Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2007

The 'Azirine/Oxazolone Method' in peptaibol synthesis: preparation of a Dderivative of trichotoxin A-50 (G)

Altherr, W ; Linden, Anthony ; Heimgartner, H

Abstract

The synthesis of a mixture of epimeric derivatives of the peptaibol trichotoxin A-50 (G) is described. The 'azirine/oxazolone method' has been used as a superior method for the introduction of the Aib as well as the Iva units into the peptide chain. In this protocol, 2,2-disubstituted 2 H -azirin-3amines are the synthons for 2,2-disubstituted glycines, which undergo coupling with N-protected amino or peptide acids in high yield, and without any need of coupling reagents. The problem of the instability of the amide function of the Gln side chain under the conditions of the acid-catalyzed hydrolysis of Z-Gln-(Aib)n-N(Me)Ph was solved by using an appropriate protecting group for the amide function of the Gln side chain, e.g., the triphenylmethyl (trityl; Tr) group. The structures of two intermediate peptides, i.e., the segments comprising residues $1-5$ and $10-13$, resp., were established by X-ray crystallography.

DOI: https://doi.org/10.1002/cbdv. 200790102

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-50677
Journal Article
Accepted Version

Originally published at:
Altherr, W; Linden, Anthony; Heimgartner, H (2007). The 'Azirine/Oxazolone Method' in peptaibol synthesis: preparation of a Dderivative of trichotoxin A-50 (G). Chemistry Biodiversity, 4:1144-1169.
DOI: https://doi.org/10.1002/cbdv. 200790102

Prof. Dr. H. Heimgartner
Tel. 0446354282
Fax 0446356812
e-mail: heimgart@oci.unizh.ch

The 'Azirine/Oxazolone Method' in Peptaibol Synthesis; Preparation of a Derivative of Trichotoxin A-50 (G)

by Werner Altherr ${ }^{1}$), Anthony Linden, and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057
Zürich, Switzerland

[^0]The synthesis of a mixture of epimeric derivatives of the peptaibol Trichotoxin A-50 (G) is described. The 'azirine/oxazolone method' has been used as a superior method for the introduction of the Aib as well as the Iva units into the peptide chain. In this protocol, 2,2disubstituted 2 H -azirin-3-amines are the synthons for 2,2 -disubstituted glycines, which undergo the coupling with N-protected amino or peptide acids in high yield and without any need of coupling reagents. The problem of the instability of the amide function of the Gln side chain under the conditions of the acid catalyzed hydrolysis of Z-Gln-(Aib) $)_{n}-\mathrm{N}(\mathrm{Me}) \mathrm{Ph}$ has been solved by using an appropriate protecting group for the amide function of the Gln side chain, e.g., the triphenylmethyl (trityl) group. The structures of two intermediate peptides, i.e., segment (1-5) and segment (10-13), have been establisheded by X-ray crystallography.

1. Introduction. - Peptaibols are linear, amphiphilic polypeptides of fungal origin with 11-20 amino acids [1]. In addition to proteinogenic amino acids, they contain up to 50% 2-aminoisobutyric acid (Aib) [2] and sometimes isovaline (Iva, 2-amino-2-methylbutyric acid) [3][4]. These α, α-disubstituted amino acids (2,2-disubstituted glycines) are well known for their ability to induce helical folding of the peptide chain [5-7]. This effect still dominates when amino acids such as proline (Pro) or hydroxyproline (Hyp), which often are called 'helix-breakers', are present [8]. Therefore, peptaibols exhibit an overall helical structure. Further characteristics are the acetylated N-terminus and the presence of an α amino alcohol such as valinol (Valol), leucinol (Leuol) or phenylalaninol (Pheol) as the Cterminus [9][10]. Peptaibols are 'membrane-active' polypeptide antibiotics, which, after aggregation to bundles, form 'ion-channels' through biological membranes [11][12].

A well-known class of the peptaibols is the Trichotoxin family, which was isolated from the mycel of the fungus Trichoderma viride NRRL 5242 [13]. The Trichotoxin A-50 mixture (Tab. 1) was obtained after 'counter-current distribution' (CCD) [13a][14], the components were separated by HPLC, and their sequences could be determined by means of FAB- and FD-MS [15]. Recent work was devoted to the mechanism of formation of Trichotoxin channels in which the presence of octameric or hexameric bundles was proposed [16][17].

Table 1. Sequences of Trichotoxins A-50 [15]

Another challenge is the synthesis of peptaibols as analytically pure compounds, which can be used for the investigation of structure-activity relationships (SAR) with respect to bactericide and fungicide properties [18]. The introduction of Aib into a peptide chain had been a difficult task [19], but these difficulties have been surmounted by the development of
highly reactive coupling reagents and activated amino acids [20][21]. For example, several segments of members of the Trichotoxin A-50 family have been synthesized, and X-ray crystal-structure determinations of Z-Aib-Gly-Aib-Leu-Aib-Ot ${ }^{t} \mathrm{Bu}$ [22a], Z-Aib-Aib-Aib-Ala-Ala-Aib-Ot ${ }^{t}$ Bu [22b], Z-Aib-Gly-Aib-OH [22c], and Ac-Aib-Gly-Aib-OH [22c] were carried out.

The total synthesis of Trichotoxin A-50 (E) was reported by Brückner on the occasion of the ' $19^{\text {th }}$ European Peptide Symposium' [23]. They used the $\mathrm{Z} / \mathrm{O}^{t} \mathrm{Bu}$ strategy and the watersoluble N-ethyl- N-[3-(dimethylamino)propyl]carbodiimide (EDC) as the coupling reagent. The preparation of the segment Z-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ot ${ }^{t}$ Bu (segment 4-10) was mentioned as being difficult, but the coupling reactions of the main segments to give the octadecapeptide occurred in very good yield (Scheme 1).

Scheme 1

Almost 20 years ago, we elaborated a different method for the introduction of hindered 2,2-disubstituted glycines into peptide chains, i.e., the 'azirine/oxazolone method' [24] (and refs. cited therein). The key reaction steps are the reaction of an amino or peptide acid $\mathbf{1}$ with a 2,2-disubstituted 2 H -azirin-3-amine $\mathbf{2}$ to yield the extended peptide $\mathbf{3}$ (Scheme 2). Selective hydrolysis of the C-terminal N, N-disubstituted amide bond leads to the extended peptide acid $\mathbf{4}$, which can be coupled with a second azirine $\mathbf{2}$ to give $\mathbf{5}$ [25]. Alternatively, $\mathbf{4}$ can be used in conventional coupling reactions with an amino component, e.g. 7, to give peptide 8. The activated acid derivative is the intermediate $5(4 H)$-oxazolone 6, which is easily formed because of the disubstitution at $\mathrm{C}(2)$ of the C -terminal amino acid in $\mathbf{4}$ (Thorpe-Ingold or gem-dialkyl effect [26]). The formation of the same oxazolone $\mathbf{6}$ is responsible for the selectivity of the hydrolysis of $\mathbf{3}$ to give $\mathbf{4}$ [25d].

Scheme 2

The use of the 'azirine/oxazolone method' has been demonstrated by its application to the synthesis of peptaibols or segments thereof, e.g., the C-terminal nonapeptide of Alamethicin F30 [27], segment (14-18) of Trichotoxin A50 [28], a derivative of Trichovirin I IB [29], segment (6-16) of Zervamicin II-2 [30], and Hypomurocin Al [31].

Very recently, the 'azirine/oxazolone method' has been adapted to solid phase peptide synthesis [32]. This method was applied successfully to the preparation of a derivative of Trichovirin I 1B [32c].

In the present paper, we describe the synthesis of a mixture of epimeric derivatives of the peptaibol antibiotic Trichotoxin A-50(G)(9) by using the 'azirine/oxazolone method ${ }^{2}$).
2. Results and Discussion. - An overview of the synthesis of $\mathbf{9}$ is shown in Scheme 3. The peptaibol was built up from the main segments Z-Aib-Gly-Aib-Leu-Aib-OH (10, segment (1-5)), Z-Gln(Trt)-Aib-Aib-Aib-OH (11a, segment (6-9)), H-Ala-Ala-Aib-Pro-O ${ }^{t}$ Bu (12, segment (10-13)), and H-Leu-Aib-Iva-Gln-Valol (13, segment (14-18)) by using DCC, HOBt, and CSA or TBTU, HOBt^{3}) as the coupling reagents. Our intention was to use the 'azirine/oxazolone method' for the introduction of the Aib units in positions 3,5,7,8,9,12, and 15 as well as Iva in position 16 . The building blocks for the two amino acids were the 2 H -azirin-3-amines 2a [34] and 2b [35].

[^1]
Scheme 3, Formulae 2a and 2b

2.1. Synthesis of Z-Aib-Gly-Aib-Leu-Aib-OH (10). - The preparation of segment (1-5) was carried out according to the general concept depicted in Scheme 2. Coupling of Z-GlyOH with the Aib -synthon 2a to give $\mathbf{1 4}$ and subsequent hydrolysis of the terminal amide group gave dipeptide 15 in 89% yield (Scheme 4). In an analogous manner, dipeptide 16 was synthesized from Z-Leu-OH and 2a; hydrogenolysis led to the N -deprotected $\mathbf{1 7}$ in 93% yield. Treatment of a mixture of 15 and 17 with $\mathrm{DCC}, \mathrm{HOBt}$, and ZnCl_{2} [25b] yielded the corresponding tetrapeptide, which was deprotected at the N -terminus to give 18 (79\%). The coupling with $\mathrm{Z}-\mathrm{Aib}-\mathrm{OH}$ and subsequent selective hydrolysis gave the pentapeptide $\mathbf{1 0}$ in 76% yield. The analogous preparation of Ac-Aib-Gly-Aib-Leu-Aib-OH from $\mathbf{1 8}$ and Ac-AibOH proved to be less satisfactory as the product was obtained in only 12% yield. The main difficulty is the lability of the Ac-Aib terminus under the acidic conditions of the hydrolysis ${ }^{4}$).

Scheme 4

The conformation of $\mathbf{1 0}$ in the solid state was established by X-ray crystallography (Fig. 1). The relevant torsion angles ϕ and ψ and the H-bonding parameters are collected in Table 2. The OH and all NH groups of the molecule act as H -bond donors, while each of the carbonyl O -atoms acts as single H -bond acceptor. The OH group, plus $\mathrm{N}(4)-\mathrm{H}$ and $\mathrm{N}(5)-\mathrm{H}$ form intramolecular H -bonds with carbonyl O -atoms that are, unusually, not always the same number of atoms further along the peptide backbone. These three interactions form loops that can be described by graph set motifs [38] of $S(16), S(13)$, and $S(10)$, respectively. Two of the

[^2]intermolecular interactions link the molecules into extended chains which run parallel to the [010] direction and each interaction can be described by a graph set motif of $\mathrm{C}(11)$. The third intermolecular interaction links the molecules into extended chains which run parallel to the [100] direction and can also be described by a graph set motif of $\mathrm{C}(11)$. The combination of both interactions links the molecules into two-dimensional networks, which lie parallel to (001).

Fig. 1. ORTEP-Plot [37] of the molecular structure of $\mathbf{1 0}$ (arbitrary numbering of atoms, 50% probability ellipsoids, H -atoms bonded to C -atoms have been omitted for clarity)

Table 2. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{1 0}$

The torsion angles of $\operatorname{Aib}(1), \operatorname{Gly}(2)$, and $\operatorname{Aib}(3)$ as well as the intramolecular H-bond $\mathrm{N}(4)-\mathrm{H}^{\cdots} \mathrm{O}(2)$ between NH of $\mathrm{Leu}(4)$ and the urethane $\mathrm{C}=\mathrm{O}$ are in accordance with a righthanded α-helical structure, whereas the torsion angles of $\operatorname{Aib}(5)$ correspond with a lefthanded α-helix (see Table 2). A similar conformation for Z-Aib-Gly-Aib-Leu-Aib-O'Bu has been described by Gessmann et al. [22a].
2.2. Synthesis of Z-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-OH (19). - The octapeptide $\mathbf{1 9}$ (segment (6-13)) was built up by condensation of the two tetrapeptides 11a and 12, i.e., segments (6-9) and (10-13). The latter was prepared by the reaction of Z-Ala-Ala-OH with the Aib-synthon 2a, subsequent selective hydrolysis of the terminal amide group to give $\mathbf{2 0}$, coupling with $\mathrm{H}-\mathrm{Pro}-\mathrm{O}^{t} \mathrm{Bu}$ by using DCC and catalytic amounts of CSA to yield 21, and
finally deprotection of the amino group (Scheme 5). The total yield over all four reactions was $80.3 \%{ }^{5}$).

Scheme 5

The crystal-structure of $\mathbf{2 1}$ was also determined by X-ray crystallography (Fig. 2). The central amide group of the molecule does not partake in any H-bonds. Each of the other two amide groups forms an intermolecular H -bond with an amide O -atom of a neighboring molecule. The interaction involving $\mathrm{N}(1)-\mathrm{H}$ links the molecules into extended chains which run parallel to the [010] direction and can be described by the graph set motif [38] of $\mathrm{C}(5)$. The interaction involving $\mathrm{N}(3)-\mathrm{H}$ also links the molecules into extended chains with the $\mathrm{C}(5)$ motif and which also run parallel to the [010] direction. The combination of both interactions links the molecules into two-dimensional networks, which lie parallel to (100). There are no 'cross-chain' H-bonds, which are typical for helical peptide conformations. The torsion angles of $\operatorname{Ala}(1)$ are close to those of a 3_{10}-helical structure, and ϕ and ψ of $\operatorname{Aib}(3)$ are almost ideal for a left-handed α-helix. On the other hand, the torsion angles of Ala(2) correspond with those of an antiparallel β-sheet (see e.g. [40]).

Fig. 2. ORTEP-Plot [37] of the molecular structure of $\mathbf{2 1}$ (arbitrary numbering of atoms, 30% probability ellipsoids, H -atoms bonded to C -atoms have been omitted for clarity)

[^3]Table 3. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{2 1}$

The 'azirine/oxazolone method' is ideally suited for the synthesis of poly-Aib peptides [25c][41-43]. Therefore, the plan was to carry out the preparation of the tetrapeptide 11a straightforwardly by repeated coupling of Z-Gln-OH with azirine 2a and hydrolysis. A large series of preliminary experiments in connection with the syntheses of Z-Asn-Xaa-Xbb-OH (Xaa or $\mathrm{Xbb}=2,2$-disubstituted glycines) and the corresponding Gln derivatives showed that under the conditions of the hydrolysis of the terminal N-methyl- N-phenyl amide (see Scheme 2), the side-chain amide function of Asn and Gln was also hydrolyzed partially [36]. Therefore, a suitably protected Gln derivative had to be used. In control experiments, it was demonstrated that the bis(2,4-dimethoxybenzyl) (DMB) $)_{2}$ [44], the 4,4'-dimethoxybenzhydryl (4,4'dimethoxydityl, Dod) [45], and the triphenylmethyl (trityl, Trt) [46][47] group are appropriate protecting groups, as they are relatively stable in 3 N HCl as well as during catalytic hydrogenation, but can be removed by treatment with $\left.\mathrm{CF}_{3} \mathrm{COOH}(\mathrm{TFA})[36]^{6}\right)^{7}$). The results of this study are collected in Table 4. The repeated coupling of the Aib-synthon 2a with $\mathrm{Z}-\mathrm{Gln}(\mathrm{X})$ derivatives $\mathbf{2 3 a} \mathbf{- 2 3} \mathbf{c}$, as well as the selective hydrolysis of the Aib-containing

[^4]peptide amides, occurred under mild conditions and with high yield; the total yield of the tetrapeptide acids 11a, 11b, and 11c reach 62,64 , and 73%, respectively ${ }^{8}$).

Table 4. Yields of the Coupling of Azirine 2a and the Hydrolysis of the Terminal Amide Group of Z-Gln(X)-(Aib $)_{\mathrm{n}}-N($ Me $) P h$ Derivatives

The two tetrapeptide segments 11a and $\mathbf{1 2}$ were coupled with DCC, HOBt, and CSA in DMF; the fully protected octapeptide $\mathbf{2 4}$ was obtained in 97% yield (Scheme 6). Selective deprotection of the N -terminus to give $\mathbf{2 5}$ was achieved by hydrogenolysis, and treatment of 24 with TFA at 0° removed the protecting groups of the C-terminus and of the Gln side chain simultaneously to yield 19. The structures of the products were established on the basis of their ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and mass spectra. For example, the ESI- and FAB-MS of $\mathbf{1 9}$ are shown in Fig. 3.

Scheme 6

Fig. 3. Mass-Spectra of the Octapeptide 19; a) ESI-MS and b) FAB-MS

[^5]2.3. Synthesis of H-Leu-Aib-D,L-Iva-Gln-Valol (13). - This segment was prepared as a mixture of the D- and L-Iva epimers (Scheme 7). Subsequent coupling of Z-Leu-OH with the Aib and Iva synthons 2a and $\mathbf{2 b}$ under standard conditions gave tripeptide 27, which was then coupled with the terminal dipeptide $\mathbf{2 8}$ by using TBTU/HOBt as the coupling reagent.

Scheme 7

In preliminary studies, it has been shown that the two diastereoisomers of $\mathbf{2 7}$ can be separated by means of prep. HPLC (Nucleosil 100-7, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$), but only ca. 10% of the (+)-epimer could be isolated in pure form. The second epimer was obtained as a ca. 1:8 mixture of both isomers $\left.{ }^{9}\right)^{10}$).

Abstract

${ }^{9}$) For this reason, we have prepared $2 H$-azirin-3-amines $\mathbf{2 c}$ - $\mathbf{2 f}$, which could be used as synthons for enantiomerically pure Iva. Whereas the diastereoisomers of 2c [36] and 2d [48] could not be separated on a preparative scale, the optically pure diastereoisomers of $\mathbf{2 e}$ and $\mathbf{2 f}$ were obtained after chromatographic separation (CC). Furthermore, it has been shown that they are suitable for use in the 'azirine/oxazolone method' [49][50]. For example, the two epimers Z-Leu-Aib-D-Iva-Gln-Valol and Z-Leu-Aib-L-Iva-Gln-Valol have been synthesized [49][51].

Formulae 2c-2f

${ }^{10}$) Brückner et al. showed by means of GC methods that the two Iva units of the peptaibol 'Antiamoebin I' have the (R)-configuration (i.e., D-Iva) [52] (for the crystal structure of Ac-Aib-Aib-D-Iva-OMe $\mathrm{H}_{2} \mathrm{O}$, see [53]).
2.4. Coupling of the Segments 10, 19, and 13. - The synthesis of the Trichotoxin A-50 (G) derivative 9 was achieved - although in only moderate yield - by coupling of the segments (1-5), (6-13), and (14-18) under standard conditions (Scheme 8). First, the Cdeprotected octapeptide 19 and the C-terminal pentapeptide 13 (as a mixture of two epimers) were treated with DCC, HOBt , and CSA to give the crystalline peptide 29 as a mixture of two diastereoisomers in 39% yield. The analogous condensation with TBTU/HOBt was less satisfactory and gave the same product 29 in only 28% yield. Deprotection of 29 by hydrogenolysis and subsequent coupling with the N -terminal pentapeptide $\mathbf{1 0}$ by using TBTU/HOBt yielded the final product 9 as a mixture of two epimers (37\%). The structure of the latter was confirmed by its ESI-MS.

Scheme 8

As an alternative approach, the N -terminal pentapeptide $\mathbf{1 0}$ was coupled with the N deprotected octapeptide $\mathbf{2 5}$ by using the TBTU/HOBt methodology to give the protected tridecapeptide Z-Aib-Gly-Aib-Leu-Aib-Gln(Trt)-(Aib) 3_{3}-Ala-Ala-Aib-Pro-Ot ${ }^{t} \mathrm{Bu}(\mathbf{3 0})$ in 51% yield. Simultaneous deprotection of the C-terminus and the side chain of Gln was achieved in TFA at 0° in quantitative yield. The resulting segment Z-Aib-Gly-Aib-Leu-Aib-Gln-(Aib) 3^{-} Ala-Ala-Aib-Pro-OH (31) was characterized by ESI and FAB-MS (Fig. 4) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. In the ESI-MS, a minor peak at $m / z 1211$ indicates the presence of small amounts of Z-Aib-Gly-Aib-Leu-Aib-Gln-(Aib) ${ }_{3}$-Ala-Ala-Aib-OH, which have been formed by the treatment with TFA, i.e., the acid labile Aib-Pro bond was not perfectly stable under these conditions ${ }^{11}$).

[^6]Fig. 4. Mass-Spectra of the Tridecapeptides $\mathbf{3 0}$ and 31; a) ESI-MS of 30, b) ESI-MS of 31, and c) FAB-MS of 31
3. Conclusion. - The presented synthesis of a derivative of the peptaibol Trichotoxin A-50 (G) shows that the 'azirine/oxazolone method' is an attractive alternative for the preparation of Aib-containing peptides, e.g., naturally occurring peptaibols and non-natural analogues. The introduction of Aib, Iva, and other 2,2-disubstituted glycines via the coupling reaction of N -protected amino or peptide acids with 2 H -azirin- 3 -amines and subsequent selective hydrolysis are very convenient and efficient reactions. Most likely, the modest yields of the segment couplings in the presented synthesis can be improved significantly by using a different disconnection of the peptaibol, as shown in the synthesis of Trichotoxin A-50 (E) by Brückner [23].

Acknowledgement. - We thank the analytical sections of our institute for spectra and analyses, and the Swiss National Science Foundation, the Stipendienfonds der Basler Chemischen Industrie, and F. Hoffmann-La Roche AG, Basel, for financial support.

Experimental part

1. General. See [31][43a]. The starting materials 2,2-dimethyl-2H-azirin-3-amine (2a) and 2-ethyl-2-methyl-2 H -azirin-3-amine (2b) were prepared according to [34c][35] from 2,N-dimethyl- N -phenylpropanamide and $2, \mathrm{~N}$-dimethyl- N -phenylbutanamide by treatment with
COCl_{2} and NaN_{3} in 72 and 63% yields, respectively. The amino alcohol Valol was prepared by reduction of methyl L-valinate hydrochloride with $\mathrm{LiAlH}_{4}\left(83 \%,[\alpha]_{\mathrm{D}}=+16.2(\mathrm{c}=0.370\right.$, EtOH) [35]. Amino acids were purchased by Novabiochem and Bachem and are all Lconfigured, other reagents and solvents by Aldrich, Fluka and Merck. M.p. were measured on a Mettler-FP-5 apparatus, uncorrected. $[\alpha]_{\mathrm{D}}$-Values were determined at $21-23^{\circ}$ on a Zeiss-LEP-A2 polarimeter. IR Spectra were recorded on a Perkin-Elmer-781 spectrometer, in KBr. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker AC-300, Bruker AM-400, and Bruker AMX-600 spectrometer at 300, 400, and $600\left({ }^{1} \mathrm{H}\right)$ and $75.5,100.8$, and 151.2 MHz $\left({ }^{13} \mathrm{C}\right)$, respectively, in $\mathrm{CD}_{3} \mathrm{OD}$ if not otherwise stated. ESI-MS were measured on a Finnigan TSQ-700 instrument, FAB-MS on a Finnigan MAT-90, and CI-MS (with NH_{3} or isobutane) on a Finnigan MAT-90 or SSQ-700 instrument. Abbreviations. Aib: 2-aminoisobutyric acid (2-methylalanin); CME-CDI: N-cyclohexyl- N '-[2-(4-methylmorpholin-4-ylium)ethyl]carbodiimide 4-toluolsulfonate; CSA: camphor-10-sulfonic acid; DCC: N, N 'dicyclohexylcarbodiimide; DIEA: (ethyl)(diisopropyl)amine; HOBt: 1-hydroxybenzotriazole; NMM: N-methylmorpholine; O^{t} Bu: tert-butyloxy; TBTU: O-(1 H -benzotriazol-1-yl)$N, N, N N^{\prime}, N^{\prime}$-tetramethyluronium tetrafluoroborate; TEA: triethylamine; TFA: trifluoroacetic acid; Trt: triphenylmethyl; Valol, L-valinol ((S)-2-amino-3-methyl-1-butanol); Z: (benzyloxy)carbonyl.

General Procedure A (GP A, Coupling with 2H-Azirin-3-amines). To a soln. of an N protected amino acid or N -protected peptide (5 mmol) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ at 0°, $c a .1 .2$ equiv. of the corresponding 2 H -azirin-3-amine in THF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, and the mixture was stirred at r.t. for several h (Ar atmosphere). After completion of the reaction, the solvent was evaporated and the product was purified by column chromatography (CC), prep. layer chromatography (PLC), or crystallization.

General Procedure B (GP B, Selective Hydrolysis of Peptide N-Methyl-Nphenylamides). A soln. of the peptide amide (5 mmol) in $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1), 50 \mathrm{ml}\right)$ was stirred at r.t. for $1-40 \mathrm{~h}$. Then, aq. 2 N HCl was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The org. layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The product was purified by crystallization.

General Procedure C (GP C, Hydrogenolytic Deprotection). The N-protected peptide (Z-peptide) was dissolved in MeOH , and $10 \% \mathrm{Pd} / \mathrm{C}$ was added to the soln. The mixture was stirred at r.t. under an H_{2} atmosphere overnight. After completion of the reaction (TLC), the soln. was filtered through a Celite pad and the solvent was evaporated. The product was dried in high vacuum (i.v.).

General Procedure D (GP D, Peptide Coupling). To a soln. of an N-protected amino acid or N -protected peptide in DMF at $0^{\circ}, 1$ equiv. of DCC, 1.1 equiv. of $\mathrm{HOBt}, c a$. 0.1 equiv. of CSA or 2 equiv. of ZnCl_{2}, and 1.1 equiv. of a C-protected amino acid or C -protected peptide were added. The mixture was stirred overnight at r.t. (N_{2} atmosphere), $N, N^{\prime}-$ dicyclohexylurea was removed by filtration through a Celite pad, and DMF was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 2 N HCl (2x) and 2 N NaOH soln., and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the product was purified by CC or PLC.

General Procedure E (GP E, Deprotection with TFA). The N-protected peptide was dissolved in TFA and the soln. was stirred at $0^{\circ}-$ r.t. for $1-8 \mathrm{~h}$. Then, the TFA was evaporated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the residue, and the procedure was repeated. The crude product was purified by CC or PLC or by crystallization after addition of $\mathrm{Et}_{2} \mathrm{O}$ or hexane.
2. Preparation of the Pentapeptide Z-Aib-Gly-Aib-Leu-Aib-OH (10). 2.1. Z-Gly-Aib$O H$ (15). See [43a].
2.2. Z-Leu-Aib-N(Me)Ph (16). According to GP A, Z-Leu-OH (3.03 g, 11.42 mmol) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was treated with $\mathbf{2 a}(2.20 \mathrm{~g}, 12.63 \mathrm{mmol})$ for $13 \mathrm{~h}: 4.99 \mathrm{~g}(99 \%)$ of $\mathbf{1 6}$. Colorless
crystals. M.p. $135.5-135.7^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $) .[\alpha]_{\mathrm{D}}=-19.6(\mathrm{c}=1.01, \mathrm{EtOH})$. $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$: $3430 w, 3350 w, 3070 w, 3010 m, 2960 m, 1715 m, 1680 m, 1635 m, 1595 m, 1510 s, 1495 s, 1420 m$, $1405 m, 1390 m, 1370 m, 1240 m, 1170 m, 1120 m, 1055 m, 1030 s, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right):$ 7.56-7.13 ($m, 10$ arom. H); 5.15, 5.06 ($\mathrm{AB}, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}$); 4.10-3.90 ($m, \mathrm{CH}(2)(\mathrm{Leu})$); $3.20(s, \mathrm{MeN}) ; 1.80-1.30\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.43\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 0.92,0.90(2 d, J=$ 6.4, $2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.0,174.1$ ($2 s, 2 \mathrm{CO}$ (amide)); 158.1 (s, CO (urethane)); 146.2, 138.1 ($2 s, 2$ arom. C); 130.4, 130.0, 129.5, 129.3, 129.2, 129.0, 128.8, 128.6, 128.5, 128.3 ($10 d, 10$ arom. CH); $67.6\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 58.3 ($s, \mathrm{Me}_{2} C$); 54.5 (d, $\mathrm{C}(2)(\mathrm{Leu})) ; 42.5$ ($t, \mathrm{C}(3)(\mathrm{Leu})$); 41.3 (q, MeN); 26.9, 25.8 ($2 q, \mathrm{Me}_{2} \mathrm{C}$); 26.6 (d, C(4)(Leu)); 23.6, 21.9 ($2 q, 2 \mathrm{Me}(\mathrm{Leu})$). CI-MS: $440\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$ (439.56): C 68.31, H 7.57, N 9.56; found: C 68.13, H 7.70, N 9.35.
2.3. H -Leu-Aib-N(Me)Ph (17). According to GP C, H_{2} was bubbled through a mixture of $\mathbf{1 6}(1.01 \mathrm{~g}, 2.29 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(104 \mathrm{mg})$ in $\mathrm{MeOH}(23 \mathrm{ml})$ for $3 \mathrm{~h}: 663 \mathrm{mg}(94 \%)$ of $\mathbf{1 7}$. Colorless crystals. M.p. $111.7-112.6^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=2.4$ (c $=0.96$, EtOH). IR $\left(\mathrm{CHCl}_{3}\right): 3400 \mathrm{~m}, 3325 m, 3290 m, 3030 w, 2990 w, 2950 m, 2930 m, 2870 m, 1660 s, 1635 s$, $1600 m, 1510 m, 1495 m, 1470 m, 1450 m, 1440 m, 1395 m, 1385 m, 1375 m, 1090 m, 770 m, 710 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.52-7.20$ ($m, 5$ arom. H); 3.26 (s, MeN); 3.02 (br. $s, \mathrm{CH}(2)(\mathrm{Leu})$); 1.841.56, 1.44-1.12 (2m, $\left.\mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.48\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 0.93,0.89(2 d, J=6.5,2$ $\mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.3,175.1$ (2s, $2 \mathrm{CO}($ amide $)$; 146.1 ($s, 1$ arom. C); 130.5, 128.8, 128.5 ($3 d, 5$ arom. CH); 58.3 ($s, \mathrm{Me}_{2} C$); 54.2 ($d, \mathrm{C}(2)(\mathrm{Leu})$); 45.0 ($t, \mathrm{C}(3)(\mathrm{Leu})$); 41.6 (q, MeN); 27.4, 27.1 ($2 q, \mathrm{Me}_{2} \mathrm{C}$); 25.6 (d, C(4)(Leu)); 23.7, 22.1 ($2 q, 2 \mathrm{Me}(\mathrm{Leu})$). CI-MS: 306 (100, $\left.[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (305.42): C 66.85, H 8.91, N 13.76 ; found: C 66.73, H 9.00, N 13.95.
2.4. Z-Gly-Aib-Leu-Aib-N(Me)Ph. According to GP D, a soln. of $15(1.00 \mathrm{~g}, 3.40$ $\mathrm{mmol})$ and $\mathbf{1 7}(1.09 \mathrm{~g}, 3.58 \mathrm{mmol})$ in DMF (6 ml) was treated with DCC ($702 \mathrm{mg}, 3.40$
mmol) and ZnCl_{2} ($924 \mathrm{mg}, 6.78 \mathrm{mmol}$) for $18.5 \mathrm{~h}: 1.56 \mathrm{~g}$ (79\%) of Z-Gly-Aib-Leu-Aib$N(\mathrm{Me}) P h$. Colorless solid. M.p. $85.1-86.1^{\circ} .[\alpha]_{\mathrm{D}}=22.6(\mathrm{c}=0.92, \mathrm{EtOH}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$: $3420 w, 3340 w, 3000 m, 2960 w, 2940 w, 2880 w, 1670 s(b r), 1595 m, 1510 m, 1470 m, 1455 m$, $1385 m, 1365 m, 1265 m, 1170 w, 1120 w, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.45-7.17$ ($m, 10$ arom. H); 5.17, $5.04\left(A B, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.36-4.20(m, \mathrm{CH}(2)(\mathrm{Leu})) ; 3.83,3.65(A B, J=16.3$, $\mathrm{CH}_{2}(\mathrm{Gly})$); 3.29 (s, MeN); 1.84-1.55 ($m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})$); 1.52, 1.47, 1.42 ($3 s, 2$ $\left.\mathrm{Me}_{2} \mathrm{C}\right) ; 0.96,0.89(2 d, J=6.5,2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 176.7,175.5,174.2,172.3$ ($4 s, 4 \mathrm{CO}$ (amide)); 159.4 (s, CO (urethane)); 146.8, 137.9 ($2 s, 2$ arom. C); 130.4, 129.5, 129.1, 128.8, 128.3 ($5 d, 10$ arom. CH); 67.9 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 58.3, 58.0 ($2 s, 2 \mathrm{Me}_{2} C$); 53.3 (d, C(2)(Leu)); 45.5 ($t, \mathrm{C}(2)(\mathrm{Gly})$); 41.2 (q, MeN); 40.8 (t, C(3)(Leu)); 26.9, 26.8 (2q, Me $e_{2} \mathrm{C}$); 26.1 ($d, \mathrm{C}(4)(\mathrm{Leu})$); 24.3, 23.8, 21.2 ($3 q, \mathrm{Me}_{2} \mathrm{C}, 2 \mathrm{Me}(\mathrm{Leu})$). CI-MS: 475 (100, $[M-$ $\left.\mathrm{Ph}(\mathrm{Me}) \mathrm{N}^{+}\right)$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{6}$ (581.72): C 64.01, H 7.45, N 12.04; found: C 64.00, H 7.59, N 11.82.
2.5. H-Gly-Aib-Leu-Aib-N(Me)Ph (18). According to GP C, a mixture of Z-Gly-Aib-Leu-Aib-N(Me)Ph (1.35 g, 2.32 mmol$)$ and $\mathrm{Pd} / \mathrm{C}(215 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was treated with H_{2} for 21.5 h : 1.04 g (quant.) of 18. Colorless foam. M.p. 85.7-86.5 ${ }^{\circ}$. $[\alpha]_{\mathrm{D}}=-13.3(\mathrm{c}=1.03$, EtOH). IR (CHCl_{3}): $3420 w, 3340 m, 3005 m, 2960 m, 2870 w, 1665 s, 1590 m, 1515 s, 1495 s$, $1470 \mathrm{~m}, 1455 \mathrm{~m}, 1430 \mathrm{~m}, 1390 \mathrm{~m}, 1370 \mathrm{~m}, 1270 \mathrm{~m}, 1240 \mathrm{~m}, 1190 \mathrm{~m}, 1170 \mathrm{~m}, 1120 \mathrm{~m}, 705 \mathrm{~m} .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 7.45-7.16 ($m, 5$ arom. H); 4.22 (br. $s, \mathrm{CH}(2)(\mathrm{Leu})$); 3.28 (s, MeN); 3.26 (s, $\mathrm{CH}_{2}(\mathrm{Gly})$); 1.76-1.36 ($m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})$); 1.49, 1.47, 1.45 ($3 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}$); 0.95, $0.90(2 d, J=5.5,2 \mathrm{Me}(\mathrm{Leu})) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.71(s, \mathrm{NH}) ; 7.48-7.20(m, 5$ arom. H$)$; $7.04(s, \mathrm{NH}) ; 6.86(d, J=8.6, \mathrm{NH}) ; 4.34-4.20(m, \mathrm{CH}(2)(\mathrm{Leu})) ; 3.31\left(s, \mathrm{CH}_{2}(\mathrm{Gly})\right) ; 3.26(s$, $\mathrm{MeN}) ; 1.85-1.40\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.53,1.52,1.47,1.36$ ($4 s, 2 \mathrm{Me}_{2} \mathrm{C}$); 0.93, $0.90(2 d, J=6.5,2 \mathrm{Me}($ Leu $)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 176.6,175.4,174.6,174.0$ ($4 s, 4$ CO (amide)); 146.5 ($s, 1$ arom. C); 130.4, 128.4 ($2 d$, 5 arom. CH); 58.5, 57.7 ($2 s, 2 \mathrm{Me}_{2} C$);
52.9 ($d, \mathrm{C}(2)(\mathrm{Leu})) ; 45.1$ ($t, \mathrm{C}(2)(\mathrm{Gly})) ; 41.3$ ($q, \mathrm{MeN}) ; 41.1$ ($t, \mathrm{C}(3)(\mathrm{Leu})) ; 26.9,26.5,26.0$ (3q, $2 \mathrm{Me}_{2} \mathrm{C}$); 24.8 (d, C(4)(Leu)); 23.8, 21.5 ($2 q, 2 \mathrm{Me}(\mathrm{Leu})$). CI-MS: $448\left(5,[M+1]^{+}\right), 341$ (100, $\left[M-\mathrm{Ph}(\mathrm{Me}) \mathrm{N}^{+}\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}$ (447.58): C 61.72, H 8.33, N 15.65 ; found: C 61.72, H 8.29, N 15.43 .
2.6. Z-Aib-Gly-Aib-Leu-Aib-N(Me)Ph. According to GP D, to a soln. of Z-Aib-OH ($202 \mathrm{mg}, 0.85 \mathrm{mmol}$) in DMF (1.5 ml) were added DCC ($176 \mathrm{mg}, 0.85 \mathrm{mmol}$), HOBt (129 $\mathrm{mg}, 0.96 \mathrm{mmol})$, CSA (12 mg), and $\mathbf{1 8}(437 \mathrm{mg}, 0.98 \mathrm{mmol})$, and the mixture was stirred for 24.5 h: 478 mg (84\%) of Z-Aib-Gly-Aib-Leu-Aib-N(Me)Ph. Colorless crystals. M.p. 193.8$194.7^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=19.1(\mathrm{c}=0.92$, EtOH $) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3440 \mathrm{w}, 3320 \mathrm{~m}$, $3000 m, 2960 w, 2870 w, 1710 m, 1660 s, 1590 w, 1530 m, 1500 m, 1470 w, 1455 w, 1385 w, 1365 w$, $1330 w, 1265 m, 1190 w, 1170 w, 1090 m, 700 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.66$ (br. $\left.s, \mathrm{NH}\right) ; 7.55-7.10$ ($m, 10$ arom. $\mathrm{H}, 3 \mathrm{NH}$); $6.09(\mathrm{~s}, \mathrm{NH})$; 5.12, $5.06\left(\mathrm{AB}, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.42-4.28(\mathrm{~m}$, $\mathrm{CH}_{2}(\mathrm{Leu})$); 3.46-3.38 ($m, \mathrm{CH}_{2}(\mathrm{Gly})$); 3.32 (s, MeN); 1.90-1.45 ($m, \mathrm{CH}_{2}(3), \mathrm{CH}(4)(\mathrm{Leu})$); $1.53,1.45,1.41,1.33\left(4 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 0.92,0.86(2 d, J=6.4,2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 177.3, 174.8, 174.0, 172.6, 170.3 (5s, 5 CO (amide)); 156.1 (s, CO (urethane)); 145.8, 136.3 ($2 s, 2$ arom. C); 129.1, 128.5, 128.1, 127.5, 127.2, 126.7 ($6 d, 10$ arom. CH); 66.7 (t, $\mathrm{PhCH}_{2} \mathrm{O}$); 57.1, $56.9,56.6$ ($3 \mathrm{~s}, 3 \mathrm{Me}_{2} C$); 52.2 ($d, \mathrm{C}(2)(\mathrm{Leu})$); 45.4 ($t, \mathrm{C}(2)(\mathrm{Gly})$); 40.4 (q, MeN); $40.0\left(t, \mathrm{C}(3)(\mathrm{Leu})\right.$); 27.3, 26.3, 25.8, 25.0, 23.5, 23.4, 20.7 ($6 q$ and $1 d, 3 \mathrm{Me}_{2} \mathrm{C}$, C(4)(Leu), $2 \mathrm{Me}(\mathrm{Leu}))$. ESI-MS: $705\left(40,[M+\mathrm{K}]^{+}\right), 689\left(100,[M+\mathrm{Na}]^{+}\right), 684(56), 667$ (21, $\left.[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{7}$ (666.82): C 63.04, H 7.56, N 12.60; found: C 63.12, H 7.72, N 12.52.
2.7. Z-Aib-Gly-Aib-Leu-Aib-OH (10). According to GP B, a soln. of Z-Aib-Gly-Aib-Leu-Aib-N(Me)Ph (195 mg, 0.29 mmol$)$ in $3 \mathrm{~N} \mathrm{HCl}(6 \mathrm{ml})$ was stirred for $30 \mathrm{~h}: 154 \mathrm{mg}(91 \%)$ of 10. Colorless crystals. M.p. 194.7-195.7 ${ }^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=1.0(\mathrm{c}=1.04, \mathrm{EtOH})$. IR (KBr): $3320 m(\mathrm{br}), 3050 w, 2990 w, 2930 w, 2850 w, 1740 m, 1710 m, 1670 s, 1630 s, 1575 m$,
$1550 m, 1535 m, 1470 w, 1455 w, 1390 w, 1370 w, 1310 w, 1270 m, 1245 m, 1180 w, 1090 w$, $1020 w, 740 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.68,7.90,7.77,7.66,7.64(5 s, 5 \mathrm{NH}) ; 7.45-7.25$ ($m, 5$ arom. H); $5.12\left(s, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.32-4.20(m, \mathrm{CH}(2)(\mathrm{Leu})) ; 3.77,3.68\left(A B\right.$ of $A B X, J_{\mathrm{AB}}=16.7$, $\left.J_{\mathrm{AX}}=5.8, J_{\mathrm{BX}}=4.7, \mathrm{CH}_{2}(\mathrm{Gly})\right) ; 1.85-1.55\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.49,1.48,1.45$, $1.42\left(4 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 0.94,0.86(2 d, J=5.3,2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 178.8,177.7$, 177.2, 174.3, 172.5 (5s, 5 CO (amide)); 158.0 (s, CO(urethane)); 138.1 ($s, 1$ arom. C); 129.5, 129.0, 128.5 ($3 d, 5$ arom. CH); 67.7 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 58.2, 57.6, 57.1 ($3 s, 3 \mathrm{Me}_{2} C$); 53.6 (d, $\mathrm{C}(2)(\mathrm{Leu})) ; 45.5$ ($t, \mathrm{C}(2)(\mathrm{Gly})) ; 40.7$ ($t, \mathrm{C}(3)(\mathrm{Leu})) ; 27.1,26.3,25.9,25.7,25.0,24.7,24.4$, 23.7, 21.1 ($8 q$ and $1 d, 3 M e_{2} \mathrm{C}, \mathrm{C}(4)(\mathrm{Leu}), 2 \mathrm{Me}(\mathrm{Leu})$). ESI-MS: 638 (7), 622 (20), 616 (48, $\left.[M+\mathrm{K}]^{+}\right), 600\left(100,[M+\mathrm{Na}]^{+}\right), 578\left(4,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{8}$ (577.68): C 58.22, H 7.50, N 12.12; found: C 58.31, H 7.55, N 12.16.

Suitable crystals for an X-ray crystal-structure determination were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane by slow evaporation of the solvent.
2.8. Ac-Aib-Gly-Aib-Leu-Aib-N(Me)Ph. According to GP D, to a soln. of Ac-Aib-OH ($100 \mathrm{mg}, 0.68 \mathrm{mmol}$) [31] in DMF (2 ml) were added DCC ($143 \mathrm{mg}, 0.69 \mathrm{mmol}$), HOBt (105 $\mathrm{mg}, 0.78 \mathrm{mmol})$, CSA (10 mg), and $\mathbf{1 8}(355 \mathrm{mg}, 0.79 \mathrm{mmol})$, and the mixture was stirred for 22.5 h: 209 mg (52\%) of Ac-Aib-Gly-Aib-Leu-Aib-N(Me)Ph. Colorless crystals. M.p. 232.7$233.5^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 7.44-7.18 ($m, 5$ arom. H); 4.32-4.18 (m, $\mathrm{CH}(2)(\mathrm{Leu})) ; 3.72,3.66\left(A B, J=16.8, \mathrm{CH}_{2}(\mathrm{Gly})\right) ; 3.31$ (br. $\left.s, \mathrm{MeN}\right)$; 1.99 (s, MeCO); 1.92$1.60\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.54,1.53,1.50,1.46,1.45,1.41\left(6 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 0.95,0.88$ $(2 d, J=5.8,2 \mathrm{Me}(\mathrm{Leu}))$. ESI-MS: $613\left(20,[M+\mathrm{K}]^{+}\right), 597\left(100,[M+\mathrm{Na}]^{+}\right), 575\left(6,[M+1]^{+}\right)$.
2.9. Ac-Aib-Gly-Aib-Leu-Aib-OH. According to GP B, a soln. of Ac-Aib-Gly-Aib-Leu-Aib-N(Me)Ph (99 mg, 0.17 mmol) in $3 \mathrm{~N} \mathrm{HCl}(2 \mathrm{ml})$ was stirred for $7.5 \mathrm{~h}: 19 \mathrm{mg}(23 \%)$ of $A c-$ Aib-Gly-Aib-Leu-Aib-OH. Colorless crystals. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 4.30-4.22$ ($m, \mathrm{CH}(2)(\mathrm{Leu})$); 3.76, $3.68\left(A B, J=16.8, \mathrm{CH}_{2}(\mathrm{Gly})\right) ; 1.98(s, \mathrm{MeCO}) ; 1.80-1.30\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu})\right.$,
$\mathrm{CH}(4)(\mathrm{Leu})) ; 1.51,1.49,1.47,1.46,1.44,1.42\left(6 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 0.94,0.87(2 d, J=6.1,2$ Me(Leu)). ESI-MS: $524\left(40,[M+K]^{+}\right), 508\left(100,[M+N a]^{+}\right)$.
3. Preparation of the Octapeptide Z-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-OH (19). 3.1. Z-Ala-Ala-Aib-N(Me)Ph. According to GP A, Z-Ala-Ala-OH ($2.34 \mathrm{~g}, 8.00 \mathrm{mmol}$) in THF (50 ml) was treated with $\mathbf{2 a}(1.98 \mathrm{~g}, 11.00 \mathrm{mmol})$ for $24 \mathrm{~h}: 3.66 \mathrm{~g}(98 \%)$ of Z-Ala-Ala-Aib$N(\mathrm{Me})$ Ph. Colorless crystals. M.p. $128.3-128.9^{\circ}$ (AcOEt/hexane). $[\alpha]_{\mathrm{D}}=-15.9(\mathrm{c}=0.74$, EtOH $)$. IR $\left(\mathrm{CHCl}_{3}\right): 3430 w, 3340 w, 3070 w, 3010 m, 2980 w, 2940 w, 1715 s, 1670 s, 1595 m$, $1495 s, 1455 m, 1390 m, 1370 w, 1290 w, 1240 m, 1120 w, 1070 w, 1030 w, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.46-7.12(\mathrm{~m}, 10$ arom. H$)$; 5.15, $5.07\left(\mathrm{AB}, \mathrm{J}=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.24-3.86(\mathrm{~m}, 2$ $\mathrm{CH}(2)(\mathrm{Ala})) ; 3.20(s, \mathrm{MeN}) ; 1.48,1.45\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) ; 1.36(d, J=7.3, \mathrm{Me}(\mathrm{Ala})) ; 1.22(d, J=$ 6.8, $\mathrm{Me}(\mathrm{Ala})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.3,173.6$ ($2 s, 2 \mathrm{CO}$ (amide)); 158.7 (s, CO (urethane)); 146.4, 138.1 ($2 s, 2$ arom. C); 130.9, 129.8, 129.3, 129.0, 128.6 ($5 d$, 10 arom. CH); 68.0 (t, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right) ; 58.6\left(s, \mathrm{Me}_{2} C\right) ; 52.8,50.0\left(2 d, 2 \mathrm{C}(2)\right.$ (Ala)); $41.8(q, \mathrm{MeN}) ; 27.4,27.2$ ($2 q, \mathrm{Me}_{2} \mathrm{C}$); 18.8, 18.4 ($2 q, 2 \mathrm{Me}(\mathrm{Ala})$). CI-MS: 362 ($100,\left[M+1-\mathrm{PhCH}_{2} \mathrm{O}\right]^{+}$). Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5}$ (468.56): C 64.09, H 6.88, N 11.96; found: C 63.84, H 6.87, N 11.94.
3.2. Z-Ala-Ala-Aib-OH (20). According to GP B, a soln. of Z-Ala-Ala-Aib-N(Me)Ph $(2.07 \mathrm{~g}, 4.42 \mathrm{mmol})$ in $3 \mathrm{~N} \mathrm{HCl}(45 \mathrm{ml})$ was stirred for $26 \mathrm{~h}: 1.58 \mathrm{~g}(94 \%)$ of $\mathbf{2 0}$. Colorless crystals. M.p. $82.5-83.2^{\circ}\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=-42.1(\mathrm{c}=1.02, \mathrm{EtOH}) . \mathrm{IR}(\mathrm{KBr})$: $3300 w(b r), 3070 m, 2990 m, 2940 m, 1730 s, 1650 s, 1535 s, 1455 s, 1385 w, 1370 w, 1260 s$, $1170 m, 1075 m, 1030 m, 740 m, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.42-7.22(\mathrm{~m}, 5$ arom. H); $5.09(s$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right)$; 4.34, $4.11(2 q, J=7.1,2 \mathrm{CH}(2)(\mathrm{Ala})) ; 1.47,1.46\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) ; 1.34(d, J=7.1,2$ Me(Ala)). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.7$ (s, COOH); 175.3, 173.8 (2s, 2 CO (amide)); 158.4 (s, CO (urethane)); 138.1 ($s, 1$ arom. C); 129.5, 129.0, 128.8 ($3 d, 5$ arom. CH); $67.7\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 57.0 ($s, \mathrm{Me}_{2} C$); 52.3, 50.1 (2d, $2 \mathrm{C}(2)(\mathrm{Ala})$); 25.2 ($q, \mathrm{Me}_{2} \mathrm{C}$); 18.1, 17.9 ($2 q, 2 \mathrm{Me}(\mathrm{Ala})$). CI-

MS: $380\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ (379.42): C 56.98, H 6.64, N 11.08; found: C 56.90, H 6.58, N 11.14.
3.3. Z-Ala-Ala-Aib-Pro- ${ }^{\mathrm{t}}$ Bu (21). According to GP D, DCC (710 mg, 3.43 mmol) was added to a stirred soln. of $\mathbf{2 0}(1.30 \mathrm{~g}, 3.43 \mathrm{mmol})$ in DMF (7 ml). After 5 min , HOBt (510 $\mathrm{mg}, 3.78 \mathrm{mmol}$), CSA (50 mg), H -Pro- $\mathrm{O}^{t} \mathrm{Bu}$ dibenzenesulfimide salt ($1.85 \mathrm{~g}, 3.95 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(397 \mathrm{mg}, 3.93 \mathrm{mmol})$ in DMF (4 ml) were added, and the mixture was stirred for 25.5 h : $1.64 \mathrm{~g}(89 \%)$ of 21. Colorless crystals. M.p. $185.3-186.4^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=-85.2(\mathrm{c}=$ $1.04, \mathrm{EtOH}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3420 w, 3340 w, 3040 w, 3010 m, 2980 m, 2940 w, 1725 s, 1690 m$, $1670 s, 1625 m, 1500 s, 1455 m, 1420 m, 1380 w, 1370 m, 1340 w, 1290 w, 1240 m, 1150 m, 1090 w$, $1070 w, 1030 w, 700 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.39-7.26$ ($m, 5$ arom. H); 5.11, $5.07(A B, J=12.3$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.35(q, J=7.1, \mathrm{CH}(2)(\mathrm{Ala})) ; 4.26(d d, J=8.5,3.3, \mathrm{CH}(2)(\mathrm{Pro})) ; 4.09(q, J=7.1$, $\mathrm{CH}(2)(\mathrm{Ala})) ; 3.66-3.44\left(m, \mathrm{CH}_{2}(5)(\mathrm{Pro})\right) ; 2.07-1.72\left(m, \mathrm{CH}_{2}(3)(\operatorname{Pro}), \mathrm{CH}_{2}(4)(\mathrm{Pro})\right) ; 1.44$ (s, $\left.\mathrm{Me}_{2} \mathrm{C}\right) ; 1.43$ ($s, \mathrm{Me}_{3} \mathrm{C}$); 1.33, $1.32(2 d, J=7.1,2 \mathrm{Me}(\mathrm{Ala})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.7,174.0$, 173.8 ($3 s, 4 \mathrm{CO}$); 158.6 (s, CO(urethane)); 138.4 ($s, 1$ arom. C); 129.8, 129.3, 129.0 (3d, 5 arom. CH); 82.5 ($s, \mathrm{Me}_{3} C$); 67.9 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 63.4 ($d, \mathrm{C}(2)(\mathrm{Pro})$); 57.7 ($\left.s, \mathrm{Me}_{2} C\right) ; 52.5,50.2$ (2d, $2 \mathrm{C}(2)$ (Ala)); 49.5 (t, C(5)(Pro)); 29.2, 26.4 (2t, C(4)(Pro), C(3)(Pro)); 28.6 ($q, \mathrm{Me}_{3} \mathrm{C}$); 25.9, 25.1 ($2 q, M e_{2} \mathrm{C}$); 18.4 ($q, 2 \mathrm{Me}(\mathrm{Ala})$). FAB-MS: 533 ($\left.15,[M+1]^{+}\right), 362$ (83, [M-(Pro$\left.\left.\left.\mathrm{O}^{t} \mathrm{Bu}\right)\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7}$ (532.64): C 60.89, H 7.57, N 10.52; found: C $60.78, \mathrm{H}$ 7.73, N 10.66.

Suitable crystals for an X-ray crystal-structure determination were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane by slow evaporation of the solvent.
3.4. H-Ala-Ala-Aib-Pro-Ot ${ }^{\mathrm{t}} \mathrm{Bu}$ (12). According to $G P C$, a stirred mixture of $21(1.10 \mathrm{~g}$, $2.07 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(154 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was treated with H_{2} for $18.5 \mathrm{~h}: 816 \mathrm{mg}$ (98%) of 12. Colorless crystals. M.p. 116.4-117.4 ${ }^{\circ}$ (MeOH/AcOEt/hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 4.36(q, J=7.2, \mathrm{CH}(2)(\mathrm{Ala})) ; 4.32-4.25(m, \mathrm{CH}(2)(\operatorname{Pro})) ; 3.70-3.53$ (m,
$\left.\mathrm{CH}_{2}(5)(\mathrm{Pro})\right) ; 3.41(q, J=6.9, \mathrm{CH}(2)(\mathrm{Ala})) ; 2.07-1.75\left(m, \mathrm{CH}_{2}(3)(\mathrm{Pro}), \mathrm{CH}_{2}(4)(\mathrm{Pro})\right) ; 1.45$, $1.44,1.43\left(3 s, \mathrm{Me}_{2} \mathrm{C}, \mathrm{Me}_{3} \mathrm{C}\right) ; 1.33(d, J=7.2, \mathrm{Me}(\mathrm{Ala})) ; 1.24(d, J=6.9, \mathrm{Me}(\mathrm{Ala})) .{ }^{13} \mathrm{C}-$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 177.9 (s, CO (ester)); 173.9, 173.7, 173.5 ($3 s, 3 \mathrm{CO}$ (amide)); $82.2\left(s, \mathrm{Me}_{3} C\right)$; 63.0 (d, C(2)(Pro)); 57.3 ($s, \mathrm{Me}_{2} C$); 51.4, 49.6 (2d, $2 \mathrm{C}(2)$ (Ala)); 49.2 ($t, \mathrm{C}(5)(\operatorname{Pro})$); 28.9, 26.6 (2t, C(4)(Pro), C(3)(Pro)); 28.2 ($\left.q, M e_{3} \mathrm{C}\right) ; 25.6,24.7$ ($2 q, \mathrm{Me}_{2} \mathrm{C}$); 18.3 ($q, 2 \mathrm{Me}(\mathrm{Ala})$). ESI-MS: $437\left(4,[M+K]^{+}\right), 421\left(9,[M+N a]^{+}\right), 399\left(100,[M+1]^{+}\right)$.
3.5. Z-Gln(Trt)-Aib-N(Me)Ph. According to GP A, a soln. of Z-Gln(Trt)-OH (23a, 3.01 $\mathrm{g}, 5.76 \mathrm{mmol})$ in THF (25 ml) was treated with $\mathbf{2 a}(1.25 \mathrm{~g}, 7.18 \mathrm{mmol})$ for $45 \mathrm{~h}: 3.59 \mathrm{~g}(89 \%)$ of Z-Gln(Trt)-Aib-N(Me)Ph. Colorless foam. M.p. 89.2-90.1 ${ }^{\circ} .[\alpha]_{\mathrm{D}}=-1.2(\mathrm{c}=0.84, \mathrm{EtOH})$. IR (CHCl_{3}): 3430w, $3060 w, 3010 w, 2940 w, 1715 m, 1680 m, 1635 m, 1595 w, 1495 s, 1450 w$, $1420 w, 1390 w, 1365 w, 1245 w, 1195 w, 1120 w, 1050 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.43-7.06$ ($m, 25$ arom. H); 6.56 (s, NH); 5.76 (br. $d, J=7.1, \mathrm{NH}$); 5.16, $5.06\left(A B, J=12.2, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 3.76-3.63 ($m, \mathrm{CH}(2)(\mathrm{Gln})$); $3.20(s, \mathrm{MeN}) ; 2.55-2.30\left(m, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.00-1.70$ (m, $\left.\mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.37,1.28\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.3,174.5,173.3$ (3s, 3 CO (amide)); 158.5 (s, CO(urethane)); 146.4, 146.3, 138.5 ($3 s, 5$ arom. C); 130.8, 130.3, 129.8, 129.4, 129.0, 128.8, 128.0 ($7 d, 25$ arom. CH); $71.9\left(s, \mathrm{Ph}_{3} C\right) ; 68.0\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 58.7$ ($s, \mathrm{Me}_{2} C$); 55.6 ($\left.d, \mathrm{C}(2)(\mathrm{Gln})\right) ; 41.7(q, \mathrm{MeN}) ; 33.7,29.9$ (2t, $\left.\mathrm{C}(4)(\mathrm{Gln}), \mathrm{C}(3)(\mathrm{Gln})\right) ; 27.2$ (q, $\left.M e_{2} \mathrm{C}\right)$. CI-MS: $589\left(15,\left[M-\mathrm{PhCH}_{2} \mathrm{O}\right]^{+}\right), 243\left(100, \mathrm{Trt}^{+}\right)$. ESI-MS: $735\left(70,[M+\mathrm{K}]^{+}\right), 719$ $\left(100,[M+\mathrm{Na}]^{+}\right), 697\left(17,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$ (696.85): C 74.12, H 6.36, N 8.04; found: C 73.87, H 6.34, N 7.82 .
3.6. Z-Gln(Trt)-Aib-OH. According to GP B, a soln. of Z-Gln(Trt)-Aib-N(Me)Ph (4.93 $\mathrm{g}, 7.08 \mathrm{mmol})$ in $3 \mathrm{~N} \mathrm{HCl}(80 \mathrm{ml})$ was stirred for $8 \mathrm{~h}: 4.25 \mathrm{~g}(98 \%)$ of $Z-G \ln (\operatorname{Trt})-A i b-O H$. Colorless crystals. M.p. $121.6-122.5^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=-6.3(\mathrm{c}=0.87, \mathrm{EtOH}) . \mathrm{IR}$ (KBr): $3430 \mathrm{~m}, 3340 \mathrm{~m}, 3080 w, 3060 w, 3030 w, 2940 w, 1740 w, 1700 m$ (br), 1650s, 1520 m , $1505 m, 1495 m, 1470 w, 1400 w, 1365 w, 1240 w, 1220 w, 1150 w, 1055 w, 1000 w, 700 m .{ }^{1} \mathrm{H}-$

NMR (CDCl_{3}): $8.57(s, \mathrm{NH}) ; 8.13(s, \mathrm{NH}) ; 7.38-7.13$ ($\mathrm{m}, 20$ arom. H); 5.11, $5.06(A B, J=$ $\left.12.8, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.13-4.00(m, \mathrm{CH}(2)(\mathrm{Gln})) ; 2.54-2.31$ ($\left.m, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.08-1.91,1.91-$ $1.72\left(2 m, \mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.47,1.42\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.9(s, \mathrm{COOH}) ; 174.7$, 173.8 ($2 s, 2 \mathrm{CO}$ (amide)); 158.6 (s, CO (urethane)); 146.2, 138.4 ($2 s, 4$ arom. C); 130.3, 129.8, 129.3, 129.2, 129.0, 128.1 ($6 d, 20$ arom. CH); 71.9 ($s, \mathrm{Ph}_{3} C$); 68.1 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 57.5 (s, $\left.\mathrm{Me}_{2} C\right) ; 55.9$ (d, C(2)(Gln)); 33.9, 29.6 (2t, C(4)(Gln), C(3)(Gln)); 25.8, 25.3 (2q, Me e_{2} C). ESIMS: $646\left(100,[M+K]^{+}\right), 630\left(68,[M+N a]^{+}\right), 628(90)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}(607.71)$: C 71.15, H 6.14, N 6.92; found: C 71.34, H 6.07, N 6.91.
3.7. $Z-G \ln (T r t)-A i b-A i b-N(M e) P h$. According to $G P A$, a soln. of $Z-G \ln (\operatorname{Trt})-A i b-O H$ ($3.98 \mathrm{~g}, 6.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ and DMF $(12 \mathrm{ml})$ was treated with $\mathbf{2 a}(1.60 \mathrm{~g}, 9.16$ $\mathrm{mmol})$ for $36 \mathrm{~h}: 4.48 \mathrm{~g}(87 \%)$ of $\mathrm{Z}-\mathrm{Gln}(T r t)-A i b-A i b-N(M e) P h$. Colorless foam. M.p. 111.5$112.0^{\circ} .[\alpha]_{\mathrm{D}}=-2.0(\mathrm{c}=1.06, \mathrm{EtOH}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3420 w, 3350 w, 3040 w, 3005 m, 2930 w$, $1715 m, 1670 m, 1630 m, 1595 m, 1495 s, 1450 m, 1390 m, 1360 m, 1240 m, 1200 w, 1020 w, 700 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.57(s, \mathrm{NH}) ; 7.42-7.06$ ($m, 25$ arom. H, NH); 6.64 (s, NH); 5.96 (br. s, $\mathrm{NH}) ; 5.15,5.06\left(A B, J=12.1, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.03(d d, J=12.3,6.3, \mathrm{CH}(2)(\mathrm{Gln})) ; 3.15(s, \mathrm{MeN})$; 2.68-2.52, 2.52-2.36 (2m, $\left.\mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.15-2.00\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.40,1.37,1.31(3 s, 2$ $\left.\mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 176.2,175.7,174.5,174.2$ ($4 s, 4 \mathrm{CO}$ (amide)); 158.9 (s, CO (urethane)); 147.0, 146.2, 138.6 ($3 s, 5$ arom. C); 130.6, 130.3, 129.8, 129.3, 129.0, 128.9, 128.8, 128.6, 128.1 ($9 d, 25$ arom. CH); $71.9\left(s, \mathrm{Ph}_{3} C\right) ; 67.9\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 59.0,58.4(2 s, 2$ $\left.\mathrm{Me}_{2} C\right) ; 56.7$ ($d, \mathrm{C}(2)(\mathrm{Gln})$); 41.5 ($\left.q, \mathrm{MeN}\right) ; 34.0,28.6$ (2t, C(4)(Gln), C(3)(Gln)); 26.7, 26.6, 26.4, $25.3\left(4 q, 2 M e_{2} \mathrm{C}\right)$. ESI-MS: $820\left(10,[M+\mathrm{K}]^{+}\right), 804\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{6}$ (781.96): C 72.19, H 6.57, N 8.96; found: C 72.04, H 6.78, N 9.03.
3.8. Z-Gln(Trt)-Aib-Aib-OH. According to GP B, a soln. of Z-Gln(Trt)-Aib-Aib$N(\mathrm{Me}) \mathrm{Ph}(1.00 \mathrm{~g}, 1.28 \mathrm{mmol})$ in $3 \mathrm{~N} \mathrm{HCl}(16 \mathrm{ml})$ was stirred for $6.5 \mathrm{~h}: 889 \mathrm{mg}$ (quant.) of Z$\operatorname{Gln}(T r t)$-Aib-Aib-OH. Colorless foam. M.p. $105.5-106.3^{\circ} .[\alpha]_{\mathrm{D}}=-3.9(\mathrm{c}=1.01, \mathrm{EtOH})$. IR
(KBr): 3350 m (br), $3060 w, 3030 w, 2980 w, 2930 w, 1710 m, 1660 s, 1530 m, 1515 m, 1450 m$, $1390 w, 1365 w, 1315 w, 1245 m, 1155 w, 1080 w, 1000 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.50-7.00$ ($m, 20$ arom. H, 2 NH); $6.38(d, J=5.5, \mathrm{NH}) ; 5.09,5.02\left(\mathrm{AB}, J=12.2, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.02-3.88$ ($m, \mathrm{CH}(2)(\mathrm{Gln})$); 2.60-2.30 ($m, \mathrm{CH}_{2}(4)(\mathrm{Gln})$); 2.08-1.78 ($\left.m, \mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.45,1.43,1.35$, 1.28 ($4 s, 2 \mathrm{Me}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 178.3 (s, COOH); 176.1, 174.5, 174.3 ($3 s, 3$ CO (amide)); 158.8 (s, CO(urethane)); 146.2, 138.5 ($2 s, 4$ arom. C); 130.3, 129.8, 129.3, 129.0, 128.1 (5d, 20 arom. CH); 71.9 ($s, \mathrm{Ph}_{3} C$); $68.0\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 58.2, 57.5 ($2 s, 2 \mathrm{Me}_{2} C$); 56.6 (d, C(2)(Gln)); 34.0, 28.6 (2t, C(4)(Gln), C(3)(Gln)); 26.1, 25.8, 25.7, 25.1 (4q, $\left.2 M e_{2} \mathrm{C}\right)$. ESI-MS: $738\left(9,[M+2 \mathrm{Na}]^{+}\right), 731\left(18,[M+\mathrm{K}]^{+}\right), 715\left(100,[M+\mathrm{Na}]^{+}\right)$. FAB-MS: 693 (38, $\left.[M+1]^{+}\right), 243$ (100). Anal. calc. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{7}$ (692.82): C 69.35, H 6.40, N 8.09; found: C 69.10, H 6.59, N 7.88.
3.9. Z-Gln(Trt)-Aib-Aib-Aib-N(Me)Ph. According to GP A, a soln. of Z-Gln(Trt)-Aib-Aib-OH ($2.08 \mathrm{~g}, 3.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was treated with $\mathbf{2 a}(630 \mathrm{mg}, 3.62 \mathrm{mmol})$ for 42 h: $2.34 \mathrm{~g}(89 \%)$ of $Z-G \ln (T r t)-A i b-A i b-A i b-N(M e) P h$. Colorless foam. M.p. 199.0-199.7 ${ }^{\circ}$. $[\alpha]_{\mathrm{D}}=-19.6(\mathrm{c}=1.07, \mathrm{EtOH}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3420 w, 3340 w, 3050 w, 2995 w, 2930 w, 1675 s$, $1590 w, 1490 s, 1450 w, 1390 w, 1360 w, 1240 w, 1030 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.40-7.12$ ($m, 25$ arom. H, NH); 7.05, 6.75, 6.66, $6.31(4 s, 4 \mathrm{NH})$; 5.10, $5.05\left(A B, J=12.3, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 3.95-3.82 ($m, \mathrm{CH}(2)(\mathrm{Gln})$); $3.30(s, \mathrm{MeN}) ; 2.66-2.52,2.52-2.36\left(2 m, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.12-$ $1.86\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.46,1.44,1.31,1.26\left(4 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 176.5,175.7$, 175.6, 174.6, 174.1 (5s, 5 CO(amide)); 147.0, 145.9, 138.0 ($3 s, 5$ arom. C); 130.2, 129.9, 129.5, 129.1, 128.8, 128.7, 128.2, 128.0, 127.8 (9d, 25 arom. CH); 71.6 ($s, \mathrm{Ph}_{3} C$); 67.8 (t, $\mathrm{PhCH}_{2} \mathrm{O}$); 58.3, 58.0, 57.7 ($3 s, 3 \mathrm{Me}_{2} C$); 56.3 ($d, \mathrm{C}(2)(\mathrm{Gln})$); 41.0 (q, MeN); 33.5, 27.8 ($2 t$, $\mathrm{C}(4)(\mathrm{Gln}), \mathrm{C}(3)(\mathrm{Gln})) ; 26.8,26.5,26.2,25.9,25.0,24.5$ ($6 q, 3 M e_{2} \mathrm{C}$); CO (urethane) not detected. ESI-MS: $906\left(30,[M+K]^{+}\right), 890\left(100,[M+N a]^{+}\right)$. Anal. calc. for $\mathrm{C}_{51} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{7}$ (867.06): C 70.65, H 6.74, N 9.69; found: C 70.74, H 6.65, N 9.90.
3.10. $Z-G \ln (T r t)-A i b-A i b-A i b-O H$ (11a). According to GP B, a soln. of $Z-G \ln (T r t)$ -Aib-Aib-Aib-N(Me)Ph (1.31 g, 1.51 mmol$)$ in $3 \mathrm{~N} \mathrm{HCl}(16 \mathrm{ml})$ was stirred for $5 \mathrm{~h}: 1.17 \mathrm{~g}$ (quant.) of Z-Gln(Trt)-Aib-Aib-Aib-OH. Colorless foam. M.p. 119.0-120.0 ${ }^{\circ}$. $[\alpha]_{\mathrm{D}}=-1.9(\mathrm{c}=$ $1.09, \mathrm{EtOH}) . \mathrm{IR}(\mathrm{KBr}): 3660 w, 3420 m, 3310 m, 3050 w, 2980 m, 2940 w, 2870 w, 1725 m$, $1705 m, 1670 s, 1600 w, 1545 m, 1530 m, 1510 m, 1500 m, 1470 m, 1445 m, 1375 m, 1365 m$, $1315 m, 1275 m, 1240 m, 1165 m, 1080 w, 1050 w, 1000 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 7.40(s$, $\mathrm{NH}) ; 7.38-7.08$ ($m, 20$ arom. H, 1 NH); 7.01, $6.97(2 s, 2 \mathrm{NH}) ; 6.53(d, J=4.5, \mathrm{NH}) ; 5.11$, $5.04\left(A B, J=12.3, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 3.95-3.80(m, \mathrm{CH}(2)(\mathrm{Gln})) ; 2.69-2.54,2.54-2.40$ ($2 m$, $\left.\mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.14-1.88\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln})\right) ; 1.49,1.47,1.39,1.38,1.34,1.23$ ($6 s, 3 \mathrm{Me}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 178.1$ (s, COOH); 176.4, 175.9, 174.6, 174.2 ($4 s, 4 \mathrm{CO}$ (amide)); 158.7 (s, CO (urethane)); 145.8, 138.1 ($2 s, 4$ arom. C); 129.9, 129.5, 129.1, 128.9, 128.7, 127.8 ($6 d$, 20 arom. CH); $71.6\left(s, \mathrm{Ph}_{3} C\right) ; 68.0\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 57.8, 57.7, $57.0\left(3 s, 3 \mathrm{Me}_{2} C\right) ; 56.2(d$, $\mathrm{C}(2)(\mathrm{Gln})) ; 33.5,27.8(2 t, \mathrm{C}(4)(\mathrm{Gln}), \mathrm{C}(3)(\mathrm{Gln})) ; 26.5,26.1,25.8,24.8,24.5,24.3$ ($6 q, 3$ $\left.M e_{2} \mathrm{C}\right)$. ESI-MS: $822\left(100,[M+2 \mathrm{Na}]^{+}\right), 800\left(65,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{8}$ (777.92): C 67.94, H 6.61, N 9.00; found: C 67.82, H 6.79, N 8.89.
3.11. Z-Gln(Trt)-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Ot ${ }^{\mathrm{t}}$ Bu (24). According to GP D, to a stirred soln. of 11a ($250 \mathrm{mg}, 0.32 \mathrm{mmol}$) in DMF (1.7 ml), DCC ($68 \mathrm{mg}, 0.33 \mathrm{mmol}$), HOBt ($50 \mathrm{mg}, 0.37 \mathrm{mmol}$), CSA (5 mg), and $\mathbf{1 2}(148 \mathrm{mg}, 0.37 \mathrm{mmol})$ were added. The mixture was stirred for $24.5 \mathrm{~h}: 367 \mathrm{mg}(97 \%)$ of 24. Colorless crystals. M.p. 146.1-147.5 ${ }^{\circ}$ ($\mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O} /$ hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 7.40-7.15 ($m, 20$ arom. H); 5.17, $5.09(A B, J=$ 12.6, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.36-4.26(m, \mathrm{CH}(2)(\mathrm{Ala}), \mathrm{CH}(2)(\mathrm{Pro})) ; 4.07(q, J=7.4, \mathrm{CH}(2)(\mathrm{Ala})) ; 3.89$ $(d d, J=8.4,6.2, \mathrm{CH}(2)(\mathrm{Gln})) ; 3.74-3.65,3.65-3.55\left(2 m, \mathrm{CH}_{2}(5)(\operatorname{Pro})\right) ; 2.56-2.46$ (m, $\left.\mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.16-1.76\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}_{2}(3)(\mathrm{Pro}), \mathrm{CH}_{2}(4)(\mathrm{Pro})\right) ; 1.54,1.49,1.46,1.45$, $1.44,1.42,1.41,1.34,1.33,1.31$ ($10 s, 4 \mathrm{Me}_{2} \mathrm{C}, \mathrm{Me}_{3} \mathrm{C}, 2 \mathrm{Me}(\mathrm{Ala})$). ESI-MS: 1196 (10,
$\left.[M+\mathrm{K}]^{+}\right), 1180\left(100,[M+\mathrm{Na}]^{+}\right)$. FAB-MS: $1180\left(11,[M+\mathrm{Na}]^{+}\right), 987\left(100,\left[M-\left(\text { Pro-O }{ }^{t} \mathrm{Bu}\right)\right]^{+}\right)$, 902 (23, [987-Aib] ${ }^{+}$), 831 (8, [902-Ala] $\left.{ }^{+}\right), 760\left(9,[831-A l a]^{+}\right)$.
3.12. H-Gln(Trt)-Aib-Aib-Aib-Ala-Ala-Aib-Pro- $O^{\mathrm{t}} \mathrm{Bu}$ (25). According to GP C, a stirred mixture of $24(553 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(73 \mathrm{mg})$ in $\mathrm{MeOH}(11 \mathrm{ml})$ was treated with H_{2} for $21 \mathrm{~h}: 475 \mathrm{mg}(97 \%)$ of 25. Colorless foam. M.p. 150.2-151.3 ${ }^{\circ}$. ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.32-7.06(m, 15$ arom. H$)$; 4.36-4.27 ($\left.m, \mathrm{CH}(2)(\mathrm{Ala}), \mathrm{CH}(2)(\mathrm{Pro})\right) ; 4.07$ ($q, J=$ 7.4, CH(2)(Ala)); 3.73-3.65, 3.65-3.55 (2m, $\left.\mathrm{CH}_{2}(5)(\mathrm{Pro})\right) ; 3.25-3.18$ ($m, \mathrm{CH}(2)(\mathrm{Gln})$); 2.59$2.40\left(m, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.16-1.66\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}_{2}(3)(\mathrm{Pro}), \mathrm{CH}_{2}(4)(\mathrm{Pro})\right) ; 1.60-1.24$ (m, 39 H). ESI-MS: $1046\left(16,[M+\mathrm{Na}]^{+}\right), 1038(17), 1024\left(100,[M+1]^{+}\right)$.
3.13. Z-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-OH (19). According to GP E, a soln. of 24 ($300 \mathrm{mg}, 0.26 \mathrm{mmol}$) in TFA (7 ml) was stirred for $3.15 \mathrm{~h}: 222 \mathrm{mg}$ (quant.) of 19. Colorless crystals. M.p. $135.0-135.6^{\circ}\left(\mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.89,7.68$ (2 br. $s, 2$ $\mathrm{NH})$; 7.42-7.18 ($m, 5$ arom. H); 5.18, $5.08\left(A B, J=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.42(d d, J=9.0,4.0$, $\mathrm{CH}(2)(\mathrm{Pro})) ; 4.33(q, J=7.1, \mathrm{CH}(2)(\mathrm{Ala})) ; 4.15-4.02(m, \mathrm{CH}(2)(\mathrm{Ala}) ; 3.95(d d, J=8.2,6.2$, $\mathrm{CH}(2)(\mathrm{Gln})) ; 3.72-3.48\left(m, \mathrm{CH}_{2}(5)(\mathrm{Pro})\right) ; 2.37\left(t, J=7.4, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.22-1.80(m$, $\left.\mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}_{2}(3)(\mathrm{Pro}), \mathrm{CH}_{2}(4)(\mathrm{Pro})\right) ; 1.58-1.20\left(m, 4 \mathrm{Me}_{2} \mathrm{C}, 2 \mathrm{Me}(\mathrm{Ala})\right) .{ }^{13} \mathrm{C}$-NMR: 178.8, 177.9, 177.5, 176.9, 176.1, 174.8, 174.7, 174.1 ($8 s, \mathrm{COOH}, 8 \mathrm{CO}$ (amide)); 158.9 (s, CO (urethane)); 138.4 ($s, 1$ arom. C); 130.0, 129.6, 129.1, 128.7, 127.8 ($5 d, 5$ arom. CH); 67.9 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 62.1 ($d, \mathrm{C}(2)(\mathrm{Pro})$); 57.8 (br. $\left.s, 4 \mathrm{Me}_{2} C\right) ; 57.6$ ($d, \mathrm{C}(2)(\mathrm{Gln})$); 52.5, 50.5 (2d, 2 $\mathrm{C}(2)$ (Ala)); 49.6 ($t, \mathrm{C}(5)(\mathrm{Pro})$); 32.4 ($t, \mathrm{C}(4)(\mathrm{Gln})$); 29.1, 27.9, 26.8 (3t, C(3)(Gln), C(3)(Pro), $\mathrm{C}(4)$ (Pro)); 27.5, 27.0, 26.2, 25.5, 25.0, 24.1, 23.6 ($7 q, 4 \mathrm{Me}_{2} \mathrm{C}$); 17.5, 16.9 (2q, $2 \mathrm{Me}(\mathrm{Ala})$). ESI-MS: 1124 (5), 882 (100, $\left.[M+N a]^{+}\right), 785$ (9). FAB-MS: 882 (3, $\left.[M+N a]^{+}\right), 745$ (75, [M$\left.\mathrm{Pro}^{+}\right), 660\left(29,[745-\mathrm{Aib}]^{+}\right), 589\left(35,[660-\mathrm{Ala}]^{+}\right), 518\left([589-\mathrm{Ala}]^{+}\right), 433\left(92,[518-\mathrm{Aib}]^{+}\right)$, 348 (100, [433-Aib] ${ }^{+}$), $263\left(36,[348-\mathrm{Aib}]^{+}\right), 155\left(26,\left[263-\mathrm{PhCH}_{2} \mathrm{O}+1\right]^{+}\right)$.
4. Preparation of the Pentapeptide H-Leu-Aib-D,L-Iva-Gln-Valol (13). 4.1. Z-Leu-Aib$N(\mathrm{Me}) P h$. According to GP A, Z-Leu-OH ($3.03 \mathrm{~g}, 11.42 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was treated with 2a ($2.20 \mathrm{~g}, 12.63 \mathrm{mmol}$) for $13 \mathrm{~h}: 4.99 \mathrm{~g}(99 \%)$ of Z-Leu-Aib-N(Me)Ph. Colorless crystals. M.p. $135.5-135.7^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $) .[\alpha]_{\mathrm{D}}=-19.6(\mathrm{c}=1.01, \mathrm{EtOH})$. IR $\left(\mathrm{CHCl}_{3}\right)$: $3430 w, 3350 w, 3070 w, 3010 m, 2960 m, 1715 m, 1680 m, 1635 m, 1595 m, 1510 s, 1495 s, 1420 m$, $1405 m, 1390 m, 1370 m, 1240 m, 1170 m, 1120 m, 1055 m, 1030 s, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right):$ 7.56-7.13 ($m, 10$ arom. H); 5.15, $5.06\left(A B, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.10-3.90(m, \mathrm{CH}(2)(\mathrm{Leu}))$; $3.20(s, \mathrm{MeN}) ; 1.80-1.30\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.43\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 0.92,0.90(2 d, J=$ 6.4, $2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 175.0, 174.1 ($2 s, 2 \mathrm{CO}$ (amide)); 158.1 (s, CO (urethane)); 146.2, 138.1 ($2 s, 2$ arom. C); 130.4, 130.0, 129.5, 129.3, 129.2, 129.0, 128.8, 128.6, 128.5, 128.3 ($10 d, 10$ arom. CH); $67.6\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 58.3 ($s, \mathrm{Me}_{2} C$); 54.5 (d, $\mathrm{C}(2)(\mathrm{Leu})) ; 42.5(t, \mathrm{C}(3)(\mathrm{Leu})) ; 41.3$ (q, MeN); 26.9, 25.8 ($2 q, M e_{2} \mathrm{C}$); 26.6 ($d, \mathrm{C}(4)(\mathrm{Leu})$); 23.6, $21.9(2 q, 2 \mathrm{Me}(\mathrm{Leu}))$. CI-MS: $440\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$ (439.56): C 68.31, H 7.57, N 9.56; found: C 68.13, H 7.70, N 9.35.
4.2. Z-Leu-Aib-OH (26). According to GP B, a soln. of Z-Leu-Aib-N(Me)Ph (3.50 g, $7.97 \mathrm{mmol})$ in $3 \mathrm{~N} \mathrm{HCl}(80 \mathrm{ml})$ was stirred for $18 \mathrm{~h}: 2.58 \mathrm{~g}(92 \%)$ of $\mathbf{2 6}$. Colorless crystals. M.p. $118.8-119.8^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=-23.7(\mathrm{c}=1.12$, EtOH). IR (KBr): $3430 w, 3300 w$, $3030 w, 3005 m, 2960 m, 1720 s, 1680 s, 1515 s, 1455 m, 1390 w, 1370 w, 1290 m, 1170 m, 1120 w$, $1050 w, 1030 w, 695 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.42-7.22$ ($m, 5$ arom. H); $5.09\left(s, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 4.22-4.06 ($m, \mathrm{CH}(2)(\mathrm{Leu})) ; 1.86-1.50\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.47,1.46\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right)$; $0.94,0.90(2 d, J=6.4,2 \mathrm{Me}(\mathrm{Leu})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.9(s, \mathrm{COOH}) ; 174.8(s$, CO (amide)); 158.6 (s, CO (urethane)); 138.5 ($s, 1$ arom. C); 129.7, 129.3, 129.1 ($3 d, 5$ arom. $\mathrm{CH}) ; 67.9\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 57.3\left(s, \mathrm{Me}_{2} C\right) ; 55.1(d, \mathrm{C}(2)(\mathrm{Leu})) ; 42.5$ ($\left.t, \mathrm{C}(3)(\mathrm{Leu})\right) ; 26.1(d$, C(4)(Leu)); 25.6, 25.3 (2q, Me2C); 23.6, 21.9 (2q, $2 \mathrm{Me}(\mathrm{Leu})$). CI-MS: 351 (100, $\left.[M+1]^{+}\right)$.

Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ (350.42): C 61.70, H 7.48, N 7.99 ; found: C 61.60, H 7.51, N 8.11.
4.3. Z-Leu-Aib-D,L-Iva-N(Me)Ph. According to $G P$ A, a soln. of 26 (3.46 g, 9.90 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{ml})$ was treated with $\mathbf{2 b}(2.61 \mathrm{~g}, 13.86 \mathrm{mmol})$ for $18 \mathrm{~h}: 5.35 \mathrm{~g}$ (quant.) of Z-Leu-Aib- D,L-Iva-N(Me)Ph. Colorless foam. Colorless crystals were obtained after CC $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. M.p. $58.8-59.3^{\circ} .[\alpha]_{\mathrm{D}}=-6.3(\mathrm{c}=0.89, \mathrm{EtOH}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3450 w$, $3010 m, 2960 m, 2940 w, 2900 w, 2880 w, 1715 m, 1670 s, 1625 m, 1595 m, 1495 m, 1455 m, 1425 s$, $1380 m, 1365 m, 1270 w, 1170 w, 1120 w, 1050 w, 1030 w, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 7: 5\right.$ mixture of epimers): 7.43-7.17 ($m, 10$ arom. H); 5.20-5.03 ($2 \mathrm{AB}, \mathrm{J}=12.8, \mathrm{PhCH}_{2} \mathrm{O}$); $4.03(t, J=7.5$, $\mathrm{CH}(2)(\mathrm{Leu})$); 3.27, 3.21 ($2 s, \mathrm{MeN}$); 2.06-1.89 ($m, 1 \mathrm{H}$ of CH2(3)(Iva)); $1.85-1.62$ ($m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(3)(\mathrm{Iva}), \mathrm{CH}(4)(\mathrm{Leu})\right) ; 1.56-1.48\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu})\right) ; 1.48,1.43\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) ; 1.39,1.30(2 s$, $\operatorname{MeC}(2)(\mathrm{Iva})) ; 0.96,0.94(2 d, J=6.5,2 \mathrm{Me}(\mathrm{Leu})) ; 0.86\left(t, J=7.2, M e \mathrm{CH}_{2}(\mathrm{Iva})\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): 175.8, 175.4, 174.7 ($3 s, 3 \mathrm{CO}$ (amide)); 158.9 (s, CO (urethane)); 146.9, 138.7 ($2 s, 2$ arom. C); 130.7, 129.8, 129.3, 128.9, 128.7 (5d, 10 arom. CH); $67.7\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 62.8(s$, C(2)(Iva)); 58.6 ($s, \mathrm{Me}_{2} C$); 55.8, 55.7 (2d, C(2)(Leu)); 41.9 ($\left.t, \mathrm{C}(3)(\mathrm{Leu})\right) ; 41.6$ (q, MeN); 31.1, 31.0 (2t, C(3)(Iva)); 26.8, 26.5 ($2 q, M e_{2} \mathrm{C}$); 26.1 (d, C(4)(Leu)); 25.3, 25.0 ($2 q$, MeC(2)(Iva)); 23.6, 22.5 (2q, $2 \mathrm{Me}(\mathrm{Leu})$); 9.1, 9.0 (2q, C(4)(Iva)). CI-MS: 432 (100, [M+1$\left.\mathrm{PhCH}_{2} \mathrm{O}\right]^{+}$). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}$ (538.69): C 66.89, H 7.86, N 10.40; found: C 66.75, H 8.06, N 10.20.

The separation of the two diastereoisomers was achieved by prep. HPLC on a Nucleosil 100-7 column with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 100: 9: 3$ as the eluent. One of the epimers was obtained in pure form in $c a .10 \%$ yield, the second epimer was isolated as an 8:1 mixture with the first one. Data of the pure epimer: $[\alpha]_{\mathrm{D}}=6.1(\mathrm{c}=0.85, \mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 7.45-7.20 ($m, 10$ arom. H); 5.15, $5.07\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.03(t, J=7.5, \mathrm{CH}(2)(\mathrm{Leu})$); 3.27 (s, MeN); 2.05-1.94 ($m, 1 \mathrm{H}$ of $\mathrm{CH}_{2}(3)(\mathrm{Iva})$); 1.85-1.62 ($m, 1 \mathrm{H}$ of CH_{2} (3)(Iva),
$\mathrm{CH}(4)(\mathrm{Leu})) ; 1.56-1.50\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu})\right) ; 1.48,1.43\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) ; 1.30(s, \mathrm{MeC}(2)(\mathrm{Iva})) ; 0.96$, $0.92(2 d, J=6.6,2 \mathrm{Me}(\mathrm{Leu})) ; 0.86\left(t, J=7.4, M e \mathrm{CH}_{2}\right)$.
4.4. Z-Leu-Aib-D,L-Iva-OH (27). According to GP B, a soln. of Z-Leu-Aib- D,L-Iva$N($ Me $) P h(1.52 \mathrm{~g}, 2.83 \mathrm{mmol})$ in $3 \mathrm{~N} \mathrm{HCl}(30 \mathrm{ml})$ was stirred for $23 \mathrm{~h}: 703 \mathrm{mg}(55 \%)$ of 27. Colorless crystals. M.p. 171.2-172.1 (AcOEt/hexane). IR (KBr): 3300m, 3060w, 3040w, $2960 m, 2870 w, 1730 s, 1710 s, 1660 s, 1525 s, 1455 m, 1385 m, 1365 m, 1315 m, 1270 m, 1245 m$, $1165 m, 1135 w, 1045 m, 1030 w, 695 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, mixture of epimers): 7.40-7.24 (m , 5 arom. H); 5.15-5.02 ($m, \mathrm{PhCH}_{2} \mathrm{O}$); $4.06(t, J=7.5, \mathrm{CH}(2)(\mathrm{Leu})) ; 2.09-1.88,1.88-1.61(2 m$, $\left.\mathrm{CH}(4)(\mathrm{Leu}), \mathrm{CH}_{2}(3)(\mathrm{Iva})\right) ; 1.57-1.49\left(m, \mathrm{CH}_{2}(3)(\mathrm{Leu})\right) ; 1.46,1.43\left(2 s, \mathrm{Me}_{2} \mathrm{C}\right) ; 1.42,1.41(2 s$, $\operatorname{MeC}(2)(\mathrm{Iva})) ; 0.95,0.93\left(2 d, J=6.5,2 \mathrm{Me}(\right.$ Leu $)$); $0.81,0.78\left(2 t, J=7.5, \mathrm{MeCH}_{2}(\mathrm{Iva}) .{ }^{13} \mathrm{C}-\right.$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 177.7, $177.4(2 s, \mathrm{COOH}) ; 175.9,175.4$ ($2 s, 2 \mathrm{CO}$ (amide)); 158.8 (s, CO (urethane)); 138.6 ($s, 1$ arom. C); 129.8, 129.3, 129.0, 128.9, 128.8 (5d, 5 arom. CH); 67.9, $67.8\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.6,61.5$ ($2 s, \mathrm{C}(2)(\mathrm{Iva})$); 58.5, $58.4\left(2 s, \mathrm{Me}_{2} C\right) ; 55.6$ (d, $\mathrm{C}(2)(\mathrm{Leu})) ; 42.0$ (t, C(3)(Leu)); 31.2, 30.4 (2t, C(3)(Iva)); 26.3, 26.1 (2d, C(4)(Leu)); 25.4, 25.2 ($2 q, \mathrm{Me}_{2} \mathrm{C}$); 23.6, 22.4 ($2 q, 2 \mathrm{Me}(\mathrm{Leu})$); 23.0, 22.7 ($2 q, \mathrm{MeCH}_{2}$ (Iva)); 9.0, 8.9 ($2 q$, $\mathrm{C}(4)(\mathrm{Iva}))$. CI-MS: $450\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$ (449.55): C 61.45, H 7.85, N 9.35; found: C 61.35, H 8.02, N 9.30 .
4.5. Z-Gln-Valol. To a soln. of Z-Gln-OH ($504 \mathrm{mg}, 1.80 \mathrm{mmol}$) in THF (12 ml) at 12°, ethyl chloroformiat ($0.17 \mathrm{ml}, 1.78 \mathrm{mmol}$) and NMM ($0.2 \mathrm{ml}, 1.80 \mathrm{mmol}$) were added. After stirring for 4 min , L-Valinol ($0.2 \mathrm{ml}, 1.80 \mathrm{mmol}$) was added and the mixture was stirred at r.t. for 2 d . Then, the solid material was filtered and washed with cold $\mathrm{AcOEt} / \mathrm{CHCl}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from $\mathrm{MeOH}: 582 \mathrm{mg}$ (88\%) of Z-Gln-Valol. Colorless crystals. M.p. $189.8-190.5^{\circ}(\mathrm{MeOH}) .[\alpha]_{\mathrm{D}}=-23.7(\mathrm{c}=0.86, \mathrm{MeOH}) . \mathrm{IR}(\mathrm{KBr}): 3430 \mathrm{~m}, 3300 \mathrm{~s}, 3090 w$, $3060 w, 3030 w, 2960 w, 2870 w, 1680 s, 1650 s, 1535 s, 1445 w, 1415 w, 1395 w, 1370 w, 1260 m$, $1245 m, 1140 w, 1060 w, 1045 w, 700 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.42-7.22(m, 5$ arom. H); $5.08(s$,
$\left.\mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.14(d d, J=8.5,5.7, \mathrm{CH}(2)(\mathrm{Gln})) ; 3.76-3.46\left(m, \mathrm{CH}_{2}(1)(\right.$ Valol $), \mathrm{CH}(2)($ Valol $\left.)\right)$; $2.31\left(t, J=7.5, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.18-1.72\left(m, \mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}(3)(\right.$ Valol $\left.)\right) ; 0.93,0.90(2 d, J=$ 7.2, $2 \mathrm{Me}\left(\right.$ Valol)). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 174.0,171.6$ (2s, 2 CO (amide)); 156.0 (s, CO (urethane)); 137.2 ($s, 1$ arom. C); 128.5, 127.9, 127.8 ($3 d, 5$ arom. CH); $65.5\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 61.5 ($t, \mathrm{CH}_{2} \mathrm{OH}$); 55.7 (d, $\mathrm{C}(2)(\mathrm{Gln})$); 54.7 (d, C(2)(Valol)); 31.8 ($t, \mathrm{C}(4)(\mathrm{Gln})$); 28.3 (d, C(3)(Valol)); 28.1 (t, C(3)(Gln)); 19.8, 18.2 (2q, 2 Me(Valol)). CI-MS: 366 (100, $\left.[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ (365.43): C 59.16, H 7.45, N 11.50; found: C 59.15, H 7.22, N 11.27.
4.6. H -Gln-Valol (28). According to $G P C, \mathrm{H}_{2}$ was bubbled through a soln. of Z-GlnValol ($530 \mathrm{mg}, 1.45 \mathrm{mmol}$) in $\mathrm{MeOH}(31 \mathrm{ml})$ for $4.5 \mathrm{~h}: 328 \mathrm{mg}(98 \%)$ of 28. Colorless foam. M.p. $144.5-145.1^{\circ} .[\alpha]_{\mathrm{D}}=-4.5(\mathrm{c}=0.84, \mathrm{MeOH}) . \mathrm{IR}(\mathrm{KBr}): 3360 \mathrm{~s}, 3300 \mathrm{~m}(\mathrm{br}), 3180 \mathrm{~m}$, $2950 m, 2870 m, 1650 s, 1620 s, 1560 m, 1450 m, 1410 m, 1380 w, 1370 w, 1280 w, 1245 w, 1200 w$, $1150 w, 1070 m, 1035 w, 710 m$ (br). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 3.76-3.48\left(m, \mathrm{CH}_{2}(1)\right.$ (Valol), $\mathrm{CH}(2)(\mathrm{Gln})) ; 3.42-3.32(m, \mathrm{CH}(2)(\mathrm{Valol})) ; 2.30\left(t, J=7.5, \mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.06-1.72$ (m, $\mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}(3)($ Valol $\left.)\right) ; 0.96,0.93(2 d, J=6.5,2 \mathrm{Me}($ Valol $)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 178.6, 177.5 ($2 s, 2 \mathrm{CO}$ (amide)); 63.4 ($t, \mathrm{C}(1)($ Valol)); 58.3 ($d, \mathrm{C}(2)(\mathrm{Gln})) ; 56.1$ (d, $\mathrm{C}(2)($ Valol $)$); 33.1 ($t, \mathrm{C}(4)(\mathrm{Gln})$); 32.9 ($t, \mathrm{C}(3)(\mathrm{Gln})$); 30.4 ($d, \mathrm{C}(3)$ (Valol)); 20.3, 19.2 (2q, 2 $\mathrm{Me}($ Valol $)$). CI-MS: 232 (100, $\left.[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (231.30): C 51.93, H 9.15, N 18.17; found: C 51.68, H 8.89, N 17.98.
4.7. Z-Leu-Aib-D,L-Iva-Gln-Valol. To a stirred soln. of 27 ($1.10 \mathrm{~g}, 2.45 \mathrm{mmol}$) and DIEA ($633 \mathrm{mg}(4.90 \mathrm{mmol})$ in DMF (7 ml) at 0°, $\mathrm{TBTU}(788 \mathrm{mg}, 2.45 \mathrm{mmol})$ and HOBt ($366 \mathrm{mg}, 2.71 \mathrm{mmol}$) were added. After 5 min , a soln. of 28 ($646 \mathrm{mg}, 2.79 \mathrm{mmol}$) in DMF (2 $\mathrm{ml})$ was added, and after 22 h , the mixture was treated according to $G P D: 1.27 \mathrm{~g}(78 \%)$ of Z -Leu-Aib-D,L-Iva-Gln-Valol. Colorless crystals. M.p. 88.4-89.3 ${ }^{\circ}$ (AcOEt/hexane). IR (KBr): $3300 m$ (br), $3060 w, 3040 w, 2960 m, 2870 w, 1705 m, 1660 s$ (br.), 1550m, 1535s, 1455m,
$1385 w, 1370 w, 1310 w, 1265 m, 1220 w, 1170 w, 1120 w, 1050 w, 1030 w, 695 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, mixture of epimers): 7.47-7.33 ($m, 5$ arom. H); 5.18-5.03 ($m, \mathrm{PhCH}_{2} \mathrm{O}$); 4.18-4.02 ($m, \mathrm{CH}(2)(\mathrm{Gln}), \mathrm{CH}(2)(\mathrm{Leu})) ; 3.72-3.52\left(m, \mathrm{CH}_{2}(1), \mathrm{CH}(2)(\right.$ Valol $)$); 2.43-2.27, 2.27-2.07, $1.95-1.63, \quad 1.63-1.48 \quad\left(4 m, \quad \mathrm{CH}_{2}(4)(\mathrm{Gln}), \quad \mathrm{CH}_{2}(3)(\mathrm{Gln}), \quad \mathrm{CH}_{2}(3)(\mathrm{Iva}), \quad \mathrm{CH}_{2}(3)(\mathrm{Leu})\right.$, $\mathrm{CH}(4)(\mathrm{Leu}), \mathrm{CH}(3)($ Valol $)$); 1.40, 1.38, 1.31, 1.28 ($4 s, \mathrm{Me}_{2} \mathrm{C}, \mathrm{MeC}(2)(\mathrm{Iva})$); 1.00-0.86 ($m, 2$ $\mathrm{Me}\left(\right.$ Leu), $2 \mathrm{Me}($ Valol $)$); 0.84, $0.75\left(2 t, J=7.5, \mathrm{MeCH}_{2}(\mathrm{Iva})\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.9$, 177.7, 177.6, 176.9, 176.8, 176.0, 174.4 ($8 s, 5 \mathrm{CO}$ (amide)); 158.8 (s, CO (urethane)); 138.4, 138.2 ($2 s, 1$ arom. C); 129.5, 129.0, 128.5, 128.4 ($4 d, 5$ arom. CH); 67.9, $67.8\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $63.5\left(t, \mathrm{CH}_{2} \mathrm{OH}\right) ; 61.4,61.0(2 s, \mathrm{C}(2)(\mathrm{Iva})) ; 58.5,58.4(2 d, \mathrm{C}(2)(\mathrm{Gln})) ; 57.8\left(s, \mathrm{Me}_{2} C\right) ; 56.3$, 55.9, 55.6 (3d, C(2)(Leu), C(2)(Valol)); 41.5, 41.3 (2t, C(3)(Leu)); 33.6, 33.5 (2t, C(4)(Gln)); 32.7 (t, C(3)(Gln)); 30.0 (d, C(3)(Valol)); 28.4 (2t, C(3)(Iva)); 25.8 (d, C(4)(Leu)); 24.6, 24.5, 23.3, 23.2, 22.3, 22.1, 21.7 ($7 q, \mathrm{Me}_{2} \mathrm{C}, 2 \mathrm{Me}(\mathrm{Leu}), \mathrm{MeCH}_{2}$ (Iva)); 20.1, 19.4, 19.3 (3q, 2 Me (Valol)); 8.7, 8.0 (2q, C(4)(Iva)). ESI-MS: $701\left(65,[M+\mathrm{K}]^{+}\right), 685\left(100,[M+\mathrm{Na}]^{+}\right), 663$ (29, $\left.[M+1]^{+}\right)$.

The coupling of $\mathbf{2 7}$ and $\mathbf{2 8}$ with DCC/HOBt according to GP D gave the same product, after $\mathrm{PLC}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$ in 29% yield.
4.8. H-Leu-Aib-D,L-Iva-Gln-Valol (13). According to GP C, a mixture of Z-Leu-Aib-D,L-Iva-Gln-Valol ($500 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(76 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was treated with H_{2} for $47 \mathrm{~h}: 394 \mathrm{mg}(99 \%)$ of 13. Colorless foam. M.p. $88.5-89.5^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, mixture of epimers): 4.20-4.08 ($m, \quad \mathrm{CH}(2)(\mathrm{Gln})$); 3.73-3.57 ($m, \quad \mathrm{CH}_{2}(1)$ (Valol), $\mathrm{CH}(2)(\mathrm{Valol})) ; 2.81(s, \mathrm{CH}(2)(\mathrm{Leu})) ; 2.45-2.05,2.00-1.65,1.50-1.22$ ($3 m, \mathrm{CH}_{2}(4)(\mathrm{Gln})$, $\mathrm{CH}_{2}(3)(\mathrm{Gln}), \mathrm{CH}_{2}(3)(\mathrm{Iva}), \mathrm{CH}_{2}(3)(\mathrm{Leu}), \mathrm{CH}(4)(\mathrm{Leu}), \mathrm{CH}(3)(\mathrm{Valol}), \mathrm{Me}_{2} \mathrm{C}, \mathrm{MeC}(2)(\mathrm{Iva})$); $1.00-0.70\left(m, 2 \mathrm{Me}(\mathrm{Leu}), 2 \mathrm{Me}(\right.$ Valol $\left.), \mathrm{MeCH}_{2}(\mathrm{Iva})\right)$. ESI-MS: 595 (61), 567 (52, $\left.[M+\mathrm{K}]^{+}\right)$, $551\left(97,[M+\mathrm{Na}]^{+}\right), 529\left(100,[M+1]^{+}\right)$.
5. Coupling of the Segments 10, 19, and 13. 5.1. Z-Gln-(Aib) $)_{3}$-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol (29). According to GP D, to a soln. of 19 (202 mg, 0.24 mmol) in DMF (2 ml) were added DCC ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$), HOBt ($37 \mathrm{mg}, 0.27 \mathrm{mmol}$), CSA (8 mg), and $\mathbf{1 3}$ ($154 \mathrm{mg}, 0.29 \mathrm{mmol}$), and the mixture was stirred for $24 \mathrm{~h}: 125 \mathrm{mg}$ (39%) of $\mathbf{2 9}$. Colorless crystals. M.p. $178.6-179.8^{\circ}\left(\mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, mixture of epimers): 8.04-7.52 (m, 5 NH); 7.47-7.16 ($m, 5$ arom. H, 1 NH); 5.18, 5.08 ($A B, J=12.5$, $\mathrm{PhCH}_{2} \mathrm{O}$); 4.47-4.29 ($\mathrm{m}, 2 \mathrm{H}$); 4.22-4.02 ($\mathrm{m}, 3 \mathrm{H}$); 3.95 (t-like, $J=6.8,1 \mathrm{H}$); 3.88-3.76 ($\mathrm{m}, 1$ H); 3.76-3.53 ($m, 4 \mathrm{H}$); 2.62-2.48 ($m, 1 \mathrm{H}$); 2.43-1.22 ($m, 56 \mathrm{H}$); 1.06-0.72 ($m, 2 \mathrm{Me}(\mathrm{Leu}), 2$ $\mathrm{Me}($ Valol $\left.), \mathrm{MeCH} \mathrm{H}_{2}(\mathrm{Iva})\right)$. ESI-MS: $1408\left(23,[M+\mathrm{K}]^{+}\right), 1393\left(100,[M+\mathrm{Na}+1]^{+}\right), 716$ (56, $\left.[M+\mathrm{K}+1]^{2+}\right), 708\left(100,[M+2 \mathrm{Na}]^{2+}\right)$.
5.2. H-Gln-(Aib) 3_{3}-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol. According to GP C, to a soln. of $29(95 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ was added $\mathrm{Pd} / \mathrm{C}(21 \mathrm{mg})$, and the mixture was stirred under an H_{2} atmosphere for 48.5 h : 85 mg (quant.) of H -Gln- $(\text { Aib })_{3}$-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol. Colorless foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, mixture of epimers): 7.32-7.18 ($\mathrm{m}, 2 \mathrm{NH}$); 4.50-4.32 ($\mathrm{m}, 2 \mathrm{H}$); 4.25-4.02 ($\mathrm{m}, 3 \mathrm{H}$); 3.87-3.77 ($m, 1 \mathrm{H}$); 3.73-3.53 ($m, 3 \mathrm{H}$); 3.53-3.38 (m, 1 H$) ; 3.38-3.20$ ($m, 1 \mathrm{H}$); 2.65-2.45, 2.45-2.08, 2.08-1.25 (3m, 54 H); 1.25-1.03 ($m, 3 \mathrm{H}$); 1.03-0.70 ($m, 2 \mathrm{Me}(\mathrm{Leu}), 2 \mathrm{Me}\left(\right.$ Valol), MeCH_{2} (Iva)). ESI-MS: 1236 $\left(34,[M+1]^{+}\right), 630\left(100,[M+\mathrm{Na}+1]^{2+}\right)$.
5.3. Z-Aib-Gly-Aib-Leu-Aib-Gln-(Aib) 3_{3}-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol (9). To a stirred soln. of $\mathbf{1 0}(28 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DMF (1.5 ml) at 0° was added DIEA (14 $\mathrm{mg}, 0.11 \mathrm{mmol}$). After 7 min , TBTU ($17 \mathrm{mg}, 0.05 \mathrm{mmol}$), HOBt ($9 \mathrm{mg}, 0.07 \mathrm{mmol}$), and, after another $5 \mathrm{~min}, \mathrm{H}_{\text {-Gln-(Aib }}^{3}$-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol ($69 \mathrm{mg}, 0.06$ mmol), were added and the mixture was stirred for 25.5 h . After filtration through a Celite pad, DMF was evaporated, the residue was dissolved in AcOEt , washed with $2 \mathrm{~N} \mathrm{HCl}(2 \mathrm{x})$ and 1 N NaOH , and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. $\mathrm{CC}\left(\mathrm{SiO}_{2}, \mathrm{AcOEt}\right)$ and crystallization from
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane gave 32 mg (37\%) of 9. Colorless crystals. ESI-MS: 1848 (29), 1834 $\left(30,[M+\mathrm{K}+1]^{+}\right), 1818\left(100,[M+\mathrm{Na}+1]^{+}\right), 1710$ (31).
5.4. Z-Aib-Gly-Aib-Leu-Aib-Gln(Trt)-(Aib) $)_{3}$-Ala-Ala-Aib-Pro-O ${ }^{\mathrm{t}}$ Bu (30). According to $G P D$, to a soln. of $\mathbf{1 0}(217 \mathrm{mg}, 0.38 \mathrm{mmol})$ in DMF (4 ml) was added DIEA ($98 \mathrm{mg}, 0.76$ $\mathrm{mmol})$. After stirring for 5 min , TBTU ($121 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{HOBt}(56 \mathrm{mg}, 0.41 \mathrm{mmol})$, and, after another $9 \mathrm{~min}, \mathbf{2 5}(408 \mathrm{~m}, 0.40 \mathrm{mmol})$ were added. The mixture was stirred for 16.5 h . Workup by CC and PLC ($\left.\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ gave $304 \mathrm{mg}(51 \%)$ of 30. Colorless foam. M.p. $168.8-169.7^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.33,8.06(2 s, 2 \mathrm{NH}) ; 8.02(d, J=5.2, \mathrm{NH}) ; 7.95$, $7.93,7.91,7.82(4 s, 4 \mathrm{NH}) ; 7.69(d, J=5.6, \mathrm{NH}) ; 7.50-7.00(\mathrm{~m}, 20$ arom. H); 5.17, $5.12(A B$, $\left.J=12.8, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.38-4.25(m, \mathrm{CH}(2)(\mathrm{Ala}), \mathrm{CH}(2)(\mathrm{Pro})) ; 4.15-3.94(m, \mathrm{CH}(2)(\mathrm{Leu})$, $\mathrm{CH}(2)(\mathrm{Gln}), \mathrm{CH}(2)(\mathrm{Ala})) ; 3.82-3.62$ ($m, \mathrm{CH}_{2}(5)(\mathrm{Pro}), \mathrm{CH}_{2}(\mathrm{Gly})$); 2.65-2.53, 2.46-2.35 (m, $\left.\mathrm{CH}_{2}(4)(\mathrm{Gln})\right) ; 2.20-1.20(m, 66 \mathrm{H}) ; 0.94,0.87(2 d, J=6.5,2 \mathrm{Me}(\mathrm{Leu}))$. ESI-MS: 1644 (9 , $\left.[M+\mathrm{K}+\mathrm{Na}]^{+}\right), 1622\left(15,[M+\mathrm{K}+1]^{+}\right), 1606\left(100,[M+\mathrm{Na}+1]^{+}\right)$.
5.5. Z-Aib-Gly-Aib-Leu-Aib-Gln-(Aib) $)_{3}$-Ala-Ala-Aib-Pro-OH (31). According to GP E, a soln. of $\mathbf{3 0}(68 \mathrm{mg}, 0.04 \mathrm{mmol})$ in TFA (1 ml) was stirred for $2.75 \mathrm{~h}: 55 \mathrm{mg}$ (quant.) of 31. Colorless crystals. M.p. $161.6-162.3^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.77$, 8.02, 7.96, 7.94, 7.91, 7.81, 7.77, $7.61(8 s, 9 \mathrm{NH}) ; 7.44-7.12$ ($m, 5$ arom. H, 3 NH); 5.17, 5.12 $\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.44(d d, J=9.0,4.1, \mathrm{CH}(2)(\mathrm{Pro})) ; 4.38-4.25,4.15-3.90(2 m$, $\left.\mathrm{CH}(2)(\mathrm{Leu}), \mathrm{CH}(2)(\mathrm{Gln}), 2 \mathrm{CH}(2)(\mathrm{Ala}), \mathrm{CH}_{2}(\mathrm{Gly})\right) ; 3.80-3.62\left(m, \mathrm{CH}_{2}(5)(\mathrm{Pro})\right) ; 2.50-2.35$, 2.35-2.22, 2.22-1.82, 1.82-1.34 ($4 m, 59 \mathrm{H}$); 0.94, $0.88(2 d, J=5.8,2 \mathrm{Me}(L e u))$. ESI-MS: $1323\left(32,[M+\mathrm{K}]^{+}\right), 1307\left(100,[M+\mathrm{Na}]^{+}\right), 1211$ (11).
6. X-Ray Crystal-Structure Determination of 10 and 21 (see Table 5 and Figs. 1 and 2) ${ }^{12}$). The measurements were made using graphite-monochromated $\operatorname{Mo} K_{\alpha}$ radiation

[^7]($\lambda 0.71073 \AA$) on a Nicolet-R3 diffractometer (21) or on a Rigaku AFC5R diffractometer fitted to a $12-\mathrm{kW}$ rotating-anode generator (10). The intensities were corrected for Lorentz and polarization effects, but not for absorption. Equivalent reflections, other than Friedel pairs, were merged. The data collection and refinement parameters are given in Table 5, and views of the molecules are shown in Figs. 1 and 2. Each structure was solved by direct methods using SHELXS86 [54], which revealed the positions of all non-H-atoms. The nonH -atoms were refined anisotropically. The amide and hydroxy H -atoms were placed in the positions indicated by difference electron density maps and their positions were allowed to refine together with individual isotropic displacement parameters. All remaining H -atoms were placed in geometrically calculated positions and refined by using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2 \mathrm{U}_{\mathrm{eq}}$ of its parent C -atom ($1.5 \mathrm{U}_{\mathrm{eq}}$ for the methyl groups). The refinement of each structure was carried out on F^{2} by using full-matrix least-squares procedures, which minimised the function $\Sigma w\left(F_{\mathrm{O}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}$. A correction for secondary extinction was applied in the case of $\mathbf{2 1}$. For 10, two reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement. Neutral atom scattering factors for non-H-atoms were taken from [55], and the scattering factors for H -atoms were taken from [56]. Anomalous dispersion effects were included in F_{C} [57]; the values for f and f ' were those of [58]. The values of the mass attenuation coefficients are those of [59]. The SHELXL97 program was used for all calculations [60].

Table 4

REFERENCES

[1] a) L. Whitemore, B. A. Wallace, Nucleic Acid Res. 2004, 32, D593; b) http://www.cryst.bbk.ac.uk/peptaibol.
[2] W. Mayr, G. Jung, Liebigs Ann. Chem. 1980, 715.
[3] R. Bosch, H. Brückner, G. Jung, W. Winter, Tetrahedron 1982, 38, 3579.
[4] K. Nebel, E. Altmann, M. Mutter, R. Bardi, A. M. Piazzesi, M. Crisma, G. M. Bonora, C. Toniolo, Biopolymers 1991, 31, 1135.
[5] a) I. L. Karle, J. L. Flippen-Anderson, K. Uma, P. Balaram, Biochemistry 1989, 28, 6696; b) W. F. DeGrado, Adv. Protein Chem. 1988, 39, 51; c) Y. Paterson, S. M. Rumsey, E. Benedetti, G. Némethy, H. A. Scheraga, J. Am. Chem. Soc. 1981, 103, 2947.
[6] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1988, 71, 258; P. Wipf, R. W. Kunz, R. Prewo, H. Heimgartner, Helv. Chim. Acta 1988, 71, 268.
[7] M. Sahebi, P. Wipf, H. Heimgartner, Tetrahedron 1989, 45, 2999.
[8] R. Gurunath, P. Balaram, Biochem. Biophys. Res. Commun. 1994, 2002, 241.
[9] a) H. Brückner, T. Kripp, M. Kiess, in 'Peptides 1990', Eds. E. Giralt, D. Andreu, ESCOM, Leiden, 1991, p. 347; b) D. Becker, M. Kiess, H. Brückner, Liebigs Ann./Recl. 1997, 767.
[10] a) C. Auvin-Guette, S. Rebuffat, Y. Prigent, B. Bodo, J. Am. Chem. Soc. 1992, 114, 2170 ; b) K. Rinehart, J. Gaudioso, M. Moore, R. Pandey, J. Cook, M. Barber, R. D. Sedgwick, R. S. Bordoli, A. N. Tyler, B. N. Green, J. Am. Chem. Soc. 1981, 103, 6517.
$[11]$ a) M. K. Matthew, R. Nagaraj, P. Balaram, J. Biol. Chem. 1982, 257, 2170; b) M. K. Das, S. Raghothamma, P. Balaram, Biochemistry, 1986, 25, 7110.
[12] a) P. Balaram, K. Krishna, M. Sukumar, M. I. Mellor, M. Sansom, Eur. Biophys. J. 1992, 21, 117; b) M. Sansom, Eur. Biophys. J. 1993, 22, 105.
[13] a) H. Brückner, W. A. König, M. Greiner, G. Jung, Angew. Chem. Int. Ed. 1979, 18, 476; b) G. Irmscher, G. Bovermann, G. Boheim, G. Jung, Biochem. Biophys. Acta 1978, 507, 470; c) C. T. Hou, A. Ciegler, C. W. Hesseltine, Appl. Microbiol. 1972, 23, 183.
[14] H. Brückner, W. A. König, M. Aydin, G. Jung, Biochem. Biophys. Acta 1985, 827, 51.
[15] a) H. Brückner, M. Przybylski, J. Chromatogr. 1984, 296, 263; b) M. Przybylski, I. Dietrich, I. Manz, H. Brückner, Biomed. Mass Spectrom. 1984, 11, 569.
[16] J. K. Chugh, H. Brückner, B. A. Wallace, Biochemistry, 2002, 41, 12934.
[17] H. Duclohier, G. M. Alder, C. L. Bashford, H. Brückner, J. K. Chugh, B. A. Wallace, Biophys. J. 2004, 87, 1705.
[18] G. Boheim, G. Irmscher, G. Jung, Biochem. Biophys. Acta 1978, 507, 485.
[19] H. Brückner, A. Koza, Amino Acids 2003, 24, 1705.
[20] a) C. Piazza, F. Formaggio, M. Crisma, C. Toniolo, J. Kamphuis, B. Kaptein, Q. B. Broxterman, J. Pept. Sci. 1999, 5, 96; b) A. Ogrel, W. Bloemhoff, J. Lugtenburg, J. Raap, J. Pept. Sci. 1997, 3, 193; A. Ogrel, W. Bloemhoff, J. Lugtenburg, J. Raap, Liebigs Ann./Recl. 1997, 41; c) J. R. Spencer, V. V. Antonenko, N. G. J. Delaet, M. Goodman, Int. J. Pept. Protein Res. 1992, 40, 282; d) C. Auvin-Guette, E. Frérot, J. Coste, S. Rebuffat, P. Jouin, B. Bodo, Tetrahedron Lett. 1993, 34, 2481.
[21] a) H. Wenschuh, M. Beyermannn, H. Haber, J. K. Seydel, E. Krause, M. Bienert, L. Carpino, A. El-Faham, F. Albericio, J. Org. Chem. 1995, 60, 405; b) L. A. Carpino, M. Beyermann, H. Wenschuh, M. Bienert, Acc. Chem. Res. 1996, 29, 268.
[22] a) R. Gessmann, H. Brückner, M. Kokkinidis, Pept. Res. 1991, 4, 239; b) M. Kokkinidis, D. Tsernoglou, H. Brückner, Biochem. Biophys. Res. Commun. 1986, 136, 870; c) R. Gessmann, H. Brückner, M. Kokkinidis, Biochem. Biophys. Res. Commun. 1991, 174, 878.
[23] H. Brückner, in 'Peptides 1986', Proceedings of the $19^{\text {th }}$ European Peptide Symposium, 1986, Ed. D. Theodoropoulos, de Gruyter, Berlin, 1987, p. 231.
[24] a) H. Heimgartner, Angew. Chem. Int. Ed. 1991, 30, 238; b) H. Heimgartner, in 'Amino Acids', Proceedings of the International Congress on Amino Acid Research, Eds. G. Lubec, G. A. Rosenthal, ESCOM, Leiden, 1990, p. 29.
[25] a) D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1981, 64, 482; b) P. Wipf, H. Heimgartner, Helv. Chim. Acta 1986, 69, 1153; c) D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1987, 70, 102; d) P. Wipf, H. Heimgartner, Helv. Chim. Acta 1987, 70, 354; e) P. Wipf, H. Heimgartner, Helv. Chim. Acta 1988, 71, 140.
[26] a) R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. 1915, 107, 1080; b) C. K. Ingold, J. Chem. Soc. 1921, 119, 1305; see also c) M. E. Jung, J. Gervay, J. Am. Chem. Soc. 1991, 113, 224; d) M. E. Jung, M. Kiankarimi, J. Org. Chem. 1998, 63, 2968.
[27] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1990, 73, 13.
[28] C. B. Bucher, H. Heimgartner, Helv. Chim. Acta 1996, 79, 1903.
[29] a) R. Luykx, C. B. Bucher, A. Linden, H. Heimgartner, Helv. Chim. Acta 1996, 79, 527;
b) R. T. N. Luykx, A. Linden, H. Heimgartner, Helv. Chim. Acta 2003, 86, 4093.
[30] N. Pradeille, H. Heimgartner, J. Pept. Sci. 2003, 9, 827.
[31] N. Pradeille, O. Zerbe, K. Möhle, A. Linden, H. Heimgartner, Chem. Biodiv. 2005, 2, 1127.
[32] a) S. Stamm, H. Heimgartner, Eur. J. Org. Chem. 2004, 3820; b) S. Stamm, A. Linden, H. Heimgartner, Helv. Chim. Acta 2006, 89, 1; c) S. Stamm, H. Heimgartner, Tetrahedron 2006, 62, 9671.
[33] W. Altherr, H. Heimgartner, in 'Peptides 1990', Proceedings of the $21^{\text {st }}$ European Peptide Symposium, 1990, Eds. E. Giralt, D. Andreu, ESCOM, Leiden, 1991, p. 107.
[34] a) K. Dietliker, H. Heimgartner, Helv. Chim. Acta 1983, 66, 262; b) J. M. Villalgordo, H. Heimgartner, Helv. Chim. Acta 1993, 76, 2830; c) P. Wipf, Ph.D. thesis, University of Zürich, 1987.
[35] W. Altherr, Diploma thesis, University of Zürich, 1988.
[36] W. Altherr, Ph.D. thesis, University of Zürich, 1994.
[37] C. K. Johnson, ‘ORTEP II', Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
[38] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. Int. Ed. 1995, 34, 1555.
[39] S. Stamm, H. Heimgartner, Helv. Chim. Acta 2006, 89, 1841.
[40] a) C. Toniolo, CRC Crit. Rev. Biochem. 1980, 1; b) G. D. Rose, L. M. Gierasch, J. A. Smith, Adv. Protein Chem. 1985, 37, 1; c) G. Müller, M. Kurz, H. Kessler, Proteins, Struct., Funct., Genet. 1993, 15, 235.
[41] a) I. Dannnecker-Dörig, Ph.D. thesis, University of Zürich, 1995; b) I. DanneckerDörig, H. Heimgartner, in 'Peptides 1990', Proceedings of the $21^{\text {st }}$ European Peptide Symposium, 1990, Eds. E. Giralt, D. Andreu, ESCOM, Leiden, 1991, p. 460.
[42] a) K. N. Koch, A. Linden, H. Heimgartner, Helv. Chim. Acta 2000, 83, 233; b) K. N. Koch, H. Heimgartner, Helv. Chim. Acta 2000, 83, 1881; c) K. N. Koch, A. Linden, H. Heimgartner, Tetrahedron 2001, 57, 2311.
[43] a) T. Jeremic, A. Linden, H. Heimgartner, Chem. Biodiv. 2004, 1, 1730; b) T. Jeremic, A. Linden, H. Heimgartner, Helv. Chim. Acta 2004, 87, 3056; c) T. Jeremic, A. Linden, K. Moehle, H. Heimgartner, Tetrahedron 2005, 61, 1871.
[44] a) F. Weygand, W. Steglich, J. Bjarnason, R. Akhtar, N. Chytil, Chem. Ber. 1968, 101, 3632; b) F. Weygand, W. Steglich, J. Bjarnason, Chem. Ber. 1968, 101, 3642; c) P. Pietta, F. Chillemi, A. Corbellini, Chem. Ber. 1968, 101, 3649.
[45] W. König, R. Geiger, Chem. Ber. 1970, 103, 2041.
[46] a) K. Barlos, J. Kallitsis, P. Mamos, S. Patrianakou, G. Stavrapoulos, Liebigs Ann. Chem. 1987, 633; b) K. Barlos, P. Mamos, D. Papaioannou, S. Patrianakou, C. Sanida, W. Schäfer, Liebigs Ann. Chem. 1987, 1025; c) P. Mamos, C. Sanida, K. Barlos, Liebigs Ann. Chem. 1988, 1083.
[47] a) M. Mutter, R. Hersperger, Synthesis 1989, 198; b) P. Sieber, B. Riniker, Tetrahedron Lett. 1991, 32, 739.
[48] R. A. Breitenmoser, H. Heimgartner, Helv. Chim. Acta 2002, 85, 885.
[49] C. B. Bucher, H. Heimgartner, Helv. Chim. Acta 1996, 79, 1903.
[50] K. A. Brun, A. Linden, H. Heimgartner, Helv. Chim. Acta 2001, 84, 1756.
[51] K. A. Brun, A. Linden, H. Heimgartner, in preparation.
[52] H. Brückner, G. J. Nicholson, G. Jung, K. Kruse, W. A. König, Chromatographia 1980, 13, 209.
[53] G. Valle, M. Crisma, C. Toniolo, R. Beisswenger, A. Rieker, G. Jung, Liebigs Ann. Chem. 1989, 337.
[54] G. M. Sheldrick, 'SHELXS86', Acta Crystallogr., Sect. A 1990, 46, 467.
[55] E. N. Maslen, A. G. Fox, M. A. O'Keefe, 'International Tables for Crystallography’, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477; b)
[56] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[57] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[58] D. C. Creagh, W. J. McAuley, ‘International Tables for Crystallography’, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, p. 219.
[59] D. C. Creagh, J. H. Hubbell, ‘International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, p. 200.
[60] G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Legends

Fig. 1. ORTEP-Plot [37] of the molecular structure of $\mathbf{1 0}$ (arbitrary numbering of atoms, 50% probability ellipsoids, H -atoms bonded to C -atoms have been omitted for clarity)

Fig. 2. ORTEP-Plot [37] of the molecular structure of $\mathbf{2 1}$ (arbitrary numbering of atoms, 30% probability ellipsoids, H -atoms bonded to C -atoms have been omitted for clarity)

Fig. 3. Mass-Spectra of the Octapeptide 19; a) ESI-MS and b) FAB-MS

Fig. 4. Mass-Spectra of the Tridecapeptides $\mathbf{3 0}$ and 31; a) ESI-MS of 30, b) ESI-MS of 31, and c) FAB-MS of $\mathbf{3 1}$

Table 1. Sequences of Trichotoxins A-50 [15]

Table 2. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{1 0}$

Table 3. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{2 1}$

Table 4. Yields of the Coupling of Azirine 2a and the Hydrolysis of the Terminal Amide Group of Z-Gln(X)-(Aib) $)_{\mathrm{n}}-N($ Me $) P h$ Derivatives

Table 5. Crystallographic Data for Compounds 10 and 21

Table 1. Sequences of Trichotoxins A-50 [15]

Ac-Aib-Gly-Aib-Leu-Aib-GIn-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Aib-GIn-Valol Ac-Aib-Gly-Aib-Leu-Aib-GIn-Aib-Aib-Ala-Ala-Ala-Aib-Pro-Leu-Aib-Iva-GIn-Valol Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-GIn-Valol Ac-Aib-Ala-Aib-Leu-Aib-GIn-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-GIn-Valol
Ac-Aib-Gly-Aib-Leu-Aib-GIn-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-GIn-Valol (E) (F) (G) (H)

Ac-Aib-Ala-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Valol (J)

Table 2. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{1 0}$

Amino Acid	$\phi\left[{ }^{\circ}\right]$	$\psi\left[{ }^{\circ}\right]$	$\omega\left[{ }^{\circ}\right]$
Aib(1)	-56.5(3)	-51.4(3)	-174.0(2)
Gly(2)	-69.7(3)	-50.4(3)	-175.2(2)
Aib(3)	-54.9(3)	-41.8(3)	-171.4(2)
Leu(4)	-103.3(3)	16.6(3)	176.2(2)
Aib(5)	52.9(3)	47.4(3)	-
D-H**	D $\cdots \mathrm{A}$ [A]		D-H ${ }^{*} \mathrm{~A}\left[{ }^{\circ}\right]$
$\mathrm{N}(4)-\mathrm{H}^{*} \mathrm{O}(2)$	3.049(3)		155(3)
$\mathrm{N}(5)-\mathrm{H}^{\cdots} \mathrm{O}(4)$	3.130(3)		168(3)
$\mathrm{O}(8)-\mathrm{H}^{\cdots} \mathrm{O}(3)$	2.667(3)		167(4)
$\mathrm{N}(1)-\mathrm{H}^{\cdots} \mathrm{O}\left(5^{\prime}\right)^{\mathrm{a}}$)	2.992(3)		142(3)
$\mathrm{N}(2)-\mathrm{H}^{*} \mathrm{O}\left(6^{\prime \prime}\right)$	2.905 (3)		134(3)
$\mathrm{N}(3)-\mathrm{H}^{*} \mathrm{O}\left(7{ }^{\prime \prime}\right)$	2.923(3)		172(3)

${ }^{\text {a }}$) Primed atoms refer to the molecule in the following symmetry related positions:
$' 1+x, y, z ; " 1-x,-1 / 2+y, 1-z$

Table 3. Torsion Angles and H-Bonding Parameters in the Crystal-Structure of $\mathbf{2 1}$

Amino Acid	$\phi\left[{ }^{\circ}\right]$	$\psi\left[{ }^{\circ}\right]$	$\omega\left[^{\circ}\right]$
$\mathrm{Ala}(1)$	$-81.9(7)$	$-11.4(7)$	$174.4(5)$
$\mathrm{Ala}(2)$	$-133.6(5)$	$141.3(5)$	$169.9(5)$
$\mathrm{Aib}(3)$	$52.8(7)$	$43.9(6)$	$171.5(4)$
$\mathrm{Pro}(4)$	$-64.8(6)$	$-32.5(6)$	$-171.5(5)$
$\mathrm{D}-\mathrm{H}^{\prime \cdots} \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}[\AA \mathrm{A}]$	$\mathrm{D}-\mathrm{H}^{\cdots} \mathrm{A}\left[^{\circ}\right]$	
$\left.\mathrm{N}(1)-\mathrm{H} \ldots \mathrm{O}\left(3^{\prime}\right)^{\mathrm{a}}\right)$	$2.893(7)$	$178(4)$	
$\mathrm{N}(3)-\mathrm{H} \ldots \mathrm{O}\left(5^{\prime \prime}\right)$	$2.835(6)$	$178(6)$	

${ }^{\text {a }}$) Primed atoms refer to the molecule in the following symmetry related positions:
' $2-x, 1 / 2+y, 1-z ; " 2-x,-1 / 2+y, 2-z$

Table 4. Yields of the Coupling of $\mathrm{Z}-\mathrm{Gln}(X)-\mathrm{OH}$ with Azirine 2a and the Hydrolysis of the Terminal Amide Group of $\mathrm{Z}-\mathrm{Gln}(X)-(A i b)_{\mathrm{n}}$ Derivatives

Peptide	Yield [\%]		
Protecting Group X	Trt	DMB	Dod
$\overline{\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-\mathrm{Aib}-\mathrm{N}(\mathrm{Me}) \mathrm{Ph}^{\text {a }} \text {) }}$	89	83	94
$\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-\mathrm{Aib}-\mathrm{OH}^{\mathrm{b}}$)	98	98	97
$\left.\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-(\mathrm{Aib})_{2}-\mathrm{N}(\mathrm{Me}) \mathrm{Ph}^{\mathrm{a}}\right)$	87	88	97
$\left.\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-(\mathrm{Aib})_{2}-\mathrm{OH}^{\mathrm{b}}\right)$	quant.	99	97
$\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-(\mathrm{Aib})_{3}-\mathrm{N}(\mathrm{Me}) \mathrm{Ph}^{\text {a }}$)	89	95	85
$\left.\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-(\mathrm{Aib})_{3}-\mathrm{OH}^{\mathrm{b}}\right)$	92 (11a)	95 (11b)	quant. (11c)
Total yield of $\mathbf{1 1}^{\text {c }}$)	62.1	63.9	72.9

${ }^{\text {a }}$) Coupling of $\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-\mathrm{OH}(\mathbf{2 3 a}-23 c)$ with 2a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t.
${ }^{\text {b }}$) Hydrolysis in $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1) at r.t.
${ }^{c}$) Total yield with respect to 23.

Table 5. Crystallographic Data for Compounds 10 and 21

	10	21
Crystallized from	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{8}$	$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7}$
Formula weight	577.67	532.63
Crystal color, habit	colorless, prism	colorless, prism
Temperature [K]	173(1)	295(1)
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1}$	$P 2_{1}$
Z	2	2
Reflections for cell determination	25	25
2θ range for cell determination [${ }^{\circ}$]	38-40	24-28
Unit cell parameters $a[\AA]$	9.841(4)	11.475(15)
b [\AA]	16.668(4)	10.381(13)
$c[\AA]$	10.422(6)	12.930 (15)
$\beta\left[{ }^{\circ}\right]$	113.44(4)	101.07(10)
$V\left[\AA^{3}\right]$	1568(1)	1512(3)
$D_{x}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.223	1.171
$\mu\left(\mathrm{Mo}\right.$ K α) [$\left.\mathrm{mm}^{-1}\right]$	0.090	0.085
Scan type	$\omega / 2 \theta$	ω
$\left.2 \theta(\max){ }^{\circ}{ }^{\circ}\right]$	60	46
Total reflections measured	4969	2952
Symmetry independent reflections	4717	2522
Reflections with $I>2 \sigma(I)$	3588	1556
Reflections used in refinement	4715	2522
Parameters refined; restraints	402; 1	363; 1
Final $R(F)$ [$I>2 \sigma(I)$ reflections]	0.0441	0.0472
$w R\left(F^{2}\right)$ (all data)	0.1092	0.0780
Weighting parameters $(a ; b)^{\text {a }}$)	0.0384; 0.4557	0.0342; 0
Goodness of fit	1.025	0.986
Final $\Delta_{\text {max }} / \sigma$	0.001	0.001
$\Delta \rho$ (max; min) [e $\left.\AA^{-3}\right]$	0.29; -0.21	0.11; -0.11

$\left.{ }^{\text {a }}\right) w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(a P)^{2}+b P$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Scheme 1

```
Ac-(1-3)-OH + H-(4-10)-OtBu Z-(11-13)-OH + H-(14-18)-\mp@subsup{\textrm{CH}}{2}{}O\textrm{OH}
    |DC \ EDC
    Ac-(1-10)-OtBu
    Z-(11-18)-CH2OH
        TFA
    Ac-(1-10)-OH
        +
        H-(11-18)-CH2OH
        EDC
        Ac-(1-18)-CH2OH (Trichotoxin A-50 (E))
```


Scheme 2

Scheme 3

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Aib	Gly	Aib	Leu	Aib	Gln	Aib	Aib	Aib	Ala	Ala	Aib	Pro	Leu	Aib	D,L-lva	Gln	Valol

2a

2b

Scheme 4

$15+17 \xrightarrow[79 \%]{(e), d)}$ H-Gly-Aib-Leu-Aib-N(Me)Ph $\xrightarrow[76 \%]{ }$ Z , b) Z-Aib-Gly-Aib-Leu-Aib-OH 18 10
a) THF, r.t.; b) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$, r.t.; c) $\mathrm{Et}_{2} \mathrm{O}$, r.t.; d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, r.t.;
e) DCC, $\mathrm{HOBt}, \mathrm{ZnCl}_{2}$, DMF, $0^{\circ} \rightarrow$ r.t.; f) $\mathrm{Z}-\mathrm{Aib}-\mathrm{OH}, \mathrm{DCC}, \mathrm{HOBt}, \mathrm{CSA}, 0^{\circ} \rightarrow$ r.t.

Scheme 5

a) THF , r.t.; b) $3 \mathrm{NHCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$, r.t.; c) $\mathrm{H}-\mathrm{Pro-O}{ }^{t} \mathrm{Bu}, \mathrm{DCC}, \mathrm{HOBt}, \mathrm{CSA}, \mathrm{DMF}, 0^{\circ} \quad$ r.t.; d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$

Scheme 6

$\mathrm{H}-\mathrm{Gln}(\mathrm{Trt})-(\mathrm{Aib})_{3}$-Ala-Ala-Aib-Pro-OtBu
25
a) DCC, HOBt, CSA, DMF, $0^{\circ} \rightarrow$ r.t.; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, r.t. c) $\mathrm{CF}_{3} \mathrm{COOH}, 0^{\circ}$

Scheme 7

Z-Gln-OH + H-Valol $\frac{d), e)}{86 \%} \underset{28}{H-G l n-V a l o l}$
$27+28 \xrightarrow[77 \%]{\stackrel{f}{f}, e)}$ H-Leu-Aib-D,L-Iva-GIn-Valol
a) $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \rightarrow$ r.t.; b) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$, r.t.; c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \theta^{\circ}$ r.t.; d) $\mathrm{CICO}_{2} \mathrm{Et}$, NMM , -10° r.t.;
e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, r.t.; f) TBTU, HOBt, DIEA, DMF, $0^{\circ}=$ r.t.

Scheme 8

a) $\mathrm{DCC}, \mathrm{HOBt}, \mathrm{CSA}, \mathrm{DMF}, 0^{\circ} \rightarrow$ r.t.; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, r.t.; c) 10 , DIEA, $\mathrm{TBTU}, \mathrm{HOBt}, \mathrm{O}^{\circ} \rightarrow$ r.t.

Formulae

Footnote 5)

22

Table 4, a)
23a, Z -Gln(Trt)-OH
23b, $\mathrm{Z}-\mathrm{Gln}(\mathrm{DMB})_{2}-\mathrm{OH}$

23c, Z-Gln(Dod)-OH

Footnote 9)

2c [36]

2d [48]

2e $\mathrm{Ar}=\mathrm{Ph}[49]$
2f $\mathrm{Ar}=1$-naphthyl [50]

Figure 1

Figure 2

Figure 3

Figure 4

Graphical Abstract

Z-Aib-Gly-Aib-Leu-Aib-Gln-(Aib) 3_{3}-Ala-Ala-Aib-Pro-Leu-Aib-D,L-Iva-Gln-Valol

[^0]: ${ }^{1}$) Part of the Ph.D. thesis of W.A., Universität Zürich, 1994.

[^1]: ${ }^{2}$) For a preliminary communication, see [33].
 ${ }^{3}$) Abbreviations: N, N '-dicyclohexylcarbodiimid (DCC); 1-hydroxybenzotriazole (HOBt); camphor-10-sulfonic acid (CSA); O-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU); triphenylmethyl (Trt); N-methylmorpholine (NMM).

[^2]: ${ }^{4}$) This assumption has been proven by a series of control experiments with different N acylated derivatives of 2,2-disubsituted glycines [36].

[^3]: ${ }^{5}$) In the meantime we have shown that the direct introduction of the Aib-Pro sequence by azirine coupling with the dipeptide synthon 22 is a highly recommendable method [2931][32c][39].

[^4]: ${ }^{6}$) In the case of the DMB and Dod groups, addition of anisol is recommended, which intercepts the generated cation and, therefore, accelerates the reaction [45].
 ${ }^{7}$) The deprotection of the dipeptides $\mathrm{Z}-\mathrm{Gln}(\mathrm{X})$-Aib-OMe by using the described conditions, i.e., TFA at room temperature in the case of $\mathrm{X}=\mathrm{Trt}$, and TFA and 5-10\% anisole at room temperature for $\mathrm{X}=(\mathrm{DMB})_{2}$ and Dod, gave Z-Gln-Aib-OMe in 91, 64, and 75% yield, respectively [36].

[^5]: ${ }^{8}$) The deprotection of the NH_{2} group by hydrogenation $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ of the various derivatives listed in Table 4 was achieved in 74-100\% yield [36]. Furthermore, the transformation of some examples of $\mathrm{Z}-\mathrm{Gln}(\mathrm{X})-(\mathrm{Aib})_{n}-\mathrm{N}(\mathrm{Me}) \mathrm{Ph}$ (Table 4) into the corresponding methyl esters by treatment with HCl gas in MeOH was carried out at $25-65^{\circ}$, which led to the product in $70-96 \%$ yield [36].

[^6]: ${ }^{11}$) The coupling with the C-terminal pentapeptide $\mathbf{1 3}$ to give $\mathbf{9}$ has not been carried out.

[^7]: $\left.{ }^{12}\right)$ CCDC-627754 \& 627755 contain the supplementary crystallographic data for this paper.
 These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

