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bLaboratoire de Physique Théorique et Hautes Energies,
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1 Introduction

Antibranes in warped deformed conifold Klebanov-Strassler (KS) backgrounds [1] are a

staple ingredient of string phenomenology and cosmology constructions, being essentially

the only method for lifting AdS solutions with stabilized moduli, to dS solutions, and thus

give rise to a landscape of dS vacua of string theory [2].

Over the past few years we have undertaken a programme to construct the full space of

first-order SU(2)×SU(2)×Z2-invariant deformations around the KS background, in order

to establish whether a solution corresponding to anti-D3 branes in this background exists,1

whether it has the properties one expects from the brane-probe analysis of [3], and whether

it is dual to a metastable vacuum of the dual boundary theory. The underlying philosophy

of this programme has been that one cannot decide a-priori that a metastable anti-D3

brane solution must exist, and then accept whatever boundary conditions are necessary

in order for this to happen, but rather one should start from a set of physical infrared

and ultraviolet boundary conditions, and ask whether a solution compatible with these

boundary conditions exists or not.

The key results of this investigation have been:

1. One can find all the homogeneous solutions to, and thus solve implicitly the equa-

tions [4] governing the first-order perturbations. The full solution seems at first to

involve 8 nested integrals [5].

2. One can simplify these and write the full solution in terms of 2 nested integrals [6],

which are in fact integrals of rational functions multiplying the warp factor and

Green’s function of the KS background.

3. One can write the UV and IR expansions of the generic solution to this space of

deformations, and identify all the UV normalizable and non-normalizable modes, as

well as the infrared physical boundary conditions for D-branes [5].

4. The force on a probe D3 brane in the first-order perturbed background depends

only on one of the 16 integration constants, and this constant must be nonzero if the

1For this solution the perturbation parameter is the anti-D3 brane charge N̄ divided by the flux on the

conifold three-cycle, M .
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solution is to correspond to antibranes [5]. Furthermore, the full functional expression

of this force can be calculated [7], and matches exactly the expression one obtains

from considering the action of probe anti-D3 branes in a background with backreacted

D3 branes à la KKLMMT [8].

5. The putative solution for anti-D3 branes smeared on the three-sphere at the tip of the

KS solution is expected to have a singularity in the five-form and warp factor, coming

from the physical brane sources. Besides this, we found that the solution linear in

N̄/M has three-form RR and NS-NS field strengths that diverge at the tip, but are

subleading with respect to the five-form and warp factor. This subleading singularity

is proportional to the coefficient of the brane-attracting mode of the solution.

As explained in [5], if the singularity is not physical, then the backreaction of anti-D3

branes in the KS solution gives rise to a large deformation of this solution, which cannot be

captured in perturbation theory, much like when one tries to construct metastable vacua

using type IIA brane engineering [9]. On the other hand, if the singularity is physical,

then our technology produces the full first-order backreacted solution corresponding to

antibranes in the KS background, as well as all first-order deformation of the KS solution

by non-normalizable SU(2)×SU(2)×Z2-invariant modes, corresponding to all the relevant

and irrelevant deformations of the dual field theory.

This subleading singularity cannot be attributed to any brane source (it has the wrong

orientation), or to brane-flux annihilation (it is linear in the antibrane number, while the

brane-flux annihilation is nonlinear). However, as mentioned in [5] and argued in [10],

it is possible that this singularity is an artifact of perturbation theory, and may not be

present in a fully-backreacted solution for antibranes. On the other hand, obtaining a

fully-backreacted solution for antibranes in ISD flux backgrounds seems to run into trou-

ble in less complicated setups [11, 12], and can even be ruled out by topological argu-

ments (that yield a physics similar to the one found in [9]). If the results of [12] extend

to the KS solution, then the presence of a subleading singularity in perturbation theory

will look with hindsight as an indication of a more profound problem with the whole

construction.

Given that the arguments about this singularity fall mainly outside of the scope of our

perturbation theory machinery, it is best to hedge our bets both ways, and ask whether

inside the 15-dimensional space of parameters that characterize our first-order solution

one can identify a solution that has the correct physics to correspond to anti-D3 branes

in the KS geometry, subleading singularity aside. Identifying this solution inside the 15-

dimensional space is simpler than finding a needle in a haystack, but not by far: one has

to throw away divergent terms both in the UV and in the IR expansion [5], and to impose

the correct D-brane boundary conditions on the divergence of the warp factor and electric

field in the infrared.

Those conditions yield algebraic relations between the various integration constants

that appear in the UV or IR expansions of the fields; however, the integration constant

that appears in the UV expansion of a given field, say the dilaton, is not the same as the

one that appears in its IR expansion, but differs by highly nontrivial combination of the
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other integration constants. Hence, even if we impose all the physical boundary conditions

in the UV and in the IR, we are far from being done, because the UV conditions are

expressed using the UV integration constants, and the IR conditions are expressed using

the IR integration constants, and it is possible that upon translating the UV conditions into

IR variables one may have the unpleasant surprise that these conditions are incompatible.

Hence, in order to establish whether there is an antibrane solution, to correctly identify it

inside the 15-dimensional space of first-order deformations, and to establish whether this

solution is dual or not to a metastable vacuum of a supersymmetric field theory, it is crucial

to relate the UV and IR solutions, which is the main purpose of this paper.

Before unveiling those results, we would like to point out that identifying whether

two asymptotically-KS supergravity solutions are dual to vacua of the same field theory

is not as straightforward as it might seem, even for supersymmetric solutions, essentially

because, besides the seven normalizable and seven non-normalizable deformations, there

exists another deformation corresponding to rescaling the four-dimensional coordinates.

Of course, if two solutions differ by non-normalizable deformations, they clearly are dual

to two different field theories; however, as we will explain in section 5, two solutions that

differ by a rescaling of the field theory coordiates, though technically the same, may or

may not belong to the same theory. Hence, using purely UV data one cannot distinguish

asymptotically-KS supersymmetric solutions that we expect [13] to be dual to different

field theories, unless one introduces extra assumptions about the infrared of the solutions,

or about their bulk behavior.

Anticipating our results, we compute the unique solution that has the correct infrared

and ultraviolet divergences (modulo the subleading singularity) to describe anti-D3 branes

in the KS background. All the parameters of this solutions can be determined in terms of

the number of antibranes. Nevertheless, much like for supersymmetric solutions, one cannot

distinguish using purely UV data whether this solution describes a non-supersymmetric vac-

uum of a supersymmetric solution, or whether it is dual to a distinct non-supersymmetric

theory. To achieve that one must therefore introduce extra assumptions about the infrared

or about the bulk.

In section 2 we give a lightning review of the general construction of first-order de-

formations around the KS solution (the full details can be found in appendix A), and in

section 3 we review the simplified analytic solution found in [6] in terms of two nested

integrals (whose full details can be found in appendix B). In section 4 we explain the pro-

cedure we use to relate the UV and the IR integration constants, and illustrate with more

details how this procedure can be implemented for one of the perturbation modes. We also

give the relations between the UV and IR integration constants of the other modes; the

derivation of all these relations is left for appendix C. In section 5 we present the different

criteria for distinguishing supersymmetric asymptotically-KS solutions, and in section 6

we identify the solution for anti-D3 branes inside the space of solutions. Section 7 is de-

voted to the relation between our solution and the one obtained in [14] by perturbing

around the Klebanov-Tseytlin (KT) solution, and to the identification within our space of

solutions to perturbation of the KS solution by non-normalizable modes dual to gaugino

masses.
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2 Non-supersymmetric deformations around the Klebanov-Strassler

background

2.1 Ansatz and background solution

We wish to construct the backreacted solution corresponding to N̄ anti-D3 branes smeared

on the S3 at the tip of the warped deformed conifold. We use the Ansatz proposed by

Papadopoulos and Tseytlin [15], which is the most general one (with vanishing RR axion

C0) that preserves the SU(2) × SU(2) × Z2-symmetry of the Klebanov-Strassler solution

(KS). The metric is

ds2
10 = e2A+2 p−x ds2

1,3 + e−6 p−x dτ2 + ex+y (g2
1 + g2

2) + ex−y (g2
3 + g2

4) + e−6 p−x g2
5 , (2.1)

where all the functions depend on the radial variable τ . The fluxes and the dilaton are

H3 =
1

2
(k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + dτ ∧ (f ′ g1 ∧ g2 + k′ g3 ∧ g4) ,

F3 = F g1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + F ′ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) , (2.2)

F5 = F5 + ∗F5 , F5 =

[
πQ

4
+ (k − f)F + 2P f

]
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

Φ = Φ(τ) , C0 = 0 ,

where P , Q are constants while f, k and F are functions of τ . A prime denotes a derivative

with respect to τ .

The fields from this Ansatz are collectively denoted φa, a = 1, . . . , 8. We will study

and fully determine the solution space of first-order non-supersymmetric deformations of

the supersymmetric Klebanov-Strassler theory,

φa = φa0 + φa1(Z) +O(Z2) . (2.3)

The background fields φa0 are given by the Klebanov-Strassler solution without mobile

D3-branes:

ex0 =
1

4
h(τ)1/2

(
1

2
sinh(2 τ)− τ

)1/3

,

ey0 = tanh(τ/2) ,

e6 p0 = 24

(
1
2 sinh(2 τ)− τ

)1/3
h(τ) sinh2 τ

,

e6A0 =
ε4

0

3 · 29
h(τ)

(
1

2
sinh(2 τ)− τ

)2/3

sinh2 τ , (2.4)

f0 = −P (τ coth τ − 1)(cosh τ − 1)

sinh τ
,

k0 = −P (τ coth τ − 1)(cosh τ + 1)

sinh τ
,

F0 = P
(sinh τ − τ)

sinh τ
,

Φ0 = 0 ,

Q = 0 ,
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where ε0 is the deformation parameter of the conifold, related to the confinement scale of

the dual gauge theory. Of significance are also the warp factor h and the Green’s function

j for this background:

h(τ) = 32P 2

∫ ∞
τ

u cothu− 1

sinh2 u
(coshu sinhu− u)1/3 du , (2.5)

j(τ) = −
∫ ∞
τ

du

(coshu sinhu− u)2/3
. (2.6)

Note that the last equality in (2.4) implies we are taking gs = 1. Furthermore, the

dimensionful constant P is related to the quantized dimensionless units of flux M entering

in the rank of the gauge groups of the dual field theory (see section 5.2) by

P =
1

4
M α′. (2.7)

So as to avoid extra clutter, in what follows we take α′ = 1, and ε0 = 1.

2.2 First-order perturbation equations, conditions and physical significance

of the integration constants

Using a method due to Borokhov and Gubser [4] and reviewed in the appendix A, finding

linearized deformations away from a supersymmetric solution, can be reduced to solving two

sets of first-order ordinary differential equations in the radial variable τ , instead of second-

order differential equations. Out of those two sets, the first one forms a closed system for

the variables ξa that can be thought of as “conjugate momenta” for the perturbations φa1
of the fields entering our Ansatz (2.1), (2.2). The integration constants associated to that

first system are labelled Xa, and are non-zero for a non-supersymmetric solution. The

integrations constants from the second system of coupled 1st-order ODE’s are denoted Ya.

For the problem of present interest, i.e. the backreaction of anti-D3’s on KS, the

solution to the system was found in [5, 6] after applying the following change of basis2

φ̃a =

(
x− 2 p− 5A, y, x+ 3 p, x− 2 p− 2A, f +

πQ

8P
, k +

πQ

8P
, F, Φ

)
. (2.8)

There is one relation between the constants Xa that has to be obeyed on the whole

space of solutions. Namely, the zero-energy condition

6X2 − 4X3 − 6P X5 − 9P X7 = 0 . (2.9)

Another integration constant, Y1 as it happens, looks naively like it can be gauged away

by a rescaling of the four-dimensional coordinates but as we will see later plays a crucial

role in the physics. We are therefore left with fifteen meaningful integration constants.

Out of those fifteen parameters, the one called X1 plays a key role. Indeed, the force

exterted on a probe D3-brane is directly proportional to it and does not depend on any

2Note that φ̃4 is the perturbation to the warp factor, namely φ̃4 = −2 Ã, since the warp factor of the

KS theory (2.5) is such that h(τ) ≡ e4 Ã = e4A+4 p−2 x. Cf. also equation (2.11) below.

– 5 –



J
H
E
P
0
6
(
2
0
1
3
)
0
6
0

other integration constant [5]. Its expression was found in [7] and is given by

FD3+ =
2

3
e−2x0ξ1

=
2

3
e−2x0 X1 h(τ) ,

=
32

3

22/3X1

(sinh 2 τ − 2 τ)2/3
. (2.10)

One can also use the conventions of [16] to describe the same result for a first order

expansion around any warped Calabi-Yau background with ISD flux. Here the derivative

of the DBI and WZ actions for D3-branes are respectively proportional to the warp factor

e4 Ã and the four-form RR potential C4 = αdx0 ∧ . . .∧ dx3, where in the language of (2.1)

and (2.2), we have

Ã = A+ p− x

2
, α′ = −e4A+4 p−4x

[
πQ

4
+ k F + f (2P − F )

]
. (2.11)

The force is found to be

FD3± = Φ′∓ , where Φ± = e4 Ã ± α , (2.12)

and by D3− we mean D3-branes. The combinations Φ± are sourced by D3± respectively,

and by |G±|2 [10, 17] where G± = G3 ∓ i ∗G3 and G3 = F3 + ie−φH3.

3 Our analytic solution for the full space of first-order deformations

around KS

In a previous work [6], we found that the fully analytic generic solution to the most general

first-order deformation of the Klebanov-Strassler background involves at most two nested

integrals of the form ∫ τ

h(u) f(u) du , or

∫ τ

j(u) f(u) du , (3.1)

where f(τ) is a certain combination of hyperbolic functions. Expressions for the warp factor

h(τ) of the KS background and its Green’s function j(τ) are provided in (2.5) and (2.6).

Let us illustrate this with the result for φ̃8, corresponding to shifts in the dilaton. The

analytic solutions for all seven remaining modes are consigned to appendix B, and more

details of the derivation can be found in [5, 6].

φ̃8 = Y8 − 64X8 j(τ) +
X7

P
h(τ)

− 64P X6

∫ τ

1

(u cothu− 1)

sinh2 u (coshu sinhu− u)2/3
du

+ 2
X5

P
h(τ) +

16

3
X1 csch2 τ (cosh τ sinh τ − τ)1/3 h(τ)

+
64

9
X1 h(τ) j(τ)− 32

9
X1

∫ τ

1

(sinh2 u+ 1− u cothu)

sinh2 u (coshu sinhu− u)2/3
h(u) du . (3.2)
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Figure 1. The profile of the field φ̃8 corresponding to a shift of the dilaton, for the following choices

of integration constants (with e.g. P = 1). Blue, also labelled a©: X1 = 1, X5 = − 15
2 , X6 = X7 = 5,

X8 = 2, Y8 = −88.05; red b©: X1 = X6 = X7 = 1, X5 = − 7
6 , X8 = 1.8, Y8 = −111.5; yellow c©:

X1 = X7 = 2, X5 = − 7
6 , X6 = 8.608, X8 = −0.843, Y8 = −133.9. In each case, Y8 is fixed so as to

ensure that φ̃8(∞) = 0.

We have chosen to integrate in the domain [1, τ ], given that many of the integrands (like

the one from the last term above) are infrared-divergent. Once the limits of integration

are fixed, the constant Y8 in (3.2) is defined unambiguously. The profile for φ̃8 is given in

figure 1.

The infrared and ultraviolet behaviors of the modes are given in appendix C. Some of

the integration constants appearing in the infrared expansions (like Y IR
3 or Y IR

6 ) correspond

to unphysical divergences of various fields, and we will set them to zero. Other constants

(like Y IR
7 or X1) correspond to physical divergences in the warp factor and in the RR

five-form field strength coming from the presence of smeared anti-D3 branes, and we need

to keep them in the final solution. We will explain this procedure when we construct the

antibrane solution in section 6.

In order to stress out how the integration constants Xa and Y a are paired into nor-

malizable and non-normalizable modes we also remind the reader, in table 1, of the UV

behaviors of those modes [5], which one can also extract from the expansions in appendix C.

4 Relating the IR and UV integration constants

Given that ultimately we will have to impose boundary conditions on the generic analytic

solution to the full space of first order deformations around KS, we should look at the

IR and UV behavior of the modes φ̃a. Their somewhat lengthy analytic expressions are

gathered in appendix B and were first found in [6]. Moreover, it is not enough to consider

– 7 –
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dim ∆ non-norm/norm integration constants

8 r4/r−8 Y4/X1

7 r3/r−7 Y5/X6

6 r2/r−6 X3/Y3

5 r/r−5 −
4 r0/r−4 Y7, Y8, Y1/X5, X4, X8

3 r−1/r−3 X2, X7/Y6, Y2

2 r−2/r−2 −

Table 1. The UV behavior of all sixteen modes for the SU(2)×SU(2)×Z2-symmetric deformation

Ansatz around the Klebanov-Strassler solution.

the expansions shown in appendix C. The zeroth-order terms in the expansions collected in

that appendix include arbitrary integration constants coming from indefinite integrations,

which are generically denoted as Y IR
a , Y UV

a . In order to determine how the Y IR
a ’s are related

to the Y UV
a ’s and thus to connect the IR and UV regions, we have to perform a numerical

integration that will fix Y UV
a as follows:

Y UV
a = Y IR

a +
8∑
b=1

Na
bXb , (4.1)

where N is a matrix of numerical coefficients arising out of evalutions of the single and

double integrals appearing in the analytic solutions for the φ̃a modes.

4.1 Our results

All in all, following the procedure we have just outlined, the relations between all3 the Y UV
a

and Y IR
a that we have derived are as follows:



Y UV
8

Y UV
2

Y UV
3

Y UV
1

Y UV
5

Y UV
6

Y UV
7


=



Y IR
8

Y IR
2

Y IR
3 − 2Y IR

2

Y IR
1 − 5

3 Y
IR

2

Y IR
5 + P

6 Y
IR

8

Y IR
6 + 3P

2 Y IR
2 − P

2 Y
IR

8

Y IR
7 − P Y IR

2 + P Y IR
8


+ N ·



X1

X2

X3

X4

X5

X6

X7

X8


, (4.2)

3Except Y4, which is far more difficult to get and will not be needed for our following analysis in any case.
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with the matrix N

N =



−235.3P 2 0 0 0 −36.47P 35.71P −18.24P 53.56

−3.870P 2 0 83.34 7.791 83.34P −12.37P 166.7P 0

93.63P 2 250.0 206.7 93.84 −284.0P 61.22P −243.8P 0

−123.8P 2 −40.25 70.31 −1.827 22.93P 35.50P 71.33P 0

−165.9P 3 −20.16P 19.52P 1.488P 14.08P 2 11.90P 2 36.32P 2 17.85P

100.6P 3 −166.7P 81.27P −46.06P 221.4P 2 −48.57P 2 265.8P 2 −8.545P

−225.8P 3 83.34P −94.65P 16.52P −158.9P 2 35.92P 2 −221.4P 2 17.09P


.

The above relations (4.2) depend at an intermediary stage on our results for the relation

between the integration constants Ya that appear in the analytic solution (B.11)–(B.23)

and the constants Y IR
a that appear in the IR expansions (C.3)–(C.10), obtained via the

method summarized at the beginning of this section and further expanded upon in the next

subsection. We provide them here as a matter of having accessible intermediate results:

Y IR
8

Y IR
2

Y IR
3

Y IR
1

Y IR
5

Y IR
6

Y IR
7


=



Y8
Y2

2Y2 + Y3
Y1

Y5 − P
6 Y8

−P
2 Y2 + Y6
P Y2 + Y7


+ M(Y IR,Y ) ·



X1

X2

X3

X4

X5

X6

X7

X8


, (4.3)

M(Y IR,Y ) =



352.6P 2 0 0 0 36.47P −41.56P 18.24P −53.56

25.86P 2 0 −33.23 3.918 −38.81P −3.432P −69.25P 0

−18.62P 2 −99.69 15.54 −0.9673 7.797P −7.959P 15.92P 0

144.4P 2 98.79 −67.47 5.146 −81.34P −44.35P −153.9P 0

92.62P 3 12.26P −9.501P −4.435P −16.54P 2 −18.03P 2 −22.52P 2 −11.85P

8.129P 3 24.44P −1.632P 1.147P −4.773P 2 2.180P 2 −11.20P 2 −3.979P

−1.307P 3 −38.81P −4.754P 3.491P 1.749P 2 3.599P 2 −6.256P 2 7.959P


.

Analogously, the link between the parameters Y UV
a and Ya can similarly be obtained from

the UV/IR relation (4.2).

4.2 An illustration of the procedure

As an example making this procedure plainer to the reader, we show how we relate Y UV
8

and Y IR
8 . This is a three-stage procedure:

(i) first, we relate Y IR
8 and the parameter Y8 appearing in (3.2);

(ii) we next obtain the relation between Y UV
8 and Y8;

(iii) finally, using results from the above steps, we get Y UV
8 in terms of Y IR

8 .

In order to implement step (i) above and relate Y IR
8 to Y8, we expand the integrands

entering the IR expansion of the solution to the φ̃8 equation up to a certain power in τ .
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We then evaluate the indefinite integral and call Y IR
8 the constant term in φ̃8. The first

few terms in those expansions are given by (C.3), which we provide here for convenience:

φ̃IR
8 =

1

τ

(
32

3

(
2

3

)1/3

(3PX6 − h0X1) + 32 · 21/3 · 32/3X8

)
+ Y IR

8 +O(τ) . (4.4)

We now have to match (4.4) at some small τ with the numerical value of φ̃8 that

we obtain by performing the integrals in (3.2) numerically. Since the expansions for the

integrands are good up to τ > 1, we did choose to match at τ = 1, where the integrals

that enter the solutions for the φ̃’s are zero by definition. Evaluating numerically (3.2) at

τ = 1, we find

φ̃8(τ = 1) = Y8 + 84.0493P 2X1 + 28.5159P X5 + 14.2579P X7 + 41.2221X8 , (4.5)

while from the IR expansion of φ̃8 (4.4), we have

φ̃IR
8 (1) = Y IR

8 − 268.524P 2X1 − 7.9588P X5 + 41.5621P X6

−3.97940P X7 + 94.786X8 . (4.6)

Comparing the above two results, (4.5) and (4.6), we finally obtain the end-result of step (i)

above:

Y IR
8 = Y8 + 352.574P 2X1 + 36.4747P X5 − 41.5621P X6

+18.2373P X7 − 53.5642X8 . (4.7)

With this relation at hand, we can furthermore make sure, as one more consistency test,

that the numerical integrals and the series agree at small τ . The result is shown on figure 2.

We go through the same recipe for the UV and compare the value of the UV series

of the integrands with the value of φ̃8 that we have obtained by performing the integrals

numerically4 at τ = 15. When the dust settles down, we find the following relation between

Y UV
8 and Y8:

Y UV
8 = Y8 + 117.318P 2X1 − 5.85263P X6 . (4.8)

As one extra check, inserting the above result in the UV expansions, we can verify that

the UV series approximates well our numerical results at large τ . This can also be see on

figure 2.

Note that for φ̃8 there is a rather large range of overlap between its IR and UV series

expansions. So, with hindsight, for this particular mode, we could have avoided going

through tedious numerical work. On the other hand, for most of the other φ̃a fields, the

overlap is much narrower. Therefore, in order to attain satisfactory precision in relating

the IR and UV integration constants, we have opted for a careful numerical analysis.

4With as much precision as desired. Here, for both IR and UV expansions, we have settled for 20 orders

of WorkingPrecision using Mathematica. The UV series expansions were derived up to order 15.
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Figure 2. The numerical solution for the field φ̃8 for X1 = 1, X5 = − 15
2 , X6 = 5, X7 = 5, X8 = 2,

Y8 = −88.05, P = 1 (underlying blue solid line). The red and orange dashed lines correspond

respectively to the IR and UV expansions.

5 Asymptotically KS solutions and their field theory interpretation

Having found the full 15-dimensional space of perturbative solutions around the KS back-

ground, we would now like to develop the machinery that will allow us to identify whether

the antibrane solution is in the same theory as the supersymmetric background into which

it is conjectured to decay [3]. However, as mentioned in the introduction, distinguishing

between asymptotically-KS solutions and arguing which background is dual to which field

theory using only UV data is not trivial even for supersymmetric solutions, essentially

because of the existence of the scale deformation Y1, which equivalently can be traded for

the ε parameter that characterizes the size of the deformed conifold before the warping.

If two solutions differ by non-normalizable deformations, they are dual to two different

field theories. However, our fifteen-dimensional deformation space has the peculiarity that

there are seven pairs of normalizable/non-normalizable modes and then one extra mode Y1.

The putative partner to Y1 is eliminated by the zero-energy condition and it may seem that

Y1 itself is a gauge artifact which can be removed by rescaling the four-dimensional space-

time coordinates. As we will mention in more detail below, while for a single vacuum this is

true, if there are two isolated vacua in the same theory then there remains a dimensionless

number (essentially the ratio of the confinement scales) which can be attributed to Y1.

One can inquire whether two solutions that have the same non-normalizable modes

but two different ε’s, hence two different scale deformations, are dual to the same field

theory. The answer is not clear, because one can change ε and at the same time change

also the number of mobile branes, keeping the total charge at infinity constant. Changing

ε changes the volume of the space, and since the space has charge dissolved in flux, one

also changes the total charge; one can compensate for this change by introducing or taking

away mobile branes.
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Hence, a vacuum with no mobile branes and one value for ε has exactly the same UV

data as a vacuum with one mobile brane and another value of ε, or a vacuum with, say,

17 mobile branes and yet another value of ε. Clearly these solutions cannot be all dual to

vacua of the same KS field theory. On the other hand, a background with M mobile branes

(where M is the amount of RR three-form flux on the KS three-cycle) and a certain value

of ε and another one with no mobile branes were argued in [13] to be dual respectively

to the mesonic vacuum and the baryonic vacuum of the same SU(kM) × SU(kM + M)

theory. Hence, even in the supersymmetric theory, one cannot decide whether two vacua

with different scales and different amounts of mobile branes are in the same theory by

simply examining their UV data.

In this section, we discuss the supersymmetric KS situation in detail, and argue that in

order to be able to use UV data to distinguish between two supersymmetric asymptotically-

KS solutions that should not be dual to the same theory, one must introduce an additional

criterion. The most obvious choice is requiring that the value of the NSNS B2 field that

wraps the S2 which shrinks to zero size at the conifold tip must be zero, and can only

jump by integral periods. After all, the S2 is topologically trivial, and if the integral of

B2 is nonzero, one can stay at a fixed radius, consider a very small closed fundamental

string at the north pole and take it around the S2 to the south pole; during this process

its world-sheet action will pick up a phase proportional to the B2 integral. If one now

brings back the string to the north pole, the string will interfere destructively with itself

unless the integral of B2 on S2 is an integer.5 This argument is similar to that ruling

out Dirac strings, and in principle should also hold in the presence of D3 or anti-D3

branes.

A second possible criterion is requiring that the integrals of the H3 from the origin to a

certain holographic screen differ by an integer amount for two solutions in the same theory,

or equivalently that the difference in the number of Seiberg duality cascades between two

solutions dual to vacua of the same theory has to be integer-valued. This criterion has a

clear physical justification for compact settings, where the KS throat is seen as the zoom-in

of a compact CY, and where the three-cycle wrapped by H3 that appears non-compact from

a KS perspective is in fact embedded into a compact CY three-cycle. However, for a non-

compact KS solution this criterion is very hard to justify from a holographic perspective,

because it involves integrals over the whole bulk.

Since neither the first nor the second criterion satisfy a “hard core holography” point

of view, according to which all the data of the boundary theory must be readable from

the UV of solution that is regular in the bulk, one can also try to use the analysis of [13]

to reverse-engineer such a criterion. This third criterion boils down to imposing that two

solutions must satisfy equation (5.31) (and its equivalents for higher mesonic vacua) in

order to describe vacua of the same theory. This criterion, if correct, would allow one to

distinguish between vacua with various numbers of mobile branes without introducing any

extra IR boundary conditions, and using only UV data. However, it certainly begs for a

more physical explanation.

5We thank Nick Warner for this argument.
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Of course, another possibility is that the holography is just not refined-enough to dis-

tinguish between these different theories, especially because we are dealing with cascading

solutions that are not asymptotically AdS, cannot be thought of as the near-horizon of any

brane, and have an infinite charge unless one imposes an UV cut-off.

In this section, we will use the first criterion, and give a holographic recipe for distin-

guishing between asymptotically-KS vacua that have different numbers of mobile branes.

5.1 Maxwell charge, Page charge and mobile D3-branes

For a supergravity solution with non-trivial Wess-Zumino terms one can generally define

three different types of charges [18, 19], which we review in this section. The D3-Page

charge, specialized to the KS background is

QPage
D3 =

1

(4π2)2

∫
T 1,1

(F5 −B2 ∧ F3) . (5.1)

This is conserved and is independent of the radius at which it is evaluated. In string theory

it must also be quantized. If we shift B2 by a small gauge transformation B2 → B2+dΛ1 for

some one-form Λ1, the charge stays invariant. In principle there are two independent ways

to generate a non-zero, integer-valued QPage
D3 starting from the smooth KS background:

F5 → F5 + 27Qπ volT 1,1 , (5.2)

B2 → B2 +
p

M
π ω2 , (5.3)

⇒ QPage
D3 = Q− p (5.4)

where (Q, p) ∈ Z2, M is related to P by (2.7) and

volT 1,1 =
1

108
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) . (5.5)

Having Q 6= 0 generates a singularity in both the warp factor and ∗F5, which one must

interpret as due to Q D3 branes smeared on the tip of the deformed conifold. On the other

hand, the meaning of the singularity due to p 6= 0 is more subtle, and if one imposes as an

IR regularity condition that the B2 field at the KS tip be zero or an integer mod M, then

QPage
D3 = Q measures the number (modulo M) of mobile BPS D3-branes in any particular

KS background.

The Maxwell D3-charge is

QMax
D3 =

1

(4π2)2

∫
T 1,1
rc

F5 , (5.6)

where the integral is performed on a Gaussian surface at the UV cut-off r = rc. There are

two physically distinct contributions to the Maxwell charge, from mobile branes (qb) and
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from charge dissolved in flux (qf ):

QMax
D3 = qb + qf , (5.7)

qb =
1

(4π2)2

∫
T 1,1
0

F5 , (5.8)

qf =
1

(4π2)2

(∫
T 1,1
rc

F5 −
∫
T 1,1
0

F5

)
=

1

(4π2)2

∫
M6

H3 ∧ F3 . (5.9)

The Maxwell charge depends on the scale at which it is measured, but if we fix a holographic

screen, we expect physical processes to preserve its value at the screen. In particular, for a

given scale, it must be the same if two solutions are to describe different vacua of the same

theory. Using the Ansatz (2.2), this is

QMax
D3 = Q+

4

π
[(k − f)F + 2P f ] . (5.10)

Note that if we set
∫
S2 B2 = 0 at the tip (i.e. requiring f(τ = 0) = 0), then we have

Q = qb = QPage
D3 modulo M , while the second term in (5.10) gives the flux contribution to

the Maxwell charge.

5.2 A dictionary for the charges: two puzzles and two solutions

Our purpose is to establish using only UV data at a holographic screen whether two

asymptotically-KS solutions describe vacua of the same theory. Any particular KS field

theory is defined at a scale Λc through a gauge group SU(N1) × SU(N2) and the as-

sociated gauge couplings (g1, g2). The UV data of the supergravity theory consists of

QMax
D5 (= M),QMax

D3 ,
∫
S2 B2,Φ, and the “standard lore” dictionary between the supergravity

UV data and the field theory is

N1 = QMax
D3 +QMax

D5 , (5.11)

N2 = QMax
D3 , (5.12)

4π2

g2
1

+
4π2

g2
2

= πg−1
s e−Φ , (5.13)[

4π2

g2
1

− 4π2

g2
2

]
gs e

Φ =

[
1

2π α′

∫
S2

B2 − π
]

mod(2π) , (5.14)

as reviewed in [20]. We can also trade the integral of B2 for QPage
D3 using∫

S2
rc

B2 = (QMax
D3 −Q

Page
D3 )/QMax

D5 = qf/QMax
D5 +

∫
S2
0

B2 . (5.15)

As we will see shortly, this dictionary is in fact more involved.

All this data is defined in the supergravity solution at some UV cut-off rc related to

the field theory scale Λc. To obtain this relation, we change to a radial coordinate r such

that the metric on the transverse six-dimensional space asymptotes to a warped conical

metric:

ds2
10 = h−1/2 ds2

1,3 + h1/2 ds2
6 , (5.16)
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with

ds2
6 ∼ dr2 + r2 ds2

T 1,1 , r � 1 .

For any KS background (2.4), this r coordinate is related to the deformed-conifold τ coor-

dinate via

r2 =
3

25/3
ε

4/3
0 e2τ/3. (5.17)

The field theory cut-off Λc should then be identified with the holographic cut-off rc. Note

that from the point of view of the τ coordinate, the parameter ε only enters the function A

from the Ansatz, and changing it corresponds to a rescaling of the four-dimensional metric

(see (2.4)).

We now run into the first puzzle, which can be expressed on the supergravity side alone.

According to the dictionary above, since the field theory gauge group ranks depend only

on QMax
D3 but not on QPage

D3 or qb, one can see from equation (5.7) that the duals to solutions

with different qb and qf but the same QMax
D3 have the same charges and should be dual to

the same field theory. This is achieved by shortening the domain of integration in (5.9),

which lowers qf , and by increasing qb to compensate this. Hence, the only UV holographic

data that will be different between, say, a solution with no mobile branes and a solution

with one mobile brane will be the integral of B2 on the S2. However, this difference is not

gauge-invariant, and if one does not impose any infrared boundary condition on B2, we can

see from (5.15) that this value is arbitrary, and hence nothing in the UV will distinguish

between a solution with one mobile brane and one with no mobile brane; we expect this to

be incorrect.

One way to remedy this is to impose an IR boundary condition, namely that the

integral of B2 on the shrunken S2 at the tip be gauge-equivalent to zero. If so, then two

solutions with different numbers of mobile branes and different qf will have different B

fields in the UV, and will correspond to different theories. The only situation when the

UV fields will be the same is when the number of mobile branes differs by multiples of

M , when indeed we expect these solutions to correspond to different vacua of the same

theory [13]. In the next subsection we will illustrate this in detail using our perturbation

theory machinery.

The second quandary has to do with the field theory interpretation of two solutions

that have the same QMax
D3 but different numbers of mobile branes. If one is to take a

holographic screen at rc and use the dictionary (5.11), (5.12), (5.13), (5.14), a solution

with p < M mobile branes and one with none will be dual to two field theories that have

the same ranks of the gauge group at the same cutoff, but differ only in the coupling

constant. Furthermore, a solution that has QMax
D3 = M + 1 at a holographic screen at rc

will have QMax
D3 = M at a holographic screen placed further down in the infrared; this would

appear to imply that a theory with rank SU(2M + 1) × SU(M + 1) at some energy flows

at lower energies to a theory with rank SU(2M)×SU(M), then SU(2M − 1)×SU(M − 1),

which is definitely incorrect.

A partial solution to this puzzle is given by a comment in [20], where it was noted

that one cannot relate the UV supergravity data to field theory data at an arbitrary UV

holographic screen. The dictionary (5.11), (5.12), (5.13), (5.14) can only be used at special
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values of rc, given by the requirement that from the infrared up to that scale the number

of duality cascades is an integer, or alternatively, that the value of qf is a multiple of M .

This is a stronger requirement than demanding that the ranks of the putative dual gauge

groups are integer-valued. We will call for convenience the holographic screens at which

one can define the dictionary “K-screens”.

However, this cannot be the whole story. As we can see from equation (5.15), this

restriction alongside the requirement that B2 be zero at the tip imply that the value of the

B2 integral at the K-screen is a multiple of M , and hence the two field theory coupling

constants will have the same values at any K-screen. Thus, at those screens (which are

the only places where the field theory has an approximate Lagrangian description), the

right-hand side of equation (5.14) is always equal to π, and the coupling constant of one of

the gauge group always becomes infinite. Conversely, out of the set of possible field theory

data defined at a scale Λc via the 4 parameters N1, N2, g1 and g2, the KS supergravity

solutions would only describe field theories that belong to a codimension-one subspace,

and hence not the most generic field theory.

In order to avoid the above-mentioned problems, equations (5.13) and (5.14) should

be used to obtain the values of the coupling constants as a function of the corresponding

energy Λc. However, the ranks of the gauge groups given in equations (5.11), (5.12) must

be read from the K-screen right above it. Those equations then provide the ranks of the

gauge groups both at the scale corresponding to rc and at the scale corresponding to the

K-screen above. The ranks do not change when one changes the position of the holographic

screen by decreasing rc, unless one crosses another K-screen, which corresponds to a Seiberg

duality in the dual theory.

One can also ask how can a holographist tell, using purely UV data, where the K-

screen lies. The answer is given by (5.14) — the screen is at the location above rc where

the B2 integral is gauge equivalent to zero. Hence, if the B2 integral at the tip is zero, this

dictionary gives a way to relate all 4 parameters of the field theory to the four parameters

of the supergravity solution, using UV data alone.

5.3 Baryonic and mesonic branches — a perturbation-theory analysis

When the ranks of the two gauge groups are

N1 = (k + 1)M , N2 = kM , k ∈ Z (5.18)

the theory has two classically disconnected supersymmetric moduli spaces, the baryonic and

mesonic branches [13]. For more general (N1, N2) the mesonic branch is supersymmetric

while the baryonic branch is lifted. It is instructive to use the dictionary above together with

the infrared boundary condition for B2 to demonstrate in the supergravity perturbation

theory framework we have developed that when they exist, both the baryonic and mesonic

branches are indeed different vacua of the same theory.

As mentioned in section (5.1), if one imposes
∫
S2 B2 = 0 modulo M at the tip, then

the function f shoud go to zero at the origin. On the other hand, we have from (C.7) in

appendix C that

φ̃5(τ = 0) = f(τ = 0) +
πQ

2M
= Y IR

7 , (5.19)
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where we have set Y IR
6 = 0 since this mode diverges as 1/τ3, and we have used the relation

between P and M from (2.7). This implies that in our perturbation theory

QPage
D3 = Q =

2

π
M Y IR

7 . (5.20)

Setting this equal to an integer multiple of −M , leads to6

QPage
D3 = −`M , (5.21)

⇒ Y IR
7 = −π

2
` . (5.22)

Physically this corresponds to adding `M > 0 mobile D3-branes smeared on the tip of the

KS solution and for each ` ∈ Z this provides the bulk dual to the `-th mesonic branch. Let

us note for later use that from (C.10), appendix C, we get that the warp factor at the tip is

τ φ̃4(0) = −6
M

h0

(
2

3

)1
3

Y IR
7 =

3

h0

(
2

3

)1
3

π |Q| . (5.23)

To compare the Maxwell charges of the baryonic and mesonic branches, we must

demand that they are defined at the same scale Λc. To do so we must address the fact that

the constant ε0 appearing in (5.17) is not gauge invariant and can be set to one by rescaling

the space-time coordinates xµ. As such one would normally fix the gauge and eliminate

this constant. Indeed, ε0 is dimensionful and just serves to fix the units which may as well

be set to unity. However the ratio between the value of ε0 in two different KS vacua, such

as the mesonic and baryonic branches, is dimensionless and physically relevant.

This is similar to the familiar domain wall solution from one AdS vacuum to another.

In either vacuum the AdS radius sets the units in which all other dimensionful numbers

are measured but the ratio of the two radii is related to the ratio of central charges and

is physically meaningful. Having said this, it is important to establish that in our Ansatz

the rescaling of xµ is done by the constant shift in A, given in the UV by

A =
1

3
(φ̃4 − φ̃1) = −1

5
Y UV

1 +O(1/τ) , (5.24)

where we have preemptively used the UV boundary conditions (6.12) introduced below.

So, allowing for just Y7 and Y1 to be non-zero, we can find the supergravity solution of the

mesonic branch as a perturbation of the baryonic branch. Using (5.10) and (2.4), along

with (C.18)–(C.20), we find that in our perturbation theory the zeroth- and first-order

Maxwell charge at a particular radius rc � 1, is7

QMax
D3 = −8P 2

π
(τ − 1) +

8P

π
Y UV

7 +O
(
e−τ/3

)
. (5.25)

Using an expansion of ε

ε = ε0

(
1 +

ε1

ε0
+O(Z2)

)
, (5.26)

6In our conventions the KS background has negative D3 charge.
7See footnote 6.
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where ε0 denotes that of the baryonic branch, it is apparent that if we want to stay at a

fixed rc, then (5.17) requires at first order

δτ = −2
ε1

ε0
. (5.27)

Demanding that QMax
D3 at rc is equal for the baryonic and mesonic vacua, yields the relation

ε1

ε0
= −Y

UV
7

2P
. (5.28)

Using (4.2) and the fact that Xa = 0, we have Y UV
7 = Y IR

7 . Then, referring to (5.22),

we have
ε1

ε0
=
` π

M
, (5.29)

which is the first-order approximation to the known result ε` = ε0 e
` π/M [10, 13].

Now, we can find the value of the other integration constant, Y1. Using the way that ε

enters into the PT Ansatz through A, equation (2.4) and the UV expansions of section (C.2)

for A = (φ̃4 − φ̃1)/3 we get
ε1

ε0
= −3Y UV

1

10
. (5.30)

Combining this with (5.28) results in an expression for Y1 in terms of Y7:

Y UV
1 =

5

3P
Y UV

7 . (5.31)

The relations obtained in this subsection can also be used to formulate the second and

the third criteria for distinguishing between asymptotically-KS solutions.

6 Finding the anti-D3 brane solution

We can now summarize the necessary ingredients for identifying the candidate supergravity

solution describing the backreaction of anti-D3 branes. Firstly, we must eliminate unphys-

ical IR singularities. For many modes this is entirely unambiguous, for other modes this

can be somewhat subtle and as such we will discuss each mode as it arises. Secondly, we

demand that the UV asymptotics are the same as for the original KS solution which we

are perturbing around.

In total, we have sixteen integration constants but the seven physical modes (dual to

seven gauge invariant operators) account for just fourteen of these. In addition, one is

accounted for by the zero energy condition (2.9), which we use to eliminate X5:

X5 =
1

P

(
X2 −

2

3
X3

)
− 3

2
X7 . (6.1)

The zero-energy condition is necessary to completely fix the reparameterization invariance

of the radial coordinate (see [21] for a very explicit description of this). The final mode

corresponds to the rescaling of xµ and for reasons discussed above this is an important

physical constant which is given again by (5.30). It was pointed out in the revised version
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of [10] that the two vacua of the Klebanov-Strassler theory necessarily have different values

of ε. With our technology we are able to in fact compute the precise ratio of ε in the two

different vacua.

The reader who is more interested in the end-process and in seeing or using our solution

than in the boundary conditions we imposed to pick it out of the full parameter space of

first-order deformations around the Klebanov-Strassler background can directly proceed to

section 6.3.

6.1 IR boundary conditions

We impose that the divergences in the IR for all the fields are zero, except for φ̃4 and
√
F2

5 ,

the warp factor and 5-form flux along the brane, which should go respectively like 1/τ and

1/τ2 due to the anti-D3-brane sources. The latter means that φ̃5 should go to a constant.

From the divergent term in φ̃8 appearing in equation (C.3) of appendix C, one finds

the first relation among X’s and Y ’s parameters that must be enforced:

X8 =
1

9
(h0X1 − 3P X6) . (6.2)

From the divergent terms in φ̃2 we get upon using (6.1) that

Y IR
2 = 0 , X6 =

h0X1 − 3X4

6P
. (6.3)

Out of the divergent terms in φ̃3 we set (after using (6.1) and (6.3))

Y IR
3 = 0 , X4 =

2

3
h0X1 . (6.4)

Note that the log τ/τ term is automatically zero once we take into account (6.3). Finally,

the divergent term in φ̃6 requires

Y IR
6 = 0 . (6.5)

Likewise, the other piece is zero upon using (6.3), (6.4).

In summary, out of requiring IR regularity in all fields apart from the warp factor, we

have obtained the following relations

Y IR
2 = Y IR

3 = Y IR
6 = 0 , X4 =

2

3
h0X1 , X6 = − h0

6P
X1 , X8 =

1

6
h0X1 . (6.6)

They are part of the relations that pick out of the full space of first order KS deformations

the candidate solution describing the dual to a metastable state, taking into account the

backreaction of anti-branes onto the zeroth order background. Let us move on and impose

the remaining IR boundary conditions.

We will now impose that there are N̄ anti-D3 sources at the tip. The IR regularity

conditions (6.6) yields

φ̃5(0) = Y IR
7 , (6.7)

as in the supersymmetric case described in section 5.3, equation (5.19). We require Q = N̄

(cf. footnote 6), which results in

Y IR
7 =

π

8P
N̄ , (6.8)
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where we have used (5.20) and (2.7). On the other hand, the warp factor is such that

τ φ̃4(0) = 8

(
2

3

)1
3
(
h0X1 −

3P

h0
Y IR

7

)
. (6.9)

It ensues from requiring this exhibits the expected behavior for regular 3-branes (given

in (5.23)) that

X1 =
3π

4h2
0

N̄ . (6.10)

Before moving on to discussing UV boundary conditions in the subsequent section, we

note that inserting (6.10) in (2.10) leads to the following expression for the force exerted

on a D3-brane probing this backreacted supersymmetry-breaking solution:

FD3 =
8π

h2
0

22/3 N̄

(sinh 2 τ − 2 τ)2/3
. (6.11)

This is precisely equal to the force on a probe anti-D3 brane exerted by N̄ D3-branes

that is computed in KKLMMT [8]. This provides further support that our IR boundary

conditions are the right ones for anti-D3 branes.

6.2 UV boundary conditions

As part of our UV boundary conditions, we impose the absence of non-normalizable modes

(we will come back to discussing this point in section 7.2). Requiring no divergent terms

in φ̃3, φ̃4 as well as φ̃5, φ̃6 and φ̃7 implies

Y UV
4 = 0 , X3 = 0 , Y UV

5 = 0 . (6.12)

Requiring no e−τ/3 ∼ 1/r terms in φ̃2, and using (6.12) then determines

X7 = 0 , X2 = −2

9
h0X1 . (6.13)

Besides, we do not want to turn on the non-normalizable mode that shifts the dilaton,

which would correspond in the gauge theory to changing the sum of the coupling constants

for the gauge group. Hence, we must enforce that

Y UV
8 = 0 . (6.14)

From (6.12) and (6.14), we see that the Maxwell charge in the UV is the same as in

section 5.3, equation (5.25). We should demand that at a given bulk radial slice r, this

is the same as the Maxwell charge for the supersymmetric vacuum, which is in the (first)

mesonic branch and has M − N̄ = 4P − N̄ D3-branes at the bottom. Keeping in mind

that ε is allowed to differ in the two vacua, which using (5.17) implies that the Maxwell

charges have to be evaluated at different τ , we require that8

QMax
D3 = −8P 2

π
(τ0 + δτms − 1) +

8P

π
Y UV

7 (6.15)

!
= −8P 2

π
(τ0 + δτ1 − 1)− 4P + N̄ . (6.16)

8See figure 4 below.
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Here δτ1 corresponds to the cut-off associated to the first mesonic branch. It is given by

δτ1 = − π

2P
, (6.17)

where we have used9 (5.27) and (5.29) for ` = 1. We therefore have

16P 2

π

εms
ε0

+
8P

π
Y UV

7 = N̄ . (6.18)

Using (5.30) to relate the change in ε to Y UV
1 leads to

− 8P 2

π

3

5
Y UV

1 +
8P

π
Y UV

7 − N̄ = 0 . (6.19)

Note that if Y UV
7 were equal to Y IR

7 , the latter being given in (6.8), it would ensue that

Y UV
1 = 0 and no change in ε would be necessary. However, consequent on inserting all our

boundary conditions apart from the one associated to Y1 in (4.2), one finds

8P

π
Y UV

7 =
8P

π
5.64178Y IR

7 = 5.64178 N̄ . (6.20)

The shift in ε can be tuned to cancel the difference in the first-order Maxwell charge QMax

between the anti-D3 and the supersymmetric solution.

6.3 The perturbative solution for anti-D3 branes in KS

In summary, from the IR and the UV boundary conditions, all the integration constants

turn out to be expressed in terms of the number N̄ of anti-D3’s at the tip of the throat. As

a reminder, h0 = h(τ = 0) denotes the zeroth order warp factor of the Klebanov-Strassler

solution (2.5) evaluated at the tip. Below we collect the outcome of the analysis from the

previous two subsections:

X1 =
3π

4h2
0

N̄ , Y UV
1 =

3.03804

P 2
N̄ , Y IR

1 =
4.33971

P 2
N̄ ,

X2 = − π

6h0
N̄ Y IR

2 = 0 , Y UV
2 = −1.48261

P 2
N̄ ,

X3 = 0 , Y IR
3 = 0 , Y UV

3 =
8.40238

P 2
N̄ ,

X4 =
π

2h0
N̄ , Y UV

4 = 0 , (6.21)

X5 = − π

6P h0
N̄ , Y UV

5 = 0 , Y IR
5 =

0.70514

P
N̄ ,

X6 = − π

8P h0
N̄ , Y IR

6 = 0 , Y UV
6 = −4.08244

P
N̄ ,

X7 = 0 , Y IR
7 =

π

8P
N̄ , Y UV

7 =
2.21552

P
N̄ ,

X8 =
π

8h0
N̄ , Y UV

8 = 0 , Y IR
8 =

0.234935

P 2
N̄ .

9Recall that P = 1
4
M α′. For convenience we have fixed α′ = 1 throughout.
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Figure 3. The profile of the first-order Maxwell charge for the anti-D3 solution, setting N̄ = 1.

Figure 4. Total Maxwell charge for the anti-D3 solution (blue), for the supersymmetric vacuum

from the first mesonic branch (red) and for the “would-be supersymmetric vacuum in the baryonic

branch” (black dashed line), fixing N̄ = 1, M = 3 (P = 3
4 ).

All the constants in the leftmost and middle columns, with the exception of Y UV
1 , have been

obtained by directly imposing boundary conditions in either the IR or UV. From there on,

Y UV
1 was obtained from Y UV

7 via (6.19). Finally, the rightmost column was derived from

the numerical integration which is tabulated in (4.2). We have not computed the value of

Y IR
4 as it is more involved than the others and we do not need it, but in principle it can

be done through numerical integration of the analytic solution (B.18).

It is interesting to observe the profile of the first-order perturbation to the Maxwell D3

charge QMax
D3 , given in figure 3 for N̄ = 1 (see footnote 6). Note that it does not increase

monotonically.

On figure 4 we have plotted the total Maxwell D3 charge (i.e. the zeroth- plus first-

order contributions) for the anti-D3-brane solution, alongside the Maxwell charge of the
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supersymmetric vacuum (6.16), the latter belonging to the first mesonic branch. For the

purpose of illustrating equations (6.15)–(6.16), we also plot the “would-be supersymmetric

vacuum” in the baryonic branch, that we use as a reference to measure the difference in

UV cut-off, δτ . This branch obviously does not exist for N̄ 6= 0, but it is instructive to use

it as yardstick.

6.4 Asymptotics of the solution

The Green’s function for the KS background diverges in the IR (C.1), and we denote the

constant in its series expansion around τ = 0 as j0, eq. (C.2). The IR and UV series

expansions of the solution in terms of h0, j0 and X1 = 3π
4h20

N̄ are as follows.

6.4.1 Behavior in the infrared

In the IR the solution behaves as

φ̃8 = 33.1634P 2X1−
512

3

(
2

3

)2/3

P 2X1 τ +

[
64

27

(
2

3

)1/3

h0 P
2X1+

512

27

(
2

3

)1/3

j0 P
2X1

]
τ2

+O(τ3) , (6.22)

φ̃2 = −128

(
2

3

)2
3

P 2X1 τ +
128

81

(
2

3

)1
3

(h0 + 16P 2 j0)X1 τ
2 +O(τ3) , (6.23)

φ̃3 = −224

3

(
2

3

)2
3

P 2X1 τ +
128

405

(
2

3

)1
3

(h0 + 136P 2 j0)X1 τ
2 +O(τ3) , (6.24)

φ̃1 = 612.592P 2X1 −
704

3

(
2

3

)2
3

P 2X1 τ +
64

405

(
2

3

)1
3

(7h0 + 352P 2 j0)X1 τ
2 +O(τ3) ,

(6.25)

φ̃5 =
1

6
h2

0 P X1 − 4

(
2

3

)1
3

h0 P X1 τ
2 +O(τ3) , (6.26)

φ̃6 =
1

6
h2

0 P X1 −
16

3

(
2

3

)1
3

h0 P X1 +
2

81

(
4h2

0

P
− 160h0 j0 P + 10451.6P 3

)
X1 τ

+

(
4

3

(
2

3

)1
3

P h0 −
1280

9

(
2

3

)2
3

P 3

)
X1 τ

2 +O(τ3) , (6.27)

φ̃7 =
8

3

(
2

3

) 1
3

h0 P X1 τ − 83.769P 3X1 τ
2 +O(τ3) , (6.28)

φ̃4 =

(
4

(
2

3

)1
3

h0X1

)
1

τ
+ Y IR

4 +

(
8

15

(
2

3

)1
3

h0X1 −
64

3

(
2

3

)2
3

P 2X1

)
τ +O(τ2) . (6.29)
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6.4.2 UV behavior of the solution

As for the ultra-violet behavior of the solution, it is described by the following UV series

expansions:

φ̃8 = −64

3
21/3 e−4τ/3 h0X1 (τ − 1)− 288 22/3 e−8τ/3 P 2X1 +O(e−10τ/3) , (6.30)

φ̃2 = −418.571 e−τ P 2X1 +
16

3
21/3 e−7τ/3 h0X1 (1 + 8τ) +O(e−3τ ) , (6.31)

φ̃3 = −32

3
21/3 e−4τ/3 h0X1 + 2 e−2τ (1186.08− 418.571 τ)P 2X1 −

1152

5
22/3 e−8τ/3 P 2X1

+O(e−10τ/3) , (6.32)

φ̃1 = 428.85P 2X1 +
8

3
21/3 e−4τ/3 h0X1 −

2

3
e−2τ (1325.73− 837.143 τ)P 2X1

+
24

5
22/3 e−8τ/3 P 2 (29 + 40 τ)X1 +O(e−10τ/3) , (6.33)

φ̃5 = 312.743P 3X1 + e−τ (−1361.84 + 418.571 τ)P 3X1 − 4 21/3 e−4τ/3 h0 P X1 (1 + 8 τ)

+ 2 e−2τ (1361.84− 837.143 τ)P 3X1 +O(e−7τ/3) , (6.34)

φ̃6 = 312.743P 3X1 + e−τ (1361.84− 418.571 τ)P 3X1 − 4 21/3 e−4τ/3 h0 P X1(1 + 8 τ)

+ 2 e−2τ (1361.84− 837.143 τ)P 3X1 +O(e−7τ/3) , (6.35)

φ̃7 = e−τ (943.269− 418.571 τ)P 3X1

− 4

125
21/3 e−7τ/3 h0 P

(
1199 + 80 τ (1 + 10 τ)

)
X1 +O(e−11τ/3) , (6.36)

φ̃4 = 171.54P 3X1 +
4 21/3 e−4τ/3 h0 (7 + 32 τ)X1

3 (4 τ − 1)
− 625.486P 2X1

(4 τ − 1)
+O(e−2τ ) . (6.37)

7 Additional comments

Having solved for the full space of linearized perturbations around the Klebanov-Strassler

background, we now discuss other solutions that we easily obtain as a by-product of our

analysis, as well as other possible interpretations of our results.

7.1 Relation to previous works

The first attempt to construct the a linearized antibrane solution in the UV region alone

was [14], which studied several of the SU(2) × SU(2) × Z2-invariant modes around the

Klebanov-Tseytlin (KT) background [22]. Since the KT solution is a subset of the param-

etrization (2.1)–(2.2) given by

y(τ) = 0 , k(τ) = f(τ) , F (τ) = P , (7.1)

in our setup we can understand the perturbations around KTas solutions of a reduced

system of first-order differential equations in the Borokhov-Gubser formalism. The details

of this analysis, as well as the relation with the notations of [14] can be found in appendix D.

The “backreacted” KT solution contains some integration constants that cannot be fixed

– 24 –



J
H
E
P
0
6
(
2
0
1
3
)
0
6
0

by infrared boundary conditions, and hence we cannot relate them to the constant X1,

which is proportional to N̄ .

We can directly compare the UV expansion of our full KS solution (6.30)–(6.37) to the

perturbed KT solution of [14] and we find the following crucial discrepancy: the correct

UV expansion has terms of order O(r−3) in (6.31), (6.34), (6.35), (6.36) while the first

non-trivial terms in the solution of [14] are at O(r−4).

In hindsight this is not so surprising, since [14] only considered a subset of the modes,

and furthermore, the KT solution precisely agrees with the UV limit of the KS solution

only at leading order. At subleading order the KT solution has an ambiguity which can be

fixed to agree with the UV limit of the KS solution but then the lower-order perturbation

theory around each solution quantitatively differs. For this reason, we conclude that one

cannot derive the correct UV expansion for the anti-brane solution by starting with the

KT geometry. Another problematic issue with the Ansatz made in [14] is that, as we have

explicitly demonstrated in this work, the anti-D3-branes turns on modes which are outside

of the truncation, so it is not consistent to restrict oneself to this subset of mode. We refer

the reader to appendix D for a thorough analysis of those issues.

7.2 Gaugino masses

As an additional outcome of our analysis, we can easily identify other interesting solutions

that correspond to different deformations of the dual gauge theory. In particular, we can

construct a solution in which the non-normalizable UV modes X2 and X7 are turned on.

They decay as 1/r, and are associated to operators of dimension ∆ = 3, which correspond

to deformations by gaugino mass terms for each of the gauge groups, Tr(λ1λ1 ± λ2λ2).

We will identify a one-parameter subfamily for which QMax
D3 approaches the same constant

value in the IR and in the UV, and therefore for which the parameter ε does not need to

be modified.

The boundary conditions we have to impose are exactly the same as before, except

that now we do not require (6.13). Relaxing these, we find that the leading terms in the

IR expansions are not modified, and the value of φ̃5 at the origin is still given by (6.7),

together with the relations (6.8)), (6.10)

φ̃5(0) = Y IR
7 =

h2
0

6P
X1 . (7.2)

By using the UV/IR relation (4.2) we get that in the UV

φ̃5(∞) = Y UV
7 = 154.299P 3X1 − 19.5477P (2X2 + PX7) . (7.3)

Imposing φ̃5(0) = φ̃5(∞), we thus see that for the family of solutions

2X2 + PX7 = 5.05767P 2X1 (7.4)

we get that the first order Maxwell D3 charge at infinity is the same as that of the super-

symmetric vacuum with the same ε as for the original KS background. The profile of the

perturbation to the D3-brane Maxwell charge is shown in figure 5, where it is plotted as a

function of N̄ using the condition from equation (7.4).
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Figure 5. The profile of the first order Maxwell charge for the solution with gaugino masses turned

on, satisfying the constraint (7.4) (blue solid line). The plot is for N̄ = 1 and X7 = 1/(24 21/3P 3).

The red dashed curve is the profile for N̄ = 0.

We also note that by setting X1 = 0, i.e. requiring that no anti-D3 brane be present

at the origin, we obtain a family of solutions parametrized by the constants X2 and X7

which in the dual gauge theory describe soft supersymmetry breaking due to gaugino mass

terms. This solution encompasses the one built in [23], which corresponds10 to the family

X2 = PX7 .

7.3 Other UV boundary conditions

In section 6 we have identified the anti-D3 backreacted solution using one of the three cri-

teria to distinguish asymptotically-KS supersymmetric solutions that we have put forth in

section 5. The resulting solution has a different scale parameter Y1 than its supersymmetric

counterpart, and if the criterion that the NSNS B2 field be zero at the KS tip is the correct

one, then, putting aside concerns about the subleading singularity and about backreaction,

the anti-D3 perturbative solution we have constructed describes a metastable state of a

supersymmetric KS field theory, and would be the first metastable solution constructed in

supergravity.

However, we can also ask whether this result holds if one imposes the other criteria,

or if one insists, perhaps with a view towards embedding the KS solution in a compact

setting, that the UV scale parameter Y1 be the same as in the supersymmetric theory. It is

not hard to see that if one imposes the criterion that the H3 integral only jumps by integer

units, one finds again that Y UV
1 has to change; the anti-D3 solution is identical to the one

we have written down above, and would be dual also to a metastable field theory vacuum.

10The constant X in [23] is then related to X7 by X = − 1
2
X7 and their parameter µ is such that

µ = 48 21/3PX7.
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If one on the other hand imposes the criterion that two vacua of the same theory must

have a Y UV
1 related to Y UV

7 as in equation (5.31) (which also distinguishes between various

supersymmetric KS vacua), or imposes the requirement that the UV scale must be the

same as in the supersymmetric theory, then the resulting solution will have a different IR

Maxwell charge than the one inferred from the UV data (essentially because antibranes

give rise to negative charge dissolved in flux in their vicinity, as shown in figure 4, and if

one cannot make the throat longer to compensate for this, this charge will be visible at

infinity). As a result, the relation between the force on a probe D3 brane and the anti-D3

charge of the background will not be the one of [8]. If one then insists that this relation

does not receive corrections at first order in the number of antibranes, as suggested by

the no-screening results of [7], then the anti-D3 solution must have a nontrivial 1/r mode

turned on, of the type presented in the previous subsection, such that the contribution

to the charge dissolved in flux from the antibranes is canceled by the contribution from

the X2 and X7 modes. The value of this non-normalizable relevant perturbation can be

easily read off from our analysis. Interestingly enough, such modes were argued in [24] to

be present when a KS solution is embedded in a stabilized flux compactification, and it is

interesting to see if the relation between the anti-D3 charge and the strength of this mode

that one can find here has any relevance to this analysis.
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A First order deformation around a supersymmetric background

A.1 Our approach: from second order to twice as many first order differential

equations

The method introduced by Borokhov and Gubser [4] to find the set of first order perturba-

tions on top of a supersymmetric solution depending on a single radial variable τ , relies on

the existence of a superpotential W whose square gives the potential obtained by reducing

a supergravity Ansatz:

V (φ) =
1

8
Gab

∂W

∂φa
∂W

∂φb
. (A.1)

The fields φa (a = 1, . . . , n) are expanded around their respective supersymmetric back-

ground values φa0,

φa = φa0 + φa1(Z) +O(Z2) , (A.2)
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where ZA = (Xa, Y
a) represents the set of perturbation parameters and φa1 is linear in

them. The method amounts to splitting n second-order equations into 2n first-order ones,

out of which n of them (those for the conjugate momenta ξa) form a closed set. The

defining equations for the modes ξa are

ξa ≡ Gab(φ0)

(
dφb1
dτ
−M b

d(φ0)φd1

)
, M b

d ≡
1

2

∂

∂φd

(
Gbc

∂W

∂φc

)
. (A.3)

They measure the deviation from the BPS flow equations, i.e. they are non-vanishing only

for non-supersymmetric solutions. The set (ξa, φ
a) satisfies the equations:

dξa
dτ

+ ξbM
b
a(φ0) = 0 , (A.4)

dφa1
dτ
−Ma

b(φ0)φb1 = Gab ξb , (A.5)

where (A.5) is simply a rewriting of (A.3) whereas the equations in (A.4) imply the equa-

tions of motion [4]. Additionally, the functions ξa should obey the zero-energy condition

ξa
dφa0
dτ

= 0 , (A.6)

which stems from gauge-fixing the additional degree of freedom corresponding to reparam-

etrisations of the radial variable (as explained very clearly in [21]).

The n integration constants arising upon solving (A.4) are branded Xa, while those

associated to (A.5) are identified as Y a.

A.2 First-order equations for the deformations around KS

Let us now review how the Borokhov-Gubser method is implemented for studying per-

turbations around the Klebanov-Strassler solution. There are eight functions in the

Papadopoulos-Tseytlin Ansatz written in (2.1)–(2.2), φa = (x, y, p, A, f, k, F,Φ), which

is a consistent supersymmetric truncation of type IIB [25, 26]. Their zeroth-order values

are available above in (2.4).

The field-space metric entering equation (A.3) is computed out of the kinetic terms

arising from the IIB reduction

Gab φ
′a φ′b = e4 p+4A

[
x′2 +

1

2
y′2 + 6 p′2 − 6A′2 +

1

4
Φ′2

+
1

4
e−Φ−2x (e−2 y f ′2 + e2 y k′2 + 2 e2 Φ F ′2)

]
(A.7)

The superpotential is found from the corresponding potential appearing from the reduction

of the PT Ansatz:

W (φ) = e4A−2 p−2x + e4A+4 p cosh y +
1

2
e4A+4 p−2x

(
f (2P − F ) + k F

)
. (A.8)

In order to solve the system of equations (A.4), (A.5) for the modes ξa and φa1, we find it

convenient to rotate to a different basis (ξ̃a, φ̃
a), defined as follows in terms of the original
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fields:

ξ̃a ≡ (3 ξ1 − ξ3 + ξ4, ξ2, −3 ξ1 + 2 ξ3 − ξ4, −3 ξ1 + ξ3 − 2 ξ4, ξ5 + ξ6, ξ5 − ξ6, ξ7, ξ8) ,

(A.9)

φ̃a ≡ (x− 2 p− 5A, y, x+ 3 p, x− 2 p− 2A, f, k, F, Φ) . (A.10)

In the order we solve them, the system of first-order equations for the ξa (A.4) reads

ξ̃′1 = e−2x0 [2P f0 − F0 (f0 − k0)] ξ̃1 , (A.11)

ξ̃′4 = −e−2x0 [2P f0 − F0 (f0 − k0)] ξ̃1 , (A.12)

ξ̃′5 = −1

3
P e−2x0 ξ̃1 , (A.13)

ξ̃′6 = −ξ̃7 −
1

3
e−2x0 (P − F0) ξ̃1 , (A.14)

ξ̃′7 = − sinh(2 y0) ξ̃5 − cosh(2 y0) ξ̃6 +
1

6
e−2x0 (f0 − k0) ξ̃1 , (A.15)

ξ̃′8 =
(
P e2 y0 − sinh(2 y0)F0

)
ξ̃5 +

(
P e2 y0 − cosh(2 y0)F0

)
ξ̃6 +

1

2
(f0 − k0) ξ̃7 , (A.16)

ξ̃′3 = 3 e−2x0−6 p0 ξ̃3 +
[
5 e−2x0−6 p0 − e−2x0

(
2P f0 − F0 (f0 − k0)

)]
ξ̃1 , (A.17)

ξ̃′2 = ξ̃2 cosh y0 +
1

3
sinh y0 (2 ξ̃1 + ξ̃3 + ξ̃4) ,

+2
[(
P e2 y0 − cosh(2 y0)F0

)
ξ̃5 +

(
P e2 y0 − sinh(2 y0)F0

)
ξ̃6

]
. (A.18)

Particularized to the deformation around KS, the system of φa1 equations is

φ̃′8 = −4 e−4A0−4 p0 ξ̃8 , (A.19)

φ̃′2 = − cosh y0 φ̃2 − 2 e−4A0−4 p0 ξ̃2 , (A.20)

φ̃′3 = −3 e−6 p0−2x0 φ̃3 − sinh y0 φ̃2 −
1

6
e−4A0−4 p0 (9 ξ̃1 + 5 ξ̃3 + 2 ξ̃4) , (A.21)

φ̃′1 = 2 e−6 p0−2x0 φ̃3 − sinh y0 φ̃2 +
1

6
e−4A0−4 p0 (ξ̃1 + 3 ξ̃4) , (A.22)

φ̃′5 = e2 y0 (F0 − 2P ) (2 φ̃2 + φ̃8) + e2 y0 φ̃7 − 2 e−4A0−4 p0+2x0+2 y0 (ξ̃5 + ξ̃6) , (A.23)

φ̃′6 = e−2 y0 [F0 (2 φ̃2 − φ̃8)− φ̃7]− 2 e−4A0−4 p0+2x0−2 y0 (ξ̃5 − ξ̃6) , (A.24)

φ̃′7 =
1

2

(
φ̃5 − φ̃6 + (k0 − f0) φ̃8

)
− 2 e−4A0−4 p0+2x0 ξ̃7 , (A.25)

φ̃′4 =
1

5
e−2x0 [f0 (2P − F0) + k0 F0] (2 φ̃1 − 2 φ̃3 − 5 φ̃4) +

1

2
e−2x0 (2P − F0) φ̃5

+
1

2
e−2x0 F0 φ̃6 +

1

2
e−2x0 (k0 − f0) φ̃7 −

1

3
e−4A0−4 p0 ξ̃1 . (A.26)

B The analytic solution space of deformations around KS

Here we provide for handiness the solutions for the ξ̃a’s and φ̃a’s, in the order in which

they were solved in our previous work [6]. Of main interest are the φ̃a but we first had to

solve for their “conjugate momenta” ξ̃a sourcing their equations.
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B.1 Analytic expressions for the ξa modes

ξ̃1 = X1 h(τ) , (B.1)

ξ̃3 = −5

3
X1 h(τ)− 32

3
P 2X1 csch2 τ (sinh τ cosh τ − τ)4/3

−128

9
P 2X1 (sinh τ cosh τ − τ) j(τ) + 2X3 (cosh τ sinh τ − τ) , (B.2)

ξ̃4 = −X1 h(τ) +X4 , (B.3)

ξ̃5 = −16P

3
X1 j(τ) +X5 , (B.4)

ξ̃6 = − 1

sinh τ
λ6(τ)− cosh τ sinh τ − τ

2 sinh τ
λ7(τ) , (B.5)

ξ̃7 = − cosh τ

sinh2 τ
λ6(τ) +

−3 + cosh 2 τ + 2 τ coth τ

4 sinh τ
λ7(τ) , (B.6)

ξ̃8 = P (τ coth τ − 1) coth τ ξ̃5 − P
τ coth τ − 1

sinh τ
ξ̃6 −

1

6
X1 h(τ) +X8 , (B.7)

ξ̃2 = −2

3
X3 τ cosh τ +

1

3
X4 cosh τ + P X6 csch τ (coth τ − τ csch2 τ)

+P X5 csch τ (1− 2 τ coth τ + τ2 csch2 τ) +X2 sinh τ

+
1

2
P X7 (−2 τ coth3 τ + csch2 τ + τ2 csch4 τ) sinh τ

− 1

108
X1

[
3 csch3 τ h(τ) (6 τ − 5 sinh 2 τ + sinh 4 τ)

+2P 2 csch5 τ(−15 +24τ2 +16 cosh 2τ − cosh 4τ −32τ sinh 2τ +4τ sinh 4τ)

× [4 sinh2 τ j(τ)− 6 (cosh τ sinh τ − τ)1/3]
]
, (B.8)

where

λ6(τ) = X6 +
1

2
(−τ + coth τ − τ coth2 τ) ξ̃5(τ) +

1

6

X1

P
h(τ) , (B.9)

λ7(τ) = X7 − csch2τ ξ̃5(τ) +
16

3
P X1 csch2 τ (cosh τ sinh τ − τ)1/3

+
64

9
P X1 j(τ) . (B.10)

B.2 Analytic solutions for the φa1’s

Holding our breath, we recap the analytic solutions for all eight φ̃a1 modes found in [6]:

φ̃8 = Y8 − 64X8 j(τ) +
X7

P
h(τ)− 64P X6

∫ τ (u cothu− 1)

sinh2 u (coshu sinhu− u)2/3
du

+
2

P
h(τ) ξ̃5(τ) +

16

3
X1 csch2 τ (cosh τ sinh τ − τ)1/3 h(τ) +

64

9
X1 h(τ) j(τ)

+
64

3
X1

∫ τ (sinh2 u+ 1− u cothu)

sinh2 u (coshu sinhu− u)2/3
h(u) du , (B.11)

φ̃2 = csch τ Λ2(τ) , (B.12)

φ̃3 =
1

sinh 2 τ − 2 τ
Λ3(τ) , (B.13)
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φ̃1 = Y1 +
40

9
X4 j(τ)− 2

3
φ̃3(τ)− 160

9
X3

∫ τ

(coshu sinhu− u)1/3 du

+
5

3

∫
cothuΛ′2(u) du− 5

3
coth τ Λ2(τ)+

2560

27
P 2X1

∫ τ

csch2 u (coshu sinhu−u)2/3 du

+
10240

81
P 2X1

∫ τ

(coshu sinhu− u)1/3 j(u) du− 80

27
X1

∫ τ h(u)

(coshu sinhu− u)2/3
du ,

(B.14)

φ̃5 =
1

2
sech2(τ/2) [τ + 2 τ cosh τ − (2 + cosh τ) sinh τ ] Λ5(τ) +

1

1 + cosh τ
Λ6(τ) + Λ7(τ) ,

(B.15)

φ̃6 =

[
τ

(
2− 1

1− cosh τ

)
− coth(τ/2) + sinh τ

]
Λ5(τ) +

1

1− cosh τ
Λ6(τ) + Λ7(τ) ,

(B.16)

φ̃7 = (− cosh τ + τ csch τ) Λ5(τ)− csch τ Λ6(τ) , (B.17)

φ̃4 =
1

h(τ)

{
Y4−

16

3
X1

∫ τ h(u)2

(coshu sinhu−u)2/3
du+ 32P

∫ τ (u cothu−1) csch2 uΛ6(u)

(coshu sinhu−u)2/3
du

+16P

∫ τ Λ7(u)

(coshu sinhu−u)2/3
du+

32

5
P

∫ τ

(u cothu−1) csch2 u (coshu sinhu−u)1/3

×
[
5 Λ5(u) + 2P

(
− φ̃1(u) + φ̃3(u)

)]
du

}
, (B.18)

where

Λ2 = Y2 − 16P X7

∫ τ (−2u coth3 u+ csch2 u+ u2 csch4 u) sinh2 u

(coshu sinhu− u)2/3
du

− 32P X6

∫ τ cothu− u csch2 u

(coshu sinhu− u)2/3
du− 32P X5

∫ τ 1− 2u cothu+ u2 csch2 u

(coshu sinhu− u)2/3
du

− 32

3
X4

∫ τ coshu sinhu

(coshu sinhu− u)2/3
du+

64

3
X3

∫ τ u coshu sinhu

(coshu sinhu− u)2/3
du

− 48X2 (cosh τ sinh τ − τ)1/3 +
8

9
X1

∫ τ 6u− 5 sinh 2u+ sinh 4u

sinh2 u (coshu sinhu− u)2/3
h(u) du

− 32

9
P 2X1

∫ τ −15 + 24u2 + 16 cosh 2u− cosh 4u− 32u sinh 2u+ 4u sinh 4u

sinh4 u (coshu sinhu− u)1/3
du

+
64

27
P 2X1

∫ τ −15+24u2+16 cosh 2u−cosh 4u−32u sinh 2u+4u sinh 4u

sinh2 u (coshu sinhu−u)2/3
j(u) du ,

(B.19)

Λ3 = Y3 −
32

3
X4

∫ τ

(coshu sinhu− u)1/3 du− 112

3
X1

∫ τ

(coshu sinhu− u)1/3 h(u) du

− 80

3

∫ τ

(coshu sinhu− u)1/3 ξ̃3(u) du+ 2 τ coth τ Λ2(τ)− 2

∫ τ

u cothuΛ′2(u) du ,

(B.20)
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Λ5 = Y5 −
1

2
P (τ coth τ − 1) csch2 τ φ̃8(τ)− 32P

∫ τ (u cothu− 1) csch2 u

(coshu sinhu− u)2/3
ξ̃8(u) du

+
1

4
X7

∫ τ

csch4 u [2u (2+cosh 2u)−3 sinh 2u]h(u) du−X6

∫ τ 2+cosh 2u

sinh4 u
h(u) du

+

∫ τ

csch2 u [−3 cothu+ u (2+3 csch2 u)]h(u) ξ̃5(u) du− 1

2
P

cosh τ sinh τ−τ
sinh4 τ

Λ2(τ)

+
1

2
P

∫ τ

csch4 u (coshu sinhu− u) Λ′2(u) du− X1

6P

∫ τ

(2 + cosh 2u) csch4 uh2(u) du

+
16

9
P X1

∫ τ

csch4 u [2u (2 + cosh 2u)− 3 sinh 2u] j(u)h(u) du

+
4

3
P X1

∫ τ

csch6 u (coshu sinhu− u)1/3 [2u (2 + cosh 2u)− 3 sinh 2u]h(u) du ,

(B.21)

Λ6 = Y6 −
1

2
P [−τ + coth τ + τ (−2 + τ coth τ) csch2 τ ] φ̃8(τ)

− 32P

∫ τ [−u+ cothu+ u (−2 + u cothu) csch2 u]

(coshu sinhu− u)2/3
ξ̃8(u) du

+
1

2
X7

∫ τ

[cosh 2u+ csch2 u (3 + 2u2 − 6u cothu+ 3u2 csch2 u)]h(u) du

+X6

∫ τ

csch2 u [3 cothu− u (2 + 3 csch2 u)]h(u) du

+

∫ τ

[1 + (3 + 2u2 − 6u cothu) csch2 u+ 3u2 csch4 u]h(u) ξ̃5(u) du

− 1

2
P [2 coth2 τ (−1 + τ coth τ) + csch2 τ − τ2 csch4 τ ]Λ2(τ)

+
1

2
P

∫ τ

[2 coth2 u (−1 + u cothu) + csch2 u− u2 csch4 u] Λ′2(u) du

+X1

∫ τ{csch4 u [−2u(2 + cosh 2u) + 3 sinh 2u]

12P
h(u) +

1

36
P csch6 u

× [8 j(u) sinh2 u+6 (coshu sinhu−u)1/3][−28+32u2+(31+16u2) cosh 2u

− 4 cosh 4u+ cosh 6u− 48u sinh 2u]

}
h(u) du (B.22)
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Λ7 = Y7 + P [−τ + coth τ + τ (−2 + τ coth τ) csch2 τ ] φ̃8(τ)

+ 64P

∫ τ [−u+ cothu+ u (−2 + u cothu) csch2 u]

(coshu sinhu− u)2/3
ξ̃8(u) du

+X7

∫ τ

[−1 + (−3− 2u2 + 6u cothu) csch2 u− 3u2 csch4 u]h(u) du

+X6

∫ τ

csch4 u [2u (2 + cosh 2u)− 3 sinh 2u]h(u) du

+

∫ τ

[−2− 2 csch2 u (3 + 2u2 − 6u cothu+ 3u2 csch2 u)]h(u) ξ̃5(u) du

− P csch2 τ (1− 2 τ coth τ + τ2 csch2 τ) Λ2(τ)

+ P

∫ τ

csch2 u (1− 2u cothu+ u2 csch2 u) Λ′2(u) du

+X1

∫ τ{csch4 u [2u (2 + cosh 2u)− 3 sinh 2u]

6P
h(u)− 1

9
P csch6 u

× [8 j(u) sinh2 u+ 6 (coshu sinhu− u)1/3]

× [−9 + 16u2 + 8 (1 + u2) cosh 2u+ cosh 4u− 24u sinh 2u]

}
h(u) du .

(B.23)

C IR and UV expansions of our analytic solutions

C.1 IR expansions

The IR behavior of the modes is obtained by Taylor expanding h, j and the integrands

in (B.11)–(B.18), performing the indefinite integral over τ (instead of the integral from

1 to τ), and adding an integration constant Y IR
a (since the conjugate momenta ξa do not

involve integrals other than h and j, we do not have to introduce a second set of integration

constants XIR different from the one used in (B.1)–(B.7)).

The IR expansions of h and j are given by

hIR = h0 −
16

3

(
2

3

)1
3

P 2τ2 +O(τ3) ,

jIR = −1

τ

(
3

2

)2
3

+ j0 −
1

5

(
2

3

)1
3

τ +O(τ3) , (C.1)

where

h0 = 18.2373P 2, j0 = 0.836941 . (C.2)

In the order that those equations were solved and to the order of expansions that we

need, the IR asymptotics of the φ̃a modes are given by

φ̃8 =
1

τ

32

3

(
2

3

)1
3

(−h0X1 + 3PX6 + 9X8) + Y IR
8 +O(τ) , (C.3)

φ̃2 =
1

τ
Y IR

2 +
log τ

τ

(
16

3

(
2

3

)1
3 (
h0X1 − 3(X4 + 2PX6)

))

+ 8

(
2

3

)1
3

(−6X2 + 4X3 + 6PX5 + 9PX7) +O(τ) , (C.4)
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φ̃3 =
3Y IR

3

4τ3
+

1

τ

(
Y IR

2

2
− 3Y IR

3

20
+

4

3

(
2

3

)1
3

h0X1 + 8

(
2

3

)1
3

PX6

)

+
log τ

τ

(
8

3

(
2

3

)1
3 (
h0X1 − 3(X4 + 2PX6)

))
+O(τ) , (C.5)

φ̃1 =− 1

τ3

Y IR
3

2
+

1

τ

(
− 2Y IR

2 +
Y IR

3

10
− 4

3

(
2

3

)1
3 (

4h0X1 − 3(5X4 + 12PX6)
))

+
log τ

τ

(
− 32

3

(
2

3

)1
3 (
h0X1 − 3(X4 + 2PX6)

))
+ Y IR

1

+ log τ

(
40

3

(
2

3

)1
3

(−6X2 + 4X3 + 6PX5 + 9PX7)

)
+O(τ) , (C.6)

φ̃5 =
Y IR

6

2
+ Y IR

7

+τ2

(
−PY

IR
2

2
−Y

IR
6

8
+

1

36P
h2

0X1−4

(
2

3

)1
3

PX4+
1

6

(
−32 2

1
3 3

2
3P 2+h0

)
X6−8 2

1
3 3

2
3PX8

)

+τ2 log τ

(
− 8

3

(
2

3

)1
3

P
(
h0X1 − 3(X4 + 2PX6)

))
+O(τ3) , (C.7)

φ̃6 =
1

τ2

(
− 2Y IR

6 +
8

3

(
1

6P
h2

0X1 + h0X6

))

+

(
Y IR

6

6
+ Y IR

7 − 2PY IR
2

3
− 128

9

(
2

3

)1
3

h0PX1 +
2

27P
h2

0X1 + 16

(
2

3

)1
3

PX4

+

(
− 64

3

(
2

3

)1
3

P 2 +
4

9
h0

)
X6 − 32

(
2

3

)1
3

PX8

)

− log τ

(
32

9

(
2

3

)1
3

P
(
h0X1 − 3(X4 + 2PX6)

))
+O(τ) , (C.8)

φ̃7 =
1

τ

(
− Y IR

6 − 2

3

(
1

6P
h2

0X1 + h0X6

))

+τ

(
PY IR

2

3
+
Y IR

6

6
+

64

9

(
2

3

)1
3

h0PX1+
1

54P
h2

0X1−
8

3

(
2

3

)1/3

PX4+
1

9
h0X6−16

(
2

3

)1
3

PX8

)

+τ log τ

(
16

9

(
2

3

)1
3

P
(
h0X1 − 3(X4 + 2PX6)

))
+O(τ2) , (C.9)

φ̃4 =
1

τ

(
8

9

P

h0

(
2

3

)1
3
(
− 6PY IR

3 − 18Y IR
6 − 27Y IR

7 +
7

P
h2

0X1 − 12h0X6

))
+ Y IR

4 +O(τ) .

(C.10)

Note that the constant term in φ̃2 and the logarithmic term in φ̃1 are identically vanish-

ing once we impose the zero-energy condition (2.9). The relation between the constants
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(X,Y IR) used here and those that first appeared in [5], which we denote (X̃IR, Ỹ IR), is

summarized in the next subsection.

C.1.1 Relation to the IR series expansion of [5]

The relation between the Xa, Y
IR
a integration constants in this paper and the IR integration

constants in [5], which we call X̃IR
a , Ỹ IR

a depends h0 and j0, whose numeric values are given

by (C.2). We have given by

X̃IR
1 = h0X1 , X̃IR

2 =
1

54
(−9h0 + 16j0P

2)X1 +
1

2
X2 +

1

6
X4 (C.11)

X̃IR
3 = −32j0P

2

9
X1 +

1

2
X3 , X̃IR

4 = −h0X1 +X4

X̃IR
5 = −16j0P

3
X1 +X5 , X̃IR

6 =
1

3

(
− h0

P
+ 16

(
21/332/3 + j0

)
P

)
X1 −X5 − 2X6 ,

X̃IR
7 = −32j0P

9
X1 −

1

2
X7 , X̃IR

8 = −h0

6
+

8

9

(
21/332/3+ 2j0

)
P 2X1 − PX5 −

P

2
X7 +X8

and

Ỹ IR
a = Y IR

a for a 6= 6, 7 ,

Ỹ IR
6 = Y IR

6 +
16h0

3P 2

(
2

3

)1
3

X1 , (C.12)

Ỹ IR
7 = Y IR

7 −

(
28

3

P 2

h0

(
2

3

)2
3

− 8

3

(
2

3

)1
3

)
h0X1 .

C.2 UV expansions

The UV asymptotics of h(τ) and j(τ) are

hUV = 12 21/3P 2(4τ − 1)e−4τ/3 − 128

125
21/3P 2(12− 85τ + 25τ2)e−10τ/3 +O(e−16τ/3)

jUV = − 3

22/3
e−4τ/3 − 4

25
21/3(3 + 10τ)e−10τ/3 +O(e−16τ/3) . (C.13)

The UV expansions for the fields φ̃a are obtained by performing an indefinite integration

of the UV series of the integrands as in the IR case. We call Y UV
a the 0th-order term in the

expansion for the field φ̃a (or Λa if the former is written as a product of the homogeneous

solution times Λa)

φ̃8 = Y UV
8 + 12 · 21/3 e−4τ/3

(
P (−1 + 4τ)(2X5 +X7) + 8X8

)
+O(e−8τ/3) , (C.14)

φ̃2 = −8 · 21/3 e−τ/3
(
6X2 + (6− 4τ)X3 + 2X4 + 9PX7 − 6PτX7

)
+ 2 e−τY UV

2

+O(e−7τ/3) , (C.15)

φ̃3 = −5 · 21/3X3 e
2τ/3 − 4

3
· 21/3e−4τ/3

(
108X2 + (336− 137τ)X3 + 48X4

− 108P (−3 + τ)X7

)
+O(e−2τ ) , (C.16)
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φ̃1 = Y UV
1 − 10 · 21/3X3 e

2τ/3 +
2

3
· 21/3e−4τ/3

(
324X2 + (528− 316τ)X3 + 114X4

+ 81P (7− 4τ)X7

)
+O(e−2τ ) , (C.17)

φ̃5 = −Y
UV

5

2
eτ − Y UV

5 + Y UV
7 + τ(2Y UV

5 − PY UV
8 )

+ 6 · 21/3 e−τ/3P
(
6X2 + (21− 4τ)X3 + 2X4 + 21PX7

)
+

1

2
e−τ
(
(5− 4τ)Y UV

5 + 4Y UV
6 − 2P (−1 + 2τ)(Y UV

2 − Y UV
8 )

)
+ 12 · 21/3e−4τ/3P

(
− 12(1 + τ)X2 − 15X3 − 4X4 + 2τ(X3 + 4τX3 − 2X4 + 6PX5)

+ 3P (−3 + τ + 4τ2)X7 + 6(PX5 +X8)
)

+O(e−2τ ) , (C.18)

φ̃6 =
Y UV

5

2
eτ − Y UV

5 + Y UV
7 + τ(2Y UV

5 − PY UV
8 )

− 6 · 21/3 e−τ/3P
(
6X2 + (21− 4τ)X3 + 2X4 + 21PX7

)
+

1

2
e−τ
(
(−5 + 4τ)Y UV

5 − 4Y UV
6 + 2P (−1 + 2τ)(Y UV

2 − Y UV
8 )

)
+ 12 · 21/3e−4τ/3P

(
− 12(1 + τ)X2 − 15X3 − 4X4 + 2τ(X3 + 4τX3 − 2X4 + 6PX5)

+ 3P (−3 + τ + 4τ2)X7 + 6(PX5 +X8)
)

+O(e−2τ ) , (C.19)

φ̃7 = −Y
UV

5

2
eτ + 18 · 21/3e−τ/3P

(
− 6X2 + (−9 + 4τ)X3 − 2

(
X4 + P (5− 2τ)X7

))
+ e−τ

((
− 1

2
+ 2τ

)
Y UV

5 − 2Y UV
6 + P (Y UV

2 + 2τY UV
2 − Y UV

8 )

)
+O(e−7τ/3) ,

(C.20)

φ̃4 =
Y UV

4

12 · 21/3(4τ − 1)
e4τ/3 − 8 · 21/3(2τ + 1)X3

4τ − 1
e2τ/3 +

2Y UV
1

5
− Y UV

5

P
+
Y UV

8

2

− 2Y UV
7

P (4τ − 1)
+

4 · 22/3(12− 85τ + 25τ2)Y UV
4

1125(4τ − 1)2
e−2τ/3 +

21/3

(4τ − 1)
e−4τ/3

(
18(7 + 8τ)X2

+ 32(2τ + 1)X4 − 18P (7 + 8τ)X5 − 9P (23 + 8τ + 32τ2)X7 − 72X8

+
40803− 170884τ + 161120τ2 − 332800τ3)X3

375(4τ − 1)

)
+O(e−2τ ) . (C.21)

C.2.1 Relation to the UV series expansion of [5]

The relation between the Xa, Y
UV
a integration constants used in the present paper and

the UV integration constants introduced in [5], which we denote here X̃UV
a , Ỹ UV

a , goes as

follows:

X̃UV
1 = −2

1
3 4P 2X1 , X̃UV

2 =
1

2
X2 +

1

6
X4 ,

X̃UV
3 =

1

2
X3 , X̃UV

4 = X4 , (C.22)

X̃UV
5 = X5 , X̃UV

6 = −X5 − 2X6 ,

X̃UV
7 = −1

2
X7 , X̃UV

8 = −PX5 −
P

2
X7 +X8 (C.23)

– 36 –



J
H
E
P
0
6
(
2
0
1
3
)
0
6
0

and

Ỹ UV
a = Y UV

a for a 6= 6 , (C.24)

Ỹ UV
6 = Y UV

6 − Y UV
2 +

1

2
Y UV

8 . (C.25)

D The Klebanov-Tseytlin perturbation

In our parametrization of the metric and the fluxes (2.1)–(2.2), the Klebanov-Tseytlin

background corresponds to the subset defined via (7.1). At zeroth-order the fields φaKT

obey the flow equations
dφaKT

dτ
=

1

2
Gab

∂W

∂φaKT

, (D.1)

with the superpotential

W (φ) = e4A−2 p−2x + e4A+4 p (1 + P e−2x f) . (D.2)

These equations are solved by

A0 = −1

4
log
(
hKT(r)

)
,

x0 =
1

2
log

(
hKT(r)r4

32 · 21/3

)
, (D.3)

p0 =
1

6
log

(
48 · 21/3

kKT(r)r4

)
,

f0 = P (1− 3 log r) ,

Φ0 = 0 ,

where the warp factor hKT of the Klebanov-Tseytlin solution takes the following expression:

hKT =
12 · 21/3P 2(12 log r − 1)

r4
. (D.4)

In order to match the UV asymptotic of the Klebanov-Strassler modes (2.4) we should

use the relation r = et/3, while the perturbation in [14] corresponds to changing the origin

of the log as follow: log r → log r − 1
3 . This is equivalent to changing ε. The relation to

the functions a(r), b(r), k(r) used in [14] is the following

a(r) = −1

2

(
x(r) + log 6

)
, (D.5)

b(r) = −3p(r)− x(r)− log 6 + log(3
√

6) , (D.6)

k(r) = 6f(r) , (D.7)

whereas the constant M̄ is related to our P as

M̄ = −18P . (D.8)
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If we consider linearized deformations around (D.3), it is quite simple to solve analytically

the linearized equations (A.4)–(A.5) for the five ξa and five φa modes. In this way we get a

solution which contains terms up to the order r−8. Henceforth, as a bonus, we obtain the

perturbation around the KT background that includes the mode responsible for the force

on a probe D3 brane discussed (but not worked out quantitavely) in [14]. The results for

the UV modes expansions are as follows: is the following

φ̃Φ =
−288 · 22/3P 2X1

r8
+

72 · 21/3PXf (1 + 4 log r)

r4
+

96 · 21/3XΦ

r4
+ YΦ , (D.9)

φ̃3 = −1152 · 22/3P 2X1

5r8
− 10 · 21/3r2X3 −

16 · 21/3X4

r4
+
Y3

r6
, (D.10)

φ̃1 =
24 · 22/3P 2X1(29 + 120 log r)

5r8
− 20 · 21/3X3r

2 +
4 · 21/3X4

r4
− 2Y3

3r6
+ Y1 , (D.11)

φ̃f =
72 · 22/3P 3X1(12 log r − 1)

r8
+

144 · 21/3P 2Xf (1 + 3 log r)

r4

+
72 · 21/3PXΦ

r4
− 3PY8 log r + Yf , (D.12)

φ̃4 =
48 · 22/3P 2X1(−67− 72 log r + 2880 log2 r)

25r8(12 log r − 1)
−

18 · 21/3 P Xf (11 + 24 log r)

r4(12 log r − 1)

+
72 · 21/3XΦ

r4(1− 12 log r)
− 16 · 21/3r2X3(1 + 6 log r)

12 log r − 1
+

2 · 21/3X4(24 log r − 5)

r4(12 log r − 1)

+
2Y1

5
−

2Yf + Pr4Y4

P (12 log r − 1)
− 8Y3(30 log r − 7)

75r6(12 log r − 1)
− YΦ(3 + 12 log r)

2− 24 log r
, (D.13)

where φ̃1, φ̃3, φ̃4 are defined as in (2.8), and φ̃f and φ̃Φ are respectively the perturbations

to the function f (=k) and the dilaton.

In order to compare to the full KS solution (6.30)–(6.37) we should identify

Xf = X5 , XΦ = X8 − P X5 , (D.14)

and indeed after replacing X4, X5 and X8 with the boundary conditions given in (6.21)

the r−4 and r−8 terms agree.

By rescaling the radial coordinate r we can compare to [14]. We get the following

relation between their parameters S, φ, and our Xf , XΦ

S = −96 21/3PXf , φ = 24 21/3(7PXf + 4XΦ) . (D.15)

Note that the IR boundary conditions relate Xf and XΦ to N̄

Xf = − 1

6Ph0
πN̄ , XΦ =

7

24h0
πN̄ . (D.16)

As a result, those parameters cannot be taken as independent ones, contrary to what has

been done in the literature. By using these relations we see that

φ = 0 . (D.17)
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Note that this condition can be obtained by imposing just IR regularity conditions, and

therefore any solution with a non-zero φ is singular in the IR. Imposing all those conditions,

the 1/r4 terms agree with those of [14]. However, the agreement is not complete: there is

some discrepancy with the non-logarithmic term in φ̃f .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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