a), which is commonly used in laboratory regene ration 
 studies owing to its compatibility with live imaging. Taking into consider-
ation the expected challenge of assembling the complex 32-Gb genome6, 
we sequenced 110 million long reads (32×  coverage, N50 read length 

14.2 kb) using Pacific Biosciences (PacBio) instruments (Supplementary 
Information section 1) to avoid the read sampling bias that is often found 
when using other technologies and to span repeat-rich genomic regions 
that cause breaks in short-read assemblies (Fig. 1b, c).

We developed an assembly algorithm (MARVEL) that integrates 
a two-phase read-correction procedure that keeps long PacBio reads 
intact for assembly (Supplementary Information section 2). MARVEL 
produced a contig assembly with an N50 of 218 kb. Next, we used 7×  
Illumina-based sequencing to correct sequence errors in 1% of the 
 contig bases (Fig. 1b), which yielded a sequence accuracy of more than 
99.2%. On the basis of the Illumina data, we estimated a heterozygosity 
of 0.47% (Supplementary Information section 2.2).

To provide a scaffold for the contig assembly, we generated  
de novo optical maps using the Bionano Saphyr system (Supplementary 
Information section 2.3). The Bionano map resolved contig chimaeras,  
which were found in 1.7% of contigs, slightly reducing N50 contig 
length to 216 kb (Fig. 1d). The final hybrid assembly yielded an N50 
scaffold length of 3 Mb. Compared to the short-read assembly of the 
20-Gb spruce genome7 or the 22-Gb loblolly pine genome8, which 
involved 12×  long-read coverage, the axolotl assembly showed 56- and 
29-fold improvements in contiguity, respectively (Table 1).

To assess the completeness of the assembly (Supplementary 
Information section 4.1), we first determined the number of  aligning 
non-exonic ultraconserved elements9 (UCEs). We found that 194 
(98.5%) of 197 non-exonic UCEs that are conserved across vertebrates 
align to the axolotl assembly. By comparison, 189 and 192 UCEs align 
to the Tibetan frog and Xenopus genomes, respectively, and 195 UCEs 
align to the coelacanth genome, indicating that the completeness of the 
axolotl genome assembly is comparable to or better than the two other 
amphibian genomes, which are smaller than 2.3 Gb10.

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive 
molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular 
investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach 
that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We 
observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat 
retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted 
genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental 
gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to 
those seen in Pax3−/− and Pax7−/− mutant mice. The axolotl genome provides a rich biological resource for developmental 
and evolutionary studies.
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To further assess the completeness of the assembly, we generated a 
comprehensive gene catalogue by sequencing mRNA from 22 tissues 
(Supplementary Information section 3). Tissue-specific transcriptome 
assemblies and a composite assembly of all 1.5 billion transcript reads 
resulted in 180,649 transcript contigs (Supplementary Table 6) that 
contained 99% of the conserved core eukaryotic genes11 and achieved 
the highest BUSCO score (http://busco.ezlab.org/) of an axolotl tran-
scriptome reported to date (Supplementary Information section 3.4).  
More than 85% of the transcripts aligned to the genome along at 
least 95% of their length (Supplementary Information section 3.5), 
 confirming the high completeness of the assembly. Furthermore, 71% 
of transcript  contigs in which more than 95% of the sequence aligned 
with the genome were located on single scaffolds, demonstrating the 
high contiguity of the assembly. Using this comprehensive transcript 
set, we annotated a total of 23,251 protein-coding genes in the axolotl 
genome, a similar number to those found in other vertebrate genomes 
(Supplementary Information section 4.2).

Expansion of long terminal repeat retroelements
Given the similar number of genes in the A. mexicanum genome in 
comparison to other smaller vertebrate genomes, we analysed repetitive 

sequences (Supplementary Information sections 4.2.2, 4.2.3). Repetitive 
sequences made up 65.6% of the contig assembly, representing a total of 
18.6 Gb. Distinct long terminal repeat (LTR) retroelement classes and 
endogenous retroviruses made up the largest portion of the repetitive 
sequences (Fig. 2a, b, Supplementary Table 13) and included elements 
of more than 10 kb in length (Fig. 2c, Extended Data Fig. 1). Such long 
elements pose challenges for assembly, and indeed 97% of contigs 
ended in LTR elements. The number of substitutions to the repeat 
consensus, which is an estimate of the relative age of the LTR retroele-
ment, indicates that the axolotl genome has undergone a long period 
of transposon activity followed by a recent and apparently continuing 
burst of expansion (Fig. 2d). This profile is consistent with previous 
small-scale characterizations of other salamander genomes12.

The presence of many repeated elements contributes to a median 
intron size (22,759 bp) 13, 16 and 25 times that observed in human 
(1,750 bp), mouse (1,469 bp) and frog (906 bp), respectively (Fig. 3a,  
Supplementary Information section 4.3), a trend that was previously 
observed in five genes obtained from selective bacterial artificial 
chromosome sequencing of the axolotl genome13. Figure 3b shows a 
 typical gene organization in  axolotl compared to its human orthologue. 
Consistent with intron  expansion, a distance comparison of pairs of 
highly conserved non-exonic elements shows that intergenic regions 
in the axolotl genome are 12 to 17 times larger than those in human, 
mouse and frog (Supplementary Information section 4.4).

HoxA cluster and intron size constraints
To examine gene cluster organization within this large genomic 
 context, we focused on the HoxA locus, which has an important role 
in  proximal-to-distal limb development and is reactivated during limb 
regeneration14,15. The entire HoxA locus is contained on a single  contig 
(Fig. 3c), and the conserved neighbouring gene Evx1 is contained on 
the same 3.34-Mb scaffold. Compared to the  orthologous human 
and frog clusters, the A. mexicanum HoxA cluster has a substantially 
increased repeat content and is 3.5 times larger, mostly owing to a  
170-kb expansion between HoxA3 and HoxA4 (Fig. 3c). Notably, 
highly conserved non-exonic elements that putatively overlap cis- 
regulatory elements are not interspersed in this 170-kb region, but 
remain in proximity to HoxA3 and HoxA4. The axolotl has a  typical 
HoxA gene structure, with two coding exons separated by an intron. 
Notably, in contrast to the overall expansion of intron sizes, the intron 
sizes in the axolotl HoxA locus are very similar to those in other 
 vertebrates, with the exception of AmHoxA3, which is also the  longest 
of the HoxA genes in other tetrapods (Supplementary Table 17).  
Selected HoxC and HoxD genes examined in the red  spotted newt 
exhibited similar properties16.
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Figure 1 | Contiguity and completeness of the axolotl genome assembly. 
a, A wild-type A. mexicanum and the sequenced d/d A. mexicanum strain. 
b, The assembly strategy combines long-read sequencing, a novel assembler 
(MARVEL), error correction and scaffolding. c, A 57,385-bp PacBio read 
(red line) spans a large repetitive region (repeats are shown in orange; the 

longest repeat is 34 kb) and, together with the other long reads shown below 
the long PacBio read, allows assembly of the locus (green-to-red colouring 
indicates alignment quality; repeat-induced alignments of reads belonging 
to other loci have been removed). d, N(x) plot shows the percentage of the 
genome (x axis) that consists of contigs of at least x kb (y axis).

Table 1 | Comparison of assembly contiguity statistics in axolotl, 

spruce and pine genomes

Axolotl  
(A. mexicanum)

White spruce  
(Picea glauca)

Loblolly pine  
(Pinus taeda)

Assembly size 
(Gb)

32.4  
(28.4 in contigs)

24.6 20.6

Genome size 
(Gb)

32 20 22

Chromosomes 14 12 12

Sequencing 
technology

PacBio; Optical 
map

Illumina;  
cDNAs

Illumina; PacBio; 
Fosmid DiTag

Coverage 32× 65× 68×  Illumina;  
12×  PacBio

Assembler MARVEL ABySS MaSuRCA

Contig N50 
(bp)

216,277 6,644 25,361

Number of 
contigs

217,461 5,252,090 2,445,689

Sca�old N50 
(bp)

3,052,786 54,661 107,036

Number of 
sca�olds

125,724 3,033,322 1,496,869
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On the basis of these observations, we examined the intron size dis-
tribution among a larger set of orthologous genes involved in develop-
mental processes. While introns of non-developmental genes in axolotl 
show a median size expansion of 13- to 25-fold compared to human, 
mouse and frog, the expansion of introns of developmental genes is 
significantly lower (6- to 11-fold, P <  10−11) (Fig. 3a, Supplementary 
Information section 4.3). In contrast to human, mouse and frog, 
introns of developmental genes in axolotl are shorter than introns of 
non- developmental genes. Furthermore, axolotl multi-exon genes that 
contain only short introns exhibit gene ontology enrichments related 
to developmental patterning that are not enriched in multi-exon genes 
with larger introns (Supplementary Table 16). These results suggest that 
intron size in developmental genes is under constraint in the axolotl, 
possibly because smaller gene sizes facilitate rapid transcription and 
thus upregulation of these genes in specific developmental contexts.

A reduced Pax-family complement
Next, we interrogated the genome for families of canonical develop-
mental signalling molecules (Supplementary Information section 5). 
All three hedgehog paralogues as well as a full set of vertebrate Wnt 
genes were present (Extended Data Fig. 2a, b). However, we noted 
that certain members of the paired box family of transcription  factors, 
which have diverse roles in tissue formation, were not found in the 
assembly. Consistent with the absence of Pax4 in amphibians and other 
vertebrate lineages17, the axolotl genome does not contain Pax4 but 
does contain Pax10. Notably, despite the presence of the Pax3 and 
Pax7 paralogues in all other known vertebrate lineages, we were able to 
identify Pax7 but not Pax3 in the axolotl genome assembly (Extended 
Data Fig. 2c). No Pax3 sequence was found in either the raw PacBio 
sequencing reads or the transcriptome. To confirm the loss of Pax3, 
we further examined the genomic region that would be syntenic for 
Pax3 for the presence of neighbouring genes and  highly-conserved 
non-exonic elements (CNEs). The orthologues of genes surrounding 
mouse Pax3 (Sgpp2 and Epha4) were present in the A.  mexicanum 
genome assembly; however, neither the Pax3 gene nor any of the Pax3-
associated CNEs were found (Fig. 3d). By contrast, several CNEs that 
overlap the Pax7 gene were identified in the assembly. Together, this 
evidence strongly suggests that Pax3 and several of its cis- regulatory 

elements are absent in the axolotl genome, probably owing to  
a  deletion.

Axolotl Pax7 has similar functions to Pax3
To functionally assess the consequence of the absence of Pax3 in the 
axolotl, we used TALEN- and CRISPR-mediated gene editing18 to 
mutate Pax7. In other vertebrates, Pax3 and Pax7 play key roles in 
muscle, neural tube and neural crest-derived tissue development19. 
Although these two genes share some common functions, deletion 
of Pax3 or Pax7 causes distinct phenotypes in mice20–22. We inves-
tigated whether frameshift deletions introduced into the AmPax7 
gene would yield a comparable Pax7 phenotype, or whether AmPax7 
may have taken on functions that are carried out by Pax3 in other 
vertebrates. Two different TALEN-mutant alleles (7-nt and 20-nt 
deletions) of AmPax7 were bred through two generations (Fig. 4a, 
Supplementary Information section 6). In the F2 generation, the 
developmental  phenotype described below was observed in 83 out of 
345 (24%)  progeny from the Pax7∆20nt/+ intercrossing and 57 of 232 
(24.6%)  progeny from the Pax7∆7nt/+ intercrossing (Fig. 4b, Extended 
Data Fig. 3). The phenotype was evident in homozygous mutants, 
as analysed by PCR and loss of protein (Supplementary Information 
sections 6.1, 6.3). This information, combined with the CRISPR-
mediated gene mutation results (Supplementary Information  
sections 6.2), shows that the homozygous Pax7∆20nt/∆20nt and 
Pax7∆7nt/∆7nt mutants represent recessive, complete or partial loss 
of Pax7 function.

The Pax7∆20nt/∆20nt and strong F0 Pax7-CRISPR mutants exhibited a 
curved body, were unable to maintain an erect posture and exhibited a 
delay in growth compared to controls. Immunohistochemical  analysis 
of trunk or tail cross-sections of early stage, 20-day-old Pax7∆20nt/∆20nt  
or 17-day-old F0 Pax7-CRISPR axolotls showed normal muscle mass. 
However, at later stages, consistent with the mouse Pax7  deletion 
phenotype, tail and trunk muscles were greatly decreased (Fig. 4c, 
Extended Data Figs 4–6). Remarkably, the Pax7 mutant axolotls also 
completely lacked limb muscle (Figs 4d, Extended Data Fig. 7). In 
mice, Pax3, but not Pax7, is required for limb muscle formation21–23 
(Supplementary Table 18). These results demonstrate that AmPax7 has 
comparable functions to MmPax3 in the control of limb muscle genesis.
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Figure 2 | The axolotl genome contains an expansion of LTR 
retroelements. a, Pie charts of major repeat classes (LINE, long 
interspersed nuclear elements; SINE, short interspersed nuclear elements) 
show an abundance of LTR elements. b, Phylogenetic tree of axolotl LTR-
element clusters (black) and all LTR elements from GyDB2.037. Annotated 
clusters are indicated by colour, non-annotated clusters are in grey. Note 
that Errantiviridae (blue), Caulimoviridae (red) and Athila/Tat (orange) 

families are not found. c, Box plots show the length distribution of LTR 
families (ERVL, endogenous retrovirus-like). Boxes indicate the first 
quartile, the median and the third quartile with whiskers extending up 
to 1.5 times the interquartile distance. Outliers are defined as data points 
outside the whiskers and are shown as dots. Quantitative data and sample 
sizes are shown in Source Data. d, Relative age (Kimura distance) suggests 
prolonged transposition activity followed by a recent activity burst.
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In mice, Pax7 deletion affects craniofacial neural crest derivatives, 
including the facial bones20, whereas in zebrafish, pax7 mutants show 
loss of xanthophores and reduction of melanophores, but no loss of irido-
phores24. The AmPax7 mutants lacked a prefrontal bone, had a reduced 
number of melanophores and were deficient in xanthophores and irido-
phores except in the eyes (Fig. 4e–g, Extended Data Fig. 8). Pax3 deletion 
in mice is associated with neural tube closure defects22,23 (Supplementary 
Table 18). Similarly, Pax7∆20nt/∆20nt-TALEN and Pax7-CRISPR axolotls 
displayed failed closure of the neural tube in the midbrain (Fig. 4h, 
Extended Data Fig. 9). In summary, mutation of AmPax7 yields a com-
bination of the Pax3- and Pax7-mutant phenotypes that are observed 
in other vertebrates (Supplementary Information section 6). It will be 
interesting to understand how the regulation of Pax7 has changed in 
axolotl to enable the loss of Pax3, which is essential in other vertebrates.

Species-restricted genes in regeneration
Previous searches for mRNA and microRNA (miRNA) transcripts 
associated with limb regeneration relied on mapping to de novo 
transcriptome assemblies. We sought to re-examine these datasets 
using our newly acquired genomic data. Recent functional work 
has  highlighted the role of diverged gene or protein function  during 
regeneration25–27. Analysis of published tissue-enriched datasets28, 

combined with regeneration time courses29,30 and our own tran-
scriptional profiling of 22 tissues, identified five transcripts that 
are upregulated in the limb blastema (the mass of proliferating 
cells involved in regenerating the limb) with orthology limited to 
non-amniote vertebrates (Supplementary Information section 7). 
One of these protein sequences shows a weak similarity to tectorin, 
a basement membrane component normally found in the inner 
ear, consistent with studies that implicate extracellular matrix com-
ponents with having an important role in limb  regeneration31,32. 
Notably, another of these transcripts encodes a Ly6 family  member 
in the urokinase type plasminogen activator surface receptor (uPAR) 
class. Previous studies had identified the salamander-specific 
Ly6 family member Prod1 as a key factor involved in salamander  
limb development and regeneration25,33. Our results suggest that Ly6 
family members have a broader role in limb regeneration. Finally, we 
also investigated the role of non-coding RNAs by mapping a dataset 
of small RNA sequences expressed in the limb and limb  blastema34 
to our genome assembly. This analysis classified 93 small RNAs as 
pre-miRNA sequences, of which 42 appear to be novel miRNAs 
(Supplementary Information section 7.2). Taken together, these 
data point to a potential role in limb regeneration for several coding 
and non-coding sequences that have been lost or diverged rapidly 
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in  amniotes. Future investigations of such sequences are likely to be 
a fruitful avenue for  understanding the evolution of regeneration 
 capabilities.

Discussion
We have generated a comprehensive whole-genome assembly for the 
salamander A. mexicanum, and analysis of this assembly has allowed us 
to draw conclusions about the structure of the expanded genome. Our 
data, together with data from plants and partial data from several other 
salamander species, show that LTR expansion is a major contributor 
to giant genome size across animals and plants6,12,35. Our assembly 
is sufficiently complete to reliably detect the absence of Pax3, which 
is present in fish and other amphibians. This analysis was confirmed 
using gene editing, which showed that AmPax7 has assumed functions 
that are carried out by Pax3 in other animals.

Functional analysis of axolotl development, physiology and regener-
ation is facilitated by the availability of tissue- and time-dependent gene 
expression profiles28–30,36. The axolotl genome provides a foundation 
for applying methods such as chromatin immunoprecipitation with 
sequencing (ChIP–seq) or assay for transposase-accessible  chromatin 
using sequencing (ATAC-seq) to investigate the genomic basis of 

gene regulation during regeneration. Together with methods such as 
CRISPR-mediated gene editing, viral expression methods, transplan-
tation and transgenesis, the axolotl is a powerful system for studying 
questions such as the evolutionary basis of its remarkable regeneration 
ability. Our approach of long-read sequencing, optical mapping and 
genome assembly using MARVEL also demonstrates that it is now 
 feasible to assemble very large repeat-rich genomes.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.

Axolotl genomic DNA was prepared from freshly isolated liver and spleen of 
an individual three year old adult d/d male using DNAzol followed by phenol/ 
chloroform extraction and ethanol precipitation.

A total of 50 size-selected SMRTbell libraries were prepared with a minimum 
fragment length cutoff between 10 kb and 20 kb. We sequenced medium and 
large insert libraries on the PacBio RSII instrument, making use of three  different 
sequencing polymerases (P4, P5 and P6) and the corresponding sequencing 
 chemistries (C2, C3 and C4). Movie times ranged from 180 min to 360 min with 
the majority of SMRT cells (1,414 of 1,933) at 240 min.

Sequences were assembled using the MARVEL assembler.
Optical mapping was performed using the Saphyr System (Bionano) based on 

NanoChannel array Technology. DNA was labelled with Nt.BspQI and Nb.BssSI 
enzymes in separate labelling reactions. Each enzyme reaction was run on the 

Saphyr System. 2.813 Tb of data were collected on three Saphyr Chips for Nt.BspQI 
and 2.0 Tb of data were collected on two Saphyr Chips for Nb.BssSI samples;  single 
molecule N50 lengths were 240 kb and 184 kb, respectively. Each dataset was  
de novo assembled using Bionano Solve 2.1 software.

RNA was isolated from 22 tissue types using TRIzol or RNeasy reagents and 
sequenced using Illumina technology. The Trinity software package was used for 
transcriptome assembly.
Code availability. The MARVEL assembler with documentation is available at 
https://github.com/schloi/MARVEL.
Data availability. A browser of the axolotl genome is available at https://genome.
axolotl-omics.org. The transcriptome assembly and the genome and transcrip-
tome BLAST database can be accessed at https://www. axolotl-omics.org with no 
restrictions. The sequence data and both  assemblies have been deposited in the 
NCBI BioProject database with accession  numbers PRJNA378970 (genome data) 
and PRJNA378982 (transcriptome data). Both genome data and transcriptome 
data were deposited to the NCBI Nucleotide Database (nuccore) with accession 
numbers PGSH00000000 and GFZP00000000, respectively.
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Extended Data Figure 1 | Analysis of LTR retroelement frequencies according to their lengths. The line shows a moving average (period 25) to 
highlight clusters of elements of similar lengths.
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Extended Data Figure 2 | Phylogenetic trees. a, Phylogenetic tree of 
vertebrate hedgehog proteins show the presence of axolotl orthologues.  
b, Phylogenetic tree of vertebrate Wnt proteins show the presence of 

axolotl orthologues in all Wnt classes. c, Phylogenetic tree of vertebrate 
PAX proteins. Pax4 and Pax3 are absent in axolotl.
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Extended Data Figure 3 | Developmental phenotype of Pax7 mutants. 
a, b, Images of live Pax7∆20nt/∆20nt mutants compared to controls show no 
obvious phenotype at early stages (a, 1 month), but an obvious phenotype 
at later stages (b, 3.5 months). c, d, Images of live F0 Pax7-Ex1-CRISPR#3 

(c, 4 months) and Pax7-Ex2-CRISPR#1 (d, 6 months) mutants show the 
curved body phenotype. Scale bars, 1 cm. Numbers of replicate matings 
and experiments are shown in the Life Sciences Reporting Summary and 
Source Data.
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Extended Data Figure 4 | Progressive depletion of the trunk muscle in 
Pax7 mutants. a, Images of live Pax7∆20nt/∆20nt animals at different ages 
compared to corresponding controls show the progressive loss of the trunk 
muscle in mutant animals. Black arrows indicate trunk muscles; blue 
arrows highlight the visibility of the spine after reduction and/or depletion 
of trunk muscle. Scale bars, 2mm. b, c, Images of live 7-month-old F0 

Pax7-Ex1-CRISPR#3 (b) and 6-month-old F0 Pax7-Ex2-CRISPR#1 (c) 
mutants compared to controls, showing loss of trunk muscle. Black arrows 
indicate trunk muscles; blue arrows indicate the visibility of the spine after 
depletion of trunk muscle. Scale bars, 5 mm. Number of replicate matings 
and experiments are shown in the Life Sciences Reporting Summary and 
Source Data.
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Extended Data Figure 5 | Progressive depletion of the tail muscle in 
Pax7∆20nt/∆20nt mutants. a, b, Images of live 75-day (a) and 6-month-old (b)  
Pax7∆20nt/∆20nt homozygous mutants compared to controls show the 
progressive depletion of tail muscle. White arrows indicate tail muscle 
fibres; right, magnified view of the outlined area. Note the decrease in 
myotome length in 75-day-old Pax7∆20nt/∆20nt homozygous mutants (b).  

Scale bars, 500 µ m. c, Immunofluorescence images of MHC (red) and 
DAPI (blue) in tail cross-sections show reduction in tail muscle in 
3-month-old Pax7∆20nt/∆20nt mutants compared to controls. Scale bar, 
100 µ m. Number of replicate matings and experiments are shown in the 
Life Sciences Reporting Summary and Source Data.
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Extended Data Figure 6 | Depletion of the abdominal muscle in Pax7 
mutants. a, b, Bright-field image and GFP fluorescence of live 34-day (a)  
and 64-day-old (b) F0 Pax7-Ex1-CRISPR#3 mutants obtained by 
injecting Pax7-gRNA#3–CAS9 protein complex into eggs of CarAct:EGFP 
transgenic axolotls, compared to un-injected CarAct:EGFP controls. 
Mutant animals show a reduction in the EGFP-labelled abdominal 
muscles. Right, magnified view of GFP fluorescence in the outlined area; 
white arrows indicate forelimbs that either contain or lack EGFP-labelled 
muscles; green arrows indicate the GFP-labelled abdominal muscle; 
red arrows indicate regions that lack GFP-labelled abdominal muscle. 

Scale bars, 1 mm. c, Images of live 6-month-old Pax7∆20nt/∆20nt mutants 
compared to controls show the loss of abdominal muscle. Scale bars, 
1 mm. d, Immunofluorescence images of MHC (red) and DAPI (blue) in 
cross-sections show the presence of ventral body-wall muscle in the chest 
position in 6-month-old Pax7∆20nt/∆20nt homozygous mutants compared 
to controls, and the gradual depletion of the abdominal muscle along 
the anterior–posterior axis. Arrows, skin; yellow stars, liver; green stars, 
intestine. Scale bar, 100 µ m. Number of replicate matings and experiments 
are shown in the Life Sciences Reporting Summary and Source Data.
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Extended Data Figure 7 | Loss of limb muscle in Pax7 mutants.  
a, Images of live 54-day-old Pax7∆20nt/∆20nt mutants compared to controls 
show loss of limb muscle. Right, magnified view of the outlined area. Scale 
bars, 1 mm. b, c, Non-muscle tissues are normal in Pax7∆20nt/∆20nt mutant 
limbs. Immunofluorescence images for TU-J1 (b, green) MBP (b, red), 
CO1A2 (c, green) and DAPI (blue) in forelimb cross-sections of 56-day-
old Pax7∆20nt/∆20nt mutants and controls. Scale bars, 100 µ m. d, Images 
of live 80-day-old F0 Pax7-Ex1-CRISPR#3 heterozygotes compared to 

controls show loss of forelimb (FL) and hindlimb (HL) muscle on one side 
of the body (green arrows) but not on the other side (red arrows). Scale 
bar, 1 mm. e, Images of live 54-day-old F0 Pax7-Ex2-CRISPR#1 and Pax7-
Ex2-CRISPR#3 mutants compared to a control (bottom) showing loss of 
forelimb muscle in CRISPR animals. Right, magnified view of the outlined 
area. Scale bars, 1 mm. Number of replicate matings and experiments are 
shown in the Life Sciences Reporting Summary and Source Data.
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Extended Data Figure 8 | Reduced melanophores, loss of xanthophores 
and iridophores in Pax7 mutants. a, Images of a live 25-day-old 
Pax7∆20nt/∆20nt homozygous mutant compared to a control animal showing 
loss of xanthophores and reduction of melanophores in the head and 
neck region of mutant animals. Right, magnified view of the outlined 
area. Scale bar, 1 mm. b, Images of a live 54-day-old Pax7∆20nt/∆20nt 
homozygous mutant compared to a control animal showing a reduction in 
melanophores along the body. Arrows, melanophores. Scale bar, 500 µ m. 
c. Images of a live 17-day-old F0 Pax7-Ex2-CRISPR#3 mutant compared 
to a control animal showing loss of xanthophores and reduction in 
melanophores in the head and neck region. Right, magnified view of the 
outlined area. Scale bar, 1 mm. d, Images of a live 2-month-old  
Pax7∆20nt/∆20nt homozygous mutant compared to a control animal  
showing loss of iridophores on the belly. Red arrows point to the eye, 

which is displayed at higher magnification showing eye pigmentation 
defects; green arrows indicate the presence of iridophores in the control 
animal (with silver eyes), but not in the mutant (with black eyes). 
Iridophores are absent in the Pax7-TALEN#2 mutants, irrespective  
of the eye colour. Scale bars, 1 mm. e, Images of live 6-month-old  
Pax7-Ex2-CRISPR#1 and Pax7-Ex2-CRISPR#3 mutants compared to a 
control animal, showing the reduction or loss of belly iridophores (right) 
in axolotls with silver eyes (left). Red arrows point to the eye, which is 
displayed at a higher magnification on the right; green arrows indicate 
remaining iridophores in F0 mosaic Pax7-CRISPR mutants or iridophores 
in the control animal. Scale bars, 1 mm. Number of replicate matings 
and experiments are shown in the Life Sciences Reporting Summary and 
Source Data.
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Extended Data Figure 9 | Neural tube closure defects in Pax7 mutants. 
a, Images of a live 55-day-old Pax7∆20nt/∆20nt mutant compared to a control 
animal show an open brain phenotype. Right, magnified view of the  
outlined area. Scale bar, 1 mm. b–d, Images of live 15-day (b), 31-day (c)  
and 6-month-old (d) Pax7-Ex2-CRISPR#1 and Pax7-Ex2-CRISPR#3 
mutants compared to controls, showing an open brain phenotype. Right, 

magnified view of the outlined area. Scale bar, 1 mm. e, Haematoxylin 
and eosin-stained paraffin cross-sections show the open neural tube of a 
17-day-old F0 Pax7-Ex2-CRISPR#1 mutant compared to a control. Red 
arrows indicate the boundaries of the opened neural tube (NT). Scale bar, 
200 µ m. Number of replicate matings and experiments are shown in the 
Life Sciences Reporting Summary and Source Data.
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    Experimental design

1.   Sample size

Describe how sample size was determined. For genome sequencing no sample size was calculated as we sequenced one 

individual axolotl.  For phenotype analysis, no aprior sample size was determined. 

The axolotl lay hundreds of eggs per breeding, and with the very strong 

phenotypes observed, we could discern the phenotype in homozygous mutants 

with 100% correspondence of phenotype with genotype, as described in 

Supplement section 6.1.2.  Breeding of a pair of F1 Pax7-TALEN#2 mutants 

produced more than 100 progeny for phenotype analysis. We analyzed 

phenotypes from three breedings. For Pax7-CRISPR animals, we injected at least 30 

eggs for each gRNA. We repeated  the injections at least twice and analyzed the 

Pax7-CRISPR animals derived from those injections. The precise number of animals 

for morphological phenotype analysis is listed in Supplement section 6.1.3 and 

section 6.2 and file SD Fig4.xlsx.  For immunofluorescence  analyses of trunk 

muscle and limb muscle in Pax7 TALEN#2 mutants, (Fig 5c, , 6.4.8) we performed 

two independent experiments with the same result, (total n=4).  For other 

immunofluorescence and histochemical datasets in figures 5, S6.4.2, S6.4.3, S6.4.5, 

S6.4.7, S6.4.10 we analyzed three individual animals (n=3) for each of the mutant 

and control groups.  The experiment was performed once and gave a consistent 

result in all three sets of animals.  

2.   Data exclusions

Describe any data exclusions. We did not exclude data from the manuscript.  In the final transcriptome assembly 

we did not include the oocyte dataset due to the presence of numerous short 

RNAs in that dataset that did not assemble with other contigs

3.   Replication

Describe whether the experimental findings were 

reliably reproduced.

All attempts to replicate the mutant analysis were successful.

4.   Randomization

Describe how samples/organisms/participants were 

allocated into experimental groups.

In mutant analysis, progeny were allocated as having a phenotype or no phenotype 

based on limb and body muscle mass.  Then genotyping of both types of individuals 

was performed in the same experiment and the data examined for the genotype.

5.   Blinding

Describe whether the investigators were blinded to 

group allocation during data collection and/or analysis.

The investigators were not blinded.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 

study. 

A new assembler, MARVEL,  was generated and fully described in the manuscript. 

The MARVEL documentation and source code are available at : 

https://github.com/schloi/MARVEL  

 

BUSCO (v3) 

Canu assembler (1.3) 

Blasr (4.x/5.x) 

Bowtie2 (2.2.9) 

Pilon (1.22) 

SAMtools (1.3.1) 

Bionano Solve/Access™  (2.1) 

fastx_toolkit (0.0.13) 

Trinity (r20140717) 

Mira (4.9.3) 

NCBI Blast+ (2.6.0) 

CD-HIT (V4.6.6) 

R/R-Studio (3.2) 

Blat (36x2) 

RepeatModeler (1.0.8) 

RepeatMasker (4.0.6) 

LTR-FINDER (1.0.6) 

LTRharvest (GenomeTools)  (1.5.9) 

MGEScan-LTR  (0.1) 

BEDOPS (2.4.20) 

HMMER  (3.1b2) 

GyDB (2.0) 

MAFFT  (7.271) 

FastTree  (2.1.9) 

Ensembl Biomart  (89) 

lastz (1.02.00) 

SPALN (2.3.0) 

MUSCLE (3.8.31) 

RAxML (8.2.9) 

Trimmomatic  (0.33) 

ShortStack  (3.8.1) 

Adobe Photoshop (CS6) 

Adobe Illustrator (CS6) 

Zeiss ZEN 2 (blue edition) 

Olympus CellSens Standard (1.5) 
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Olympus Qcapture (3.1.2) 

miRBase (v21)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a for-profit company.

All unique materials are openly available.

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

monoclonal anti-CO1A2 (clone SP1.D8, DSHB), Validated on limb sections as 

staining the extracellular, region between dermis and epidermis, and surrounding 

muscle fascia 

monoclonal anti-MBP (GTX76114, GeneTex), MBP: Myelin Basic Protein.  Validated 

by staining on CNP:GFP transgenic animal, which expresses in glial cells.  Co-

localization was observed. 

monoclonal anti-muscle MHC (clone 4.102538, DSHB). Validated on cultured 

salamander myogenic cell line - shows positive staining in myotubes and negative 

in myoblasts. Validated in limb sections as co-staining with muscle as defined by 

morphology in by DIC microscopy, which shows muscle striations.  

monoclonal anti-PAX7 (catalog number: PAX7, DSHB), validation on axolotl tissue 

was performed by Schnapp et al (2005) Development, 132:3243-53 

monoclonal anti-TUJ-1 (MAB1195, R&D), validated by staining on betaIII-tubulin: 

GFP transgenic animal, which expresses in neurons. Colocalization was observed.  

Alexafluor 488- (A21202) and 555-(A31570) conjugated donkey anti-mouse 

secondary antibodies (Invitrogen) 

Cy3-conjugated donkey anti-rat IgG (H+L)secondary antibody (712-165-153, 

Jackson ImmunoResearch)  

Secondary antibodies were validated by staining sections with secondary antibody 

only to determine that there was no signal in the cell types to be analyzed.

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 

mycoplasma contamination.
No eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived 

materials used in the study.

Ambystoma mexicanum, strain: white (d/d).  Male was used for sequencing 

genome.   

We analysed the phenotypes at diverse stages. Pax7-TALEN animals: 20, 25, 30, 50, 

54, 55, 56, 75, 80-day old axolotls, and 1, 2, 3, 3.5, 6-month old axolotls; Pax7-

CRISPR animals: 15, 17, 30, 31, 54, 64, 80-day old axolotls, and 4, 6 and 7 month 

old axolotls.  

Up to juvenile stages, it is not possible to determine the sex of the axolotls by 

morphology and no cytochemical or molecular assay is available. The phenotype is 

very likely independent of the gender.
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Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

 This study did not include human research participants
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In the originally published version of this Article, the sequenced axolotl 
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