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1 Introduction

Ultraviolet divergences in supersymmetric theories are restricted by some non-

renormalization theorems. According to one of them, N = 4 supersymmetric Yang-Mills

(SYM) theory is finite in all orders [1–4]. Divergencies in N = 2 theories exist only in

the one-loop approximation [1, 4, 5], so that it is even possible to construct finite N = 2

supersymmetric theories by choosing a gauge group and a matter representation in such a

way that the one-loop divergencies cancel [6]. All these non-renormalization theorems can

be derived [7, 8] from the equation which relates the β-function of N = 1 supersymmetric

gauge theories with the anomalous dimension of the matter superfields [9–12]

β(α, λ) = −
α2

(
3C2 − T (R) + C(R)i

j
(
γφ

)
j
i(α, λ)/r

)

2π(1− C2α/2π)
, (1.1)

where α is the gauge coupling constant and λ denotes the Yukawa couplings. Note that

so far we do not specify the definitions of the renormalization group functions (RGFs)

and what couplings are considered as their arguments. Eq. (1.1) called the exact NSVZ

β-function can also be considered as a non-renormalization theorem in addition to the
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well-known statement that the superpotential in N = 1 supersymmetric theories is not

renormalized [13]. According to one more non-renormalization theorem derived in [14], the

triple ghost-gauge vertices in N = 1 supersymmetric gauge theories are finite in all orders.1

With the help of this non-renormalization theorem the exact NSVZ β-function can be

equivalently rewritten in a new form [14],

β(α, λ)

α2
= −

1

2π

(
3C2 − T (R)− 2C2γc(α, λ)− 2C2γV (α, λ) +C(R)i

j
(
γφ

)
j
i(α, λ)/r

)
, (1.2)

which relates the β-function to the anomalous dimensions of the quantum gauge superfield

(γV ), of the Faddeev-Popov ghosts (γc), and of the matter superfields (
(
γφ

)
i
j).

Some NSVZ-like relations can be written for other theories. For example, in theories

with softly broken supersymmetry an analogous equation describes the renormalization of

the gaugino mass [18–20]. Also it is possible to construct the NSVZ-like equations for

the Adler D-function in N = 1 SQCD [21, 22] and even for the renormalization of the

Fayet-Iliopoulos term in two-dimensional N = (0, 2) supersymmetric models [23].

Various derivations of the exact NSVZ β-function involve general arguments based

on the analysis of the instanton contributions [7, 9], anomalies [10, 12, 24], and non-

renormalization of the topological term [25]. However, a direct perturbative verification of

eq. (1.1) in all orders appeared to be a highly non-trivial problem. Even to start solving

this problem, one should first pay attention to some important subtleties related to the

regularization, quantization, and renormalization.

Really, the calculations of quantum corrections made in the DR-scheme (that is with

the help of dimensional reduction [26] supplemented by the modified minimal subtrac-

tions [27]) in refs. [28–32] demonstrate that the NSVZ relation is not valid for this renor-

malization prescription. However, the difference can be explained by the scheme depen-

dence of the NSVZ relation, which is described by the general equations derived in [33, 34].

Namely, it is possible to tune the renormalization scheme in such a way that the NSVZ

equation will take place [28–30].2 It is important that this possibility is highly non-trivial

due to some scheme-independent equations following from the NSVZ relation [34, 36]. Nev-

ertheless, at present there is no general all-loop prescription giving the NSVZ scheme in

the case of using the regularization by dimensional reduction.

The NSVZ renormalization prescription can be naturally formulated in all loops if

N = 1 supersymmetric gauge theories are regularized by the higher covariant derivative

method [37, 38] in the supersymmetric version [39, 40]. The matter is that using of this

regularization reveals the underlying structure of the loop integrals responsible for appear-

ing the NSVZ relation. Namely, in this case the integrals giving the β-function defined in

terms of the bare couplings appear to be integrals of double total derivatives with respect

to loop momenta.3 This was first noted in calculating quantum corrections for N = 1 su-

1In the Landau gauge ξ → 0 a similar statement was known earlier for the usual (non-supersymmetric)

Yang-Mills theory [15] and for N = 1 SYM formulated in terms of the component fields [16]. In the former

case this statement was explicitly verified by the four-loop calculation in ref. [17].
2A similar result for the Adler D-function can be found in ref. [35].
3It is important that for theories regularized by dimensional reduction such a factorization does not take

place, see refs. [41, 42] for the detailed discussion.
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persymmetric electrodynamics (SQED) in refs. [43] (the factorization into total derivatives)

and [44] (the factorization into double total derivatives). Subsequently, this structure of

the loop integrals has been confirmed by numerous calculations (see, e.g., refs. [45–53]).

The rigorous all-loop proof for N = 1 SQED has been done in [54, 55]. The same method

allowed proving the factorization into integrals of double total derivatives in all orders for

the Alder D-function in N = 1 SQCD [21, 22] and for the renormalization of the photino

mass in softly broken N = 1 SQED [56]. For the non-Abelian supersymmetric gauge

theories this will be done in this paper.

The integrals of double total derivatives do not vanish due to the identity

∂2

∂Qµ ∂Qµ

1

Q2
= −4π2δ4(Q), (1.3)

where Q is an Euclidean momentum. The δ-function reduces the number of loop integra-

tions by 1, so that in the Abelian case an L-loop contribution to the β-function appears

to be related to an (L − 1)-loop contribution to the anomalous dimension of the matter

superfields. The sum of singularities in the Abelian case was calculated in [54, 55], where it

was expressed in terms of the anomalous dimension of the matter superfields. The relation

between the β-function and the anomalous dimension obtained in this way is nothing else

than the NSVZ equation for RGFs defined in terms of the bare couplings. Thus, at least in

the Abelian case, it naturally appears in the case of using the higher derivative regulariza-

tion. Note that the RGFs defined in terms of the bare couplings are scheme independent

if a regularization is fixed (see, e.g., [57]), so that the NSVZ equation for these RGFs is

valid for an arbitrary renormalization prescription.4

In the non-Abelian case the situation is much more complicated. Eq. (1.1) relates an

L-loop contribution to the β-function to the anomalous dimension of the matter superfields

in all previous orders. That is why it is more probable that it is eq. (1.2) that originally

appears in the perturbative calculations. Moreover, unlike eq. (1.1), eq. (1.2) can be

visualized in the same way as in the Abelian case (see refs. [44, 50]). Namely, starting from

a supergraph without external lines, it is possible to obtain a contribution to the β-function

by attaching two external lines of the background gauge superfield and contributions to the

anomalous dimensions by cutting internal lines. Thus obtained contributions are related

by eq. (1.2).

The similarity between eq. (1.2) and the Abelian NSVZ equation [58, 59] allows suggest-

ing that the factorization of integrals into double total derivatives also produces the NSVZ

equation in the non-Abelian case. This guess was confirmed by numerous calculations in

the lowest loops, see, e.g., [47, 51, 53, 60]. This implies that all higher order corrections to

the β-function (starting from the two-loop approximation) appear from the δ-singularities.

Therefore, to derive the NSVZ relation in the non-Abelian case (for RGFs defined in terms

of the bare couplings with the higher covariant derivative regularization), it is necessary

only to sum singular contributions and to prove that they give the sum of the anomalous

dimensions in the right hand side of eq. (1.2). If this is really so, then the NSVZ scheme for

4The NSVZ equation for RGFs defined in terms of the bare couplings is not valid in the case of using

dimensional reduction starting from the three-loop approximation [42].

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
1

RGFs defined in terms of the renormalized couplings is given by the so-called HD+MSL

prescription [14] exactly as in the Abelian case [34, 36, 57].5 This means that the theory

is regularized by higher covariant derivatives supplemented by the minimal subtractions of

logarithms, when only powers of lnΛ/µ are included into the renormalization constants.6

The paper is organized as follows: in section 2 we formulate the theory under consid-

eration in N = 1 superspace, regularize it by higher covariant derivatives, and describe the

quantization. Also in this section we introduce some auxiliary constructions, which will

be needed for the investigation of the loop integrals giving the β-function. RGFs defined

in terms of the bare couplings are introduced in section 3. In this section we also present

the β-function and the NSVZ relation for it in the form which is mostly convenient for

the analysis. In section 4 we demonstrate that the β-function defined in terms of the bare

couplings is given by integrals of double total derivatives with respect to loop momenta.

Here we also describe the method which allows to construct these integrals in a simple

way. This method is applied for calculating the three-loop contribution to the β-function

containing the Yukawa couplings in section 5. In particular, we demonstrate that the

result exactly coincides with the one obtained in ref. [53] with the help of the standard

supergraph calculation.

2 N = 1 supersymmetric gauge theories: regularization, quantization,

and auxiliary parameters

It is convenient to describe N = 1 supersymmetric gauge theories using N = 1 superspace

with the coordinates (xµ, θ), where θ is an auxiliary anticommuting Majorana spinor. In

this case N = 1 supersymmetry of the theory is manifest. Moreover, it becomes possible

to perform the quantization and calculate quantum corrections in a manifestly N = 1

supersymmetric way [64–66]. At the classical level the considered theory in the massless

limit is described by the action

Sclassical =
1

2e2
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ φ∗i(e2V )i

jφj

+

(
1

6
λijk

∫
d4x d2θ φiφjφk + c.c.

)
, (2.1)

where V is the Hermitian gauge superfield and φi are the chiral matter superfields in a rep-

resentation R of a gauge groupG which is assumed to be simple. In the classical theory (2.1)

the supersymmetric gauge superfield strength is defined as Wa ≡ D̄2
(
e−2VDae

2V
)
/8. The

gauge coupling constant is defined as α = e2/4π, and the Yukawa couplings are denoted

by λijk. Note that at the classical level we do not distinguish between bare and renor-

malized couplings. This difference is essential in the quantum theory. Below, considering

the quantum theory, we will denote the bare couplings by α0 = e20/4π and λijk0 , while the

renormalized couplings will be denoted by α and λijk.

5HD+MSL prescription also gives the NSVZ-like schemes for the Adler D-function [52] and for the

renormalization of the photino mass in softly broken N = 1 SQED [61].
6This NSVZ scheme is not unique [62]. For example, in N = 1 SQED the on-shell scheme is also

NSVZ [63].
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Below tA and TA are the generators of the fundamental representation and the repre-

sentation R, respectively. These sets of generators satisfy the conditions

tr(tAtB) =
1

2
δAB; [tA, tB] = ifABCtC ;

tr(TATB) = T (R) δAB; [TA, TB] = ifABCTC . (2.2)

We will always assume that tr(TA) = 0. Also we will use the notation

(TATA)i
j ≡ C(R)i

j ; fACDfBCD ≡ C2δ
AB; r ≡ dimG = δAA, (2.3)

so that C(Adj)A
B = C2δ

B
A . (The generators of the adjoint representation are expressed in

terms of the structure constants as (TA
Adj)B

C = −ifABC .)

Under the condition

λijm(TA)m
k + λimk(TA)m

j + λmjk(TA)m
i = 0 (2.4)

the theory (2.1) is invariant under the gauge transformations

φi → (eA)i
jφj ; e2V → e−A+

e2V e−A (so that Wa → eAWae
−A), (2.5)

parameterized by a Lie algebra valued chiral superfield A.

To quantize the theory (2.1), it is also necessary to take into account that the quantum

gauge superfield is renormalized in a nonlinear way [67–69] (see also refs. [70, 71]). The

necessity of this nonlinear renormalization has been demonstrated by explicit calculations

in refs. [72, 73]. Moreover, the two-loop calculation of the Faddeev-Popov ghost anomalous

dimension in [74] showed that without this nonlinear renormalization the renormalization

group equations are not satisfied. Thus, it is really needed for quantum calculations. To

take into account the nonlinear renormalization, following ref. [68], we substitute the gauge

superfield V by the function F(V ) in the action functional. Moreover, it is necessary to

replace e and λ by the bare couplings e0 and λ0, respectively.

For obtaining a manifestly gauge invariant effective action we will use the background

field method [75–77] formulated in N = 1 superspace [1, 64]. A distinctive feature of the

background field method in the supersymmetric case is the nonlinear background-quantum

splitting which in the considered case can be implemented by the substitution

e2F(V ) → e2F(V )e2V , (2.6)

where in the right hand side V and V are the quantum and background gauge superfields,

respectively.7 In this case the quantum gauge superfield satisfies the constrain V + =

e−2V V e2V .

Due to the background-quantum splitting the gauge invariance produces two different

types of gauge transformations. Under the background gauge symmetry the superfields of

the theory change as

e2V → e−A+
e2V e−A; V → e−A+

V eA
+
; φi → (eA)i

jφj . (2.7)

7The standard form of the background quantum splitting is e2F(V ) → eΩ
+

e2F(V )eΩ, the background

gauge superfield being defined by the equation e2V = eΩ
+

eΩ. However, after the change of variables

V → e−Ω
+

V eΩ
+

in the generating functional we arrive to eq. (2.6).
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This invariance remains unbroken at the quantum level and becomes a manifest symmetry

of the effective action. Alternatively, the quantum gauge invariance

e2F(V ) → e−A+
e2F(V )e2V e−Ae−2V ; V → V ; φi → (eA)i

jφj (2.8)

is broken by the gauge fixing procedure. It is convenient to introduce the background

supersymmetric covariant derivatives ∇a and ∇̄ȧ and the gauge supersymmetric covariant

derivatives ∇a and ∇̄ȧ defined by the equations

∇a = ∇a ≡ Da; ∇̄ȧ ≡ e2V D̄ȧe
−2V ; ∇̄ȧ ≡ e2F(V )e2V D̄ȧe

−2V e−2F(V ). (2.9)

Note that for the purposes of this paper it is more convenient to use a different represen-

tation for them in comparison with refs. [74, 78]. In the representation (2.9) the covariant

derivatives ∇a and ∇̄ȧ should act on a function X which changes as X → e−A+
X. In this

case they transform in the same way under both background and quantum transforma-

tions. This is also valid for the background covariant derivatives ∇a and ∇̄ȧ, but only in

the case of the background gauge transformations.

If we use the background field method and take into account the nonlinear renormal-

ization of the quantum gauge superfield, then the gauge superfield strength is defined as

Wa ≡
1

8
D̄2

(
e−2V e−2F(V )Da

(
e2F(V )e2V

))

=
1

8
e−2V ∇̄2

(
e−2F(V )∇ae

2F(V )
)
e2V +Wa, (2.10)

where

Wa ≡
1

8
D̄2

(
e−2VDae

2V
)
. (2.11)

Below we will also need some auxiliary parameters. The coordinate-independent com-

plex parameter g describes the continuous deformation of the original theory (corresponding

to g = 1) into the theory in which quantum superfields interact only with the background

gauge superfield (corresponding to g → 0). This parameter is introduced by making

the substitutions

α0 → gg∗α0; λijk0 → gλijk0 ; λ∗0ijk → g∗λ∗0ijk. (2.12)

Then, it is easy to see that an L-loop contribution to the two-point Green function of the

background gauge superfield is proportional to (gg∗)L−1.

Also we introduce the auxiliary chiral superfield8 g(x, θ). It is added to g in such a

way that all quantum corrections containing g will actually depend on the (coordinate-

dependent) combination

g ≡ g + g, (2.13)

while the background gauge invariance remains unbroken. Various parts of the total action

containing the superfield g are written below, see eqs. (2.19), (2.20), and (2.22).

8Note that coordinate-dependent auxiliary parameters were also used in refs. [25, 79–81].
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Now, let us include the parameters g and g into the classical action. For this purpose

we write all terms containing the quantum gauge superfield as integrals over d4x d4θ ≡ d8x

with the help of eq. (2.10). After this we modify the result by introducing the auxiliary

parameters in the following way:

Sclassical →
1

2gg∗e20
Re tr

∫
d6xW aWa −

1

8e20
Re tr

∫
d8x

1

gg∗

×

[
1

8
e−2F(V )∇ae2F(V )∇̄2

(
e−2F(V )∇ae

2F(V )
)
+ 2e2V W ae−2V e−2F(V )∇ae

2F(V )

]

+
1

4

∫
d8xφ∗i(e2F(V )e2V )i

jφj +
1

6

(
λijk0

∫
d6x g φiφjφk + c.c.

)
, (2.14)

where the integration measures are
∫
d6x ≡

∫
d4x d2θx;

∫
d8x ≡

∫
d4x d4θx = −

1

2

∫
d6x D̄2. (2.15)

Note that we do not include the superfield g in the first term of eq. (2.14), which does not

contain the quantum gauge superfield V . This allows to avoid breaking of the background

gauge invariance (2.7). However, the action (2.14) is invariant under the quantum gauge

transformations (2.8) only if g = 0 (but for an arbitrary value of the coordinate independent

parameter g). Nevertheless, it is not important, because the parameter g is auxiliary and

actually we are interested only in the cases when g = 0, 1 and g = 0.

The most important ingredient needed for deriving the NSVZ β-function for RGFs de-

fined in terms of the bare couplings is the higher covariant derivative regularization [37, 38].

In this paper we will use the version similar to the one considered in ref. [78] with some

modifications appearing due to the presence of the auxiliary parameters and the function

F(V ). To regularize a theory by higher covariant derivatives, at the first step, it is nec-

essary to add a higher derivative term SΛ to its action. As a result, propagators will

contain higher degrees of momenta that, in turn, leads to the finiteness of the regularized

theory beyond the one-loop approximation [82]. In the case g = 0 the regularized action

Sreg = S + SΛ invariant under both background and quantum gauge transformations can

be constructed as

Sreg

∣∣∣
g=0

=
1

2gg∗e20
Retr

∫
d6xW a

(
e−2V e−2F(V )

)

Adj
R

(
−
∇̄2∇2

16Λ2

)

Adj

(
e2F(V )e2V

)

Adj
Wa

+
1

4

∫
d8xφ∗i

(
F

(
−
∇̄2∇2

16Λ2

)
e2F(V )e2V

)

i

jφj+
1

6

(
gλijk0

∫
d6xφiφjφk+c.c.

)
,

(2.16)

where the higher derivative regulators R(x) and F (x) are functions rapidly growing at

infinity which satisfy the conditions R(0) = F (0) = 1. In eq. (2.16) and below the subscript

Adj means that
(
f0 + f1X + f2X

2 + . . .
)

Adj
Y = f0Y + f1[X,Y ] + f2[X, [X,Y ]] + . . . (2.17)

(In particular, this equation implies that (eX)AdjY = eXY e−X .) The superfield g should

be included into the regularized action in such a way that the background gauge invariance

– 7 –
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remains unbroken. This can be done similarly to constructing the action (2.14). However,

it is more difficult due to the presence of the function R(x). We present this function in

the form

R(x) ≡ 1 + xr(x), where r(x) =
R(x)− 1

x
=

∞∑

k=1

rkx
k−1. (2.18)

Then the regularized action can be written as

Sreg=
1

2gg∗e20
Retr

∫
d6xW aWa+

1

e20
Retr

∫
d8x

1

gg∗

[
−
1

4
e−2F(V )∇ae2F(V )e2V Wa

×e−2V −
1

64
e−2F(V )∇ae2F(V )∇̄2

(
e−2F(V )∇ae

2F(V )
)
+W a

(
e−2V e−2F(V )

)

Adj

∇2

16Λ2

× r

(
−
∇̄2∇2

16Λ2

)

Adj

(
e2F(V )e2V

)

Adj
Wa

]
+
1

4

∫
d8xφ∗i

(
F

(
−
∇̄2∇2

16Λ2

)
e2F(V )e2V

)

i

jφj

+
1

6

(
λijk0

∫
d6xgφiφjφk+c.c.

)
. (2.19)

It is important that this action is invariant under the background gauge transformations,

but the quantum gauge invariance exists only for g = 0. In this case the action (2.19) is

reduced to eq. (2.16). Moreover, all terms containing the quantum superfields depend on

auxiliary parameters only in the combination g = g + g. (The first term, which depends

on the constant g and does not depend on the superfield g, contains only the background

gauge superfield.)

To obtain a manifestly gauge invariant effective action, it is necessary to use a gauge

fixing term invariant under the background transformations (2.7). Taking into account

that a higher derivative regulator should be also inserted into this term [78], the gauge

fixing action can be chosen as

Sgf = −
1

16ξ0e20
tr

∫
d8x∇2V

1

g∗
K

(
−
∇̄2∇2

16Λ2

)

Adj

1

g
∇̄2V. (2.20)

Certainly, the quantization procedure also requires to introduce the Faddeev-Popov action.

The Faddeev-Popov ghosts and the corresponding antighosts in the supersymmetric case

are described by the chiral superfields cA and c̄A, respectively. The action for them obtained

in a standard way takes the form

SFP =
1

2

∫
d8x

∂F−1(Ṽ )A

∂Ṽ B

∣∣∣∣
Ṽ=F(V )

(
e2V c̄e−2V + c̄+

)A

×

{(
F (V )

1− e2F(V )

)

Adj

c+ +

(
F(V )

1− e−2F(V )

)

Adj

(
e2V ce−2V

)}B

. (2.21)

In the case of using the background superfield method it is also necessary to take into

account the Nielsen-Kallosh ghost action

SNK =
1

2e20
tr

∫
d8x b+

1

g∗

(
K

(
−
∇̄2∇2

16Λ2

)
e2V

)

Adj

1

g
b

→
1

2
tr

∫
d8x b+

(
K

(
−
∇̄2∇2

16Λ2

)
e2V

)

Adj

b. (2.22)
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Here the Nielsen-Kallosh ghosts b are chiral anticommuting superfields in the adjoint rep-

resentation, which interact only with the background gauge superfield. The arrow points

out that the parameters g and e0 can be excluded from the Nielsen-Kallosh action by the

change of variables b→ e0gb; b+ → e0g
∗b+ in the generating functional. (It is easy to see

that the corresponding determinant is equal to 1.)

After the gauge fixing procedure the quantum gauge transformations (2.8) are no

longer a symmetry of the total action (that, in particular includes the gauge fixing term

and ghosts). The total action is invariant under the BRST transformations [83, 84]. In

N = 1 superspace the BRST transformations have been formulated in ref. [67]. For the

theory considered in this paper the BRST invariance is a symmetry of the action only in

the case g = 0, but for an arbitrary value of the coordinate independent parameter g.

As we mentioned above, the one-loop divergences cannot be regularized by adding

the higher derivative term to the action. For this purpose it is necessary to supplement

the higher derivative method by the Pauli-Villars regularization which is introduced by

inserting the Pauli-Villars determinants into the generating functional [85]. According to

refs. [78, 86], to cancel the one-loop divergences appearing in supersymmetric gauge the-

ories, one should introduce three chiral Pauli-Villars superfields ϕa with a = 1, 2, 3 in the

adjoint representation of the gauge group, and chiral superfields Φi in a certain represen-

tation RPV which admits a gauge invariant mass term. The superfields ϕa cancel one-loop

divergences coming from the loops of the quantum gauge superfield, of the Faddeev-Popov

ghosts and of the Nielsen-Kallosh ghosts. The superfields Φi cancel the one-loop diver-

gences coming from the matter loop. This occurs if the generating functional is defined as

Z =

∫
DµDet(PV,Mϕ)

−1Det(PV,M)c exp
{
i
(
Sreg+Sgf+SFP+SNK+Ssources

)}
, (2.23)

where Dµ denotes the measure of the functional integration and c = T (R)/T (RPV). The

sources are included into9

Ssources =

∫
d8xJAV A +

(∫
d6x

(
jiφi + jAc c

A + j̄Ac c̄
A
)
+ c.c

)
. (2.24)

The Pauli-Villars determinants are constructed as

Det(PV,Mϕ)
−1 ≡

∫
Dϕ1Dϕ2Dϕ3 exp(iSϕ); Det(PV,M)−1 ≡

∫
DΦ exp(iSΦ),

(2.25)

where

Sϕ=
1

4

∫
d8x

{
ϕ∗A
1

[(
R
(
−
∇̄2∇2

16Λ2

)
e2F(V )e2V

)

Adj
ϕ1

]

A
+ϕ∗A

2

[(
e2F(V )e2V

)

Adj
ϕ2

]

A

+ϕ∗A
3

[(
e2F(V )e2V

)

Adj
ϕ3

]

A

}
+
(1
4
Mϕ

∫
d6x

(
(ϕA

1 )
2+(ϕA

2 )
2+(ϕA

3 )
2
)
+c.c

)
; (2.26)

SΦ=
1

4

∫
d8xΦ∗i

(
F

(
−
∇̄2∇2

16Λ2

)
e2F(V )e2V

)

i

jΦj+

(
1

4
M ij

∫
d6xΦiΦj+c.c.

)
(2.27)

9In this paper we present the quantum gauge superfield in the form V = V AtA (or V = V ATA for the

terms with matter superfields).
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andM jkM∗
ki =M2δji . (We assume that the representation RPV is chosen in such a way that

this condition can be satisfied. For example, it is possible to use the adjoint representation.)

To obtain a regularized theory with a single dimensionful parameter, it is necessary to

require that the Pauli-Villars massesMϕ andM should be proportional to the parameter Λ,

Mϕ = aϕΛ; M = aΛ. (2.28)

It is important that we consider a regularization for which aϕ and a do not depend on cou-

plings.

The effective action is standardly defined as the Legendre transform of the generating

functional W = −i lnZ for connected Green functions,

Γ[V , V, φi, c, c̄ ] =W − Ssources

∣∣∣
sources → fields

, (2.29)

where the sources should be expressed in terms of (super)fields from the equations

δW

δJA
= V A;

δW

δji
= φi;

δW

δjAc
= cA;

δW

δj̄Ac
= c̄A. (2.30)

3 Renormalization and RGFs defined in terms of the bare couplings

In this section we present the β-function defined in terms of the bare couplings in a form

which is the most convenient for proving the factorization of the corresponding loop in-

tegrals into integrals of double total derivatives. This factorization is an important step

towards constructing the all-loop perturbative derivation of the exact NSVZ β-function.

That is why in this section we also rewrite the NSVZ relation (1.2) in such a form that can

be used as a starting point of this derivation.

To find the β-function defined in terms of the bare couplings, we consider the two-

point Green function of the background gauge superfield. Note that in our conventions

the term “two-point” in particular means that the auxiliary superfield g is set to 0, but

the dependence on the parameter g is kept. It is easy to see that the considered Green

function depends on g, α0, λ0, and λ
∗
0 only via the combinations gg∗α0 and gg∗λijk0 λ∗0mnp.

(For simplicity, below we will denote the latter one by gg∗λ0λ
∗
0.) Really, in the case g = 0

the total action depends on gg∗α0, gλ0 and g∗λ∗0. However, the numbers of λ0 and λ∗0 in

any supergraph contributing to the considered Green function are equal. Therefore, the

Yukawa couplings enter it only in the combination gg∗λ0λ
∗
0. Similar arguments also work

for the two-point Green functions of the quantum gauge superfield, of the Faddeev-Popov

ghosts, and for the two-point Green function φ∗iφj of the matter superfields. Below we

will use the notation

ρ ≡ |g|2 = gg∗, (3.1)

so that the above mentioned two-point Green functions actually depend on ρα0 and ρλ0λ
∗
0.

Due to the background gauge invariance the two-point Green function of the back-

ground gauge superfield is transversal and (in the massless limit) can be written as

Γ
(2)
V = −

1

8π
tr

∫
d4p

(2π)4
d4θV (−p, θ)∂2Π1/2V (p, θ) d−1(ρα0, ρλ0λ

∗
0, Λ/p), (3.2)
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where the supersymmetric transversal projection operator is defined by the equation

Π1/2 ≡ −
DaD̄2Da

8∂2
= −

D̄ȧD2D̄ȧ

8∂2
. (3.3)

With the help of the Slavnov-Taylor identities [87, 88] (and some other similar equa-

tions) it is possible to prove that quantum corrections to the two-point Green function of

the quantum gauge superfield are also transversal,

Γ
(2)
V − S

(2)
gf = −

1

4e20ρ

∫
d4q

(2π)4
d4θ V A(−q, θ)∂2Π1/2V

A(q, θ)GV (ρα0, ρλ0λ
∗
0, Λ/q). (3.4)

Also we will need the two-point Green functions of the Faddeev-Popov ghosts and of the

matter superfields,

Γ(2)
c =

1

4

∫
d4q

(2π)4
d4θ

(
−c̄A(−q, θ)c∗A(q, θ) + c̄∗A(−q, θ)cA(q, θ)

)
Gc(ρα0, ρλ0λ

∗
0, Λ/q);

(3.5)

Γ
(2)
φ =

1

4

∫
d4q

(2π)4
d4θ φ∗i(−q, θ)φj(q, θ)

(
Gφ

)
i
j(ρα0, ρλ0λ

∗
0, Λ/q). (3.6)

Renormalized couplings α, λ and the renormalization constants ZV , Zc, (Zφ)i
j are

defined by requiring finiteness of the functions d−1, Z2
VGV , ZcGc, and

(
Zφ

)
i
j(Gφ)j

k ex-

pressed in terms of α and λ in the limit Λ → ∞. Note that due to the non-renormalization

of the superpotential [13] the renormalized Yukawa couplings are related to the bare ones

by the equation

λijk = λmnp
0

(√
Zφ

)

m

i
(√

Zφ

)

n

j
(√

Zφ

)

p

k. (3.7)

Similarly, due to the non-renormalization of the triple ghost-gauge vertices [14] the renor-

malization constants can be chosen in such a way that

Z−1/2
α ZcZV = 1, where Zα ≡

α

α0
. (3.8)

We will always assume that the renormalization constants satisfy eqs. (3.7) and (3.8).

(Certainly the renormalization constants are not uniquely defined [89], and these constrains

partially fix an arbitrariness in choosing a subtraction scheme.)

It is important that in the non-Abelian case the quantum gauge superfield is renormal-

ized in a nonlinear way [67–69]. The non-linear renormalization can be realized as a linear

renormalization of an infinite set of parameters. For example, in the lowest approximation

it is possible to present the function F(V ) in the form

F(V ) = V + 8y0G
ABCD tr(V tB) tr(V tC) tr(V tD) tA + . . . , (3.9)

where y0 is a new bare parameter and

GABCD ≡
1

6

(
fAKLfBLMfCMNfDNK + permutations of B, C, and D

)
. (3.10)
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Then, the result for the nonlinear renormalization obtained in [72, 73] can be equivalently

written in the form

y0 = y +
α

90π

(
(2 + 3ξ) ln

Λ

µ
+ k1

)
+ . . . , (3.11)

where ξ is the renormalized gauge parameter and k1 is a finite constant which appears

due to the arbitrariness in choosing a subtraction scheme. The explicit calculation of

ref. [74] demonstrated that the renormalization group equations cannot be satisfied without

introducing the parameter y0 (or, possibly, implementing the nonlinear renormalization by

some different way). Certainly, in higher orders an infinite set of parameters similar to

y0 is needed. All these parameters are similar to the gauge fixing parameter ξ0, because

by a proper change of variables in the generating functional it is possible to prove that

a nonlinear renormalization is equivalent to a nonlinear change of a gauge [67]. That is

why below we will include the gauge fixing parameter and the parameters of the nonlinear

renormalization inside the function F(V ) into a single set

Y0 ≡ (ξ0, y0, . . .). (3.12)

The corresponding renormalized values will be denoted by Y = (ξ, y, . . .).

We believe that the NSVZ relation is valid for RGFs defined in terms of the bare

couplings in the case of using the higher covariant derivative regularization. These RGFs

are defined by the equations

β(ρα0, ρλ0λ
∗
0, Y0) ≡

d(ρα0)

d ln Λ

∣∣∣∣
α,λ,Y=const

;

γV (ρα0, ρλ0λ
∗
0, Y0) ≡ −

d lnZV

d ln Λ

∣∣∣∣
α,λ,Y=const

;

γc(ρα0, ρλ0λ
∗
0, Y0) ≡ −

d lnZc

d ln Λ

∣∣∣∣
α,λ,Y=const

;

(γφ)i
j(ρα0, ρλ0λ

∗
0, Y0) ≡ −

d(lnZφ)i
j

d ln Λ

∣∣∣∣
α,λ,Y=const

(3.13)

and do not depend on a renormalization prescription for a fixed regularization [57]. It is easy

to see that RGFs defined in terms of the bare couplings can be obtained by differentiating

the corresponding Green functions. For example, the β-function defined in terms of the

bare couplings can be constructed by differentiating the quantum corrections in the two-

point Green function of the background gauge superfield in the limit of the vanishing

external momentum,

d

d ln Λ

(
d−1 −

(
gg∗

)−1
α−1
0

)∣∣∣∣
α,λ,Y=const; p→0

=
β(ρα0, ρλ0λ

∗
0, Y0)

ρ2α2
0

. (3.14)

Note that the term 1/(gg∗α0) appears in the function d−1 in the tree approximation and

corresponds to the first term in eq. (2.19). The limit p → 0 is needed for removing

terms proportional to (p/Λ)k, where k is a positive integer. The equality follows from the

finiteness of the function d−1 expressed in terms of the renormalized couplings.
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It is well known that for g = 1 the β-function can be presented as the series

β(α0, λ0λ
∗
0, Y0) =

α2
0

π
β1 +O(α3

0, α
2
0λ0λ

∗
0) = β1-loop(α0) +O(α3

0, α
2
0λ0λ

∗
0), (3.15)

where the (Y0-independent) coefficient

β1 = −
1

2

(
3C2 − T (R)

)
(3.16)

is obtained by calculating the one-loop contribution to the β-function. (For the considered

regularization the details of this calculation can be found in [78].) For g 6= 1 it is easy

to see that the L-loop contribution to the β-function is proportional to
(
gg∗

)L+1
= ρL+1.

Therefore, the dependence of the expression β(ρα0, ρλ0λ
∗
0, Y0)/ρ

2α2
0 on ρ is described by a

function f(ρ) = f0+f1ρ+f2ρ
2+ . . . If we consider g and g∗ as independent variables, then

∂2f(ρ)

∂g ∂g∗
=
∂2f(gg∗)

∂g ∂g∗
= gg∗f ′′(gg∗) + f ′(gg∗) =

d

dρ

(
ρ
df

dρ

)
. (3.17)

Consequently,
1∫

+0

dρ

ρ

ρ∫

+0

dρ
∂2f(ρ)

∂g ∂g∗
= f(1)− f(0), (3.18)

where +0 means that ρ 6= 0, but ρ → 0. Taking into account that the limit ρ → 0 corre-

sponds to the theory in which quantum superfields interact only with the background gauge

superfield, so that nontrivial quantum corrections exist only in the one-loop approximation,

we obtain
1∫

+0

dρ

ρ

ρ∫

+0

dρ
∂2

∂g ∂g∗

(
β(ρα0, ρλ0λ

∗
0, Y0)

ρ2α2
0

)
=
β(α0, λ0λ

∗
0, Y0)

α2
0

−
β1-loop(α0)

α2
0

. (3.19)

Therefore, the β-function defined in terms of the bare couplings (for the original theory

which corresponds to g = 1) can be calculated with the help of the equation

β(α0, λ0λ
∗
0, Y0)

α2
0

=
β1-loop(α0)

α2
0

(3.20)

+

1∫

+0

dρ

ρ

ρ∫

+0

dρ
∂2

∂g ∂g∗
d

d ln Λ

(
d−1 −

(
gg∗

)−1
α−1
0

)∣∣∣∣
α,λ,Y=const; p→0

.

Due to the finiteness of the functions Z2
VGV , ZcGc, and

(
Zφ

)
i
j
(
Gφ

)
j
k the anomalous

dimensions of the quantum superfields can also be related to the corresponding Green

functions by the equations

γV (ρα0, ρλ0λ
∗
0, Y0) =

1

2

d lnGV

d ln Λ

∣∣∣∣
α,λ,Y=const; q→0

; (3.21)

γc(ρα0, ρλ0λ
∗
0, Y0) =

d lnGc

d ln Λ

∣∣∣∣
α,λ,Y=const; q→0

; (3.22)

(
γφ

)
i
j(ρα0, ρλ0λ

∗
0, Y0) =

d
(
lnGφ

)
i
j

d ln Λ

∣∣∣∣∣
α,λ,Y=const; q→0

. (3.23)
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In the one-loop order these anomalous dimensions contain terms proportional to α0 and

λ0λ
∗
0 (the latter ones appear only in

(
γφ

)
i
j),

γ(ρα0, ρλ0, Y0) = O(α0, λ0λ
∗
0), (3.24)

and the terms corresponding to the L-loop approximation are proportional to
(
gg∗

)L
= ρL.

Using this fact, from the identity (3.18) we obtain

1∫

+0

dρ

ρ

ρ∫

+0

dρ
∂2

∂g ∂g∗
γ(ρα0, ρλ0λ

∗
0, Y0) = γ(α0, λ0λ

∗
0, Y0). (3.25)

This implies that for deriving the NSVZ relation (1.2) it is sufficient to prove that

∂2

∂g ∂g∗
d

d ln Λ

(
d−1 −

(
gg∗

)−1
α−1
0

)∣∣∣∣
α,λ,Y=const; p→0

(3.26)

=
1

2π

∂2

∂g ∂g∗
d

d ln Λ

(
2C2 lnGc + C2 lnGV −

1

r
C(R)i

j
(
lnGφ

)
j
i
)∣∣∣∣

α,λ,Y=const; q→0

.

Eq. (1.2) is obtained by applying the operator

1∫

+0

dρ

ρ

ρ∫

+0

dρ (3.27)

to this equation with the help of eqs. (3.14) and (3.21) – (3.23).

In eq. (3.26) the derivative with respect to lnΛ is very important, because it removes

infrared divergences which could appear in the limit of the vanishing external momentum.

Explicit loop calculations (e.g., in refs. [51, 53]) demonstrate that loop integrals written

without d/d ln Λ are not well defined, while after the differentiation all bad terms disappear.

The derivatives with respect to g and g∗ are not so important and can be excluded

from eq. (3.26). Certainly, in this case it is necessary to add the constant corresponding to

the one-loop contribution,

d

d ln Λ

(
d−1 −

(
gg∗

)−1
α−1
0

)∣∣∣∣
α,λ,Y=const; p→0

= −
3C2 − T (R)

2π
(3.28)

+
1

2π

d

d ln Λ

(
2C2 lnGc + C2 lnGV −

1

r
C(R)i

j
(
lnGφ

)
j
i

)∣∣∣∣
α,λ,Y=const; q→0

.

For g = 1 this identity was first suggested in ref. [14]. However, for deriving the NSVZ

relation in all loops it is more preferable to use eq. (3.26).

The left hand side of eq. (3.26) can be constructed starting from the expression for the

two-point Green function of background gauge superfield (3.2). To extract the function

d−1, it is convenient to make the formal substitution

V A → θ4vA, where θ4 ≡ θaθa θ̄
ȧθ̄ȧ. (3.29)
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In this equation vA are slow varying functions of the space-time coordinates which tend to

0 only at a very large scale R→ ∞. For example, it is possible to choose

vA(X) = vA0 exp
(
− (Xµ)2/2R2

)
, (3.30)

where vA0 = const and Xµ = (xi, ix0) are the Euclidean coordinates. The corresponding

Euclidean momenta are denoted by Pµ = (pi,−ip0). In this case

vA(P ) ≡

∫
d4X vA(X) exp(iXµPµ) = (2π)2R4vA0 exp

(
− (Pµ)2R2/2

)
. (3.31)

From eq. (3.31) we see that vA(P ) is essentially different from 0 only in a small region

of the size 1/R → 0. This implies that substituting the functions (3.30) into eq. (3.2)

we automatically obtain the limit P → 0 (or, equivalently, p → 0), which is needed for

constructing RGFs defined in terms of the bare couplings.

Let us consider quantum corrections encoded in the expression

∆Γ = Γ− Stotal, (3.32)

where Stotal includes the usual action, the gauge fixing term, and the ghost actions. (Cer-

tainly, the terms proportional to Λ−k, where k is a positive integer, should be omitted).

Then we consider a part of ∆Γ corresponding to the two-point Green function of the back-

ground gauge superfield. Performing the Wick rotation and making the substitution (3.29),

after some transformations, in the limit R→ ∞ we obtain

d∆Γ
(2)
V

d ln Λ

∣∣∣∣∣
α,λ,Y=const; V =θ4v

=
V4

2π

d

d ln Λ

(
d−1 −

(
gg∗

)−1
α−1
0

)∣∣∣∣
p=0

=
V4

2π
·
β(ρα0, ρλ0λ

∗
0, Y0)

ρ2α2
0

, (3.33)

where we have introduced the notation

V4 =

∫
d4x (vA)2 → −i

∫
d4X (vA)2 = −i

∫
d4P

(2π)4
vA(−P ) vA(P ). (3.34)

Evidently, V4 ∼ R4 → ∞. For example, if the functions vA are chosen in the form (3.30),

then V4 = −iπ2(vA0 )
2R4. Thus, we see that the substitution (3.29) allows extracting the

β-function defined in terms of the bare couplings from the considered part of the effective

action in the case of using the higher covariant derivative regularization. (In the case of

using the dimensional reduction one should be much more careful, see [41, 42] for details.)

Differentiating eq. (3.33) with respect to the parameters g and g∗ and multiplying the

result by the factor 2π/V4, we obtain the left hand side of eq. (3.26). In turn, the derivatives

with respect to the coordinate-independent parameters g and g∗ can be expressed in terms

of the derivatives with respect to the chiral superfield g and the antichiral superfield g
∗,

respectively. Really, all terms in the action containing quantum superfields depend only

on the combinations g and g∗, see eqs. (2.19), (2.20), (2.21), and (2.22). The only term
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which depends on g and g∗ in a different way is the first term in eq. (2.19), but it does not

affect quantum corrections and does not enter ∆Γ. Therefore, it is possible to relate the

derivatives of ∆Γ with respect to g and g∗ to the derivatives with respect to g and g
∗,

∂2∆Γ

∂g ∂g∗

∣∣∣∣
g=0

=

∫
d6z1 d

6z̄2
δ2∆Γ

δgz1δg
∗
z2

∣∣∣∣
g=0

, (3.35)

where ∫
d6x̄ ≡

∫
d4x d2θ̄x. (3.36)

Thus, to derive the NSVZ relation, it is sufficient to prove the identity

∫
d6z1 d

6z̄2
δ2

δgz1δg
∗
z2

dΓ
(2)
V

d ln Λ

∣∣∣∣∣α, λ, Y = const;
V = θ4v; g = 0

=
∂2

∂g ∂g∗
d∆Γ

(2)
V

d ln Λ

∣∣∣∣∣α, λ, Y = const;
V = θ4v; g = 0

(3.37)

=
V4

4π2
∂2

∂g ∂g∗
d

d ln Λ

(
2C2 lnGc + C2 lnGV −

1

r
C(R)i

j
(
lnGφ

)
j
i

)∣∣∣∣
α,λ,Y=const; q→0

,

where Γ
(2)
V denotes a part of Γ which is quadratic in the background gauge superfield and

does not contain the other superfields except for g. Note that writing eq. (3.37) we took

into account that S
(2)
V is independent of g, see eq. (2.19). It is evident that

Γ
(2)
V =

1

2

∫
d8x d8yV A

x V B
y

δ2Γ

δV A
x δV

B
y

∣∣∣∣
fields=0; g 6=0

. (3.38)

Note that here we do not set the auxiliary external superfields g and g
∗ to 0, because

eq. (3.37) contains the derivatives with respect to these superfields. In this paper we will

consider only N = 1 supersymmetric gauge theories with a simple gauge group. In this case

it is easy to see that any invariant tensor IAB should be proportional to δAB.
10 Therefore,

for simple gauge groups

δ2Γ

δV A
x δV

B
y

∣∣∣∣
fields=0; g 6=0

=
1

r
δAB

δ2Γ

δV C
x δV C

y

∣∣∣∣
fields=0; g 6=0

. (3.39)

With the help of eqs. (3.38) and (3.39) for a simple gauge group it is possible to rewrite

eq. (3.37) in the form mostly convenient for proving, namely,
∫
d8x d8y d6z1 d

6z̄2 (θ
4)x(v

B)x (θ
4)y(v

B)y
d

d ln Λ

δ4Γ

δgz1δg
∗
z2δV

A
x δV

A
y

∣∣∣∣α, λ, Y = const;

fields = 0; g = 0

(3.40)

=
V4

2π2
∂2

∂g ∂g∗
d

d ln Λ

(
2C2r lnGc + C2r lnGV − C(R)i

j
(
lnGφ

)
j
i
)∣∣∣∣

α,λ,Y=const; q→0

.

According to the above discussion, for the theory regularized by higher covariant derivatives

this equation is equivalent to the NSVZ relations (1.1) and (1.2) for RGFs defined in terms

of the bare couplings. Below we will prove that the left hand side of eq. (3.40) is given by

integrals of double total derivatives.

10The considered invariant tensor satisfies the equation [TA
Adj , I] = 0, so that it commutes with all

generators of the adjoint representation. For a simple group the adjoint representation is irreducible.

Therefore, IAB should be proportional to δAB .
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4 The β-function as an integral of double total derivatives

4.1 The Slavnov-Taylor identity for the background gauge invariance

The background gauge invariance is a manifest symmetry of the theory under considera-

tion (even in the presence of the auxiliary superfield g). At the quantum level symmetries

are encoded in the Slavnov-Taylor identities [87, 88]. The Slavnov-Taylor identity cor-

responding to the background gauge transformations constructed in this section is a very

important ingredient for the all-loop proof of the factorization into double total derivatives.

This identity is derived by standard methods, namely, it is necessary to make the change

of variables

V → e−A+
V eA

+
; c→ eAce−A; c̄→ eAc̄e−A;

φi → (eA)i
jφj ; Φi → (eA)i

jΦj ; ϕa → eAϕae
−A (4.1)

in the functional integral (2.23), which does not change the generating functional Z. This

change of variables coincides with the background gauge transformations of the quantum

superfields. Due to the background gauge invariance, the total gauge fixed action

Stotal = Sreg + Sgf + SFP + SNK (4.2)

and the Pauli-Villars determinants remain unchanged if the background gauge superfield

is also modified as

e2V → e−A+
e2V e−A. (4.3)

However, the source term Ssources transforms nontrivially. This implies that in the linear

order in A the invariance of the generating functional W = −i lnZ under the change of

variables (4.1) can be expressed by the equation

∫
d8x δV B δW

δV B
=

〈∫
d8xJAδV A +

[ ∫
d6x

(
jiδφi + jAc δc

A + j̄Ac δc̄
A
)
+ c.c.

]〉
, (4.4)

where the variations of various superfields under the infinitesimal background gauge trans-

formations are written as11

δV = −

(
V

1− e−2V

)

Adj

A+

(
V

1− e2V

)

Adj

A+

=
1

2

(
−A−A+ − [V , A] + [V , A+]

)
+O(V 2);

δV = −[A+, V ]; δφi = Ai
jφj ; δc = [A, c]; δc̄ = [A, c̄], (4.5)

with A = AAtA and Ai
j = AA(TA)i

j . The angular brackets denote

〈B〉 ≡
1

Z

∫
DµBDet(PV,Mϕ)

−1Det(PV,M)c exp
{
i (Stotal + Ssources)

}
, (4.6)

where B is a function(al) depending on the superfields of the theory.

11The expression for δV = δV BtB is obtained in the standard way from the identity 0 = δ[V , e2V ].
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Rewriting eq. (4.4) in terms of (super)fields, we obtain the equation which expresses

the manifest background gauge invariance of the effective action,
∫
d8x

(
δV B δΓ

δV B
+ δV B δΓ

δV B

)
+

(∫
d6x

(
δφi

δΓ

δφi
+ δcB

δΓ

δcB
+ δc̄B

δΓ

δc̄B

)
+ c.c.

)
= 0.

(4.7)

It is important that in this equation (super)fields are not set to 0, so that this equation

encodes an infinite set of identities relating Green functions of the theory. That is why we

will call it the generating Slavnov-Taylor identity.

Considering A and A+ as independent variables and differentiating eq. (4.7) with

respect to AA we obtain

D̄2

2

{[( V

1− e−2V

)

Adj

]

BA

δΓ

δV B

}
+ φj(T

A)i
j δΓ

δφi

+cC(TA
Adj)BC

δΓ

δcB
+ c̄C(TA

Adj)BC
δΓ

δc̄B
= 0, (4.8)

where the matrix [f(X)Adj ]AB is defined by the equation

f(X)Adj(t
AY A) ≡ tA [f(X)Adj ]AB Y

B. (4.9)

Expressing the generators of the adjoint representation in terms of the structure con-

stants it is possible to rewrite the generating Slavnov-Taylor identity (4.7) corresponding

to the background gauge symmetry in the form

D̄2 ÔAΓ = 0, (4.10)

where the operator ÔA is given by the expression

ÔA ≡

[(
2V

1− e−2V

)

Adj

]

BA

δ

δV B
−
D2

4∂2
φj(T

A)i
j δ

δφi
− ifABC D

2

4∂2
cB

δ

δcC

− ifABC D
2

4∂2
c̄B

δ

δc̄C
. (4.11)

To verify eq. (4.10), it is necessary to take into account that a derivative with respect to a

chiral superfield is also chiral and use the identity

−
D̄2D2

16∂2
φ = φ (4.12)

valid for an arbitrary chiral superfield φ.

It is important that due to eq. (4.10) the effective action satisfies the equation

ÔAΓ = D̄ȧŌA
ȧ Γ, (4.13)

where

ŌA
ȧ ≡

(
−
D̄ȧD

2

16∂2
+
D2D̄ȧ

8∂2

)
ÔA. (4.14)

This can be verified with the help of the equality

1 = −
D2D̄2

16∂2
−
D̄2D2

16∂2
−Π1/2 (4.15)

and the generating Slavnov-Taylor identity (4.10).
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4.2 Transforming the left hand side of eq. (3.40) with the help of the super-

graph calculation rules

An important observation is that the second derivative of the effective action with respect

to the background superfield V in eq. (3.40) can be obtained by applying the operator(
ÔA

)
x

(
ÔA

)
y
to Γ, where x and y denote the points of the superspace. Really, in the lowest

orders in V the operator ÔA can be written as

ÔA ≡
δ

δV A
− ifABCV B δ

δV C
+O(V 2)

−
D2

4∂2
φj(T

A)i
j δ

δφi
− ifABC D

2

4∂2
cB

δ

δcC
− ifABC D

2

4∂2
c̄B

δ

δc̄C
. (4.16)

Therefore, taking into account that fAAC = 0, after the differentiation we see that

δ2Γ

δV A
x δV

A
y

∣∣∣∣
fields=0; g 6=0

=
(
ÔA

)
x

(
ÔA

)
y
Γ

∣∣∣∣
fields=0; g 6=0

= −
(
D̄ȧ

)
x

(
D̄ḃ

)
y

((
ŌA

ȧ

)
x

(
ŌA

ḃ

)
y
Γ
)∣∣∣∣

fields=0; g 6=0

. (4.17)

Note that here all fields (including the background gauge superfield V ) should be set to 0,

but the auxiliary superfield parameter g remains arbitrary. To derive the last equality, it

is necessary to use eq. (4.13) and the identity

[(
ÔA

)
x
,
(
ÔA

)
y

]∣∣∣
fields=0

= 0, (4.18)

which can be easily verified. The minus sign in the last expression in eq. (4.17) appears

after anticommuting the Grassmannian odd expressions
(
D̄ḃ

)
y
and

(
ŌA

ȧ

)
x
.

Substituting the expression (4.17) into the left hand side of eq. (3.40) we see that

due to the presence of the supersymmetric covariant derivatives
(
D̄ȧ

)
x

(
D̄ḃ

)
y
the overall

degree of explicitly written θ-s decreases by 2. (Certainly, θ-s are also present inside the

supersymmetric covariant derivatives entering expressions for various supergraphs, but it

is the explicitly written θ-s that we are interested in.) Integrating by parts with respect to

the above mentioned derivatives it is possible to rewrite the left hand side of eq. (3.40) in

the form

LHS of eq. (3.40) = −4

∫
d8x d8y d6z1 d

6z̄2 (θ
2θ̄ȧvB)x

× (θ2θ̄ḃvB)y
d

d ln Λ

δ2

δgz1δg
∗
z2

((
ŌA

ȧ

)
x

(
ŌA

ḃ

)
y
Γ
)∣∣∣∣

fields=0; g=0

. (4.19)

This expression can be presented as a sum of certain one particle irreducible (1PI) super-

graphs, because the effective action is the generating functional for 1PI Green functions

(see, e.g., [90]). Therefore, it can be calculated using the tools of the perturbation theory,

which include standard rules for working with supergraphs. Note that the external lines

in the superdiagrams contributing to the expression (4.19) are attached to the points x, y,

z1, and z2 and correspond to
(
θ2θ̄ȧvB

)
x
,
(
θ2θ̄ḃvB

)
y
, 1, and 1, respectively.
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Evidently, any two points of an 1PI graph can be connected by a chain of vertices and

propagators. This allows to shift vB in an arbitrary point of the supergraph, because addi-

tional terms produced by such shifts are suppressed by powers of 1/R. Really, propagators

contain derivatives with respect to the superspace coordinates acting on δ8xy. Certainly, v
B

commutes with ∂/∂θa and ∂/∂θ̄ȧ due to the independence of θ. As for the derivatives with

respect to the space-time coordinates xµ, the shifting of vB from the superspace point 1 to

the point 2 is made according to the procedure

(
vB

)
1

(
∂µ

)
1
δ812 =

(
∂µ

)
1

((
vB

)
1
δ812

)
−

(
∂µv

B
)
1
δ812 =

(
vB

)
2

(
∂µ

)
1
δ812 +O(1/R), (4.20)

where we took into account that the space-time derivatives of vB are proportional to

powers of 1/R, see, e.g., eq. (3.30). (To be exact, the dimensionless parameter in this case

is 1/(ΛR).) Certainly, the terms proportional to 1/R can be omitted in the limit R→ ∞,

which is actually equivalent to the limit p → 0 in equations like eq. (3.14). Below we will

always ignore them.

With the help of equations like (4.20) we can shift vB to an arbitrary point of the

supergraph. Let us shift both vB in eq. (4.19) to the point z1,

(vB)x(v
B)y → (vB)2z1 . (4.21)

Note that in this case the usual coordinates xµ on which vB depends should be replaced

by the chiral coordinates yµ = xµ + iθ̄ȧ(γµ)ȧ
bθb to obtain a manifestly supersymmetric

expression. Certainly, this is possible, because the difference is proportional to powers

of 1/R and vanishes in the limit R→ ∞.

Also it is possible to prove that θ̄ȧ and θ̄ḃ in eq. (4.19) can be shifted in an arbitrary

point. Really, let us consider a supergraph contributing to the expression (4.19). It is

calculated according to the well-known algorithm (see, e.g., [65]), the result being given

by an integral over the full superspace.12 The integral over the full superspace includes

integration over d4θ and does not vanish only if the integrand contains θ4 = θ2θ̄2. Note

that new θ-s cannot be produced in calculating the supergraphs, in spite of their presence

inside the supersymmetric covariant derivatives. Therefore, any supergraph with θ-s on

external lines does not vanish only if it contains at least two right components θa and two

left components θ̄ȧ. The expression (4.19) is quadratic in θ̄, which can be shifted along a

pass consisting of vertices and propagators using equations like

(
θ̄ȧ
)
1

D2
1D̄

2
1

4∂2
δ812 =

D2
1D̄

2
1

4∂2

((
θ̄ȧ
)
1
δ812

)
+O(1) →

D2
1D̄

2
1

4∂2

((
θ̄ȧ
)
2
δ812

)
=

(
θ̄ȧ
)
2

D2
1D̄

2
1

4∂2
δ812. (4.22)

Here O(1) denotes terms which do not contain θ̄. They appear when the covariant deriva-

tives are commuted with θ̄-s with the help of the identity {θ̄ȧ, D̄ḃ} = δȧ
ḃ
. The arrow in

eq. (4.22) points that we omit them, because these terms do not contribute to eq. (4.19).

Really, the original expression is quadratic in θ̄, so that the contributions of O(1) terms

are no more than linear in θ̄-s. This implies that they are removed by the final integration

over d4θ.
12Note that even the vertices corresponding to the points z1 and z2 can be presented as integrals over

the full superspace, although the integrands in this case are nonlocal.
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Thus, we see that θ̄-s in supergraphs contributing to eq. (4.19) can be shifted in an

arbitrary way using equations like (4.22). This allows shifting θ̄ȧ and θ̄ḃ from the points x

and y to the point z2, (
θ̄ȧ
)
x

(
θ̄ḃ
)
y
→

(
θ̄ȧ θ̄ḃ

)
z2
. (4.23)

After this, we use the identity

(
θ̄ȧ
)
z2

(
θ̄ḃ
)
z2

· ψ̄ȧ ξ̄ḃ = −
(
θ̄ȧ
)
z2

(
θ̄ḃ
)
z2

· ψ̄ȧ ξ̄
ḃ = −

1

2

(
θ̄2
)
z2

· ψ̄ḃ ξ̄
ḃ =

1

2

(
θ̄2
)
z2

· ψ̄ȧ ξ̄ȧ. (4.24)

(Here we essentially use that both θ̄-s are placed into a single point z2.) As a result, we

obtain that after the shifts (4.21) and (4.23) the considered expression is written as

LHS of eq. (3.40) = −2

∫
d8x d8y d6z1 d

6z̄2
(
θ̄2
)
z2

(
vB

)2
z1

×
(
θ2
)
x

(
θ2
)
y

d

d ln Λ

δ2

δgz1δg
∗
z2

((
Ōȧ,A

)
x

(
ŌA

ȧ

)
y
Γ
)∣∣∣∣

fields=0; g=0

. (4.25)

Note that due to the antichirality of θ̄2 this expression remains manifestly supersymmetric.

The right components θ cannot be shifted in an arbitrary way, because the consid-

ered expression is quartic in θa (here we count only the degree of the right components).

However, in this case it is possible to use a special identity derived in ref. [55]. Let us

consider an 1PI supergraph contributing to the expression (4.25) and construct two passes

connecting the point x with z1 and the point z1 with y, see figure 1. The corresponding

sequences of vertices and propagators we will denote by A and B, respectively. Actually,

A and B are products of the expressions in which various derivatives (namely, ∂µ, Da, D̄ȧ,

and 1/∂2) act on superspace δ-functions. Then according to ref. [55]

θ2ABθ2 + 2(−1)PA+PBθaAθ2Bθa − θ2Aθ2B −Aθ2Bθ2 = O(θ), (4.26)

where (−1)PX is the Grassmannian parity of an expression X, and O(θ) denotes terms

which are no more than linear in θ. For completeness, we also present the proof of this

identity in appendix A. (The point x is on the left of each term, the point y is on the right,

and the point z1 is between A and B.)

Evidently, the O(θ) terms in eq. (4.26) do not contribute to eq. (4.25), because the

integral over d4θ which remains after the calculation of the supergraph removes them.

Therefore, with the help of eq. (4.26) the left hand side of eq. (3.40) can be rewritten in

the form

LHS of eq. (3.40) = −2

∫
d8x d8y d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

(4.27)

×
(
(θ2)x + (θ2)y − 2(θb)x(θb)y

) d

d ln Λ

δ2

δgz1δg
∗
z2

((
Ōȧ,A

)
x

(
ŌA

ȧ

)
y
Γ
)∣∣∣∣

fields=0; g=0

,

where we take into account that all propagators are Grassmannian even. This expression

can be equivalently expressed in terms of the operator ÔA as

− 2

∫
d8x d8y d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

(
(θ2θ̄ȧ)x(θ̄ȧ)y + (θ̄ȧ)x(θ

2θ̄ȧ)y (4.28)

+ 2(θbθ̄ȧ)x(θbθ̄ȧ)y

) d

d ln Λ

δ2

δgz1δg
∗
z2

((
ÔA

)
x

(
ÔA

)
y
Γ
)∣∣∣∣

fields=0; g=0

.
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Figure 1. The points x, z1, and y of a supergraph can be connected by a pass which consists of

the gauge, matter, and ghost propagators. A corresponds to its part connecting the points x and

z1, and B corresponds to the part connecting the points z1 and y.

To see this, it is necessary to use the identity

(
ÔA

)
x

(
ÔA

)
y
Γ = −(D̄ċ)x(D̄

ḋ)y
(
ŌA

ċ

)
x

(
ŌA

ḋ

)
y
Γ, (4.29)

which follows from eqs. (4.13) and (4.18), and integrate by parts with respect to the deriva-

tives (D̄ċ)x and (D̄ḋ)y. With the help of eq. (4.17) the expression (4.28) can be presented

in the form

LHS of eq. (3.40) = −2

∫
d8x d8y d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

(
(θ2θ̄ȧ)x(θ̄ȧ)y (4.30)

+ (θ̄ȧ)x(θ
2θ̄ȧ)y −

(
θ̄ȧ(γµ)ȧ

bθb
)
x

(
θ̄ċ(γµ)ċ

dθd
)
y

) d

d ln Λ

δ4Γ

δgz1δg
∗
z2δV

A
x δV

A
y

∣∣∣∣
fields=0; g=0

,

where we also took the identity

(γµ)ȧ
b(γµ)c

ḋ = 2δḋȧδ
b
c (4.31)

into account. Eq. (4.30) is a convenient starting point for presenting the left hand side of

eq. (3.40) in the form of an integral of double total derivatives. This will be made in the

next section.

4.3 Formal calculation

Numerous explicit calculations of the β-function reveal that it is given by integrals of

double total derivatives in the momentum space for both the Abelian [44, 50] and non-

Abelian [47–49, 51, 53] N = 1 supersymmetric theories regularized by higher covariant

derivatives. In the Abelian case this factorization into integrals of double total derivatives

has been proved in all orders in refs. [54, 55]. For generalizing this result to the non-Abelian

case we consider the left hand side of eq. (3.40) related to β/α2
0 by the equation

LHS of eq. (3.40) =
rV4

π

∂2

∂g ∂g∗

(
β(ρα0, ρλ0λ

∗
0, Y0)

ρ2α2
0

)
(4.32)

(where ρ = gg∗) and present it in the form (4.30). Below we will demonstrate that it is

given by integrals of double total derivatives in the momentum space in all orders.
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An important observation is that the expression (4.30) formally vanishes as a con-

sequence of the Slavnov-Taylor identity (4.7). In fact, it is not true because of singular

contributions, which will be discussed in section 4.5. However, first, we describe the for-

mal calculation.

As a starting point we consider the Slavnov-Taylor identity (4.7) in which we set the

superfields V , φi, c
A, and c̄A to 0. However, the auxiliary superfields remain arbitrary.

This gives the equation

∫
d8x δV A

x

δΓ

δV A
x

∣∣∣∣
quantum fields=0

= 0. (4.33)

Its left hand side is a functional of the background gauge superfield V and the auxiliary

external superfields g and g
∗. Next, we differentiate eq. (4.33) with respect to V B

y and,

after this, set the background gauge superfield to 0. Then using eq. (4.5) we obtain

∫
d8x

(
AB

x + (AB
x )

∗
) δ2Γ

δV A
y δV

A
x

∣∣∣∣
quantum fields=0,V =0

= 0, (4.34)

where we also took into account that (even for g 6= 0)

δΓ

δV A
y

∣∣∣∣
quantum fields=0,V =0

= 0; (4.35)

δ2Γ

δV B
y δV A

x

∣∣∣∣
quantum fields=0,V =0

=
1

r
δAB

δ2Γ

δV C
y δV C

x

∣∣∣∣
quantum fields=0,V =0

. (4.36)

These equations follow from the group theory considerations. Really, if we take into ac-

count that the auxiliary superfield g is gauge invariant, then the expressions in eqs. (4.35)

and (4.36) are proportional to tensors invariant under the gauge group G. However, there

are no invariant tensors with a single index A, and the expression in the left hand side

of eq. (4.35) vanishes. (Let us recall that in the case under consideration all generators

are traceless.) In this paper we assume that the gauge group is simple, so that the only

invariant tensor with two indices A and B is δAB. This immediately gives eq. (4.36).

Let us choose the parameter A in eqs. (4.1) and (4.3) in the form

A = εaBθat
B; A+ = ε̄ȧB θ̄ȧt

B, (4.37)

where εaB is a coordinate independent anticommuting parameter. This implies that AB =

εaBθa. Substituting these parameters into eq. (4.34) and differentiating with respect to

ε̄ȧB, we obtain the equation

∫
d8x

(
θ̄ȧ
)
x

δ2Γ

δV A
y δV

A
x

∣∣∣∣
quantum fields=0,V =0

= 0, (4.38)

the left hand side of which being a functional of the auxiliary superfield g. Therefore, it

is possible to differentiate with respect to g and g
∗, so that the part of eq. (4.30) obtained
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from the second term in the round brackets vanishes. The part obtained from the first

term vanishes due to the same reason. This implies that

LHS of eq. (3.40) = 2

∫
d8x d8y d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

(4.39)

×
(
θ̄ȧ(γµ)ȧ

bθb
)
x

(
θ̄ċ(γµ)ċ

dθd
)
y

d

d ln Λ

δ4Γ

δgz1δg
∗
z2δV

A
x δV

A
y

∣∣∣∣
fields=0; g=0

.

The similar arguments can be used for this expression (which corresponds to the third

term in the round brackets in eq. (4.30)). In this case it is necessary to choose the superfield

A as

A = iaBµ t
Byµ; A+ = −iaBµ t

B(yµ)∗, (4.40)

where aBµ are real coordinate-independent parameters. Therefore, AB = iaBµ y
µ, where the

chiral coordinates yµ and the antichiral coordinates (yµ)∗ are defined as

yµ ≡ xµ + iθ̄ȧ(γµ)ȧ
bθb; (yµ)∗ = xµ − iθ̄ȧ(γµ)ȧ

bθb, (4.41)

respectively. In this case from eq. (4.34) for arbitrary g we formally13 obtain the identity
∫
d8x

(
θ̄ȧ(γµ)ȧ

bθb
)
x

δ2Γ

δV A
y δV

A
x

∣∣∣∣
quantum fields=0,V =0

→ (formally) → 0. (4.42)

Consequently, the expression (4.39) seems to vanish. This implies (see eqs. (3.19)

and (4.32)) that all higher order corrections to the β-function vanish and the β-function is

completely defined by the one-loop approximation. Certainly, it is not true. The matter is

that the above calculation was made formally and something very important was missed.

The origin of the incorrect result can be found analyzing the explicit calculations made

with the higher covariant derivative regularization [45–47, 50–53]. They demonstrate that

all integrals giving the β-function are integrals of double total derivatives in the momentum

space, and that all loop corrections come from δ-singularities. Below in section 4.4 we will

see that the integrals of (double) total derivatives appear due to the presence of xµ in

eq. (4.40). These total derivatives produce singular contributions which were ignored in

the formal calculation. Note that eq. (4.37) does not contain xµ, so that the momentum

total derivatives do not appear in the first two terms of eq. (4.30). This implies that the

higher (L ≥ 2) loop corrections to the β-function are completely determined by the third

term inside the round brackets in eq. (4.30). It is this term that produces the double total

derivatives in the momentum space. To derive this fact in section 4.4, here we relate this

term with the second variation of the functional integral giving the effective action under

the change of variables corresponding to the background gauge transformations.

Let us set all quantum superfields to 0. Then the effective action will depend only on

the external superfields V and g. Taking into account that (at least, in the perturbation

theory) the vanishing of the quantum (super)fields corresponds to the vanishing of the

sources, we obtain

Γ
∣∣∣
quantum fields=0

= −i lnZ
∣∣∣
sources=0

, (4.43)

where Z is given by the functional integral (2.23).

13This identity is not actually valid, because the parameter A too rapidly grows at infinity.
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Similarly to the derivation of the Slavnov-Taylor identity in section 4.1, we perform

the change of variables (4.1) in this functional integral, but the parameter A will be chosen

in the form (4.40). Let us denote the variation of the effective action under the background

gauge transformations of the quantum superfields by δ̄a. (This variation does not include

the transformation of the background gauge superfield V .) Taking into account that the

generating functional (4.43) remains the same after the considered change of variables,

while the total action is invariant under the background gauge transformation, we obtain

the equation similar to eq. (4.7),

0 = δ̄aΓ
∣∣∣
quantum fields=0

= −

∫
d8y δaV

A
y

δΓ

δV A
y

∣∣∣∣
quantum fields=0

, (4.44)

which is certainly a mere consequence of the Slavnov-Taylor identity. (Note that the back-

ground superfield V and the external superfield g are not so far set to 0.) Differentiating

eq. (4.44) with respect to aBµ gives

0 =
∂

∂aBµ
δ̄aΓ

∣∣∣
quantum fields=0

= i

∫
d8y

{
yµ

[( V

1− e−2V

)

Adj

]

AB
(4.45)

+(yµ)∗
[( V

1− e2V

)

Adj

]

AB

}

y

δΓ

δV A
y

∣∣∣∣
quantum fields=0

.

The derivative of the effective action with respect to V A entering this equation can be

presented as the functional integral

δΓ

δV A

∣∣∣
quantum fields=0

=
〈δStotal
δV A

+
δSϕ
δV A

− c
〈 δSΦ
δV A

〉

Φ

〉∣∣∣
quantum fields=0

, (4.46)

where the angular brackets are defined by eq. (4.6) and we also introduced the notation

〈B〉Φ ≡ Det(PV,M)

∫
DΦB exp(iSΦ). (4.47)

In this functional integral it is possible to perform again the change of variables (4.1) with

the parameter A = ibBµ t
Byµ. After this change of variables we set the background gauge

superfield V to 0. As a result, we obtain the identity

0 =
∂2

∂bµB ∂aBµ
δ̄bδ̄aΓ

∣∣∣∣
fields=0

=
i

2

∫
d8y (yµ − (yµ)∗)y

∂

∂bµB
δ̄b

( δΓ

δV B
y

)∣∣∣∣
fields=0

= −

∫
d8y

(
θ̄ċ(γµ)ċ

dθd
)
y

∂

∂bµB
δ̄b

〈δStotal
δV B

y

+
δSϕ
δV B

y

− c
〈 δSΦ
δV B

y

〉

Φ

〉∣∣∣∣
fields=0

. (4.48)

As usual, the subscript “fields = 0” means that the superfields V , φi, c, c̄, and V are

set to 0, while the chiral superfield g can take arbitrary values. The symbol δ̄b denotes

the variation under the transformations (4.1) of the quantum superfields parameterized by

A = ibAµ t
Ayµ, the background gauge superfield V being fixed.

Let us transform the right hand side of this expression taking into account that the

total action (4.2) and the Pauli-Villars actions Sϕ and SΦ (given by eqs. (2.26) and (2.27),
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respectively) are invariant under the background gauge transformations. Due to the back-

ground gauge invariance

(
δ̄b +

∫
d8x δbV

A
x

δ

δV A
x

)
Stotal, ϕ,Φ = 0, (4.49)

where δbV is given by eq. (4.5). From eq. (4.49) it is possible to obtain the identities

∂

∂bBµ

(
δ̄b +

∫
d8x δbV

A
x

δ

δV A
x

) δStotal, ϕ,Φ
δV B

y

∣∣∣∣
V =0

= 0. (4.50)

They can be derived by commuting the derivative with respect to V B
y to the left, if we

take into account that it commutes with δ̄b and use the equation
[
∂

∂bBµ
δbV

A
x

δ

δV A
x

,
δ

δV B
y

]∣∣∣∣
V =0

=

[
−i

{
yµ

(
Vx

1− e−2Vx

)

Adj

+ (yµ)∗
(

Vx

1− e2Vx

)

Adj

}

AB

δ

δV A
x

,
δ

δV B
y

]∣∣∣∣∣
V =0

= 0 (4.51)

which is valid because fAAC = 0.

The operator δ̄b in eq. (4.48) acts on the expression inside the angular brackets and on

the actions Stotal, Sϕ, and SΦ in the exponents. Eqs. (4.49) and (4.50) allow expressing the

result in terms of the derivatives with respect to the background gauge superfield. From

the other side, the derivative of the angular brackets with respect to V also acts on the

expression inside these brackets and on the actions in the exponents. This implies that

∂

∂bµB
δ̄b

( ∂

∂aBµ
δ̄aΓ

)∣∣∣∣
fields=0

=
∂

∂bµB

∫
d8x δbV

A
x

δ

δV A
x

∫
d8y

(
θ̄ċ(γµ)ċ

dθd
)
y

×
〈δStotal
δV B

y

+
δSϕ
δV B

y

−c
〈 δSΦ
δV B

y

〉

Φ

〉∣∣∣∣
fields=0

(4.52)

=
∂

∂bµB

∫
d8x d8y δbV

A
x

δ

δV A
x

((
θ̄ċ(γµ)ċ

dθd
)
y

δΓ

δV B
y

)∣∣∣∣
fields=0

.

The expression δbV entering this equation is given by eq. (4.5). Differentiating it with

respect to bBµ and setting the background gauge superfield to 0, we obtain

∂

∂bBµ
δbV

A
x

∣∣∣
V =0

= −
i

2
(yµ − (yµ)∗)x δ

AB =
(
θ̄ȧ(γµ)ȧ

bθb
)
x
δAB. (4.53)

Therefore, taking into account eq. (4.44), we see that the formal calculation gives
∫
d8x d8y

(
θ̄ȧ(γµ)ȧ

bθb
)
x

(
θ̄ċ(γµ)ċ

dθd
)
y

δ2Γ

δV A
x δV A

y

∣∣∣∣
fields=0

→ (formally)

→
∂2

∂bµB ∂aBµ
δ̄bδ̄aΓ

∣∣∣∣
fields=0

= 0. (4.54)

(Note that in this expression we do not set the external superfield g to 0.) However, in what

follows we will see that the first equality is not true, because doing the formal calculation

we ignore singular contributions. These singular contributions will be discussed below.
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If we apply the operator

2
d

d ln Λ

∫
d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

δ2

δgz1δg
∗
z2

(4.55)

to the left hand side of eq. (4.54) and, after this, set the auxiliary external superfield g to

0, then we obtain the expression (4.39),

LHS of eq. (3.40) → (formally) → 2
d

d ln Λ

∫
d6z1 d

6z̄2

×
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

δ2

δgz1δg
∗
z2

∂2

∂bµB ∂aBµ
δ̄bδ̄aΓ

∣∣∣∣
fields=0; g=0

= 0. (4.56)

According to this equation all higher order corrections to the β-function vanish. Certainly,

it is not true. As we have already mentioned above, such a result appears, because singular

contributions were missed in the formal calculation described above.

Although from eq. (4.56) we obtain the same (incorrect) formal result as from eq. (4.42),

eq. (4.56) will be very useful below, because it allows explaining the factorization of the

loop integrals giving the β-function into integrals of double total derivatives.

4.4 Integrals of double total derivatives

Although the calculation described in the previous section is formal, it allows explaining

why the β-function (defined in terms of the bare couplings with the higher derivative

regularization) is given by integral of double total derivatives in the momentum space.

This can be done starting from eq. (4.56). Its left hand side is related to the β-function by

eq. (4.32). In this section we present the right hand side of eq. (4.56) as a sum of integrals

of double total derivatives and formulate a prescription for constructing these integrals.

Let ϕI denotes the whole set of superfields of the theory, where the index I corresponds

to quantum numbers with respect to the gauge group, and jI are the corresponding sources.

In the momentum representation the propagators can be presented in the form

−
1

Z0

δ2Z0

δ(jI)1δ(jJ)2

∣∣∣∣
j=0

≡ PIJ(1, 2) ≡

∫
d4k

(2π)4
exp

(
− ikα (x

α
1 − xα2 )

)
PIJ(k, θ1 − θ2),

(4.57)

where Z0 is the generating functional for the free theory.

Let us make the change of the integration variables (4.1) with the parameter A given

by eq. (4.40) in the generating functional Z with the sources and the background gauge

superfield set to 0. Although under this change of variables the generating functional

remains invariant, the propagators and vertices transform nontrivially. Really, if S2 and

Sint are the quadratic part of the action and the interaction, respectively, then

Z = Z ′ =

∫
Dϕ′ exp

(
i
(
S2[ϕ

′] + Sint[ϕ
′]
) )

= exp
(
iSint

[
ϕ′(ϕ→ −iδ/δj)

] ) ∫
Dϕ exp

(
iS2

[
ϕ′(ϕ)

]
+ iϕ · j

)∣∣∣∣
j=0

. (4.58)
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(The corresponding Jacobian does not depend on the superfields of the theory and can be

omitted.) The new vertices obtained from Sint[ϕ
′(ϕ)] are evidently different from the old

ones coming from Sint[ϕ]. The new propagators

P ′
IJ(1, 2) = −

1

Z ′
0

δ2Z ′
0

δ(jI)1δ(jJ)2

∣∣∣∣
j=0

, where Z ′
0 ≡

∫
Dϕ exp

(
iS2

[
ϕ′(ϕ)

]
+iϕ·j

)
, (4.59)

are also different from the old ones.

Now, let us try to understand how the evident equality Z = Z ′ appears at the level

of superdiagrams. For this purpose we write the transformation (4.1) with the parame-

ter (4.40) and concentrate on the terms linear in xµ,

ϕI → ϕ′
I = ϕI + iaAµx

µ(TA)I
JϕJ + . . . , (4.60)

where (TA)I
J are the generators of the gauge group in a relevant representation, and the

terms which do not explicitly depend on xµ are denoted by dots.14 Then the propagator

changes as

δ̄aPIJ(1, 2) = −iaAµ

∫
d4k

(2π)4
exp

(
− ikα

(
xα1 − xα2

))

×
(
xµ1 (T

A)I
KPKJ(k, θ1 − θ2) + xµ2 (T

A)J
KPIK(k, θ1 − θ2)

)
+ . . . (4.61)

Next, we note that both the quadratic part of the action and all vertices are invariant under

the global gauge transformations δϕI = iαA(TA)I
JϕJ , where α

A 6= αA(x, θ) are the real

parameters. This implies that the propagators should be proportional to tensors invariant

under the gauge group transformations,

(TA)I
KPKJ + (TA)J

KPIK = 0. (4.62)

Using this equation it is possible to demonstrate that in the momentum representation the

change of the propagator (4.61) is related to its derivative with respect to the momentum,

δ̄aPIJ(k, θ1 − θ2) = −aAµ (T
A)I

K ∂

∂kµ
PKJ(k, θ1 − θ2) + . . . (4.63)

Next, let us proceed to the interaction vertices. An n-point vertex can be formally

written in the form
∫
d8x V̂ I1I2...In(x1, x2, . . . , xn; θ1, θ2, . . . , θn)

×
(
ϕI1(x1, θ1)ϕI2(x2, θ2) . . . ϕIn(xn, θn)

)∣∣∣∣x1 = x2 = . . . = x;

θ1 = θ2 = . . . = θ

, (4.64)

14Note that if the sources are not set to 0, then Z′ ≡
∫
Dϕ exp(iS[ϕ′] + iϕ · j) = Z[j′], where j′I =

jI − iaA
µx

µ(TA)J
IjJ + . . . In this case the arguments of the effective action change as ϕI = δW/δjI → ϕ′

I =

ϕI + iaA
µx

µ(TA)I
JϕJ + . . . This implies that the considered change of the integration variables actually

generates the transformation δ̄a.
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where the operator V̂ I1I2...In contains various derivatives Da, D̄ȧ, and ∂µ. Certainly, it can

also have Lorentz indices which have been omitted in the above expression. The invariance

of the vertex under the above mentioned global gauge transformations leads to the identity

V̂ KI2...In(TA)K
I1 + V̂ I1K...In(TA)K

I2 + . . .+ V̂ I1I2...K(TA)K
In = 0. (4.65)

To rewrite the vertex (4.64) in the momentum representation, we present all superfields

entering it as

ϕI(x, θ) =

∫
d4k

(2π)4
exp (−ikαx

α)ϕI(k, θ). (4.66)

Then after some transformations the considered vertex takes the form
∫
d4θ

∫
d4k1
(2π)4

d4k2
(2π)4

. . .
d4kn
(2π)4

V̂ I1I2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

×
(
ϕI1(k1, θ1)ϕI2(k2, θ2) . . . ϕIn(kn, θn)

)∣∣∣
θ1=θ2...=θn=θ

, (4.67)

where the operator

V̂ I1I2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

≡

∫
d4x V̂ I1I2...In(x1, x2, . . . , xn; θ1, θ2, . . . , θn) exp

(
− i

n∑

i=1

(ki)α(xi)
α
)∣∣∣∣∣

x1=x2...=xn=x

= (2π)4δ4(k1 + k2 + . . .+ kn) Ŵ
I1I2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn) (4.68)

contains derivatives with respect to θ-s and the δ-function responsible for the four-

momentum conservation,

kµ1 + kµ2 + . . .+ kµn = 0. (4.69)

Under the change of the integration variables (4.60) in the generating functional (2.23)

the vertex transforms as

δ̄aV̂
I1I2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

= −aµA
(
(TA)K

I1 ∂

∂kµ1
V̂ KI2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

+ (TA)K
I2 ∂

∂kµ2
V̂ I1K...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn) + . . .

+(TA)K
In ∂

∂kµn
V̂ I1I2...K(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

)
+ . . . , (4.70)

where the last dots correspond to the terms which were not written explicitly in eq. (4.60).

Using eq. (4.65) it is possible to rewrite this expression in the form

aµA
(
(TA)K

I2
( ∂

∂kµ1
−

∂

∂kµ2

)
V̂ I1K...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn) + . . .

+(TA)K
In
( ∂

∂kµ1
−

∂

∂kµn

)
V̂ I1I2...K(k1, k2, . . . , kn; θ1, θ2, . . . , θn)

)
+ . . . (4.71)

– 29 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
1

Then with the help of eq. (4.68) we obtain

δ̄aV̂
I1I2...In(k1, k2, . . . , kn; θ1, θ2, . . . , θn) = −(2π)4δ4(k1 + k2 + . . .+ kn)

× aµA
(
(TA)K

I2 ∂

∂kµ2
Ŵ I1K...In(−k2 − . . .− kn, k2, . . . , kn; θ1, θ2, . . . , θn) + . . .

+(TA)K
In ∂

∂kµn
Ŵ I1I2...K(−k2 − . . .− kn, k2, . . . , kn; θ1, θ2, . . . , θn)

)
+ . . . (4.72)

Next, it is necessary to note a resemblance between eq. (4.69) and eq. (4.65). In eq. (4.65)

each generator actually corresponds to a propagator coming from the considered vertex

exactly as momenta in eq. (4.69). This implies that such equations appear in pairs. Say, if

the considered vertex is placed inside a certain graph in which the momentum kµ2 can be

expressed in terms of kµ3 , . . . , k
µ
n, then

kµ2 → c3k
µ
3 + . . .+ cnk

µ
n; (4.73)

(TA)K
I2 V̂ I1KI3...In → c3(T

A)K
I3 V̂ I1I2K...In + . . .+ cn(T

A)K
In V̂ I1I2I3...K , (4.74)

where c3, . . . cn are some numerical coefficients. In this case δ̄aV̂
I1I2...In will be propor-

tional to

(TA)K
I3
( ∂

∂kµ3
+ c3

∂

∂kµ2

)
W I1I2K...In + . . .+ (TA)K

In
( ∂

∂kµn
+ cn

∂

∂kµ2

)
W I1I2I3...K

= (TA)K
I3 ∂

∂kµ3
W I1I2K...In

(
kν2 → c3k

ν
3 + . . .+ cnk

ν
n

)
+ . . .

+ (TA)K
In ∂

∂kµn
W I1I2I3...K

(
kν2 → c3k

ν
3 + . . .+ cnk

ν
n

)
. (4.75)

Thus, the variations δ̄a of vertices inside a supergraph contain only derivatives with respect

to independent momenta.

It is well known that due to the momentum conservation in each vertex (encoded in

equations like eq. (4.69)) in an L loop graph without external lines only L momenta are

independent. (In our case this is also true, because the momenta of all external lines vanish.)

Therefore, we can mark L propagators whose momenta are considered as independent

parameters, see figure 2 (which corresponds to the case L = 3). Then, using the resemblance

between eq. (4.69) and eq. (4.65), it is possible to construct L independent structures in

which the generators correspond to certain propagators, e.g., to the propagators whose

momenta we consider as independent parameters. Any graph in which TA stands on a

certain propagator can be expressed in terms of these structures.

Let us consider a closed loop, consisting of vertices and propagators, which includes

one of the independent momenta, say, kµ. Then according to eqs. (4.63), (4.72) and (4.75),

from the terms containing the derivative ∂/∂kµ we obtain the contribution to the first

variation of the considered supergraph given by an integral of a total derivative

− aAµT
A

∫
d4k

(2π)4
∂

∂kµ
, (4.76)
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∫

d4k

(2π)4
d4l

(2π)4
d4q

(2π)4
δ̄a

{ }

PPP✐
kµ

✏✏✏✮
qµ

❅❅❘

lµ

= −aAµ

∫

d4k

(2π)4
d4l

(2π)4
d4q

(2π)4

{

∂

∂lµ
+

∂

∂kµ
+

∂

∂qµ

}

PPP✐
TA
Adj

✏✏✏✮
TA

❅❅❘

TA

Figure 2. This figure illustrates how the total derivatives in the momentum space appear as a

result of the variable change (4.60). Propagators with independent momenta kµ, lµ, and qµ are

depicted by the bold lines. Note that the integrations over the loop momenta are written explicitly

and (in this figure) are not included into the supergraph.

where the generator TA should be inserted on the propagator with the momentum kµ.

This is graphically illustrated in figure 2.

The second variation is calculated similarly.

Thus, we have a prescription, how to find integrals of double total derivatives which

contribute to the β-function. The starting point is the expression

d

d ln Λ

∫
d6z1 d

6z̄2
(
θ2
)
z1

(
vB

)2
z1

(
θ̄2
)
z2

δ2Γ

δgz1δg
∗
z2

∣∣∣∣
fields=0; g=0

. (4.77)

First, we consider a certain L loop supergraph contributing to it and (in an arbitrary way)

mark L propagators with the (Euclidean) momenta Qµ
i considered as independent. Let

ai be the indices corresponding to their beginnings. Next, it is necessary to calculate the

supergraph using the standard rules. The result includes a coefficient which contains cou-

plings and some group factors. This coefficient should be replaced by a certain differential

operator which is obtained by calculating the “second variation” of the expression
∏

i δ
bi
ai ,

where δbiai comes from the marked propagators, formally setting

δ(δbiai) → (TA)ai
bi

∂

∂Qµ
i

. (4.78)

In other words, we make the replacement

L∏

i=1

δbiai →
L∑

k,l=1

∏

i 6=k,l

δbiai (T
A)ak

bk(TA)al
bl

∂

∂Qµ
k

∂

∂Ql µ
. (4.79)

Next, one should multiply the result by the factor

−
2π

rV4
, (4.80)

where the sign “−” appears, because

∂

∂qµk

∂

∂ql µ
= −

∂

∂Qµ
k

∂

∂Ql µ
. (4.81)
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Finally, it is necessary to rewrite the result in terms of ρ = gg∗ and perform the integration

1∫

+0

dρ

ρ

1∫

+0

dρ. (4.82)

The expression obtained according to the algorithm described above coincides with a

contribution to β/α2
0 coming from the sum of all superdiagrams which are obtained from

the original vacuum supergraphs by attaching two external lines of the background gauge

superfield in all possible ways.

Below in section 5 we will verify this algorithm for some particular examples.

4.5 The role of singularities

From the discussion of the previous section we can conclude that in the case of using the

higher derivative regularization the integrals giving the β-function are integrals of double

total derivatives. This agrees with the results of explicit calculations which also reveal that

all higher order corrections to the β-function originate from singularities of the momentum

integrals. Actually it is the contributions of the singularities that have been missed in the

formal calculation of section 4.3. Let us demonstrate, how they appear, by considering

the integral

I ≡

∫
d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

[
f
(
Q2

)

Q2

]
= −2

∫
d4Q

(2π)4
∂

∂Qµ

[
Qµ

Q4

(
f(Q2)−Q2f ′(Q2)

)]
(4.83)

as a simple example. In eq. (4.83) Qµ denotes the Euclidean momentum, and f(Q2) is a

nonsingular function which rapidly tends to 0 in the limit Q2 → ∞.

If we calculate the integral (4.83) formally, then it vanishes, because it is an integral

of a total derivative. Actually, using the divergence theorem, we reduce the integral under

consideration to the integral over the infinitely large sphere S3
∞ in the momentum space.

Evidently, the result is equal to 0, because the function f vanishes on this sphere,

I → (formally) → −
1

8π4

∮

S3
∞

dSµ
Qµ

Q4

(
f(Q2)−Q2f ′(Q2)

)
= 0, (4.84)

where dSµ is the integration measure on S3
∞. Actually, in section 4.3 we made a similar

calculation. However, the result obtained in eq. (4.84) is evidently incorrect due to a

singularity of the integrand at Qµ = 0.

To correct the above calculation, it is necessary to surround the singularity by a sphere

S3
ε of an infinitely small radius ε (with the inward-pointing normal) and take into account

the integral over this sphere,

I = −
1

8π4

∮

S3
∞

dSµ
Qµ

Q4

(
f(Q2)−Q2f ′(Q2)

)
−

1

8π4

∮

S3
ε

dSµ
Qµ

Q4

(
f(Q2)−Q2f ′(Q2)

)

=
1

8π4

∮

S3
ε

dS
1

Q3

(
f(Q2)−Q2f ′(Q2)

)
=

1

4π2
f(0). (4.85)
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Let us visualize this result by reobtaining it in a different way. First, we note that

defining the integral I we actually do not distinguish between the expression (4.83) and

the integral

I = −2

∫
d4Q

(2π)4
Qµ

Q4

∂

∂Qµ

(
f(Q2)−Q2f ′(Q2)

)
. (4.86)

However, it is possible to introduce the operator ∂/∂Qµ which is similar to ∂/∂Qµ, but,

by definition, the integral of it is always reduced to the integral over the sphere S3
∞ only.

Moreover, we assume that this operator is commuted with Qµ/Q4 in the integrand with

the help of the identity

[
∂

∂Qµ
,
Qµ

Q4

]
=

∂

∂Qµ

(
Qµ

Q4

)
= 2π2δ4(Q). (4.87)

In terms of the operator ∂/∂Qµ the considered integral is defined as

I ≡ −2

∫
d4Q

(2π)4
Qµ

Q4

∂

∂Qµ

(
f(Q2)−Q2f ′(Q2)

)
. (4.88)

Then, if we integrate by parts taking into account vanishing of the integral of a total

derivative and eq. (4.87), we obtain

I = −2

∫
d4Q

(2π)4

{
∂

∂Qµ

[Qµ

Q4

(
f(Q2)−Q2f ′(Q2)

)]
−

∂

∂Qµ

(Qµ

Q4

)(
f(Q2)−Q2f ′(Q2)

)}

= 0 + 4π2
∫

d4Q

(2π)4
δ4(Q)

(
f(Q2)−Q2f ′(Q2)

)
=

1

4π2
f(0). (4.89)

From this equation we see that the integral I is determined by a contribution of the

δ-singularity.

Note that in the coordinate representation

∫
d4Q

(2π)4
∂2a

∂Qµ ∂Qµ

= −iTr
[
xµ,

[
xµ, a

]]
= 0, (4.90)

where a is a certain function, while

∫
d4Q

(2π)4
∂2a

∂Qµ ∂Qµ
= −iTr

[
xµ,

[
xµ, a

]]
− singularities = −singularities. (4.91)

Such a structure of loop integrals appears in the Abelian case (see, e.g., [54]). In the non-

Abelian case the structure analogous to (4.90) is the right hand side of eq. (4.56), while its

left hand side is an analog of the expression (4.91). Therefore, it becomes clear that making

the calculations formally in the previous section we ignored the δ-singularities. Thus, to

make the calculation properly, it is necessary to take into account singular contributions,

which generate all terms containing the anomalous dimensions in the NSVZ equation (1.2)

for RGFs defined in terms of the bare couplings. We hope to describe how to sum these

singularities in a future publications.
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(1)

Kµ

Qµ

m

n

(2)
Qµ

Kµ
Lµ

i m

(3)

Kµ

Lµ

Qµ

B

l j

(4)

Kµ

Qµ

Lµ

B

l

j

(5)

Kµ

Qµ

Lµ

i l

m

B

Figure 3. Graphs generating terms containing the Yukawa couplings in the three-loop β-function.

We point out independent momenta and indices corresponding to beginnings of the respective

propagators using the same notations as in the calculation described in the text.

5 Verification in the lowest orders

To confirm the correctness of the general arguments presented above, it is desirable to ver-

ify them by explicit calculations in the lowest orders. In section 4.4 we have formulated the

prescription, how to construct integrals of double total derivatives which appear in calcu-

lating the β-function in the case of using the higher covariant derivative regularization. For

obtaining these integrals one usually calculates a set of superdiagrams which are obtained

from a given graph by attaching two external lines of the background gauge superfield in all

possible ways. For example, in ref. [51] this has been done for the three-loop contributions

quartic in the Yukawa couplings. All three-loop terms containing the Yukawa couplings

have been subsequently found in ref. [53]. (Both these calculations were made in the Feyn-

man gauge ξ = 1 for the higher derivative regulator K = R.) Unfortunately, at present no

other three-loop contributions to the β-function are known in the case of using the higher

covariant derivative regularization. Nevertheless, the results of refs. [51, 53] allow verifying

the general argumentation of the present paper by comparing the algorithm described in

section 4.4 with the result of the standard calculation.

A part of the three-loop β-function which contains the Yukawa couplings originates

from the supergraphs presented in figure 3. Within the standard technique used in refs. [51,

53] they generate large sets of superdiagrams with two external lines corresponding to the

background gauge superfield which have to be calculated. However, now it is possible

to derive the result for their sums by a different (and much simpler) way. Namely, we
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should calculate the (specially modified) superdiagrams without external lines and, after

this, follow the algorithm described in section 4.4. Here we describe this calculation for

the graph (1) in details and present the similar results for the remaining graphs (2) – (5).

As a starting point we find the contribution of the graph (1) to the expression (4.77).

Due to the derivatives with respect to the superfields g and g
∗ and subsequent integrations,

two vertices in this graph take the form

1

6
λijk0

∫
d6z1 θ

2
(
vA

)2
φiφjφk and

1

6
λ∗0pmn

∫
d6z̄2 θ̄

2 φ∗pφ∗mφ∗n. (5.1)

Then, after some standard calculations, for the contribution of the supergraph (1) (in the

Euclidean space after the Wick rotation) we obtain

graph(1) =
2

3
V4

d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
λijk0 λ∗0ijk

1

Q2FQK2FK(Q+K)2FQ+K
. (5.2)

Note that although here the superfield g is set to 0, the coordinate independent parameter

g can in general be present in the Yukawa vertices and gauge propagators. However, the

graph (1) appears to be independent on g and, therefore, on ρ = gg∗.

According to the prescription described in section 4.4 for obtaining the contribution

to the β-function, at the first step, it is necessary to replace the factor λijk0 λ∗0ijk (which in

the original graph comes from the expression λijk0 λ∗0pmn δ
p
i δ

m
j δnk ) by a certain differential

operator acting on the integrand in eq. (5.2). To construct this operator, we consider the

propagators with the independent momenta Kµ and Qµ. Let they are proportional to δmj
and δnk , respectively. Then, we construct the second “variation” formally replacing

δ
(
δmj

)
→ (TA)j

m ∂

∂Kµ
; δ

(
δnk
)

→ (TA)k
n ∂

∂Qµ
. (5.3)

This operation changes the Yukawa coupling dependent factor in eq. (5.2) as

λijk0 λ∗0ijk → λijk0 λ∗0imk(T
A)j

m ∂

∂Kµ
+ λijk0 λ∗0ijn(T

A)k
n ∂

∂Qµ

→ λijk0 λ∗0imkC(R)j
m ∂

∂Kµ

∂

∂Kµ
+ 2λijk0 λ∗0imn(T

A)j
m(TA)k

n ∂

∂Kµ

∂

∂Qµ

+ λijk0 λ∗0ijnC(R)k
n ∂

∂Qµ

∂

∂Qµ
. (5.4)

Replacing the factor λijk0 λ∗0ijk in eq. (5.2) by this operator and taking into account that the

Euclidean momenta Kµ and Qµ enter the integrand of eq. (5.2) symmetrically, we obtain

the expression

4

3
V4

d

d lnΛ

∫
d4Q

(2π)4
d4K

(2π)4
λijk0 λ∗0imn(T

A)j
m(TA)k

n ∂

∂Qµ

∂

∂Kµ

( 1

Q2FQK2FK(Q+K)2FQ+K

)

+
4

3
V4

d

d lnΛ

∫
d4Q

(2π)4
d4K

(2π)4
λijk0 λ∗0ijlC(R)k

l ∂

∂Qµ

∂

∂Qµ

( 1

Q2FQK2FK(Q+K)2FQ+K

)
. (5.5)
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To simplify it, we use two identities. The first one,

λijk0 λ∗0imn(T
A)j

m(TA)k
n = −

1

2
λijk0 λ∗0ijlC(R)k

l, (5.6)

follows from eq. (2.4), while the second one,

d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
∂

∂Qµ

∂

∂Kµ

(
1

Q2FQK2FK(Q+K)2FQ+K

)

=
1

2

d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
∂

∂Qµ

∂

∂Qµ

(
1

Q2FQK2FK(Q+K)2FQ+K

)
, (5.7)

can be verified by direct differentiating after some changes of integration variables in the

resulting integrals. Then the expression under consideration takes the form

V4
d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
λijk0 λ∗0ijlC(R)k

l ∂

∂Qµ

∂

∂Qµ

(
1

Q2FQK2FK(Q+K)2FQ+K

)
. (5.8)

To find the contribution to the function β(α0, λ0λ
∗
0, Y0)/α

2
0, it is necessary to multiply this

expression by −2π/rV4 and apply the operator

1∫

+0

dρ

ρ

ρ∫

+0

dρ (5.9)

to the result. For the graph (1) this integration gives the factor 1, because the expression

for this graph does not depend on ρ. Therefore,

∆1

(
β

α2
0

)
= −

2π

r

d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
λijk0 λ∗0ijlC(R)k

l ∂

∂Qµ

∂

∂Qµ

×

(
1

Q2FQK2FK(Q+K)2FQ+K

)
. (5.10)

This result exactly coincides with the one derived in ref. [51] by direct summation of

the superdiagrams contributing to the two-point Green function of the background gauge

superfield. Certainly, the calculation described here is much simpler, because we had

to calculate the only superdiagram without external lines. The agreement of the results

confirms the correctness of the general arguments presented in this paper. However, it

is desirable to verify also the three-loop results corresponding to the graphs (2) — (5) in

figure 3. As in refs. [51, 53] we will use the Feynman gauge, so that in what follows the

parameter ξ0 is set to 1 and the higher derivative regulator K is chosen equal to R.

Calculating the supergraph (2) in figure 3 we should take into account that θ2 and θ̄2

can appear in different points. This produces a set of subgraphs presented in the curly

brackets in figure 4. However, all these subgraphs differ only in the numeric coefficients.

Really, they are quartic in θ-s, so that these θ-s can be shifted to an arbitrary point of the

supergraph. (Terms with lower degrees of θ, which can appear after such shifts, evidently

vanish due to the integration over d4θ.) For example, it is possible to shift θ-s as it is

shown in the right hand side of figure 4.15
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θ2 θ̄2 θ2
θ̄2 θ2

θ̄2

θ4

θ2

θ̄2

✲

θ4

Figure 4. Subgraphs of the supergraph (2) correspond to different positions of θ2 and θ̄2. However,

the sum of them is effectively reduced to a single supergraph in which θ4 can be placed in an arbitrary

point and g = g∗ = 1.

The result for their sum (in the Euclidean space after the Wick rotation) can be

written as

graph(2) = 16V4 gg
∗ d

d ln Λ

∫
d4Q

(2π)4
d4L

(2π)4
d4K

(2π)4
e20λ

ijk
0 λ∗0imn(T

B)j
m(TB)k

n 1

K2RKL2FL

×
N(Q,K,L)

Q2FQ(Q+K)2FQ+K(Q− L)2FQ−L(Q+K − L)2FQ+K−L
, (5.11)

where, following ref. [53], we use the notation

N(Q,K,L)≡L2FQ+KFQ+K−L−Q
2
(
(Q+K)2−L2

)
FQ+K−L

FQ+K−FQ

(Q+K)2−Q2 (5.12)

−(Q−L)2
(
(Q+K−L)2−L2

)
FQ+K

FQ+K−L−FQ−L

(Q+K−L)2−(Q−L)2
+Q2(Q−L)2

×
(
L2−(Q+K)2−(Q+K−L)2

)(
FQ+K−FQ

(Q+K)2−Q2

)(
FQ+K−L−FQ−L

(Q+K−L)2−(Q−L)2

)
.

As earlier, we should replace the factor λijk0 λ∗0imn(T
B)j

m(TB)k
n by a relevant differential

operator. For constructing this differential operator we again mark the propagators with

the independent momenta Qµ, Lµ, and Kµ, see figure 3. The beginnings of the lines which

denote them correspond to the indices m, i, and B. They refer to the representations R

(in which the matter superfields lie), R̄, and Adj, respectively. Then, the calculation of the

first “variation” gives

λijk0 λ∗0imn(T
B)j

m(TB)k
n → λijk0 λ∗0ipn(T

A)m
p(TB)j

m(TB)k
n ∂

∂Qµ
(5.13)

− λpjk0 λ∗0imn(T
A)p

i(TB)j
m(TB)k

n ∂

∂Lµ
− iλijk0 λ∗0imn(T

B)j
mfABC(TC)k

n ∂

∂Kµ
,

where we take into account that TA
R̄

= −
(
TA

)t
(with TA being the generators of the

representation R) and
(
TA
Adj

)
BC

= −ifABC . The second “variation” is calculated in a

15If we consider an L loop supergraph without external lines contributing to the effective action, then
the terms which do not contain the derivatives of g and g

∗ are proportional to (gg∗)L−1. Therefore, the

corresponding contribution to the expression (4.77) is obtained by inserting a factor (L − 1)2θ4 to an

arbitrary point of the supergraph containing the integration over the full superspace, see figure 4 as an

illustration. (The numerical coefficient should be calculated before the insertion of θ4.)
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similar way. After some (rather non-trivial) transformations involving eq. (2.4) we obtain

that the differential operator for the considered graph has the form

λijk0 λ∗0imn(T
B)j

m(TB)k
n→

(1
2
λijk0 λ∗0ijl

(
C(R)2

)
k
l−λipq0 λ∗0imnC(R)p

mC(R)q
n
)

×
∂

∂Lµ

( ∂

∂Lµ
+

∂

∂Qµ

)
−
1

2
λijk0 λ∗0ijl

(
C(R)2

)
k
l ∂

∂Qµ

∂

∂Qµ

−
1

2
C2λ

ijk
0 λ∗0ijlC(R)k

l ∂

∂Kµ

( ∂

∂Kµ
−

∂

∂Qµ

)
. (5.14)

Then it is necessary to repeat the same algorithm as for the graph (1), namely,

1. replace λijk0 λ∗0imn(T
B)j

m(TB)k
n by the operator (5.14);

2. multiply the result by −2π/rV4;

3. apply the operator (5.9).

The three-loop supergraphs are proportional to gg∗ = ρ, so that in the considered case the

integration gives16

1∫

+0

dρ

ρ

ρ∫

+0

dρ ρ =
1

4
. (5.15)

Thus, the contribution of the graph (2) to the function β/α2
0 takes the form

∆2

( β
α2
0

)
=

4π

r

d

d lnΛ

∫
d4Q

(2π)4
d4L

(2π)4
d4K

(2π)4
e20

[
λ∗0lkjλ

lki
0 C2C(R)i

j ∂

∂Kµ

(
∂

∂Kµ
−

∂

∂Qµ

)

−
(
λ∗0jlnλ

iln
0

(
C(R)2

)
i
j−2λ∗0jlnλ

imn
0 C(R)i

jC(R)m
l
) ∂

∂Lµ

(
∂

∂Lµ
+

∂

∂Qµ

)
+λ∗0jlnλ

iln
0

(
C(R)2

)
i
j

×
∂

∂Qµ

∂

∂Qµ

]
N(Q,K,L)

K2RKQ2FQ(Q+K)2FQ+K(Q+K−L)2FQ+K−L(Q−L)2FQ−LL2FL
. (5.16)

We see that this result coincides with the one obtained in ref. [53] by the straightforward

calculation of superdiagrams with two external legs of the background gauge superfield.

The expression for the next graph (3) has the form

graph(3) = 16V4 gg
∗ d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
d4L

(2π)4
e20λ

ijk
0 λ∗0ijl

(
TB

)
k
m
(
TB

)
m

l

×
L(Q,Q+K)

K2RKQ2F 2
Q(Q+ L)2FQ+L(Q+K)2FQ+KL2FL

, (5.17)

16In general, an L-loop supergraph is proportional to ρL−2, and the integration gives the factor (L−1)−2.

This implies that in the general case to find a contribution to eq. (4.77), it is possible to start with a vacuum

supergraph contributing to the effective action with g = g∗ = 1 and simply insert θ4 to an arbitrary point

which contains integration over the full superspace. (Note that the integrations over d6x or d6x̄ in the

Yukawa terms can always be converted to the integrals over the full superspace.)
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where

L(Q,P ) ≡ FQFP +
FP − FQ

P 2 −Q2

(
FQQ

2 + FPP
2
)
+ 2Q2P 2

(
FP − FQ

P 2 −Q2

)2

. (5.18)

Similar to the previous supergraphs, we replace the factor λijk0 λ∗0ijl
(
TB

)
k
m
(
TB

)
m

l by a

differential operator. To obtain this operator, we begin with calculating the first “variation”

of the considered factor,

λijk0 λ∗0ijl
(
TB

)
k
m
(
TB

)
m

l → λijk0 λ∗0ijp
(
TB

)
k
m
(
TB

)
m

l
(
TA

)
l
p ∂

∂Qµ
(5.19)

+ λijk0 λ∗0ipl
(
TB

)
k
m
(
TB

)
m

l
(
TA

)
j
p ∂

∂Lµ
− iλijk0 λ∗0ijl f

ABC
(
TC

)
k
m
(
TB

)
m

l ∂

∂Kµ
.

The second “variation” is constructed by a similar procedure. The result can be written

in the form

λijk0 λ∗0ijl
(
TB

)
k
m
(
TB

)
m

l → λijk0 λ∗0ijlC2C(R)k
l ∂

∂Kµ

( ∂

∂Kµ
−

∂

∂Qµ

)
+λijk0 λ∗0ijl

(
C(R)2

)
k
l

×
∂

∂Qµ

( ∂

∂Qµ
−

∂

∂Lµ

)
+λijk0 λ∗0imnC(R)j

mC(R)k
n ∂

∂Lµ

∂

∂Lµ
+
1

2
λijk0 λ∗0ijlC2C(R)k

l ∂

∂Kµ

∂

∂Lµ
.

(5.20)

Proceeding according to the above described algorithm, we find the contribution of the

supergraph (3) to the function β/α2
0,

∆3

( β
α2
0

)
= −

8π

r

d

d ln Λ

∫
d4Q

(2π)4
d4L

(2π)4
d4K

(2π)4
e20

[
λ∗0lkjλ

lki
0 C2C(R)i

j ∂

∂Kµ

(
∂

∂Kµ
−

∂

∂Qµ

)

+ λ∗0jlnλ
iln
0

(
C(R)2

)
i
j ∂

∂Qµ

(
∂

∂Qµ
−

∂

∂Lµ

)
+ λ∗0jlnλ

imn
0 C(R)i

jC(R)m
l ∂

∂Lµ

∂

∂Lµ

]
1

K2RK

×
L(Q,Q+K)

Q2F 2
Q(Q+ L)2FQ+L(Q+K)2FQ+KL2FL

. (5.21)

Note that the last term in eq. (5.20) is not essential, because the corresponding contribution

to β/α2
0 vanishes. (It changes the sign under the sequence of the variable changes Lµ →

Lµ−Qµ; Qµ → −Qµ; Kµ → −Kµ.) The result (5.21) also coincides with the one obtained

in ref. [53].

The expression for the supergraph (4) is

graph(4) = −16V4 gg
∗ d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
d4L

(2π)4
e20λ

ijk
0 λ∗0ijl

×
(
TB

)
k
m
(
TB

)
m

l K(Q,K)

K2RKQ2F 2
QL

2FL(Q+ L)2FQ+L
. (5.22)

Here we use the same notation as in ref. [53],

K(Q,K) ≡
FQ+K − FQ − 2Q2F ′

Q/Λ
2

(Q+K)2 −Q2
+

2Q2(FQ+K − FQ)(
(Q+K)2 −Q2

)2 , (5.23)
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where the prime and the subscript Q denote the derivative with respect to Q2/Λ2. The

corresponding operator is exactly the same as for the supergraph (3) and is given by

eq. (5.20). Similarly to the case of the supergraph (3), the last term in this expression does

not contribute to β/α2
0, so that

∆4

( β
α2
0

)
=

8π

r

d

d ln Λ

∫
d4Q

(2π)4
d4L

(2π)4
d4K

(2π)4
e20

[
λ∗0lkjλ

lki
0 C2C(R)i

j ∂

∂Kµ

(
∂

∂Kµ
−

∂

∂Qµ

)

+ λ∗0jlnλ
iln
0

(
C(R)2

)
i
j ∂

∂Qµ

(
∂

∂Qµ
−

∂

∂Lµ

)
+ λ∗0jlnλ

imn
0 C(R)i

jC(R)m
l ∂

∂Lµ

∂

∂Lµ

]
1

K2RK

×
K(Q,K)

Q2F 2
QL

2FL(Q+ L)2FQ+L
. (5.24)

This result also agrees with the calculation of ref. [53].

The last supergraph (5) is given by the expression

graph(5) = −8V4 gg
∗ d

d ln Λ

∫
d4Q

(2π)4
d4K

(2π)4
d4L

(2π)4
λijk0 λ∗0ijlλ

mnl
0 λ∗0mnk (5.25)

×
1

Q2FQ(K +Q)2FK+QL2FL(K + L)2FK+LK2F 2
K

.

The first “variation” of the factor λijk0 λ∗0ijlλ
mnl
0 λ∗0mnk is written as

λijk0 λ∗0ijlλ
mnl
0 λ∗0mnk → λijk0 λ∗0pjlλ

mnl
0 λ∗0mnk

(
TA

)
i
p ∂

∂Qµ
(5.26)

+ λijk0 λ∗0ijpλ
mnl
0 λ∗0mnk

(
TA

)
l
p ∂

∂Kµ
+ λijk0 λ∗0ijlλ

mnl
0 λ∗0pnk

(
TA

)
m

p ∂

∂Lµ
.

The second “variation” can be found by a similar method, but, to simplify the resulting

expression, it is necessary to involve the identities

λijk0 λ∗0pjqλ
mnl
0 λ∗0mnk

(
TA

)
i
p
(
TA

)
l
q = −

1

2
λijk0 λ∗0ijpλ

mnl
0 λ∗0mnkC(R)l

p; (5.27)

λijk0 λ∗0pjlλ
mnl
0 λ∗0qnk

(
TA

)
i
p
(
TA

)
m

q =
1

4
λijk0 λ∗0ijpλ

mnl
0 λ∗0mnkC(R)l

p, (5.28)

which follow from eq. (2.4). Using these identities and taking into account that the inte-

grand of eq. (5.25) is symmetric in Q and L, we find the required replacement

λijk0 λ∗0ijlλ
mnl
0 λ∗0mnk → 2λijk0 λ∗0pjlλ

mnl
0 λ∗0mnkC(R)i

p ∂

∂Qµ

∂

∂Qµ
(5.29)

+ λijk0 λ∗0ijpλ
mnl
0 λ∗0mnkC(R)l

p

(
∂

∂Kµ

∂

∂Kµ
+

1

2

∂

∂Qµ

∂

∂Lµ
− 2

∂

∂Kµ

∂

∂Qµ

)
.
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Constructing the contribution of the graph (5) to the function β/α2
0 with the help of this

operator and using the equations

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
∂

∂Qµ

∂

∂Lµ

×
1

K2F 2
KQ

2FQ(Q+K)2FQ+KL2FL(L+K)2FL+K
= 0; (5.30)

d

d ln Λ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
∂

∂Qµ

(
2
∂

∂Kµ
−

∂

∂Qµ

)

×
1

K2F 2
KQ

2FQ(Q+K)2FQ+KL2FL(L+K)2FL+K
= 0, (5.31)

we obtain

∆5

( β
α2
0

)
=

4π

r
C(R)i

j d

d lnΛ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4

[
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

(
∂

∂Kµ

∂

∂Kµ
−

∂

∂Qµ

∂

∂Qµ

)

+2λiab0 λ∗0jacλ
cde
0 λ∗0bde

∂

∂Qµ

∂

∂Qµ

]
1

K2F 2
KQ

2FQ(Q+K)2FQ+KL2FL(L+K)2FL+K
.

(5.32)

This expression also agrees with refs. [51, 53].

Thus, we see that the algorithm described in this paper allows reproducing all results

obtained earlier by the direct summation of the superdiagrams with two external lines

of the background gauge superfield. Certainly, this fact can be viewed as an evidence in

favour of the correctness of the general consideration made in this paper.

6 Conclusion

We have proved that for N = 1 supersymmetric gauge theories the integrals giving the β-

function defined in terms of the bare couplings are integrals of double total derivatives with

respect to the loop momenta in all orders in the case of using the regularization by higher

covariant derivatives. This fact agrees with the results of numerous explicit calculations in

the lowest orders and generalizes the similar statement for the Abelian case [54, 55]. The

proof of the factorization into double total derivatives is a very important step towards the

all-loop perturbative derivation of the exact NSVZ β-function. This derivation consists of

the following main steps:

1. Using the finiteness of the triple ghost-gauge vertices (which has been demonstrated

in ref. [14]) we rewrite the NSVZ equation in the equivalent form (1.2).

2. The β-function defined in terms of the bare couplings is extracted from the difference

between the effective action and the classical action by the formal substitution (3.29).

Then, using the identity (4.26) and the background gauge invariance, the result is

presented as an integral of a double total derivative in the momentum space. This

integral is reduced to the sum of singular contributions which are given by integrals

of the momentum δ-functions. (This has been done in this paper.)
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3. The remaining step is to sum the singular contributions and to prove that they

produce the anomalous dimensions of the quantum superfields in eq. (1.2). Now this

work is in progress.

As a result, we presumably obtain eqs. (1.1) and (1.2) for RGFs defined in terms of

the bare couplings in the case of using the higher covariant derivative regularization (in

agreement with the results of explicit multiloop calculations). Due to scheme independence

of these RGFs (for a fixed regularization) this statement is valid for all renormalization

prescriptions.

If the NSVZ relation is really valid for RGFs defined in terms of the bare couplings

for theories regularized by higher covariant derivatives, then the all-order prescription for

constructing the NSVZ scheme for RGFs defined in terms of the renormalized couplings

is HD+MSL. This means using of the higher covariant derivative regularization supple-

mented by minimal subtractions of logarithms, when only powers of lnΛ/µ are included

into renormalization constants.

As a by-product of the proof presented in this paper we have obtained a simple method

for constructing the loop integrals contributing to the β-function defined in terms of the

bare couplings. Actually, it is necessary to calculate (a specially modified) supergraphs

without external lines and replace the products of couplings and group factors by a certain

differential operator specially constructed for each supergraph. The result is equal to the

sum of a large number of superdiagrams which are obtained from the original supergraph

by attaching two external lines of the background gauge superfield in all possible ways.

Certainly, this drastically simplifies the calculations.

As an illustration of this method we considered all three-loop contributions containing

the Yukawa couplings and compared the result with the one found by the standard calcu-

lation in refs. [51, 53]. The coincidence of the expressions obtained by both these methods

confirms the correctness of the algorithm proposed in this paper.

Acknowledgments

This work was supported by Foundation for Advancement of Theoretical Physics and Math-

ematics ‘BASIS’, grant No. 19-1-1-45-1.

I would like to express my gratitude to S.S.Aleshin, A.E.Kazantsev, M.D.Kuzmichev,

N.P.Meshcheriakov, S.V.Novgorodtsev, and I.E.Shirokov for valuable discussions and com-

ments on the manuscript.

A Proof of the identity (4.26)

For proving the identity (4.26) we commute θ-s with the operators A and B using equations

similar to eq. (4.22). It is important that θaθbθc = 0 (where all θ-s are taken in the same

point of the superspace). Therefore,

θ2ABθ2 + 2(−1)PA+PBθaAθ2Bθa − θ2Aθ2B −Aθ2Bθ2 (A.1)

= θ2[[AB, θa}, θa}+ 2(−1)PA+PB [θa, A}θ2[B, θa} − [θa, [θa, A}}θ
2B −A[θa, [θa, B}}θ2,
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where

[X,Y } ≡ XY − (−1)PXPY Y X. (A.2)

Anticommuting θa with supersymmetric covariant derivatives inside A and B we obtain

expressions which do not explicitly depend on θ. This implies that the right hand side of

eq. (A.1) is proportional to the second degree of (explicitly written) θ. After commuting

the remaining θ2 to the left, the expression (A.1) can be presented as

θ2
(
[[AB, θa}, θa} − 2(−1)PB [A, θa}[B, θa} − [θa, [θa, A}}B −A[θa, [θa, B}}

)
+O(θ)

= θ2
(
A[[B, θa}, θa}+ [[A, θa}, θa}B + 2(−1)PB [A, θa}[B, θa} − 2(−1)PB [A, θa}[B, θa}

− [θa, [θa, A}}B −A[θa, [θa, B}}
)
+O(θ) = O(θ). (A.3)

Thus, we have proved the identity (4.26).
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