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During inhalational anthrax, Bacillus anthracis survives and replicates in alveolar macrophages, followed by
rapid invasion into the host’s bloodstream, where it multiplies to cause heavy bacteremia. B. anthracis must
therefore defend itself from host immune functions encountered during both the intracellular and the extra-
cellular stages of anthrax infection. In both of these niches, cationic antimicrobial peptides are an essential
component of the host’s innate immune response that targets B. anthracis. However, the genetic determinants
of B. anthracis contributing to resistance to these peptides are largely unknown. Here we generated Tn917
transposon mutants in the �ANR strain (pXO1� pXO2�) of B. anthracis and screened them for altered
protamine susceptibility. A protamine-sensitive mutant identified carried the transposon inserted in the
BA1486 gene encoding a putative membrane protein homologous to MprF known in several gram-positive
pathogens. A mutant strain with the BAS1375 gene (the orthologue of BA1486) deleted in the Sterne 34F2
strain (pXO1� pXO2�) of B. anthracis exhibited hypersusceptibility not only to protamine but also to �-helical
cathelicidin LL-37 and �-sheet defensin human neutrophil peptide 1 compared to the wild-type Sterne strain.
Analysis of membrane lipids using isotopic labeling demonstrated that the BAS1375 deletion mutant is unable
to synthesize lysinylated phosphatidylglycerols, and this defect is rescued by genetic complementation. Further,
we determined the structures of these lysylphosphatidylglycerols by using various mass spectrometric analyses.
These results demonstrate that in B. anthracis a functional MprF is required for the biosynthesis of lysylphos-
phatidylglycerols, which is critical for resistance to cationic antimicrobial peptides.

Bacillus anthracis is an endospore-forming gram-positive
pathogen that causes the infectious disease anthrax in mam-
mals, including humans. Infections can occur via intradermal
inoculation, ingestion, or inhalation of spores (24). Although
anthrax infections via the former two routes are usually self-
contained, inhalational anthrax is often lethal (23). In a mouse
model of inhalational anthrax, inhaled B. anthracis spores are
phagocytosed by alveolar macrophages that are believed to
migrate to local lymph nodes (10). During migration, the
spores germinate inside the macrophage phagolysosome to
give rise to vegetative bacilli. The newly formed vegetative cells
lyse the phagolysosome and replicate inside the macrophage
cytoplasm (6), eventually escaping from the macrophage into
the bloodstream. Therefore, in order to establish a success-
ful anthrax infection, B. anthracis must survive and replicate
intracellularly inside the macrophage, as well as extracellu-
larly in the host’s blood.

Upon entering the bloodstream, B. anthracis is targeted by
an array of innate immune mediators circulating in the host’s
blood, such as the complement proteins and cellular compo-
nents such as neutrophils and platelets in humans. However,
inhalational anthrax infection in animals is characterized by
rapid progression into systemic bacteremia and the heavy
growth of B. anthracis in the bloodstream (21). This observa-
tion indicates that B. anthracis is able not only to evade com-
plement-mediated lysis and but also to resist the antibacterial
activities of innate immune cells.

One important antibacterial activity of innate immune cells
in the human blood relies on the production of cationic anti-
microbial peptides. These peptides are present in the cytosolic
granules of neutrophils, eosinophils, and platelets and are re-
leased upon contact with bacterial pathogens (18). Cationic
antimicrobial peptides interact electrostatically with negatively
charged cell surface molecules, such as teichoic acids and phos-
phatidylglycerols of gram-positive bacteria, subsequently inducing
disintegration of membrane structures and ultimately causing
bacterial cell death (41). Some gram-positive pathogens, however,
possess resistance mechanisms, by which they change cell surface
properties and avoid killing by cationic antimicrobial peptides.
For example, gram-positive pathogens, such as Staphylococcus
aureus (29, 30), Listeria monocytogenes (1, 37), and Streptococcus
pneumoniae (16), are able to be modify teichoic acids and phos-
pholipids with D-alanine by DltABCD and L-lysine by MprF,
respectively. Since these modifications contribute to a net positive
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charge on the cell surface, they are believed to facilitate repulsion
of the cationic peptides.

Identifying the B. anthracis genes that contribute to cationic
peptide resistance can elucidate the molecular basis of this
virulence trait. A recent study has shown that the B. anthracis
genome contains a functional dltABCD operon (7). A B. an-
thracis mutant strain inactivated in this operon exhibits hyper-
susceptibility to various cationic antimicrobial peptides, de-
creased survival in macrophages, and virulence attenuation in
a mouse model of inhalational infection. To date, the dltABCD
operon is the only genetic determinant of B. anthracis experi-
mentally proven to contribute to cationic antimicrobial peptide
resistance.

In the present study, we have identified a B. anthracis gene
(BA1486 in the �ANR [pXO1�, pXO2�] strain; BAS1375 in
the Sterne 34F2 [pXO1�, pXO2�] strain) whose knockout
leads to hypersusceptibility to protamine, as well as to human
cationic antimicrobial peptides, �-helical LL-37, and �-sheet
human neutrophil peptide 1 (HNP-1). We show that inactiva-
tion of this gene results in a strain that is unable to synthesize
phosphatidylglycerols modified with lysine. Our results dem-
onstrate that the B. anthracis genome carries a functional mprF
gene required for cationic antimicrobial peptide resistance.

MATERIALS AND METHODS

Bacterial strains, culture conditions, and plasmids. The bacterial strains and
plasmids used in the present study are listed in Table 1. B. anthracis �ANR strain
(pXO1�, pXO2�) was the host strain used for generation of Tn917 insertional
mutants. B. anthracis Sterne 34F2 strain (pXO1�, pXO2�) was the parental
strain used for the construction of a clean knockout mutant strain. Plasmid
pTV1-OK (11) was used for Tn917 transposon mutagenesis in B. anthracis
�ANR, and pCN55 (5) was the backbone plasmid for the construction of pmprF
used for complementation. OneShot TOP10 chemically competent Escherichia
coli cells (Invitrogen) were used as the host for all of the cloning procedures. E.
coli strain GM2163 (New England Biolabs) was used to obtain unmethylated
plasmid DNA for transformation of B. anthracis. All strains were cultivated in
Luria-Bertani (LB) medium (32) at 37°C. When necessary, appropriate antibi-
otics were added to the culture as follows: 100 �g of kanamycin/ml and 5 �g of
erythromycin/ml for B. anthracis and 40 �g of kanamycin/ml and 200 �g of
erythromycin/ml for E. coli.

Construction of Tn917 transposon mutants in B. anthracis. The temperature-
sensitive plasmid pTV1-OK was used to deliver the Tn917 transposon to the
�ANR strain of B. anthracis (11, 15). pTV1-OK harbors a selectable antibiotic
resistance gene, aphA3, which expresses kanamycin resistance in both E. coli and
B. anthracis (38). It also encodes a Tn917 transposon element, consisting of an
erythromycin resistance marker and the Tn917 transposase flanked by inverted
repeats.

Electrocompetent B. anthracis cells prepared as described previously (34) were
transformed with pTV1-OK isolated from E. coli GM2163, and transformants
were selected on LB agar containing both kanamycin (100 �g/ml) and erythro-
mycin (5 �g/ml) at 30°C. A single transformant was grown in LB medium
overnight at 30°C, and the next day the overnight culture was diluted 1:200 into
fresh LB medium supplemented with 0.04 �g of erythromycin/ml. A sublethal
concentration of erythromycin is known to induce the expression of erythromycin
resistance and transposase genes of Tn917 (11). After growth at 42°C for 5 h, the
culture was diluted and plated on LB agar containing 5 �g of erythromycin/ml
and incubated at 42°C. After an overnight incubation, 40,000 to 50,000 colonies
were generally obtained. To verify the loss of the transposon delivery plasmid,
randomly chosen colonies were streaked onto LB agar plates containing either
100 �g of kanamycin/ml or 5 �g of erythromycin/ml. A total of 5,000 transposon
mutants (erythromycin resistant and kanamycin sensitive) were picked and tested
for protamine sensitivity.

Screening for protamine-sensitive B. anthracis Tn917 transposon mutants. To
identify protamine-sensitive mutants, B. anthracis Tn917 transposon mutants
were screened as follows. Individual mutant strains, along with several (�ANR)
wild-type controls, were grown in LB medium in 96-well plate formats. Using a
96-pin replicator, each culture was patched onto freshly made LB agar supple-
mented with protamine (600 and 800 �g/ml, respectively), followed by incubation
overnight at 37°C. The MIC of protamine in LB agar for wild-type B. anthracis
�ANR and Sterne 34F2 strains is 850 to 900 �g/ml. Mutants that failed to grow
on protamine-containing plates were further confirmed for protamine sensitivity.
Genomic DNA isolated from protamine-sensitive mutants was used to determine
the location of the Tn917 insertion sites as described below.

Determination of Tn917 transposon insertion sites. To determine transposon
insertion sites in B. anthracis Tn917 transposon mutants (erythromycin resistant
and kanamycin sensitive), an arbitrary PCR method was used (3, 26). Genomic
DNA was isolated from each B. anthracis Tn917 insertion mutant by using a
GenElute bacterial genomic DNA kit (Sigma-Aldrich) and used as a template. A
transposon-specific primer (Tsp1, 5�-CCCATAGATAAGAAATACACCTG-3�)
and an arbitrary primer (AP1, 5�-CCAGGCCTGCAGATGATGNNNNNNNN
NNGTAT-3�) were used in the first round of PCR at the following conditions:
95°C for 2 min; followed by 25 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for
5 min; and followed finally by 72°C for 10 min. The first PCR product (5 �l),
purified by using the Wizard SV gel and PCR clean-up system (Promega), was
then used as a template in a second nested PCR with a pair of nested primers

TABLE 1. Bacterial strains and plasmids used in this study

Strain or
plasmid Descriptiona Reference or source

Strains
B. anthracis

�ANR A host strain for Tn917 transposon mutagenesis, pXO1� pXO2� A. M. Friedlander (2)
Sterne
34F2

Wild type, pXO1� pXO2� P. C. Hanna (36)

SH0001 A Sterne strain containing pCN55 plasmid, Specr This study
SH0002 �mprF::Kmr, a Sterne 34F2 strain carrying deletion of bp �8 to 2512 of mprF (2,586 bp) This study
SH0003 SH0002 containing pmprF plasmid, Kmr Specr This study
SH0004 mprF::Tn917-Ermr, a �ANR strain carrying Tn917 inserted in the BA1485 gene This study

E. coli
GM2163 F� ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1

rpsL136 dam13::Tn9 xylA5 mtl-1 thi-l mcrB1 hsdR2; Cmr Strr
NEB (28)

Plasmids
pCN55 A shuttle vector, Ampr for E. coli, Specr for B. anthracis E. Charpentier (5)
pmprF pCN55 harboring the mprF open reading frame with its own promoter This study

a Cmr, chloramphenicol resistance; Specr, spectinomycin resistance; Ermr, erythromycin resistance; Ampr, ampicillin resistance; Strr, streptomycin resistance; Kmr,
kanamycin resistance.
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Tsp2 (transposon specific, 5�-AACCGTTACCTGTTTGTGCCA-3�) and AP2
(arbitrary, 5�-CCAGGCCTGCAGATGATG-3�). The conditions for the second
PCR were as follows: 95°C for 2 min; followed by 25 cycles of 95°C for 30 s, 56°C
for 30 s, and 72°C for 2 min; and followed in turn by 72°C for 5 min. Products
from the second PCR, purified using the Wizard SV gel and PCR clean-up
system, were used as a template for sequencing with the Tsp2 primer to deter-
mine the site of Tn917 insertion.

Construction of an mprF deletion mutant in B. anthracis Sterne 34F2 strain
and pmprF for genetic complementation. A mutant carrying a kanamycin resis-
tance marker (aphA3) replacing mprF was constructed in the Sterne 34F2 strain
of B. anthracis using the method developed by Shatalin and Neyfakh (34). B.
anthracis Sterne 34F2 genomic DNA isolated using the GenElute bacterial
genomic DNA kit was used as a template to PCR amplify the upstream and
downstream regions, respectively, of mprF. The upstream 531-bp DNA frag-
ment was amplified using the primer pair mprFUpNotI (5�-TTATGCGGCC
GCGCCAATATTTCTTGTACTTTCAAC-3�) and mprFUpPstI (5�-ATA-
ACTGCAGCTCTCCTTGTATAAGAAAACTGA-3�). The downstream 573-
bp DNA fragment was amplified using the primer pair mprFDnHindIII (5�-
TTTAAAGCTTAGAAAGAATCATTCTTTACCAATTA-3�) and mprFDn
XhoI (5�-TTTGCTCGAGATGGATCATATAAAGTATCTTCTAA-3�). (The
restriction enzyme sites are underlined in the primer sequences.) After restriction
digestion, the PCR products were cloned, flanking the kanamycin antibiotic
cassette in a temperature-sensitive plasmid pKS1 (34). The resultant plasmid was
transformed into GM2163 E. coli to obtain unmethylated plasmid DNA and used
for the transformation of B. anthracis, selecting for resistance to kanamycin (100
�g/ml) and erythromycin (5 �g/ml). A culture of a single transformant grown
overnight at 30°C in LB medium was diluted in fresh LB medium containing
kanamycin (100 �g/ml) and grown overnight at 42°C for the first round of
recombination, followed by dilution in fresh LB medium and growth overnight at
30°C for the second round of recombination. A serially diluted culture was then
plated onto LB agar containing kanamycin (100 �g/ml). Finally, erythromycin-
sensitive and kanamycin-resistant colonies were identified. In the �mprF::Kmr

mutants isolated, the loss of pKS1 and the replacement of the mprF gene with the
kanamycin resistance cassette was verified by both antibiotic susceptibility and
PCR analyses. The deleted region of mprF (2,520 bp) extended from bp �8 to bp
2512.

To construct a complementing plasmid for the B. anthracis mprF mutant strain,
a shuttle vector pCN55 was used as a backbone plasmid (5). The B. anthracis
mprF gene, along with an �300-bp upstream region, was PCR amplified using
the Sterne 34F2 genomic DNA as a template and the primer pair mprFComF-
wdBamHI (5�-ACTCGGATCCCGCATAACCTATTATAAT-3�) and mprF-
ComRevEcoRI (5�-GAAAAAGAATTCATTGTACAAGTT-3�). The PCR
product restriction digested with BamHI and EcoRI was cloned into pCN55
digested with the same restriction enzymes to obtain the complementing plasmid
pmprF. Unmethylated pmprF isolated from E. coli GM2163 was used to trans-
form the B. anthracis mprF strain.

Susceptibility test for cationic antimicrobial peptides. For determination of
susceptibility of B. anthracis strains to protamine, 2 �l of an exponential culture
of either wild-type Sterne, wild type/pCN55, �mprF::Kmr, mprF::Tn917-Ermr, or
�mprF::Kmr/pmprF strain was spotted onto LB agar supplemented with 200, 400,
600, or 800 �g of protamine/ml and incubated for 48 h at 37°C.

For antimicrobial peptide killing assay, LL-37 (82% purity) was custom-syn-
thesized from Sigma, and HNP-1 was purchased from Bachem (Torrance, CA).
Peptides were dissolved in 0.01% acetic acid supplemented with 0.2% bovine
serum albumin at appropriate concentrations. Overnight culture of B. anthracis
strains grown in LB medium was diluted 1:50 in fresh LB and grown to optical
density of �1.0 (�5 	 107 cells/ml) at 600 nm. The cells were harvested, washed
twice with 0.5% tryptone, and then resuspended in 0.5% tryptone. Subse-
quently, 45 �l of the cell suspension was mixed with 5 �l of a respective
peptide (10	 concentration) in 96-well polypropylene plates. After incuba-
tion for 45 min at 37°C with shaking, the cultures were serially diluted and
plated on LB agar to determine the number of viable cells. The percent
survival was calculated as follows: (the number of surviving cells/the number
of cells in the initial inoculum) 	 100.

Analysis of radiolabeled polar membrane lipids by two-dimensional thin-layer
chromatography (2D-TLC). Overnight cultures of B. anthracis strains (wild-type
Sterne 34F2, �mprF::Kmr, or �mprF::Kmr/pmprF) grown in LB medium were
diluted 1:200 in 2 ml of fresh LB medium. After the addition of 3 �Ci of
[14C]lysine (50 �Ci/ml; GE Healthcare Life Sciences) or 2 �Ci of [32P]ortho-
phosphate (10 mCi/ml; Perkin-Elmer) to each culture, the cultures were incu-
bated for 6 h with aeration at 37°C. The cells were harvested, washed once with
phosphate-buffered saline (PBS), and used for isolation of total polar membrane
lipids according to the method of Bligh and Dyer with a slight modification (4, 27,

33). The cell pellet was suspended in 2 ml of 0.12 M sodium acetate (pH 4.8), to
which chloroform (2.5 ml) and methanol (5.5 ml) were added. After incubation
for 2 h at room temperature, the solids were removed by centrifugation. The
supernatant was mixed with chloroform (2.5 ml) and water (2.5 ml), and the
lower phase was transferred to a new glass tube and dried under a stream of air.
Dried total lipid material was dissolved in 50 to 100 �l of chloroform-methanol
(2:1 [vol/vol]) and spotted onto silica gel 60 F254 HPTLC plates (M5628-5;
Merck). The silica plates were run in the first dimension with chloroform-
methanol-water (65:25:4 [vol/vol/vol]) and in the second dimension with chloro-
form-methanol-acetic acid-water (80:12:16:4 [vol/vol/vol/vol]) (37). [14C]lysine-
or 32P-labeled lipids were visualized by using a phosphorimager (GE Healthcare
Life Sciences).

Analysis of lysylphospholipids using mass spectrometry. To prepare lipid
samples, wild-type B. anthracis Sterne 34F2 was grown to an optical density at
600 nm of �1 in 1 liter of LB medium. The cells were harvested, washed once
with PBS, and resuspended in 200 ml of 0.12 M sodium acetate (pH 4.8). The
total lipid material was isolated as described above and spotted onto preparatory
silica gel 60 F254 plates (M13895-7; Merck). After running the silica plates in two
directions as described above, spots on the silica plates were visualized by stain-
ing with iodine. Individual spots were scraped off from the silica plates and
suspended in chloroform and methanol (2:1 [vol/vol]). After overnight extrac-
tion, samples were filtered with Whatman filter paper, and the filtrates were
concentrated for mass spectrometric analysis.

Low-energy collisionally activated dissociation (CAD) tandem mass spectrom-
etry experiments were conducted on a Finnigan (San Jose, CA) TSQ 7000 mass
spectrometer equipped with the ICIS data system or on an LTQ linear ion-trap
mass spectrometer with the Xcalibur operation system. Lipid samples were
continuously infused into the electrospray ionization (ESI) source with a syringe
pump at a flow rate of 2 �l/min. The skimmer was at ground potential, and the
electrospray needle was set at 4.5 kV. The temperature of the heated capillary
was 260°C. For CAD tandem mass spectra obtained with a linear ion-trap mass
spectrometer, the automatic gain control of the ion trap was set to 7 	 104, with
a maximum injection time of 100 ms. Helium was used as the buffer and collision
gas at a pressure of 10�3 mbar. The mass resolution was 0.6 Da at half peak
height. The MSn spectra (n � 2) were obtained with a relative collision energy
varied from 16 to 20% and an activation time varies from 30 to 50 ms with an
activation Q value at 0.25. For neutral loss spectra obtained with a triple-stage
quadrupole instrument, both first quadrupole (Q1) and third quadrupole (Q3)
were scanned simultaneously with a set mass difference at 300.2, which repre-
sents a phospho-1�-lysyl-glycerol residue cleaved from the [M�H]� ions of
lysylphosphatidylglycerol upon CAD with Ar (2.3 mtorr) under a collision energy
of 35 eV in the rf-only second quadrupole (Q2). Both Q1 and Q3 were tuned to
unit mass resolution and scanned at a rate of 3 s/scan. All of the mass spectra
were accumulated in the profile mode.

RESULTS

Characterization of a Tn917 library of B. anthracis. To iden-
tify B. anthracis genetic determinants of resistance to cationic
antimicrobial peptides, we generated a library of transposon
insertion mutants using Tn917 transposon mutagenesis. Trans-
poson Tn917 is usually delivered on a temperature-sensitive
plasmid for easy curing after the event of transposon insertion.
We used one such plasmid, pTV1-OK (11). During transposi-
tion, the Tn917 transposon is known to preferentially insert
into plasmids (pXO1 and pXO2) rather than the chromosome
of B. anthracis (12, 40). To circumvent this problem, we used B.
anthracis strain �ANR as a host that lacks both plasmids but
for which the protamine MIC is the same as for B. anthracis
Sterne 34F2 carrying pXO1 plasmid.

B. anthracis �ANR strain harboring pTV1-OK was grown at
42°C, the nonpermissive temperature for replication of pTV1-
OK, in the presence of erythromycin at a low concentration
(0.04 �g/ml), and plated onto LB agar selecting for transposon
insertional mutants resistant to erythromycin at 5 �g/ml. To
check the efficiency of plasmid curing, we tested �600 ran-
domly chosen clones for kanamycin sensitivity. About 92% of
the clones tested were kanamycin sensitive. This curing effi-
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ciency is about the same as that reported for pTV1-OK-medi-
ated Tn917 mutagenesis in another gram-positive bacterium,
Streptococcus mutans (11), and indicates that most of the cells
properly lost the delivery plasmid.

To assess the distribution of Tn917 insertions on the chro-
mosome, we determined the transposon insertion sites in 50
randomly picked transposon mutants by arbitrary PCR and
sequencing as described in Materials and Methods. Sequenc-
ing results revealed that each mutant carried a single insertion
of Tn917 transposon, but many of the 50 transposon mutants
were redundant, representing 16 independent Tn917 inser-
tions. Surprisingly, most of the transposon insertions were
strongly biased to regions in the first half of the chromosome
(see Fig. S1 in the supplemental material). This transposition
tendency was very different from that observed in other gram-
positive bacteria such as Enterococcus faecalis (8) and S. aureus
(3), in which Tn917 preferentially inserts into chromosomal
regions near the replication terminus. In E. faecalis, a 29-bp
consensus sequence centered on TATAA was known as a pre-
ferred Tn917 insertion site (8). We did not detect such a
consensus sequence, although 10 of 16 independent Tn917
inserted regions contain a 5-bp sequence similar to TATAA
within 10 bp of the transposon insertion sites (see Table S1 in
the supplemental material). Collectively, these results suggest
that Tn917 transposition, even in the strain of B. anthracis
lacking both plasmids (pXO1 and pXO2), is biased and occurs
in a manner distinct from that known in other gram-positive
bacteria.

Of 50 transposon mutants sequenced, the most common
ones (18/50 [36%]) carried the transposon inserted in a gene
(BA0743) encoding a major facilitator family transporter pro-
tein. Other frequently obtained mutants carried a transposon
insertion in genes encoding a hypothetical protein (BA2743;
7/50 [14%]), another major facilitator family transporter
(BA1858; 4/50 [8%]), the YfhP protein (BA0521; 4/50 [8%]),
SpoIIE (BA0061; 3/50, [6%]), a putative DNA helicase
(BA0934; 2/50 [4%]) or a putative virulence factor (BA1486;
2/50 [4%]) and in the intergenic region (2/50 [4%]) between
genes encoding an arginyl-tRNA synthetase (BA2175) and a
hypothetical protein (BA2176). Mutants retrieved only once
harbored the transposon in the following genes (BA0410 en-
coding a putative heavy-metal transporting ATPase; BA1664, a
hypothetical protein; BA1779, FlgG; BA3902, a putative bac-
teriocin ABC transporter; and BA4670, a sensor histidine ki-
nase) and the intergenic regions (BA2075/BA2076, BA2805/
BA2807, and BA5331/BA5332). Based on mapping for Tn917
insertion sites, we speculated that �32% (16/50) of the Tn917
library generated for the present study contains unique trans-
poson insertions.

Identification of protamine-sensitive B. anthracis transpo-
son mutants. To identify the B. anthracis genes involved in
cationic antimicrobial peptide resistance, we screened 5,000
Tn917 transposon mutants for altered protamine sensitivity.
Individual 5,000 transposon mutants were grown in 96-well
plates and replica plated onto LB agar containing two different
concentrations of protamine (600 and 800 �g/ml). Each 96-
well plate contained several wells of the wild-type �ANR strain
as a control, which can grow at protamine concentrations up to
800 to 850 �g/ml. A total of 65 mutants were identified as
hypersusceptible to protamine compared to the wild type. We

also identified mutants that could grow at protamine concen-
trations of �1 mg/ml. These protamine-resistant mutants car-
ried the transposon inserted in genes BA0410 and yfhP, re-
spectively, but they were not further characterized in the
present study. Determination of transposon insertion sites in
protamine-hypersusceptible mutants, as described in Materials
and Methods, revealed that all 65 mutants carry the transposon
inserted at the same nucleotide position in the BA1486 gene.

The BA1486 gene coding for a putative cytoplasmic mem-
brane protein of 861 amino acid residues exhibited high ho-
mology to known MprF proteins of gram-positive bacteria such
as S. aureus (29) and L. monocytogenes EGD-e (37): 34%
identity and 54% similarity to either MprF throughout the
whole amino acid sequence. MprF is known to be required for
resistance to cationic antimicrobial peptides. Similar to the
known MprF proteins, the putative B. anthracis MprF is pre-
dicted to have 13 transmembrane domains at the N terminus
(amino acid residues 8 to 527) by TMpred analysis (www.ch
.embnet.org/software/TMPRED_form.html). This analysis and
the protamine-sensitive phenotype of the identified transposon
mutant suggested that the BA1486 gene in B. anthracis is a
functional orthologue of mprF known in other gram-positive
bacteria. BA1486 in the �ANR strain and its orthologue,
BAS1375, in the Sterne 34F2 strain of B. anthracis are referred
to as mprF hereafter.

The B. anthracis mprF gene is required for resistance to
structurally different cationic antimicrobial peptides. The
transposon mutant identified as protamine sensitive harbored
Tn917 inserted at the 3� end of the BA1486 gene (2,583 bp)
between nucleotides 2551 and 2552. The transposon insertion
at the very end of the gene raised the possibility that gene
function was not completely inactivated. We also noted that a
downstream region of the BA1486 gene was possibly deleted
during transposition, which potentially removes �20 bp from
the 3� end of the neighboring BA1485 gene.

FIG. 1. The B. anthracis mprF mutant is hypersusceptible to a lin-
ear cationic peptide protamine. Wild-type Sterne 34F2, wild-type/
pCN55 (empty vector) (SH0001), �mprF::Kmr mutant (SH0002),
�mprF::Kmr/pmprF (SH0003), and mprF::Tn917ermr (SH0004) strains
(�5 	 104 cells) were spotted onto LB agar plates supplemented with
protamine at the indicated concentrations. The images scanned were
obtained after 48 h of incubation at 37°C.
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To clearly establish that the protamine hypersusceptibility of
the identified transposon mutant was specifically due to inac-
tivation of the putative mprF gene, we constructed a clean
knockout mutant in the Sterne 34F2 strain of B. anthracis. In
the newly constructed deletion mutant, most (bp �8 to 2152)
of the mprF gene is removed by replacing the region with a
kanamycin resistance cassette (34). Similar to phenotypes ob-
served with the mprF transposon mutant, the mprF deletion
mutant grew slightly more slowly than the wild-type strain in
LB or BHI medium and exhibited protamine hypersusceptibil-
ity: it was able to grow on LB agar containing up to 400 �g of
protamine/ml but failed to grow on LB agar containing 600 �g
of protamine/ml compared to the wild type (Fig. 1). Moreover,
genetic complementation of the mprF deletion mutant with a
plasmid carrying a wild-type copy of the mprF gene restored
wild-type resistance to protamine (Fig. 1). These results con-
firm that inactivation of the putative mprF gene is responsible
for protamine hypersusceptibility in B. anthracis.

Bacterial strains hypersusceptible to protamine do not al-
ways display increased sensitivity to other cationic antimicro-
bial peptides with different structures (9). Thus, we further
determined the susceptibility of the mprF deletion mutant to
structurally different cationic antimicrobial peptides such as
�-helical cathelicidin LL-37 and �-sheet defensin HNP-1. The
wild-type and mutant strains were incubated for 45 min with
respective peptides at the indicated concentrations, and cell
survival was determined by viable cell counts. Approximately
70% survival of the wild-type Sterne strain was seen after
treatment with HNP-1 (2 �g/ml) (Fig. 2A), whereas �6%
survival was observed in the presence of LL37 (25 �g/ml) (Fig.
2B). Compared to the wild type, the mprF mutant strain ex-
hibited increased susceptibility to respective peptides: �10-

FIG. 2. The B. anthracis mprF mutant is hypersusceptible to �-
helical LL-37 and �-sheet HNP-1. Antimicrobial peptide killing assay
was performed as described in Materials and Methods. Strains (�2 	
106 cells) were incubated with HNP-1 at 2 �g/ml (A) and LL-37 (B) at
25 �g/ml. The percent survival was calculated as follows: (the number
of surviving cells/the number of cells in the initial inoculum) 	 100.
Error bars indicate the standard deviation of three independent ex-
periments. Asterisks indicate statistically significant differences (P 

0.01) in the paired Student t test (�, wild type versus �mprF::Kmr; ��,
�mprF::Kmr versus �mprF::Kmr/pmprF).

FIG. 3. The B. anthracis mprF mutant is unable to synthesize lysinylated phospholipids. 2D-TLC profiles of 32P-labeled phospholipids (A) and
L-[14C]lysine-labeled lipids (B) from wild-type Sterne 34F2, �mprF::Kmr, or �mprF::Kmr/pmprF strains. The total radiolabeled lipid samples were
prepared from each strain and separated by 2D-TLC and visualized using a phosphorimager as described in Materials and Methods. Represen-
tative results of two independent experiments are shown. Wild-type lipid samples subjected to preparatory 2D-TLC and iodine-stained displayed
profiles similar to that of the wild-type sample in panel A (data not shown). The circled area (indicated approximately with a dotted line) on the
preparatory 2D-TLC with wild-type lipid samples was extracted as a mixture for mass spectrometric analyses (see the text for details). CL,
cardiolipin; PE, phosphatidylethanolamine; PG, phosphatidylglycerol.
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fold more susceptible to HNP-1 (Fig. 2A) and �360-fold more
susceptible to LL37 (Fig. 2B). The resistance of the mprF
mutant to these peptides was restored to the wild-type level
upon genetic complementation with pmprF carrying a wild-
type copy of mprF with its native promoter (Fig. 2). Collec-
tively, these results demonstrate that the B. anthracis MprF is
required for resistance not only to a linear peptide protamine
but also to �-helical and �-sheet cationic antimicrobial pep-
tides.

The B. anthracis mprF mutant is unable to synthesize phos-
pholipids modified with lysine. In S. aureus and L. monocyto-
genes, MprF was shown to be required for the synthesis of
lysylphosphatidylglycerols (27, 29, 37). To investigate the func-
tion of the B. anthracis MprF, we first compared the phospho-
lipid profiles of the wild-type Sterne, �mprF::Kmr, and
�mprF::Kmr/pmprF strains. Total polar membrane lipids were
prepared from each strain grown in the presence of
[32P]orthophosphate, separated by using 2D-TLC, and visual-
ized by using a phosphorimager as described in Materials and
Methods. The phospholipids from the wild-type and geneti-
cally complemented mprF strains consisted of at least five
major phospholipid species (Fig. 3A). In contrast, the phos-
pholipids of the mprF deletion mutant strain was composed of
only three major species (Fig. 3A), indicating that MprF is
required for synthesis of certain phospholipid species. To fur-
ther determine whether the phospholipid species missing in the
mprF deletion mutant strain are lysinylated, we compared the
total polar membrane lipids isolated from respective strains
grown in the presence of L-[14C]lysine (Fig. 3B). Indeed, the
two major phospholipid species that appeared only in the wild-
type and genetically complemented strains were labeled with
L-[14C]lysine. These apparently lysinylated phospholipids were
missing in the mprF deletant (Fig. 3B). Taken together, these
results suggest that the B. anthracis MprF mediates the syn-
thesis of certain lysylphospholipids.

Structural determination of the B. anthracis lysylphospho-
lipids by using mass spectrometry. To elucidate the structure
of putative lysylphospholipids observed by radiolabeling exper-
iments (Fig. 3), the wild-type lipid samples were separated by
using 2D-TLC. Respective TLC spots stained with iodine were
extracted with organic solvent and subjected to various mass
spectrometric analyses (see Materials and Methods). TLC
spots encompassing at least two putative lysylphospholipid spe-
cies as shown by radiolabeling experiments were extracted and
analyzed as a mixture because of poor separation on prepara-
tive TLC (Fig. 3A). TLC spots corresponding to three major
phospholipid species shown to be present in the wild-type,
�mpr::Kmr, and �mpr::Kmr/pmprF strains (Fig. 3A) were de-
termined to be cardiolipin, phosphatidylglycerol, and phos-
phatidylethanolamine, respectively (data not shown).

Upon ESI in a linear ion-trap (LIT) or tandem quadrupole
instrument in the positive-ion mode, the putative lysylphospho-
lipid mixture isolated was shown to contain [M�H]� ions at

m/z 809, 823, 837, 851, 865, and 879 (Fig. 4A), corresponding
to various lysylphosphatidylglycerols (Table 2). The [M-H]�

ions that are 2 Da lighter were also observed in the negative-
ion mode (data not shown) confirming the results obtained by
the positive-ion mode. The profile of the tandem mass spec-
trum from neutral loss scan of 300 (Fig. 4B) is nearly identical
to the ESI mass spectrum (Fig. 4A), further supporting the
presence of the various molecular species of lysylphosphatidyl-
glycerols.

The structural assignments (Table 2) were conducted on
both the [M�H]� and [M-H]� ions by using multiple-stage
LIT mass spectrometry. The product-ion spectrum from MS2

on the [M�H]� ion at m/z 851 (Fig. 4C) contained a promi-
nent ion at m/z 551, likely arising from cleavage of 1�-lysyl-
phosphoglycerol residue of the molecule (see the scheme de-
picted in Fig. 4C, inset). This was consistent with the
observation of the ion at m/z 301, corresponding to a proto-
nated ion of a 1�-lysyl-phosphoglycerol. This fragmentation
pathway leading to neutral loss of the 1�-lysyl-phosphoglycerol
residue (300 Da) was also observed for all of the other
lysylphosphatidylglycerols shown in Table 2 (data not shown).
This finding was in agreement with the notion that the profiles
of the tandem mass spectrum from neutral scan of 300 (Fig.
4B) and of the ESI mass spectrum (Fig. 4A) are nearly iden-
tical as described earlier. Further dissociation of the ion at m/z
551 (8513551, Fig. 4D) gave rise to ions at m/z 253 and 225,
corresponding to the 17:0- and 15:0-acyl (RCO�) cations, re-
spectively, a finding consistent with the presence of ions at m/z
235 (253-H2O) and 207 (225-H2O) arising from the further loss
of a water residue (14). The ions at m/z 327 and 309 arose from
losses of 15:0-fatty acid substituent as a ketene and as an acid,
respectively, while the ions at m/z 299 and 281 arose from the
corresponding losses of the 17:0-fatty acid residue. The results
were in accordance with the presence of 17:0- and 15:0-fatty
acids in the molecule.

By contrast, the product-ion spectrum from MS2 on the
[M-H]� ion at m/z 849 observed in the negative-ion mode was
dominated by the ion at m/z 721, which was equivalent to a
deprotonated ion of a phosphatidylglycerol arising from loss of
a lysine (128 Da) (see the scheme in Fig. S2A in the supple-
mental material) (13). This was further supported by the LIT
MS3 spectrum of the ion at m/z 721 (8493721, see Fig. S2A in

FIG. 4. Mass spectrometric analyses of lysylphospholipids of B. anthracis. (A) ESI/MS spectrum obtained in the positive-ion mode;
(B) LIT/MS2 spectrum of neutral loss scan of 300; (C) LIT/MS2 spectrum of the [M�H]� ion at m/z 851; (D) LIT/MS3 spectrum of the same
ion at m/z 551 (8513551). Lysylphospholipid samples were prepared and analyzed by using mass spectrometry as described in Materials and
Methods.

TABLE 2. Composition of lysylphosphatidylglycerols

�M�H�� Structurea Relative abundance

809 ND 15
823 15:0/15:0-LPG 50
837 17:0/14:0-LPG 100
851 17:0/15:0-LPG 90
865 18:0/15:0-LPG 20

a Deduced from product-ion analysis with an LIT mass spectrometer. LPG,
lysylphosphatidylglycerol. ND, structure not determined.
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the supplemental material), which contains the ion at m/z 647,
arising from loss of the glycerol head group as a [glycerol-H2O]
residue (74 Da), along with the ion at m/z 405, arising from m/z
479 by loss of [glycerol-H2O] or from m/z 497 by loss of a
glycerol residue (92 Da) (13). The spectrum also contained the
ions at m/z 269 and 241 corresponding to 17:0- and 15:0-
carboxylate anions, respectively, and the ions at m/z 479 and
497 arising from losses of the 15:0-fatty acid substituent as an
acid and as a ketene, respectively, along with the ions at m/z
451 and 469 corresponding to the analogous losses of 17:0-fatty
acid residue. The ion pairs at m/z 479/497 were, respectively,
more abundant than those at m/z 451/469, clearly demonstrat-
ing that the 17:0- and 15:0-fatty acid moiety were located at
sn-1 and sn-2 positions, respectively (13). These results suggest
that the compound corresponding to the [M�H]� ion at m/z
851 (and the [M-H]� ion at m/z 849) is 17:0/15:0-lysyl-phos-
phatidylglycerol. Identification of this and other lysylphos-
phatidylglycerols (Table 1) suggest that their synthesis requires
the functional MprF in B. anthracis.

DISCUSSION

The gram-positive pathogen B. anthracis is infamous for its
uncontrolled, rapid growth in human blood, a host environ-
ment rich in antibacterial molecules such as cationic antimi-
crobial peptides produced by circulating neutrophils and plate-
lets. In the present study, we created Tn917 insertional
mutants and identified a B. anthracis gene (BA1485 in the
�ANR strain; BAS1375 in the Stern strain) that is critically
required for resistance to cationic antimicrobial peptides.

Tn917 transposon mutagenesis has been successfully used in
various gram-positive bacteria, facilitating the identification of
genes involved in diverse functions. In B. anthracis, however,
Tn917 is known to insert preferentially into virulence plasmids
pXO1 and pXO2 in comparison to the chromosome (12, 40).
To avoid this problem, we used the �ANR strain of B. anthra-
cis that lacks both of the virulence plasmids as a host for Tn917
mutagenesis. However, determination of Tn917 insertion sites
in a subset of transposon mutants revealed that Tn917 mu-
tagenesis still occurs in a severely biased manner with trans-
posons preferentially inserting into the first half of the chro-
mosome (see Fig. S1 in the supplemental material). This
regional bias seen in B. anthracis is very different from that
observed in other gram-positive bacteria such as S. aureus and
E. faecalis, in which Tn917 transposition is known to occur in
a hot spot that coincides with the replication terminus (3, 8).
Although we do not have a plausible explanation for this dis-
tinctive Tn917 transposition in B. anthracis, it is clear that to
achieve exhaustive genetic screens in B. anthracis, a better
genetic technique for creating random (transposon) mutants
needs to be developed.

Despite the biased representation of the Tn917 library, we
have identified a B. anthracis gene (BA1486 in the �ANR
strain and BAS1375 in the Sterne strain) whose inactivation
causes hypersusceptibility to cationic antimicrobial peptides
such as protamine, HNP-1, and LL-37 (Fig. 1 and 2). This gene
encodes a putative membrane protein homologous to MprF
known in a few gram-positive bacteria. In S. aureus and L.
monocytogenes, MprF is shown to be required for the synthesis
of lysylphosphatidylglycerols (29, 37), and the results from our

study demonstrate that the B. anthracis orthologue is a func-
tional MprF. The B. anthracis MprF exhibits the same level of
homology as that of either S. aureus or L. monocytogenes. Our
study shows that B. anthracis MprF mediates the synthesis of
lysylphosphatidylglycerol species perfectly matching with those
of S. aureus (Table 1) (29) and partly matching with those of L.
monocytogenes (37), indicating (dis)similarity in the distribu-
tion of fatty acids among gram-positive bacterial species. Be-
cause the MprF protein in B. anthracis and S. aureus has
exactly the same function, we expected that the phenotypes of
mprF mutants in both bacterial species would be similar. The S.
aureus mprF mutant displayed increased susceptibility to some
conventional cationic (nisin and gentamicin) antibiotics. How-
ever, the B. anthracis mprF mutant exhibits very weak or no
change in resistance to them (data not shown). For example,
the MICs of nisin (0.5 to 4 �g/ml) (29) and gentamicin (0.125
to 1 �g/ml) (25), respectively, for the S. aureus mprF mutant
strain is eightfold lower than that for the wild type. The B.
anthracis mprF mutant, however, displayed a �2-fold decrease
in the MIC of nisin and wild-type resistance to gentamicin
(data not shown). This phenotypic difference may suggest that
the basal expression level of the B. anthracis mprF is low in the
conditions used in our study and/or that genetic determinants
other than mprF significantly contribute to intrinsic resistance
to these antibiotics in B. anthracis.

In gram-positive bacteria, in addition to proteolytic degra-
dation and efflux, modifications neutralizing negative charges
of cell surface, mediated by MprF and DltABCD, respectively,
are known to be major resistance mechanisms for cationic
antimicrobial peptides (17). The DltABCD system that incor-
porates D-alanine into teichoic acids has recently been shown
to be functional in B. anthracis (7), and our study demonstrates
the presence of functional MprF in B. anthracis. Recently, it
was shown that the expression of both the dlt operon and mprF
are activated by a common transcriptional regulatory system,
the VirRS two-component system in L. monocytogenes (22),
and the Aps three-component system in S. aureus (19) and S.
epidermidis (20). It is therefore likely that both modification
systems in B. anthracis are also controlled by a common regu-
latory pathway. We are currently investigating this possibility.

MprF homologues are also suggested to be encoded in the
genomes of gram-negative bacteria such as Pseudomonas
aeruginosa (29). Indeed, it was recently shown that the ge-
nomes of the gram-negative Rhizobium tropici and Sinorhizo-
bium medicae carry a functional MprF that is required not only
for resistance to the cationic antimicrobial peptide polymyxin
B (35) but also for cell survival in lethal acidic conditions (31,
39). The presence of functional MprF in both gram-positive
and gram-negative bacteria strongly supports the idea that
MprF may serve as a broad-spectrum antibacterial target.
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