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Abstract

Background: Bacillus anthracis is considered to be a recently emerged clone within the Bacillus

cereus sensu lato group. The B. anthracis genome sequence contains four putative lambdoid

prophages. We undertook this study in order to understand whether the four prophages are

unique to B. anthracis and whether they produce active phages.

Results: More than 300 geographically and temporally divergent isolates of B. anthracis and its near

neighbors were screened by PCR for the presence of specific DNA sequences from each prophage

region. Every isolate of B. anthracis screened by PCR was found to produce all four phage-specific

amplicons whereas none of the non-B. anthracis isolates, produced more than one phage-specific

amplicon. Excision of prophages could be detected by a PCR based assay for attP sites on extra-

chromosomal phage circles and for attB sites on phage-excised chromosomes. SYBR-green real-

time PCR assays indicated that prophage excision occurs at very low frequencies (2 × 10-5 - 8 × 10-

8/cell). Induction with mitomycin C increased the frequency of excision of one of the prophages by

approximately 250 fold. All four prophages appear to be defective since, mitomycin C induced

culture did not release any viable phage particle or lyse the cells or reveal any phage particle under

electron microscopic examination.

Conclusion: The retention of all four putative prophage regions across all tested strains of B.

anthracis is further evidence of the very recent emergence of this lineage and the prophage regions

may be useful for differentiating the B. anthracis chromosome from that of its neighbors. All four

prophages can excise at low frequencies, but are apparently defective in phage production.
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Background
The genome sequence of the bioterrorism pathogen, Bacil-
lus anthracis Ames strain, revealed the presence of four
putative lambdoid prophages (designated lambdaBa0l,
lambdaBa02, lambdaBa03 and lambdaBa04), constitut-
ing about 3% of the 5.2 Mbase main chromosome [1].
Comparative genomic hybridization studies showed that
the prophage regions made up a higher percentage of the
unique genes in B. anthracis not found in 19 other Bacillus
cereus group strains [1]. DNA sequences of all completed
and shotgun genome sequences of the diverse B. anthracis
strains submitted to genbank (Genbank IDs: AE016879,
AE017334, AAAC01000001, AAEQ00000000,
AAER00000000,. AAES00000000, AAEN00000000,
AAE00000000, AAEP00000000) also contain these
prophage sequences with >99% nucleotide sequence
identity. B. anthracis appears to be a recently emerged
clone within the B. cereus sensu lato group [2-6]. Multilo-
cus sequence typing (MLST) and other strain typing stud-
ies have revealed extensive similarities and very few
differences among widely distributed strains [1,3-5,7-12].
While other B. cereus group genomes also contain lamb-
doid prophages, these generally contain genes with little
DNA sequence homology to B. anthracis prophage genes
[1,13-16]. Furthermore, analysis of the four other
sequenced B. cereus genomes (Genbank accession num-
bers ATCC 10987, AE017194; ATCC 14579, AE016877;
G9241, AAEK00000000; ZK, CP000001) revealed that
prophages are generally inserted at different chromo-
somal loci than B. anthracis, except in B. cereus ZK strain
that contains an element very similar to B. anthracis
lambdaBa01 inserted at the same locus. Interestingly, at
the same locus in the B. cereus 14579 chromosome, is a
defective prophage, phi6A53, with little similarity to B.
anthracis lambdaBa0l. These findings probably reflect
what has been observed in other bacterial species:
prophage acquisition and loss is quite dynamic, and the
gene pool of phages that infect the B. cereus group is larger
and more diverse than that of the rest of the chromosome
[1,13-16].

Prophages, like plasmids, conjugative transposons, inser-
tion sequences, introns and other elements, make up a
mobile portion of bacterial genome subject to frequent
horizontal exchange that often account for large-scale
genomic rearrangements and insertions and deletions in
bacterial chromosomes. These mobile elements often
encode traits such as virulence markers and antibiotic
resistance determinants, which confer selective advan-
tages for the host bacterium in various environments [17-
19].

The role of prophages in the pathogenic life cycle of B.
anthracis is not known and the majority of the genes on
the B. anthracis prophages do not have an assigned func-

tion. In our attempts to initiate a study of the role of the
prophages, it was determined that markers for the four
prophages are conserved in diverse B. anthracis strains and
shown that all four prophages are able to excise from the
genome but fail to form viable phage particles and hence
appear to be defective.

Results
B. anthracis prophages are common to all strains

Earlier comparative genome sequence analysis of B.
anthracis and 19 of its close neighbors indicated the
absence of the four B. anthracis prophages in other strains
[1]. The presence of these or similar prophages in a larger
collection of Bacillus spp strains was tested to gain insights
into the evolutionary history of B. anthracis as a species.
The PCR primers used in the screening were designed to
amplify genes that were found to be unique to each B.
anthracis prophage from comparative genomic hybridiza-
tion studies [16]. The PCR primers and the expected sizes
of the PCR products are listed in Table 1. A set of 300
strains was screened by PCR. It included 192 B. anthracis
strains from the Biological Defense Research Directorate
(BDRD) collection isolated from different geographic
regions around the world over a time span of several dec-
ades. The set also included 24 diverse genotypic strains
identified by the multi-locus variable number of tandem
repeat methodology [4]. The set of non-B. anthracis strains
was primarily from the collection of F. Priest [12] and
included 60 B. cereus strains and 48 other Bacilli spp
strains. These strains have been characterized extensively
by MLST and grouped into distinct sequence types [12].
All B. anthracis strain DNAs produced all the four phage-
specific amplicons.

Out of the 108 non-anthracis strains, 88 strains did not
amplify any of the B. anthracis phage specific amplicons
whereas 20 of them amplified only lambdaBa02 specific
DNA fragment. Thus, presence of all the four prophages
appears to be a unique feature of B. anthracis strains.

Further verification of the presence of all four phage spe-
cific sequences was done by a multiplex PCR assay. The
primers used for this assay and the expected sizes of the
amplification products are listed in Table 1. All the 192 B.
anthracis strains but none of the 108 non-anthracis strains
produced four amplicons of the expected lengths. Inclu-
sion of a pair of primers targeted to a housekeeping gene
(gmk) [12] as a positive control in the multiplex reaction
resulted in amplification of that fragment in all strains
tested. The results with a fraction of the strains tested are
shown in Figure 1a and 1b. As expected from simplex PCR
results described above, all the B. anthracis strain DNAs
produced all the four PCR products in the multiplex assay.
These data indicated that the sequences of the prophage

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AE016879
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AE017334
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AE017194
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AE016877
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Table 1: Primers Used in PCR screening of Phage Genes and Phage Excision Products

Primer PCR 
product

Location

Primer Name ORF/gene product Sequence 5' to 3' Length Size (bp)

ORF01192Fa BA0479-hypothetical AAACCCTGGGACCTCTGAAC 20 1002 prophage 04

ORF01192Ra BA0479-hypothetical GGAAGAATCGCACGACCATC 20 prophage 04

ORF02190Fa BA5356-Terminase, large subunit GACATCGTTGCACCTTCACAAG 22 1462 prophage 03

ORF02190Ra BA5356-Terminase, large subunit CCAAATGTCGAGCATCTTGTTC 22 prophage 03

ORF03655 Fb BA4094-Terminase, large subunit TTGATCGATCCATCTCCTGAAC 22 1192 prophage 02

ORF03655 Rb BA4094-Terminase, large subunit GATCAACTTTAGCCTGCGGAAC 22 prophage 02

Ba02 #7 Forc BA4094-Terminase, large subunit CAAAGACAGATCCACCTGGAC 21 304 prophage 02

Ba02#7 Revc BA4094-Terminase, large subunit CAAAGGGAGGTTCAGCATCTC 21 prophage 02

ORF03991 Fa BA3805-Acyl transferase AGTTGCATGCCCAGTTCTTG 20 1205 prophage 01

ORF03991 Ra BA3805-Acyl transferase CTGCGTGACTGGAATCCCTTAC 22 prophage 01

Ba04INF LambdaBa04 left junction CCAGTTGAATCCAGAACAAACG 22 871 prophage 04

Ba04OUTR LambdaBa04 left junction GGGCAGTCATACGAGGATAATG 22 (961,865)d prophage 04

Ba04OUTF LambdaBa04 right junction CCTTCGCTTTGAATTCCTTCTC 22 997 prophage 04

Ba04INR LambdaBa04 left junction GAATTGTAACGAGCATGGAAGC 22 prophage 04

Ba03INF LambdaBa03 left junction ACGTTACCCCTATTTCCGAAGC 22 938 prophage 03

Ba03OUTR LambdaBa03 left junction CATTTTAATGCGCCCACGAC 20 (923, 952)d prophage 03

Ba03OUTF LambdaBa03 right junction TTCCACATCTTCCTTCAGCAAC 22 977 prophage 03

Ba03INR LambdaBa03 left junction GGCCGTACTGGCTTAACTTCTG 22 prophage 03

Ba02INF LambdaBa02 left junction TCACTTGCCAGTCTTGACCTTG 22 891 prophage 02

Ba02OUTR LambdaBa02 left junction GGTGCATAAGGCGGTAAAGATG 22 (861,962)d prophage 02

Ba02OUTF LambdaBa02 right junction GGCGAGGTATTAGCTTTACAGTGG 24 976 prophage 02

Ba02INR LambdaBa02 left junction GTCCATCTTCACTGCCGAAAC 21 prophage 02

Ba011NF LambdaBa01 left junction ACAAATTCAGTTGCGCTTCC 20 1053 prophage 01

Ba010UTR LambdaBa01 left junction TGCAGCACCTACACTGAAACAAG 23 (878, 1047)d prophage 01

Ba010UTF LambdaBa01 right junction CGATGGAAAGTTCTTACCGAAG 22 915 prophage 01

Ba011NR LambdaBa01 left junction ATGATGCTCGTCACTTCATCG 21 prophage 01

gmk F BC guanylate kinase, putative ATTTAAGTGAGGAAGGGTAGG 21 500 chr

gmk R BC guanylate kinase, putative GCAATGTTCACCAACCACAA 20 chr

PA1 For Protective antigen ATCACCAGAGGCAAGACACC 20 311 pXO1

PA1 Rev Protective antigen CCATTGTTTCAGCCCAAGTT 20 pXO1

bla F Amp resistance TTACCAATGCTTAATCAGTGAGGC 24 861 plasmid

bla R Amp resistance ATGAGTATTCAACATTTCCGTGTC 24 plasmid

Primers Used in Real 
Time PCR for 
determination of 
Phage Excision 
Frequencies

Bce_glpR BC glycerol kinase GCAGTAGCGGTTGCAGCATA 20 150 chr

Bce_glpF BC glycerol kinase CCCGATAATTGCCCCAATC 19 chr

Ba04circF LambdaBa04 circle junction TCAAACCCATCAACAATTTCATTG 24 129 Extra-chr

Ba04circR LambdaBa04circle junction CAATAGAATGCACAACAGTGACATAAGT 28 Extra-chr

Ba03circF LambdaBa03 circle junction CAAGGGTTGTAGCTGATAGCTCATT 25 170 Extra-chr

Ba03circR LambdaBa03 circle junction TGACAAAGTTCAGTCGATTTTTTTCT 26 Extra-chr

Ba02circR LambdaBa02 circle junction GACCACAACTTGTACCACATTTATTATTT 29 166 Extra-chr

Ba02circF LambdaBa02 circle junction CCGCAATATAGGTGGTATAATGCA 24 Extra-chr

Ba01circF LambdaBa01 circle junction CCCACAAAATAAAAAAACCCTCAA 24 150 Extra-chr

Ba01circR LambdaBa01 circle junction ACGTTTTTGGCGCAATTTAAA 21 Extra-chr

Ba04mtF LambdaBa04 deleted junction AGCACGTGATGTACAAGCGTTAA 23 150 φ free chr

Ba04mtR LambdaBa04 deleted junction TATTCCCTCATATCATGAGGGAATATG 27 φ free chr

Ba03mtF LambdaBa03 deleted junction TGGCCAAATCAAAACTGGTTCT 22 165 φ free chr

Ba03mtR LambdaBa03 deleted junction TTCTCACGGTCTGTCGTTATTTTC 24 φ free chr

Ba02mtF LambdaBa02 deleted junction ATATCACCTCAAGGCAACAAACAA 24 150 φ free chr

Ba02mtR LambdaBa02 deleted junction GGTAATCTCTCCTTTCGATGTAGCA 25 φ free chr

Ba01mtF LambdaBa01 deleted junction CATTAGGAGATCACTTACTTGAGCACTT 28 161 φ free chr

Ba01mtR LambdaBa01 deleted junction CACAAATAAAAAAACCTTGATACCGTAGT 29 φ free chr
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regions might be useful for differentiating the B. anthracis
chromosome from that of its neighbors.

All four Bacillus anthracis prophages are excision-

proficient

The stability of B. anthracis prophages was analyzed by
determining their excision proficiency. The B. anthracis
chromosomal regions in and around the prophage inser-
tion sites were examined for the presence of putative attL
and attR-like sites. As shown in Figure 2, all prophage
sequences are flanked by direct repeats, suggesting proba-
ble site-specific recombination mediated insertion of the
phage genomes. However, the repeats are of varying
lengths for the four phages (lambdaBa04-13 bp,
lambdaBa03-108 bp, lambdaBa02-12 bp, and
lambdaBa01-65 bp). Also, in lambdaBa0l and
lambdaBa03 the direct repeats are not perfect, but have
two mismatches (Figure 2). These repeats are present as a
single copy at the same chromosomal locus in B. cereus
group genomes that do not have inserted phages.

Lambdoid prophage, upon excision from the chromo-
some, by a site-specific recombination event between the
attL and attR sites, is expected to generate an extra-chro-
mosomal phage circle and a chromosome with an empty
site devoid of the phage genome. In order to test whether
B. anthracis prophages spontaneously excise from the
chromosome, a PCR based assay was designed to detect
phage excision products (Figure 3-top panel) [20]. The
nucleotide sequences of the primers and the lengths of the
expected PCR products are indicated in table 1. Genomic
DNA prepared from stationary phase cultures of B. anthra-
cis non-pathogenic Sterne strain 34F2 (pXOl+, pXO2-) was
used as template in conjunction with the various primer
pairs in PCR reactions and the PCR reaction products were
analyzed by agarose gel electrophoresis (Figure 3-bottom
panel). PCR products resulting from the prophage-chro-
mosomal junctions and an internal phage fragment (lanes
labeled a, b and e) from all 4 prophage regions were visi-
ble. However, in three different experiments, the intensi-
ties of the PCR products resulting from phage circles

(lanes labeled c) and phage free chromosomes (lanes
labeled d) of the four phages were weak. In some cases,
the PCR products were not visible (lambdaBa03-c,
lambdaBa02-c and lambdaBa0lc-d). Similar results were
obtained when plasmid preparation or whole cell lysate
of strain 34F2 were used as PCR templates (data not
shown). These differences could reflect the very low fre-
quencies of the excision events or the inefficient PCR
amplification with those primer pairs. In order to address
this issue and to verify whether the PCR products seen on
the gel result from excision events and not from non-spe-
cific amplification, they were cloned into PCR Topo Clon-
ing vector and sequenced. In all cases, [except in
lambdaBa02 circle (lane c) and lambdaBa0l phage excised
chromosomal site (attB site PCR) (lane d)], the sequences
of the inserts corresponded to the expected sequence with
a single att site resulting from the excision of the phage
genome from the chromosome (Figure 2). In the case of
lambdaBa02 circle and lambdaBa0l phage excised chro-
mosomal site, the concentration of the PCR products was
probably too low for successful cloning.

Excision of the four prophages in stationary phase cultures 

occurs at low frequencies

The frequency of spontaneous excision of prophages from
B. anthracis chromosome was determined using a SYBR-
green real-time PCR assay. Genomic DNA extracted from
stationary phase cultures of Sterne strain 34F2 was used as
template. A chromosomal housekeeping gene (glp) was
amplified as the control with varying template concentra-
tions to generate a standard curve and the copy number of
the PCR products of the phage circles and phage-free
empty sites were determined using this standard curve
(Figure 4). The phage circles and phage-excised chromo-
somes were present at very low copies ranging from 8 ×
10-8 to 2 × 10-5 per chromosomal copy (glp) (Table 2).
Cloning and sequencing of the PCR products confirmed
their sequences as expected (data not shown). Assuming
that the excised phage circle does not undergo replication
and that there is one copy of glp per cell, the frequencies
of excision/cell were estimated to be similar to the copy

Primers Used in Real 
time PCR screening 
of Prophage Genes

Primer PCR 
product

Location

Ba04-RT-F BA0479-hypothetical TATAATGGGCACTCCATTTTGGT 23 150 prophage 04

Ba04-RT-R BA0479-hypothetical TCCACAGTGGCATTTACCTTTG 22 prophage 04

Ba03-RT-F BA5356-Terminase, large subunit TCCTATCGAGAATGGGTTCAACTAT 25 150 prophage 03

Ba03-RT-R BA5356-Terminase, large subunit GCGTCCCTACCGTTCAACTG 20 prophage 03

Ba02-RT-F BA4094-Terminase, large subunit TGCGTTTTATCATGGAAAATGC 22 150 prophage 02

Ba02-RT-R BA4094-Terminase, large subunit TGAGCCAGGTGCTCGTGTT 19 prophage 02

Ba01-RT-F BA3805-Acyl transferase CACTTGAATCAACTGGTATCGTGAA 25 150 prophage 01

Ba01-RT-R BA3805-Acyl transferase AAATCCAAATTGAGGCATATGATGA 25 prophage 01

asimplex and multiplex; bsimplex only; cmultiplex only; dsizes of PCR products of phage circle and phage excised chromosomal junction respectively

Table 1: Primers Used in PCR screening of Phage Genes and Phage Excision Products (Continued)
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numbers of the PCR products. Induction of the 34F2 cul-
ture with 0.2 µg/ml of mitomycin C (a DNA damaging
agent that is known to induce prophages) increased the
frequency of excision of lambda Ba04 by about ~250 fold
whereas the other three prophages showed no appreciable
increase in excision frequencies.

B. anthracis prophages are apparently defective

We conducted a limited analysis to check whether the
excised phage genome proceeds to replicate and produce
phage particles by testing the unconcentrated culture
supernatants for plaque formation on 96 different Bacillus
sp. strains including the Bacillus anthracis Sterne strain
34F2. We hypothesized that any spontaneous repressor

mutants of the prophages would be able to overcome the
superinfection immunity and form plaques on 34F2. No
plaque was visible even with the mitomycin C induced
culture supernatant on any of the indicator strains tested.
In accordance with this result, unconcentrated culture
supernatants did not show any increase in SYBR-green
based real time PCR amplicons directed against all four
phage specific genes in comparison to a chromosomal
gene (glp). These amplicons probably resulted from free
genomic DNA and not due to the presence of phage parti-
cles in culture supernatants since the amount of these
amplicons decreased upon DNase treatment of the culture
supernatants (data not shown). Electron microscopic
analysis of the mitomycin induced and concentrated cul-

Multiplex PCR assay for confirmation of B. anthracis DNAFigure 1
Multiplex PCR assay for confirmation of B. anthracis DNA. Multiplex PCR analysis of B. cereus and B. anthracis strains 
using primers (ORF01192 F-R, ORF02190 F-R, ORF03655 F-R and lambda Ba02 #7 For-Rev). K-1 kb plus ladder (Invitrogen, 
Inc); E-E-gel low-range marker (Invitrogen, Inc). Lanes 1–9 are B. cereus strains; S74, S363, SPS2, F3080B, F3942/87, F4801/72, 
m1292, F4801 and S710 respectively. Lane 10-B. anthracis strain 34F2, Lane 11-B. cereus G9241 and Lane 12-reaction control. 
Panel A reactions were carried out with the multiplex primer set and panel B reactions were carried out with a primer pair for 
a house-keeping gene gmk in addition to the multiplex primer set.

A B

E /1

K  1   2   3    4   5   6  7   8  9  10 11 12  K       2   3   4  5   6   7   8   9  10 11 12   K   E
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ture supernatant revealed no intact phage particle or
phage components (data not shown).

Discussion
This study shows that PCR amplicon markers for the four
lambdoid prophages found on the B. anthracis Ames
strain chromosome are present in all of a large number of
diverse B. anthracis strains tested. Genome sequence anal-
ysis could not predict the functionality of the phages since
all prophages appear to have a full complement of phage
genes. All prophages were demonstrated to be excision
proficient and the prophage excision frequency reported
here is comparable to that seen in another Gram-positive
species, Lactobacillus lactis measured by real-time PCR. In
that case, the frequency of spontaneous prophage induc-
tion varied from 10-7-10-1/cell depending on the condi-
tions examined [20]. In a limited analysis performed in
this study, no viable phage production was observed upon
mitomycin C induction as determined by plaque assays
using nearly 100 diverse Bacillus spp strains as indicators.
Although mitomycin C induction exhibited a significant
growth inhibition, there was no obvious cell lysis charac-
teristic of phage induction. Direct electron microscopic

Table 2: Frequency of excision of the four prophages from B. 

anthracis chromosome

Excision product Frequency of excision*

LambdaBa04 circle 2.1 × 10-5

LambdaBa04 empty site ND

LambdaBa03 circle 6.4 × 10-6

LambdaBa03 empty site 3.7 × lO-6

LambdaBa02 circle 7.7 × 10-8

LambdaBa02 empty site 2.8 × 10-7

LambdaBa01 circle 2.2 × 10-6

LambdaBa01 empty site 3.4 × 10-7

ND-Not determined; *glp std-standard curve for estimating the copy 
number of different PCR products was generated using glp amplicon 
(representative of a single copy of chromosome)

DNA sequences around the prophage insertion sites in B. anthracis chromosomeFigure 2
DNA sequences around the prophage insertion sites in B. anthracis chromosome. The genomic positions in the 
strain Ames ancestor (Genbank accession number: AE017334) are indicated above the sequence. The sequences of the prim-
ers used in PCR of prophage excised chromosomal attB sites are underlined. The putative att sites, referred as left and right 
repeats, flanking the prophage genome (indicated by boxes with the phage genome size in bp), are highlighted. The left and 
right repeats of prophages lambda Ba01 and Ba03 are not perfect and the 2 mismatched bases are indicated in different color.

LambdaBa04

 446819                                             446840    447283                           447295                                        484652                          484664                         485049                                             485068

 |               Ba04INF                       |           |                             |                   |                        |                   |                  Ba04INR                  |

CCAGTTGAATCCAGAACAAACG---442-bp---ATACAGCTCATGTLambdaBa04 (37356 bp)ATACAGCTCATGT---384-bp---GCTTCCATGCTCGTTACAATTC

     Left Repeat             Right repeat

LambdaBa03

4841186                                            4841207

|                Ba03INF                      |
ACGTTACCCCTATTTCCGAAGC---503-bp---
4841710                                              4841817

| Left repeat                    |
AATTATCGTTTGATGTTGTAGAAAGATTTGATACCATCGTAAACAGCGATTTCGCCTAGTTCGTCTTCGATGCGTAATAATTGGTTGTACTTAGCAATACGGTCAGTA LambdaBa03 (16565 bp)
4858382                             4858489

|      |
AATTATCGTTTGATGTTATAAAAAGATTTGATACCATCGTAAACAGCGATTTCGCCTAGTTCGTCTTCGATGCGTAATAATTGGTTGTACTTAGCAATACGGTCAGTA---386-bp-----

Right repeat       4858875                                         4858896

    |        |
    CAGAAGTTAAGCCAGTACGGCC

Ba03INR

LambdaBa02

3745112                                       3745133                3745601        3745614                                       3789709                  3789720                         3790096                                    37900116

|                Ba02INF               |             |             |                  |                  |             |                  Ba02INR                  |

TCACTTGCCAGTCTTGACCTTG---468-bp------TTTTCTTTACAC LambdaBa02 (44095 bp)TTTTTTTTACAC---376-bp---GTTTCGGCAGTGAAGATGGAC

Left repeat                             Right repeat

LambdaBa01

3455927                                     3455946                        3456499                             3456563

|                Ba01INF                   |                     |               Left repeat                                                                  |

AACAAATTCAGTTGCGCTTCC---553-bp---CCTCTCAGTAAAGAGACATATATTGATCGCGTTCCCATTGGTGAACTTGTGTGCGGAATATATCCLambdaBa01 (50419 bp)
3506982 3507046

       |                                   |
CCTCTTAGTAAAGAGACATATATTGATCGCGTTCCCATTGGTGAACTTGTGTGCGGAAGATATCC---449-bp---

Right repeat
                         3507495                                       3507515

       |               Ba01INR                      |
       CGATGAAGTGACGAGCATCAT
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Top panel: A model for site-specific recombination mediated prophage excisionFigure 3
Top panel: A model for site-specific recombination mediated prophage excision. The top line shows a schematic 
representation of the prophage in the chromosome with the att sites indicated by colored boxes. Excision of the prophage via 
site-specific recombination between the attL and attR sites results in a phage free chromosome (with attB) and the phage circle 
(with attP). Small numbered arrows indicate the location of the different primers used to detect prophage excision products 
and the blue bars (marked a-e) indicate the resulting PCR products. The primers indicated 1–6 correspond to 1-INF, 2-OUTR, 
3-OUTF, 4-INR, 5-F and 6-R primers respectively for each prophage. Bottom panel: Agarose gel electrophoretic analy-
sis of PCR products resulting from prophage excision in B. anthracis Sterne strain 34F2. The set marked as con-
trols corresponds to PCR reactions designed to amplify pag gene (pXOl marker), gmk gene (chromosomal marker) and a 
negative control amp (pBR322) gene. The four sets of 5 reactions each corresponding to the four prophages is indicated on the 
lanes by a-e. The corresponding locations of the fragments a-e are shown in panel A.

    Control

  LambdaBa04

  LambdaBa01

   LambdaBa02

    LambdaBa03

a    b  c   d   e

a    b  c   d   e

a   b   c  d   e

a   b  c   d   e
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examination of the concentrated culture supernatants
failed to reveal any intact or defective phage particle. This
result is in contradiction with an earlier report that poly-
ethylene glycol-concentrated culture supernatants of a B.
anthracis Sterne strain showed defective phage particles/
phage components under electron microscopic examina-
tion [21] and is probably due to strain differences or the
method used for concentration of the culture supernatant.

There are several possible explanations for the apparent
failure in detecting viable phage particles. 1) We have not
found an appropriate phage sensitive strain in the panel of
96 strains used in this study for the plaque assay, which
might be due to the absence of the phage receptor in these
strains. Even if any of the strains possess the receptor, they
may lack some other factor needed for phage growth as
was shown in the case of γ phage infection of a B. thuring-
iensis strain that possesses the γ phage receptor, the gamR
gene [22]. Similarly, in another study six phages isolated
from B. anthracis were screened for their host range and

only 2 out of 64 non-anthracis strains tested were suscep-
tible to two of the phages [23]. 2) We have not found a
repressor mutant that can overcome superinfection
immunity and form plaques on 34F2. 3) The fact that all
four prophages are simultaneously defective in their abil-
ity to produce viable phage particle or lyse the host cell
may be indicative of a defective host factor that is involved
in phage life cycle.

Although the failure of plaque formation even on closely
related species does not necessarily indicate that phages
are defective, further work is needed to unequivocally
establish this fact. One approach to show that the phages
are defective would be to test for plaque formation on the
parental carrier strain cured of the respective prophages.
Our future studies will focus on testing this possibility.

All four prophages contain genes encoding recombinases
and terminal-repeat DNA motifs that may function as
attachment (att) sites. However, the lambdaBa0l recombi-

SYBR green 1 dye PCR assay to determine the frequency of prophage excisionFigure 4
SYBR green 1 dye PCR assay to determine the frequency of prophage excision. The amplification profiles in tripli-
cates (marked 1–6) with varying concentrations of the template DNA (34F2 genomic DNA) and primer pairs are shown. The 
corresponding template concentrations and the fragments amplified are as follows: 1-1 ng/glp, 2-100 pg/glp, 3–10 pg/glp, 4-1 pg/
glp, 6-100 fg/glp, 5-100 ng/Ba03mtF and R. The standard curve generated from the glp set is shown on the right panel.
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nase (GBAA3832) is a pseudogene owing to a frameshift
mutation. We hypothesize that lambdaBa0l might recruit
some other site-specific recombinase enzyme for its exci-
sion, or have a mechanism for frameshift correction dur-
ing translation. Alternatively, prophage excision might
occur via recA mediated general recombination pathway,
in which case, the frequency of excision will increase with
the increase in the length of the repeats and the products
will be identical to the site-specific recombination prod-
ucts.

In Escherichia coli, prophage excision is classically triggered
as a response to DNA damage [24]. In this regard, B.
anthracis possesses some of key components of an active
SOS response system, including a lexA ortholog. Despite
the fact that there is an intron in the B. anthracis recA gene,
the encoded protein is still apparently functional [25].
The results of mitomycin C induction experiment
described here supports the role of DNA damage in induc-
tion of some prophages.

Excision proficient prophage sequences are generally not
considered useful targets for bacterial identification
because of their instability. However, the constant pres-
ence of all four prophages can be advantageous for the
definitive discrimination of B. anthracis from all its neigh-
bors. There are several schemes for molecular detection of
B. anthracis DNA using unique markers present on viru-
lence plasmids pXO1 and pXO2 [26-28] but there are rel-
atively few unique chromosomal targets. Targets for
confirmation of B. anthracis chromosomal DNA include
using 16S rDNA sequences [29], rpoB [30,31], gyrB [6],
gyrA [32], spore structural protein gene sspE [26] and S-
layer protein gene sap [33] for discrimination of B. anthra-
cis from other Bacillus spp. Several multiplex PCR assays
have also been described for B. anthracis detection and
discrimination [34-36]. One multiplex PCR assay
described earlier entailed amplification of unique frag-
ments identified through suppression subtractive hybrid-
ization (SSH) and several of these were located on
prophage regions [35]. Because of the close relatedness of
the B. anthracis to B. cereus group strains, many of the PCR
based detection techniques are prone to false positive
identification of non-anthracis strains. The prophages are
unique to B. anthracis and are present in all B. anthracis
strains examined so far. Failure to produce the B. anthracis
specific signals in multiplex PCR would be the result of
simultaneous excision of all four prophages, which is
highly unlikely. Hence they may offer unique signatures
for B. anthracis chromosome. From an evolutionary stand-
point, it seems possible that the conservation of the
phages in all B. anthracis may be due to the very recent
emergence of the lineage.

Conclusion
All the B. anthracis strains and none of the non-anthracis
strains tested in this study possess the four prophages, as
indicated by the presence of phage specific amplicons sug-
gesting that the prophage regions are unique and can be
used for distinguishing B. anthracis chromosome from
other close relatives. The four prophages excise from the
genome at low frequencies; however, in the limited anal-
ysis performed in this study, they do not appear to result
in production of any viable phage particle or cell lysis,
suggesting that the phages may be defective.

Methods
Bacterial strains, growth and storage conditions

The bacterial cultures were stored in 15% glycerol at -
70°C. The number of strains of each Bacillus species from
the Biological Defense Research Directorate (BDRD) col-
lection is as follows: 192 B. anthracis, five B. cereus, two B.
megaterium, two B. mycoides, one B. pumilus and one
untyped Bacillus species. A second collection of strains was
obtained from F. Priest (Heriot-Watt University, UK) and
contained the following strains: 55 B. cereus, three B.
mycoides, one B. pseudomycoides, eight B. thuringiensis, two
B. weihenstephanensis and the following B. thuringiensis
serovars: three aizawai, one albolactis, four canadensis, one
dakota, two darmstadiensis, one entomocidus, one fluores-
cens, two galleriae, one israeliensis, one kenyae, two
kumamotoensis, one kurstaki, three morrisoni, one pakistani,
two sotto and one terminalis.

Genomic DNA extraction and PCR

Bacteria were grown in Brain Heart Infusion (BHI) broth
and genomic DNA extraction was carried out using Wiz-
ard Genomic DNA extraction kit (Promega Corp, Madi-
son, Wi) following the manufacturer's recommended
procedures. PCR primers (Table 1) were designed using
the eprimer3 software [37] and PCR reactions were carried
out using Platinum PCR Supermix (Invitrogen, Inc.
Carlsbad, CA) under the following conditions: an initial
denaturation cycle at 94°C for 2 min, followed by 32
cycles of denaturation, annealing and extention at 92°C
for 30 sec, 56°C for 30 sec, and 72°C for 2 min respec-
tively, followed by a final extension cycle at 72°C for 5
min, in a Dyad Cycler (MJ Research, Inc). The PCR prod-
ucts were initially run on 2% E-gel (Invitrogen, Inc.
Carlsbad, CA) and then further verified by running on a
1% agarose gel in TAE buffer.

Determination of prophage excision

Spontaneous excision of prophages from B. anthracis
chromosome was determined using genomic DNA pre-
pared from 1.5 ml of overnight culture in BHI medium of
a B. anthracis Sterne strain, 34F2. The primers and the
expected sizes of the PCR products of the phage circles and
phage excised chromosomal attB sites are listed in Table 1.
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Sequencing of phage excision products

The PCR products of the in vivo prophage excision reac-
tion were cloned into Topo cloning vector (Invitrogen,
Inc. Carlsbad, CA), and the inserts were sequenced using
M13 forward and reverse primers in a CEQ 8000 Genetic
Analysis System (Beckman-Coulter, Fullerton, CA)
according to the manufacturer's instructions.

Real-time PCR assay for determination of prophage 

excision frequencies and the presence of phage particles in 

culture supernatant

The frequency of excision of the four prophages was deter-
mined by a SYBR-green-1 dye real time PCR assay using
ABI Prism 7000 Sequence Detection System (Applied Bio-
systems, Inc. Foster city, CA). The real time PCR primers
were designed using the ABI software Primer Express and
real-time PCR was performed under the following cycling
conditions (10 min at 95°C, 45 cycles of 15 s at 95°C, and
1 min at 60°C). Cycle threshold (CT) values were deter-
mined by automated threshold analysis with ABI Prism
version 1.0 software. The amplification efficiencies were
determined by serial dilution and calculated as E = exp-1/

m, where E is the amplification efficiency and m is the
slope of the dilution curve. Under the conditions of the
PCR, the efficiency of the PCR reactions with the various
primer pairs was comparable, reaching more than 95%.
For determination of the presence of free phage particles,
unconcentrated culture supernatants were treated with
pancreatic DNase I (Sigma-Aldrich) at 1 mg/ml for 1–3.5
hrs at 37°C and used as template in real time PCR assays
using individual primers targeting each prophage.

Electron microscopy of culture supernatants

B. anthracis Sterne strain, 34F2, was grown in BHI to an
OD600 of ~0.2 to 0.4 and induced with mitomycin C (0.5
µg/ml) for 16 hrs. The culture was spun at 8000 rpm for
10 min, the supernatant filtered through 0.45 µm syringe
filter (Millex-HV PVDF-Millipore Corp, Medford, MA)
and further concentrated 15 × using Amicon Centriplus
YM10 (MWCO 10 KDa) filtration units (Millipore Corp,
Medford, MA). The concentrated lysate was used for elec-
tron microscopic examination. Ten µ1 of each sample was
adsorbed onto formvar coated 300-mesh copper grid for
1 minute and excess fluid was wicked away with filter
paper. Grids were then washed on 3 droplets of distilled
water and stained for 1 minute with 1% of phosphotung-
stic acid or 1% of uranyl acetate. Grids were examined in
a Jeol JEM-1200EX II transmission electron microscope
operated at 80 kV. Each grid was scanned for 20 minutes
covering more than 70% of the total viewing fields.
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