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Abstract

Although neutral mine drainage is the less frequent subject of the interest than acid mine drainage, it can have adverse envi-
ronmental effects caused mainly by precipitation of dissolved Fe. The aim of the study was to characterize the composition 
of bacterial population in environment with high concentration of iron and sulfur compounds represented by neutral mine 
drainage water of Elizabeth’s shaft, Slovinky (Slovakia). Direct microscopic observations, cultivation methods, and 454 
pyrosequencing of the 16S rRNA gene amplicons were used to examine the bacterial population. Microscopic observations 
identified iron–oxidizing Proteobacteria of the genera Gallionella and Leptothrix which occurrence was not changed during 
the years 2008–2014. Using 454 pyrosequencing, there were identified members of 204 bacterial genera that belonged to 25 
phyla. Proteobacteria (69.55%), followed by Chloroflexi (10.31%) and Actinobacteria (4.24%) dominated the bacterial com-
munity. Genera Azotobacter (24.52%) and Pseudomonas (14.15%), followed by iron–oxidizing Proteobacteria Dechloromonas 
(11%) and Methyloversatilis (8.53%) were most abundant within bacterial community. Typical sulfur bacteria were detected 
with lower frequency, e.g., Desulfobacteraceae (0.25%), Desulfovibrionaceae (0.16%), or Desulfobulbaceae (0.11%). Our 
data indicate that the composition of bacterial community of the Elizabeth’s shaft drainage water reflects observed neutral 
pH, high level of iron and sulfur ions in this aquatic habitat.

Introduction

Studies of the diversity of microorganisms inhabiting 
extreme environments have increased significantly over the 
past years. These environments were far more widespread 
during the early life of our planet and organisms isolated 
from these sites are representative of archaic life forms. 

Extremophiles as living organisms or as sources of enzymes 
and other cell products offer a wide range of applications in 
a variety of industrial and biotechnological operations also 
in medicine [1].

Mining activities and ore processing result in irrevers-
ible changes in landscape in the form of heaps and sewage 
sludge beds of waste material. These deposits are permanent 
source of toxic substances, especially heavy metals which 
contaminate all environmental compounds, mainly soil and 
water. Changes of water and soil quality affect also biodiver-
sity of mining area [2–5]. The properties of drainage water 
depend on many factors, including mineralogical, geochemi-
cal properties, hydrogeological conditions, and the activity 
of lithoautotrophic microorganisms. Oxidative dissolution of 
sulfide minerals generates acidity and releases sulfate, iron, 
and associated metals to pore waters. This phenomenon is 
known as acid mine drainage (AMD). However, neutral mine 
drainage (NMD) conditions may persist in an abundance of 
carbonate minerals [6–9]. Principal threats to water quality 
under circumneutral pH conditions are weakly hydrolysing 
metals, including Fe, Ni, Cu, and Zn [10]. While mecha-
nisms of sulfide mineral oxidation in AMD and bacteria 
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participating in are well established, there are limited data 
on microbiota of NMD settings.

Slovinky mining area (north part of Slovak Ore Moun-
tains territory, Spišská Nová Ves district, Slovakia) is con-
sidered the largest source of copper ores in Slovak region 
(chalcopyrite, cuprite, malachite, delafossite) but it is also 
rich in iron ores (siderite, pyrite, chalcopyrite, delafossite). 
The most frequent secondary and tertiary minerals are iron 
oxides such as goethite or crystalline hydrous ferric oxide 
[11]. Mining in Slovinky was stopped in 1999 but due to 
sludge bed vulnerability represent high-risk area threaten-
ing all environmental components (soil, water, living organ-
isms). The mine dumps are near-neutral or slightly alkaline 
(pH 7.2–8.8) because the acidity generated by the decom-
position of the sulfide ores is efficiently neutralized by the 
abundant carbonate minerals [2, 11]. Elizabeth’s shaft was 
built in 1900 and it works as mining drainage water system. 
Sulfide minerals exposed by mining and erosion are unstable 
in the presence of atmospheric oxygen and water; the result-
ing oxidation of sulfides can release sulfate and iron ions 
into the drainage water [8]. Regular monitoring of physico-
chemicals parameters of mine drainage water demonstrated 
that an average iron concentration did not exceed 0.5 mg/l 
for many years. In addition, a high concentration of  SO4, 
Mn, As, and Sb have been long-term monitored [12]. Based 
on these characteristics, we assumed a high incidence of iron 
and sulfur bacteria within bacterial community in drainage 
water.

Iron bacteria represent heterogeneous group belonging 
to many different phyla (e.g., Proteobacteria, Firmicutes, 
Nitrospirae) which can be divided into several groups based 
on their physiological properties and the role in ferrous ion 
oxidation [13]. Originally, iron bacteria were considered to 
catalyze the oxidation of iron II  (Fe2+, ferrous iron) to iron 
III  (Fe3+, ferric iron). More recently, bacteria catalyzing the 
reduction of ferric to ferrous ion have been also included in 
iron bacteria [14]. Gallionella ferruginea is probably the 
oldest known iron-oxidizing bacterium [15]. The bacterium 
was first discovered in the ochre mineral deposit and to 
date Gallionella-related species were found in many vari-
ous soil and aquatic habitats, always associated with iron. 
Gallionella spp. is one of the most commonly detected bac-
teria in acid mine environments [16]. Leptothrix spp. are 
heterotrophic Fe/Mn-oxidizing inhabitant of aqueous envi-
ronments, especially characterized by a circumneutral pH to 
slightly acidic, an oxygen gradient and a source of reduced 
Fe and Mn minerals [17]. Both of iron-oxidizing bacterial 
genera are characterized by biogenically formed various 
iron oxyhydroxide structures. Gallionella spp. are charac-
terized by stalk and particulates formation; Leptothrix spp. 
by typical sheaths easily recognized by light microscopy 
[14, 18–21].

Sulfur bacteria represent a diverse group of microorgan-
isms capable of metabolizing sulfur and its compounds [22]. 
However, in most environments (particularly in the sub-sur-
face) few bacterial species, or combination of species, prob-
ably carry out iron and organic carbon oxidation, carbon and 
nitrogen fixation, extracellular polymeric slime production, 
as well as iron and sulfur reduction leading to the either to 
the AMD or NMD. Members of the genus Acidithiobacillus 
(particularly A. ferrooxidans) are frequently found in acid 
mine environments with high occurrence of iron-sulfur ores 
but less often under circumneutral to alkaline conditions. 
These bacteria oxidize sulfide minerals, resulting in ferric 
ions and sulfuric acid production and acidification of the 
environment [23, 24].

The original aim of this study was to examine the occur-
rence of iron-sulfur bacteria in a neutral mine drainage of 
Elizabeth’s shaft using direct microscopy and cultivation 
methods and to investigate their seasonal dynamics over 
several years. Since some changes in pH of drainage water 
have been recorded during the period of investigation, we 
decided to analyze the structure of bacterial community in 
NMD using a high-throughput sequencing technique in order 
to detect bacteria that could contribute to (or responsible for) 
these changes.

Materials and Methods

Sampling Site and Physico-Chemical Water Quality 
Indicators Measurements

Mine drainage water samples were collected directly from 
the water flowing out from Elizabeth’s shaft in Slovinky 
village, Slovakia (48°52′43″N 20°50′38″E) (Fig. S1). Five-
hundred microliters of water was taken two times a year 
in the period from 2008 to 2011 (first week in March and 
October), and four times a year in the years 2012–2014 (first 
week in March, June, August, and October) into sterile bot-
tles. The water was transported under cold, dark conditions 
to the laboratory. Physico-chemical parameters (pH and 
electric conductivity) were measured directly in the field 
with WTW Multi 340i instrument (WTW Gmbh, Weilheim, 
Germany) equipped with a pH electrode WTW Sen Tix 31-3 
and standard WTW TetraCon 325 electrode for an electric 
conductivity (total dissolved solids, TDS) measurement.

Direct Microscopic Observations 
and Cultivation-Based Analyses

The light microscope Olympus BX 40 equipped with digital 
camera was used for quantitative and qualitative assessment 
of abioseston and bioseston in mine drainage water samples.
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First, 10  ml water from each sample was taken into 
50-ml centrifuge tube with conical bottom and centrifuged 
at 2000 g for 5 min. Subsequently, supernatant was removed 
and sample was spin down briefly to remove drops from the 
inside of the tube. A small water drop was taken by Pasteur 
pipette, placed into Cyrus chamber and examined by light 
microscopy. Bacteria determination was performed accord-
ing to Švorcová’s [25] and Tóthová and Mogoňová’s [26] 
instructions. Relative abundance of abioseston and bioseston 
fraction was expressed by the percentage of coverage of the 
ten different microscopic fields at ×1000 total magnifica-
tions [26].

The selective medium proposed by Švorcová [25] was 
used to detect subpopulation of selected iron bacteria 
((NH4)2SO4,  NaNO3,  K2HPO4·3H2O, and  MgSO4·7H2O 
each of 0.5 g, 3 g of  FeSO4, 10 g sodium citrate, 2 g of 
sucrose, 1 g tryptose, 20 g agarose, distilled water add into 
total volume of 1 l, pH 6.8). Components were dissolved 
in distilled water and sterilized at 100 °C for 30 min by 
fractional sterilization (three consecutive days in flowing 
water). One hundred microliters of drainage water was 
spread directly onto solid medium and cultivated at 25 °C 
for 3 days. Obtained bacterial colonies were picked up by 
a sterile microbial loop, stained using Gram’s method and 
examined by light microscopy.

To detect the presence of iron–sulfur oxidizing bacteria of 
the genus Acidithiobacillus, the water samples (1 ml) were 
inoculated into 50 ml of liquid Thiobacillus Broth (HiMedia, 
Mumbai, India) and cultivated aerobically at 25 °C until 
turbidity developed. Serial dilution of the culture was then 
spread on the solid Thiobacillus Agar (HiMedia, Mumbai, 
India) and cultivated at 25 °C for 3 days. Also cultivation 
of water samples was carried out at 30 °C for 3–4 days in a 
standard 9 K medium [27].

Non-parametrical Kruskal–Wallis test (one-way ANOVA) 
was used to analyze the changes in physico-chemical param-
eters and occurrence of iron bacteria and/or other micro-
organisms detected by microscopic observation during the 
period of investigation.

DNA Isolation, Bacterial 16S rDNA PCR Ampli�cation 
and 454 Pyrosequencing

In March 2014, a high-throughput sequencing analysis of 
16S rRNA gene was performed in the order to better under-
stand the composition of bacterial community in drainage 
water of Elizabeth’s shaft.

One hundred millilitres of the drainage water was centri-
fuged at 3000 g for 20 min and the total metagenomic DNA 
was extracted from the pellet using the GenElute™ Bacterial 
Genomic DNA Kit (Sigma-Aldrich, St. Louis, USA). The 
quality of DNA was checked by agarose gel electrophoresis.

The bacterial barcoding was performed using universal 
primers (fwd: 5′-TAG AGT TTG ATY MTGG CTC AG-3′ and 
rev: 5′-GWA TTA CCG CGG CKGCTG-3′) to amplify an 
approximately 500 bp fragment consisting of the hypervari-
able V1–V3 region of the 16S rRNA gene [28, 29]. Primers 
were modified by the addition of a GS FLX Titanium Series 
adapter sequences A and B (A: CCA TCT CAT CCC TGC 
GTG TCT CCG AC and B: CCT ATC CCC TGT GTG CCT TGG 
CAG TC) and four-base library “key” sequence (TCAG). 
Multiplex identifier (MID) sequence specifying this sample 
was incorporated into the forward primer (ACT ATA CGAG).

PCR reaction mixture consisted of 0.1 µl of Phire® Hot 
Start II DNA Polymerase (Finnzymes Oy, Espoo, Finland), 
0,2 mM dNTPs (Metabion, Martinsried, Germany), 1 × Phire 
Reaction Buffer, 10 pmol of each primer and 40–80 ng of 
DNA template in a final volume of 20 µl. The PCR con-
ditions consisted of initial denaturation step of 95 °C for 
3 min followed by 35 cycles of 93 °C for 60 s, 50 °C for 
60 s, and 72 °C for 70 and a final extension step of 72 °C 
for 5 min (C1000 Thermal Cycler, Bio-Rad Laboratories 
GmbH, München, Germany). PCR product was checked for 
correct size on a 1% agarose gel, purified with Wizard® SV 
Gel and PCR Clean-Up System (Promega, Madison, USA). 
The next generation 454 pyrosequencing was performed 
using Roche 454 GS-FLX Titanium instrument (LaRoche, 
USA) and reagents according to the manufacturer’s guide-
lines. Demultiplexed raw reads generated in this study have 
been deposited in the NCBI Sequence Read Archive with the 
Bioproject accession number PRJNA324333.

Processing of 454 Data

DNA sequencing data were processed using the Mothur bio-
informatics software package (version 1.36.1) [30].

First, flow gram file was produced from the standard flow 
gram file (sff) using “sffinfo” command. The resulting flow 
gram file was trimmed using “trim.flows.” Flow grams dif-
fered > 2 bases from primer sequence and > 1 base from 
barcode were discarded. The flow gram file was denoised 
using “shhh.flows” as Mothur’s implementation of Pyro-
Noise algorithm [31]. After denoising, adapters, barcodes, 
and primers were trimmed from sequences (“trim.seqs”). 
Sequences of low quality (average quality score < 0.25), 
shorter than 200 bp, containing ambiguously determined 
nucleotides and homopolymer (maximum = 8) with > 2 
base-difference from primer and > 1 base-difference from 
barcode were excluded from further analysis. Trimmed 
sequences were aligned (align.seqs) against the Silva data-
base (silva.seed_v123) [32]. Chimeric sequences were fil-
tered out using Uchime algorithm implemented in Mothur 
(chimera.uchime) [33]. Obtained high-quality non-chimeras 
sequences were processed using Mothur’s pipeline (unique.
seqs, remove.lineage, filter.seqs, unique.seqs, dist.seqs) and 



991The Bacterial Population of Neutral Mine Drainage Water of Elizabeth’s Shaft (Slovinky,…

1 3

after that they were clustered into operational taxonomic 
units (OTUs) with a 97% similarity threshold (“cluster” 
command) using the average neighbor method. OTUs rep-
resented by a single sequence were excluded from the fol-
lowing analysis. Representative sequence of each OTU, pro-
duced using “get.oturep” command, was assigned by RDP 
Classifier at the confidence level of > 0.80 (http://rdp.cme.
msu.edu) [34].

Results

Physico-Chemical Parameters and Direct 
Microscopic Observations

Direct microscopic observations of water samples showed 
that the abioseston (percentage of coverage ranged from 8.0 
to 10%) was dominated by iron and manganese clots with 

occasional occurrence of dead plant tissues parts and other 
organic residues (such as pollen, insect wings etc.). Diatoms 
of genera Nitzschia, Navicula, and Eunotia were dominant 
group of bioseston (percentage of coverage ranged from 2.5 
to 3.5%). Iron bacteria in the drainage waters of Elizabeth’s 
shaft were represented by a relatively small number (per-
centage of coverage ranged from 1.0 to 2%) (Table 1). One 
group of iron bacteria was determined as of Gallionella spp. 
forming stalks and particules characteristic for Gallionella 

ferruginea. Another group of iron bacteria was determined 
as Leptothrix spp. based on the presence of a dominant 
sheath typical for Leptothrix ochracea (Fig. 1).

Cultivation analysis on the selective medium according 
to Švorcová [25] confirmed the presence of Ferribacterium 
species in each sampling during the period of investiga-
tion. Bacterial colonies were rusty with a white border or 
rust-shiny gold. Gram staining and microscopic observa-
tion shown the presence of small gram-negative rod-shaped, 

Table 1  Physico-chemicals parameters and microscopic observation of abioseston and bioseston of mine drainage water from Elizabeth’s shaft 
measured in the years 2008–2014 (Slovinky, Slovakia)

EC electric conductivity, TDS total dissolved solids, P value result of Kruskal–Wallis test (one-way ANOVA)
a Values are expressed as arithmetic mean value ± standard deviation of measurements in a given year (n)
b Values are expressed as arithmetic mean value ± standard deviation of the percentage of coverage of 10 different microscopic fields measure-
ments in a given year (n)

Years 2008 (n = 2) 2009 (n = 2) 2010 (n = 2) 2011 (n = 2) 2012 (n = 4) 2013 (n = 4) 2014 (n = 4) P value

pHa 7.1 ± 0.3 7 ± 0.1 6.9 ± 0.1 6.9 ± 0.3 6.8 ± 0.3 6.7 ± 0.2 6.5 ± 0.2 > 0.05

EC [mS/m]a 42 ± 1.4 50 ± 1.4 49 ± 4.2 54 ± 2.8 57.3 ± 2.3 61.5 ± 1.3 63.5 ± 1.3 < 0.001

TDS [mg/l]a 172 ± 2.8 181 ± 1.4 185 ± 2.8 198 ± 4.2 201.5 ± 3.1 200.3 ± 1.7 220.3 ± 2.6 < 0.001

Abiosestonb 10 ± 1.4 9.5 ± 0.7 9.5 ± 0.7 9.5 ± 0.7 8.5 ± 2.4 8.0 ± 1.8 8.5 ± 1.7 > 0.05

Diatomsb 3.5 ± 0.7 3.5 ± 0.7 3 ± 0.0 4.0 ± 1.4 3 ± 1.2 2.5 ± 1.3 3 ± 0.8 > 0.05

Gallionella spp.b 1 ± 0.0 2 ± 0.0 1 ± 0.0 1 ± 0.0 1.5 ± 0.7 1 ± 0.0 1 ± 0.0 > 0.05

Leptothrix spp.b 1 ± 0.0 2 ± 0.0 2 ± 0.0 2 ± 0.0 1 ± 0.0 1.5 ± 0.7 1 ± 0.0 > 0.05

Fig. 1  Gallionella spp. (a) and Leptothrix spp. (b) observed in mine drainage water of Elizabeth’s shaft (Slovinky, Slovakia). Microscopic obser-
vation at ×1000 total magnification

http://rdp.cme.msu.edu
http://rdp.cme.msu.edu
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elliptical cells living in pairs or chains with surface coated 
by gelatinous pouch or thin capsule. These characteristics 
are typical for the bacteria of Ferribacterium genus [26, 35]. 
Cultivation using the selective Thiobacillus agar and 9K 
medium did not evidence the presence of bacteria belong-
ing to Acidithiobacillus spp. in any sample.

During the years 2008–2014, the salinity (TDS) of Eliza-
beth’s shaft drainage water significantly increased from 172 
to 220.25 mg/l (pH < 0.001) and pH value slightly degreased 
from 7.1 to 6.5 (P > 0.05) but these changes did not affect 
the incidence of observed bacteria, resp. diatoms (Table 1).

Bacterial Communities Recovered by 454 
Pyrosequencing

After trimming, denoising, quality, and length filtering and 
removing chimeras, a total of 7095 high-quality sequences 
were obtained. Sequences were clustered into 813 OTUs, 
while 414 were non-singletons (Table S1). One OTU was 
classified as Archaea, phylum Aigarchaeota (represented 
by two sequences). Other sequences were classified into 
22 known bacterial phyla and three candidate phyla. The 
majority of sequences belonged to Proteobacteria (69.55%) 
followed by Chloroflexi (10.31%), Actinobacteria (4.24%), 
Planctomycetes (2.57%), Acidobacteria (2.35%), and Ver-
rucomicrobia (2.14%). Other phyla were represented by less 
than 2% sequences (Fig. 2).

Bacteria were divided into three groups according to RDP 
classification (Table S2). The first group included 175 gen-
era with known taxonomy (6645 sequences, 329 OTUs). The 
second group was represented by 394 sequences (75 OTUs) 
successfully assigned to known phyla but with unknown 
classification into other taxonomic levels (such as class, 
order, family). The third group included 54 sequences (9 
OTUs) classified into three candidate phyla. Genus Azo-

tobacter was most abundant genus (24.52%) followed by 

Pseudomonas (14.15%), Dechloromonas (11%), Methylover-

satilis (8.53%), and Bellilinea (5.46%). Other genera were 
represented by less than 5% of sequences (Fig. 3).

We detected numerous members of iron and sulfur bacte-
ria group (Table 2). Proteobacteria such as Dechloromonas 
spp. (11%) and Ferribacterium spp. (1.73%) dominated 
within iron bacteria. Other most abundant iron bacteria were 
Chloroflexi such as Bellilinea spp. (5.46%), Longilinea spp. 
(1.93%), and Leptolinea spp. (1.54%). Sulfur bacteria were 
represented by members of families Desulfobacteraceae 
(0.25%), Desulfovibrionaceae (0.16%), or Desulfobulbaceae 

Fig. 2  Bacterial composition at the phylogenetic phylum level of 
mine drainage water of Elizabeth’s shaft (Slovinky, Slovakia). The 
category “Other phyla” groups bacterial phyla whose relative abun-
dance was below 1%

Fig. 3  Bacterial composition at the phylogenetic genus level of mine 
drainage water of Elizabeth’s shaft (Slovinky, Slovakia). The category 
“Other genera” groups bacterial genera whose relative abundance was 
below 1%

Table 2  Representatives of iron and sulfur bacteria in mine drainage 
water of Elizabeth’s shaft (Slovinky, Slovakia)

Phylum Taxonomic affiliation Nr. of reads Relative 
abundance 
%

Actinobacteria Rhodococcus spp. 30 0.42

Chloroflexi Bellilinea spp. 387 5.46

Chloroflexi Leptolinea spp. 109 1.54

Chloroflexi Longilinea spp. 137 1.93

Proteobacteria Acidiferrobacter spp. 17 0.24

Proteobacteria Bilophila spp. 11 0.16

Proteobacteria Desulfatiferula spp. 8 0.11

Proteobacteria Desulfospira spp. 7 0.10

Proteobacteria Dechloromonas spp. 780 11.00

Proteobacteria Ferribacterium spp. 123 1.73

Proteobacteria Leptothrix spp. 13 0.18

Proteobacteria Geobacter spp. 9 0.13

Proteobacteria Geopsychrobacter spp. 8 0.11

Proteobacteria Sulfuritalea spp. 15 0.21

Proteobacteria Thiobacter spp. 6 0.08

Proteobacteria Thiococcus spp. 12 0.17

Proteobacteria Thiofaba spp. 13 0.18

Proteobacteria Thiothrix spp. 6 0.08
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(0.11%) or the genera such as Acidiferrobacter (0.24%, 
Ectothiorhodospiraceae), Sulfuritalea (0.21%, Rhodocy-
claceae), Thiofaba (0.18%, Halothiobacillaceae) or Thiococ-

cus (0.17%, Chromatiaceae). In addition, Zoogloea spp. as 
very important bacterium from the family Rhodocyclaceae 
(0.42%) was detected (Table 2).

Complete bacterial classification according to RDP data-
base (http://rdp.cme.msu.edu) is shown as a supplementary 
material in ESM3.xlsx file.

Discussion

One of the most critical issues in mine environments is the 
natural oxidation (chemical and biological) of sulfide min-
eral tailings that are exposed to water, oxygen, and microor-
ganisms. This oxidation is responsible for the generation of 
mine drainage that compromises the quality of soil, surface 
water, and sub-surface water bodies, hence affecting overall 
biodiversity [2–5].

Despite expectations, direct microscopic observations and 
the high-throughput analysis have shown a low abundance of 
Gallionella spp. and Leptothrix spp. Even Gallionella spp. 
was not detected by 454 pyrosequencing. The low occur-
rence of these bacteria may be due to preference for more 
acidic conditions as well as other environmental factors 
(e.g., heavy metals).

Ferribacterium is a genus of the family Rhodocyclaceae 
and up to now, only one species is known (F. limneticum). 
This bacterium belongs to Fe(III)-reducing bacteria and 
was first isolated from mining-impacted fresh lake sedi-
ments containing heavy metals such as Fe, Pb, Zn, or As 
[36]. Its presence in drainage water of Elizabeth’s shaft was 
confirmed by cultivation as well as 454 pyrosequencing.

Acidithiobacillus species was detected neither by cultiva-
tion methods nor by 454 pyrosequencing. These findings 
confirmed the preference of the genus Acidithiobacillus of 
acidic environment, despite the high sulfur and iron content 
in neutral mine drainage water.

The chemistry of mine drainage is the result of the com-
peting processes of acid formation and neutralization [37]. 
Several mine discharges are characterized by a circumneutral 
pH due to either an absence of pyrite within the ore, hence 
minimizing the acid generating potential on site, or due to 
the presence of a carbonate minerals as a calcite, which 
effectively neutralize any acidity produced [11]. Drainage 
water flowing from Elizabeth’s shaft is characterized by 
high concentration of iron, manganese, arsenic, and sulfate 
ions [12]. Concentration of copper and zinc did not over-
express limit values according of Regulation of the Gov-
ernment of the Slovak Republic [38]. Continual increase of 
TDS concentration is probably due to the gradual release of 
metal(loid)s during sulfide mineral oxidation and bacterial 

metabolic activity. The Elizabeth’s shaft drainage water 
could be defined as circumneutral, since acid generated 
via sulfide mineral oxidation (e.g., pyrite or chalcopyrite) 
is neutralized by the dissolution of carbonate minerals as 
siderite or malachite. On the other side, our results indicate 
a slight shift to the acidic pH during the examined period. 
Slow reduction of pH of drainage water is supported by ear-
lier studies demonstrating pH value of 8.24 in 1999 and 7.56 
in 2000 [39].

Therefore, we performed an analysis of the bacterial 
community using a high-throughput sequencing technique 
to find out bacteria that could be involved in reducing pH 
of drainage water. Generally, Proteobacteria, Nitrospirae, 
Actinobacteria, and Firmicutes are most frequently detected 
phyla in AMD [6, 24, 40]. Proteobacteria, Deinococcus/
Thermus, Gemmatimonadetes, Acidobacteria, and Actino-
bacteria were found with high frequency also in neutral mine 
drainage [3, 41]. While lithotrophic genera such as Acid-

ithiobacillus, Acidiphilum, Ferrovum, Leptospirillum, Gal-

lionella, and Sulfobacillus dominate AMD environments [6, 
24, 40], heterotrophic Proteobacteria such as Pseudomonas 
spp., Bacillus spp., and Stenotrophomonas spp. were found 
with high abundance in neutral copper mine drainage [42] 
and other mining samples [43, 44]. The high abundance of 
Pseudomonas spp. was also confirmed in our study. Mem-
bers belonging to the genus Pseudomonas are characterized 
by great deal of metabolic diversity and they are able to 
colonize a wide range of environments. A number of studies 
have been demonstrated its resistance to heavy metals and 
its capability to degrade a wide range of pollutants [45, 46].

Pereira et al. [3] assumed that the abundance of toler-
ant bacteria in areas of extreme environmental conditions 
increases, while that of more sensitive microorganisms 
decreases. Previous studies have reported that AMD is 
accompanied by low bacterial diversity [6, 47]. In contrast, 
a wide range of different bacteria including iron-oxidizing 
and heterotrophic organisms were found in slightly alkaline 
French mine sediments [48] and alkaline river sediments 
contaminated with heavy metals released from Brazilian 
arsenic mine [49]. Analysis of microbial composition of 
wastewater of Elizabeth’s shaft showed a trend to increase 
the abundance of tolerant bacteria leading to a reduction of 
the total bacterial diversity. Proteobacteria represent almost 
70% of the total diversity of bacterial community. These 
bacteria have been found to be predominant phylum in many 
mine environments indicating the high adaptability of mem-
bers to extreme mining environments [3, 48, 49].

Free-living motile bacteria of the genus Azotobacter 
dominate bacterial community in wastewater of Elizabeth’s 
shaft. These bacteria were found mainly in neutral soil and 
aquatic environments and they are capable of atmospheric 
nitrogen fixation due to iron requiring enzymatic system and 
can survive in contaminated environments by heavy metals. 

http://rdp.cme.msu.edu
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Thus, isolates resistant to heavy metals could be employed 
in bioremediation processes [50–52].

Interestingly, genus Methyloversatilis (Nitrosomonadales, 
Sterolibacteriaceae) showed relatively high abundance 
(8.53%) within bacterial population in this study. Recently, 
only few species belonging to this genus have been found in 
natural and human-made ecosystems [53–56]. Genus was 
detected with low frequency in alkaline mountaintop mine 
drainage in Central Appalachian streams [57].

Rhodocyclales, Rhizobiales, Rhodobacterales, and Rho-
dospirillales formed relatively large group within Proteo-
bacteria. Many members of these taxa exhibit very versatile 
metabolic capabilities allowing them survive under various 
extreme environmental conditions [22]. They were found 
with high frequency in neutral mine drainage [41], in slightly 
alkaline mine sediments [48] as well as in AMD [24]. In this 
study, the highest number of sequences was affiliated to the 
genus Dechloromonas. These bacteria are known as nitrate-
dependent neutrophilic iron-oxidizers and perchlorate reducer 
[58]. Bacteria belonging to this genus were found in soil high 
concentration of iron also in circumneutral or slightly acidic 
mine waters contaminated by many different heavy metals 
[59, 60]. Bacteria of the genus Zoogloea, member of the fam-
ily Rhodocyclaceae, were known as activated sludge bacteria 
responsible for flock formation in activated sludge and are 
used in waste water purification processes [61].

Members of the phylum Chloroflexi are frequently detected 
in polluted environments [62, 63]. The phylum with the pre-
dominant family Anaerolineaceae represents about 10% diver-
sity of bacterial community in this study. Similarly, phylum 
showed a high abundance in alkaline river sediments con-
taminated with heavy metals [49] and in neutral copper mine 
drainage [3], but was not detected in AMD [24].

While sulfate-reducing bacteria have been commonly 
identified in tailings deposits and sulfide mine wastes [7, 
64], representatives of this bacterial group (Desulfobacte-
rales, Desulfovibrionales, Desulfuromonadales, and Syntro-
phobacterales) were detected with relative low frequency in 
this study. In addition, typical sulfur-oxidizing bacteria (e.g., 
Acidiferrobacter spp. Thiofaba spp., Thiococcus spp.) were 
found with low abundance.

Although high-throughput sequencing techniques offer an 
efficient way to access the microbial community in different 
environments, several studies have been also demonstrated 
that bacteria represented rare taxa within bacterial commu-
nity could not be detected at the sequencing depth [65–67]. 
Similarly, we did not detected Gallionella spp. by 454 
pyrosequencing. Moreover, culture-independent methods 
bring not important information about bacterial pathogenic-
ity, antimicrobial resistance or production of metabolites and 
enzymes [66]. In practice, only cultivable microorganisms 
can be effectively used in industrial and biotechnological 
operations (e.g., bioremediation processes). Therefore, 

combination of culture-independent and culture-dependent 
methods is important in bacterial community investigations.

In addition to bacteria, genera of diatoms Nitzschia spp., 
Navicula spp. and Eunotia spp. were observed with high 
abundance in drainage water. Diatoms, as one of the domi-
nant components of phytoplankton, are widely distributed in 
freshwater and marine ecosystems. They respond quickly to 
environmental changes therefore are popular tool for moni-
toring water quality. Many studies on metal polluted aquatic 
ecosystems have shown that diatoms respond through shifts 
in dominant taxa also at the individual level with changes 
in frustule morphology [68–70]. Several species belonging 
to the genera Nitzschia spp., Navicula spp. and Eunotia spp. 
were detected as dominant or with high abundance within 
bacterial communities in water samples from mining areas. 
These areas, similarly to Slovinky mining area, are charac-
terized by the high occurrence of various iron and copper 
ores and high concentration of Fe, Cu, Pb, Cr, Zn, and other 
heavy metals in flowing rivers [69, 70].

In conclusion, relatively low abundance of typical iron- 
and sulfur-bacteria in microbial community indicates that in 
addition to high concentration of iron and sulfur, other envi-
ronmental factors significantly affect the composition of bac-
terial community and bacterial species with a great metabolic 
diversity dominate among bacteria. The pH of the drainage 
water is still nearly neutral, however we detected slightly shift 
to acidic. Sulfide mineral oxidation and possibly metabolic 
activity of iron/sulfur oxidizers could lead to the continual 
decrease of pH and to the deterioration of environmental 
impact of mine drainage of Elizabeth’s shaft. Monitoring of 
the pH value continues and any changes in the bacterial com-
munity will be verified by further metagenomic analysis.
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