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Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of
arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in
order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and
consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D.
melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these
resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of
Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect
Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA
viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions
with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia
infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in
natural populations and represents a novel Wolbachia–host interaction.

Citation: Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):
e1000002. doi:10.1371/journal.pbio.1000002

Introduction

Wolbachia are obligatory, intracellular a-proteobacteria that
infect a wide range of arthropods and filarial nematodes.
They are found in 17% to 76% of surveyed arthropods and
have recently been estimated to be present in 66% of all
arthropod species [1–3]; therefore Wolbachia are one of the
most widespread intracellular bacteria. Although the phylog-
enies of Wolbachia strains and their arthropod hosts show
horizontal transmission of the bacteria on an evolutionary
time-scale [4], these endosymbionts are mainly transmitted
maternally. Consequently, Wolbachia strains and the species
they infect form long-term associations.

Wolbachia were first discovered infecting the mosquito Culex
pipiens in 1924 [5], but interest in these bacteria mainly arose
when it was shown that infected mosquito males do not
successfully breed with noninfected females [6]. This phe-
nomenon is termed cytoplasmic incompatibility (CI) and has,
since then, been found in many other insect species infected
with Wolbachia [7]. In some hosts, Wolbachia can also cause
feminization, male killing, or parthenogenesis [7]. All these
mechanisms profoundly alter the reproductive biology of
their hosts and are thought to increase the success of
bacterial transmission through the female germline. In the
majority of known cases, Wolbachia behave like reproductive
parasites of their hosts.

Interestingly, in the parasitic wasp Asobara tabida, aWolbachia
strain is required for the inhibition of apoptosis in the
germline and, consequently, normal oogenesis [8,9]. Similarly,
Wolbachia is required for normal development and fertility in
many filarial nematodes [10–13]. In all these cases, the
endosymbionts are obligatory mutualists—they are essential
for the survival of their host species. Curiously, examples of

Wolbachia infections that are facultative and provide a fitness
benefit are rare (e.g., [14,15]). One would, however, expect
them to be frequent, since these are long-term symbioses, and
Wolbachia fitness ultimately depends on the host fitness.
The model organism Drosophila melanogaster can also be

infected with Wolbachia. In fact, they are detected in a large
proportion of flies of natural populations and laboratory
stocks [16–18]. Interestingly the presence of wMel, the
Wolbachia strain associated with D. melanogaster, does not seem
to cause a strong phenotype. wMelPop, a Wolbachia variant
from a laboratory stock, does causes tissue degeneration and
significantly shortens the lifespan of its carriers [19]. The
appearance of this strain may be an artifact of conditions in
which laboratory stocks are kept, because no wMel variant
from natural populations with these characteristics has been
discovered. Wolbachia also rescues the sterility of Sex-lethal
hypomorphic mutants [20]. However, it is not known how this
translates to the interaction of Wolbachia with wild-type flies.
How natural variants of Wolbachia affect wild-type D.
melanogaster has been extensively addressed. wMel only
induces a weak and transient CI phenotype in D. melanogaster
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[21–23], although some Wolbachia strains induce strong CI in
the closely related D. simulans [24]. This low CI cannot explain
how Wolbachia spreads and is maintained in wild-type
populations, especially considering that, in the wild, infection
is not vertically transmitted with 100% fidelity [25]. A strong
hypothesis to explain Wolbachia presence in natural popula-
tions is that Wolbachia gives a fitness benefit to D. melanogaster
[26,27]. Several studies have either been unable to find
differences in fitness parameters or found only slight
beneficial or detrimental effects of Wolbachia infection
[25,27–31]. Moreover, even when effects were observed, they
were dependent on the Wolbachia variant or the fly’s genetic
background. A clear strong beneficial effect of Wolbachia
infection in D. melanogaster has still not been shown, and it
remains a puzzle why these bacteria are so prevalent in
natural populations.

D. melanogaster is a valuable tool in the study of resistance to
pathogens, with many components of innate immunity
signaling pathways conserved between Drosophila and mam-
mals [32]. The epitome of its utility was the discovery of the
involvement of Toll-like receptors in innate immunity. Toll
was first discovered to be important in the resistance of
Drosophila to fungi [33], later Toll-like receptors were shown to
have fundamental functions in mammalian innate immunity
[34]. Moreover, Toll-like receptors are important in the
activation and modulation of mammalian adaptive immunity.

The responses of Drosophila to systemic infection by fungi
and bacteria are increasingly well known [35]. Although less
extensively, Drosophila has also been used as a model system to
study resistance to viruses. Recent research has shown
conservation between flies and mammals in their immune
response to viruses. Mutations in hopscotch, the gene that
encodes the kinase of the JAK-STAT pathway, reduce
resistance to Drosophila C virus (DCV) infection and increases
viral titers [36]. Interestingly, in mammals, JAK-STAT path-
ways are involved in cytokine signaling, including anti-viral
type I interferon [37]. Work in Drosophila has also been
important in showing that RNA interference is involved in
anti-viral resistance in animals. Flies mutant in genes that
encode components of this pathway, Dicer-2, Argonaute-2, and
r2d2, are more sensitive to infection by several RNA viruses
and have higher titers of viruses than the wild type [38–41].

To identify new genes involved in Drosophila resistance to
viruses, we initiated a screen for DCV-sensitive flies. In doing
so, we found that flies infected with intracellular bacteria
were much more resistance to DCV infection than those that
were uninfected. We identified these bacteria as Wolbachia
and show that DCV titers are much lower in Wolbachia-
infected flies. Moreover, resistance to infection extends to
two other RNA viruses but not to a DNA virus. These results
identify a new major factor involved in Drosophila resistance
to RNA viruses, and the first strong beneficial effect
associated with Wolbachia infection in D. melanogaster.

Results

Tetracycline Treatment Reduces Resistance to DCV
In order to identify new genes involved in D. melanogaster

resistance to viruses, we are conducting a genetic screen for
virus-sensitive mutants (LT, AF, MA, unpublished data). We
have generated a collection of mutant lines by P-element
insertional mutagenesis using the set of w1118 iso isogenic lines
described in Ryder et al., 2004 [42]. We chose an isogenic
background to minimize variability in the response to viral
infection and, for the same reason, cleaned the initial set of
lines of potential chronic viral infections using the protocol
described in Brun and Plus, 1978 [43]. We test the resistance
of each insertion line to DCV infection. DCV is a small, non-
enveloped virus with a single-stranded, positive-sense RNA
genome that belongs to the Dicistroviridae family, an insect
specific family of viruses very similar to picornaviruses [44].
This virus is a natural pathogen of D. melanogaster, it is
sequenced and relatively well characterized, and its infection
has an easily scored lethal phenotype [43,44].
In the initial screen, we assayed adult survival after intra-

thoracic DCV injection and realized that, unexpectedly, the
control w1118 iso line was much more sensitive to DCV than
most of the tested P-element insertion lines (Figure 1 and
unpublished data). When injected with a dose of 500 times the
median tissue culture infective dose (TCID50), all the w1118 iso
males died within 12 d, whereas very little death was observed
in the males of the P-element insertion lines (Figure 1A).
Moreover, a large proportion of males of the P-element
insertion line survived until 21 d after infection. Preliminary
analysis showed that the P-element was not responsible for
virus resistance (unpublished data). We then tested the
hypothesis that a previous treatment of the w1118 iso line
with tetracycline could have rendered it more sensitive to
DCV. We raised flies of a P-element insertion line, VF-0058–3,
on tetracycline-containing medium or control medium and
compared the adults’ resistance to DCV infection (Figure 1A).
The tetracycline treatment made the flies die much faster
upon DCV infection, with a sensitivity similar to that of w1118

iso line. This result strongly suggested that a tetracycline-
sensitive bacteria, associated with the resistant stocks,
conferred resistance to the viral infection. We discarded the
possibility that the effect was an artifact of the tetracycline per
se because raising w1118 iso flies on medium with tetracycline
did not make them more sensitive to DCV (Figure 1B). We
also treated the VF-0058–3 and VF-0097–3 P-element
insertion lines with tetracycline for two generations and
moved them back to normal medium for at least five
generations in order to negate any side effects of tetracycline
itself (these stocks will be referred as VF-0058–3t and VF-
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Author Summary

Many symbiotic bacteria confer fitness benefits to the organisms
that they infect. Wolbachia are one of the most widespread
intracellular bacteria, infecting a great number of species of insects.
Here we show that in the fruit fly Drosophila melanogaster, infection
with Wolbachia increases resistance to a natural pathogen of
Drosophila, an RNA virus called Drosophila C virus. Furthermore, we
show that Wolbachia also increases resistance of Drosophila to two
other RNA viruses (Nora and Flock House virus) but not to a DNA
virus (Insect Iridescent Virus 6). These results identify a significant
new factor that regulates D. melanogaster resistance to infection by
RNA viruses. Our results add to a growing body of literature showing
that the response of an organism to a particular pathogen is
modulated by prior or contemporaneous interactions with other
microorganisms. That the fruit fly clearly benefits from increased
resistance to viruses may provide a solution to the longstanding
puzzle as to why Wolbachia is so common in natural populations of
D. melanogaster.



0097–3t). We then repeated the assay, comparing resistance
to DCV of these treated stocks to the non-treated stocks
(Figure 1C). The tetracycline treatment makes the P-element
insertion lines stably more sensitive to DCV than non-treated
lines and equally sensitive to DCV as the w1118 iso line. A
similar result was obtained when females of these lines were
injected with DCV, with the difference that females are less
sensitive to DCV than males (unpublished data). Importantly,
in the timeframe of this assay, the survival of tetracycline-
treated and non-treated stocks do not differ when only
injected with buffer (Figure 1D). In summary, these results
show that tetracycline-sensitive bacteria, not easily acquired
from the laboratory environment, confer on D. melanogaster
resistance to DCV.

The increased resistance to DCV could be due to increased
resistance to the damage caused by the viral infection or
decreased viral proliferation. To test this, we probed by
Western blot the levels of viral proteins in VF-0058–3 and VF-
0058–3t adult flies after infection with DCV (Figure 1E).
While viral proteins were not detectable on extracts of DCV-
infected VF-0058–3 flies, they were clearly detectable on

extracts of DCV-infected VF-0058–3t flies, and their levels
increased from 3 to 6 d post-infection. We extended this
analysis by quantifying, in cell culture, the viral titer in these
flies after DCV infection (Figure 1F). DCV is detected after
infection in flies from both stocks and slightly increases from
3 to 6 d post-infection. However, DCV levels are considerable
higher, by approximately 10,000 times, in VF-0058–3t flies.
These experiments show that the bacteria that confer
resistance to DCV infection interfere with the virus prolifer-
ation.

Identification of the Viral Resistance–Inducing Bacteria
The fact that the tetracycline treatment permanently

renders the flies sensitive to DCV shows that the bacteria
are not easily acquired from the laboratory environment. To
test if the resistance could be horizontally acquired, we raised
together the progeny of w1118 iso females (without resistant-
inducing bacteria) with the progeny of VF-0058–3 females
(with resistant-inducing bacteria) and then assayed the levels
of viral proteins in infected flies (Figure 2A). The progeny of
these females can be distinguished by their eye color, due to

Figure 1. Tetracycline Treatment Increases Flies Sensitivity to DCV

(A, B, and C) Fifty 3–6-d-old males, per sample, were injected with DCV, and their survival was followed daily. (A) Flies w1118 iso, VF-0058–3, and VF-0058–
3 raised on tetracycline for one generation were injected with 500 TCID50 DCV. (B) Flies w1118 iso and w1118 iso raised on tetracycline were injected with 50
TCID50 DCV. (C) Flies w1118 iso, VF-0058–3, VF-0058–3t, VF-0097–3, and VF-0097–3t were injected with 500 TCID50 DCV. Each assay was repeated once with
males and twice with females with similar results.
(D) Fifty 3–6-d-old males, per sample, of VF-0058–3 and VF-0058–3t lines were injected with 50 mM Tris-HCl, pH 7.5, kept at 188C and their survival was
followed daily.
(E) Extracts of VF-0058–3 and VF-0058–3t flies 3 and 6 d after injection with 500 TCID50 DCV or not injected were probed in a Western blot with anti-
DCV. Anti-tubulin was used as a loading control.
(F) Titration, in cell culture, of DCV levels per fly of VF-0058–3 and VF-0058–3t flies 3 and 6 d after injection with 500 TCID50 DCV. Squares are replicates
(four per sample), lines are geometric means of replicates. Virus titres in VF-0058–3 and VF-0058–3t are significantly different on both days post-
infection (Mann-Whitney test, p ¼ 0.0287 for both comparisons).
doi:10.1371/journal.pbio.1000002.g001
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the presence of a functional white gene, in the RS3 trans-
poson, only in the progeny of VF-0058–3 flies. w1118 iso flies
do not acquire the resistance to DCV when raised mixed with
the progeny of VF-0058–3 flies. Therefore, the bacteria that
confer resistance to DCV are not acquired horizontally. We
then tested if the resistance was vertically transmitted by
crossing males and females from VF-0058–3 and VF-0058–3t
stocks in all four possible combinations and assaying the
survival of the adult progeny after DCV infection (Figure 2B).
The results clearly show that the determinant factor of the
progeny resistance is the mother’s resistance; therefore, the
bacteria in question are maternally transmitted, which
strongly suggests they are intracellular. However, the bacteria
could, in theory, be only transmitted by the mother but not
be intracellular (e.g., they could be deposited on the egg
surface). This did not seem to be the case, because flies that
were raised from VF-0058–3 surface-sterilized embryos did
not become more sensitive to DCV (Figure 2C). Moreover, we
could visualize the presence of intracellular bacteria by DNA
staining in embryos from VF-0058–3 and VF-0097–3 stocks
but not from VF-0058–3t, VF-0097–3t, or w1118 iso stocks
(Figure 2D). We can therefore conclude that the viral

resistance is mediated through maternally transmitted intra-
cellular bacteria.
To identify the intracellular bacteria in question, we

extracted DNA from surface-sterilized embryos of resistant-
to-DCV flies (VF-0058–3) and performed PCR amplification
using prokaryotic 16S rRNA universal primers. We analysed
the product of this amplification by cloning it and sequencing
over 100 independent clones. All the 104 sequences of inserts
in the cloning plasmid we obtained were at least 99.5%
identical to the sequence of a fragment of the 16S rRNA gene
of Wolbachia (GenBank accession number EU096232; http://
www.ncbi.nlm.nih.gov/Genbank/). Therefore, these embryos,
which carry the resistance to DCV inducing bacteria, are most
probably only infected with Wolbachia. To verify the presence
of Wolbachia, we performed PCR amplification using primers
for the Wolbachia specific genes wsp and wspB [45,46] (Figure
2E). Wolbachia is present in VF-0058–3 and VF-0097–3 and
absent from the VF-0058–3t and VF-0097–3t embryos’
extracts. The sequence of the wsp-specific primers’ PCR
amplification product from the VF-0058–3 flies is identical to
the wsp sequence of wMel (GenBank accession number
DQ235407), the only Wolbachia strain known to infect D.

Figure 2. Identification of Wolbachia as the Bacteria Inducing DCV Resistance

(A) Extracts of flies 6 d after injection with 500 TCID50 DCV were probed in a Western blot with anti-DCV. Anti-tubulin was used as a loading control. Flies
used were: w1118 iso ; w1118 iso raised with VF-0058–3; VF-0058–3; and progeny of VF-0058–3 raised with w1118 iso.
(B and C) Fifty 3–6-d-old males, per sample, were injected with 500 TCID50 DCV, and their survival followed daily. (B) Males and females from resistant
(VF-0058–3) and sensitive (VF-0058–3t) stocks were crossed in the four possible combinations, and their progeny were tested for DCV resistance. The
assay was repeated with females with similar results. (C) VF-0058–3 embryos were surface sterilized with bleach, raised to adults, and their resistance to
DCV compared with non-treated VF-0058–3 and w1118 iso flies. The assay was repeated with females with similar results.
(D) DNA staining, with propidium iodide, of 0–2 h embryos of VF-0058–3, VF-0058–3t, w1118 iso, VF-0097–3, and VF-0097–3t. Extranuclear DNA staining
corresponds to bacteria. Scale bar, 10lm.
(E) PCR amplification with wsp and wspB primers on DNA extracts of VF-0058–3t, VF-0058–3, VF-0097–3t, and VF-0097–3 embryos. PCR amplification
with mt 12S rRNA primers was done as a DNA extraction control.
(F) PCR amplification with primers specific for Spiroplasma 16S rRNA gene on DNA extracts of RED-67, VF-0058–3, wt 1, wt 2, wt 3, wt 4, wt 5, and wt 6
adults. PCR amplification with mt 12S rRNA primers was done as a DNA extraction control.
doi:10.1371/journal.pbio.1000002.g002
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melanogaster. In a recent survey in 35 different Drosophila
species, that screened over 4,500 individuals, only two kind of
heritable endosymbiotic bacteria were found: Wolbachia and
Spiroplasma [47]. We specifically tested for the presence of
Spiroplasma in the VF-0058–3 line (and the wt-1 to -6 lines used
in Figure 3B) using primers specific for the 16S rRNA gene of
Spiroplasma [48]. We detect Spiroplasma in a positive control,
RED-67 [48], but not in any of the other tested lines.
Therefore it is not Spiroplasma that confers resistance to
viruses. This result and the sequencing results strongly
suggest that the maternally inherited intracellular bacteria
that confer resistance to DCV are Wolbachia.

These results show that resistance to DCV is associated with
the presence of Wolbachia, however it could be possible that
other cryptic intracellular bacteria were responsible for the
virus resistance, and Wolbachia would merely be present in
these flies by chance. Wolbachia cannot be cultured and
therefore we cannot infect a sensitive stock with a pure
cultured isolate and verify acquired resistance to DCV.
Wolbachia can be artificially transferred from an infected host
to a new host. However, if we did transfer Wolbachia from
infected flies to non-infected flies and show concomitant
transfer of resistance to DCV, we could not discard the

possibility that we were also transferring the hypothetical
cryptic bacteria. We addressed this problem by treating the
Wolbachia-infected stock VF-0058–3 with a suboptimal dose of
tetracycline for one generation and then establishing
isofemale lines from the progeny. We expected to obtain
lines that kept theWolbachia infection and other lines that lost
it. The segregation of Wolbachia should be independent of the
segregation of any hypothetical other bacteria. From two
independent sets, one set of ten lines and another set of 23
lines, we established, in total, three lines that conserved
Wolbachia infection and 30 lines that lost it. We then tested
these lines for resistance to viruses (Figure 3A). Wolbachia
presence and viral resistance fully segregate with each other;
the probability that the presence of Wolbachia and resistance
to DCV are independent is very low (Fisher’s exact test, p ¼
0.0002). These data strongly indicate that it is Wolbachia
infection that induces DCV resistance.
To corroborate that it is Wolbachia infection that protects

D. melanogaster from DCV, we analyzed this interaction in
other independent fly stocks. We screened, by PCR, for
Wolbachia presence in a collection of wild-type stocks kept in
our laboratory and we found six infected lines. After
establishing tetracycline-treated stocks derived from these

Figure 3. Confirmation of Wolbachia as the Bacteria Inducing DCV Resistance

(A) Two independent sets of isofemales lines were established from VF-0058–3 flies raised on a sub-optimal dose of tetracycline (lines 1–10 and 11–33).
The presence of Wolbachia in these lines was tested by PCR amplification using wsp primers on DNA extracts of adult flies, PCR with mt 12S rRNA
primers was done as a control. Three–six-d-old males of each line were injected with 500 TCID50 DCV, collected 6 d later, and DCV levels analysed by
Western blot with anti-DCV. Anti-tubulin was used as a loading control.
(B) Six wild-type lines infected with Wolbachia (lines 1–6) and six wild-type lines not infected (lines 7–12) were identified by PCR amplification with wsp
primers (more information on wild-type lines identity can be found in Materials and Methods). Each stock was treated with tetracycline for two
generations and then transferred to tetracycline-free food for at least two generations. Treated and non-treated stocks were re-tested for presence of
Wolbachia by PCR amplification with wsp primers. Seven–twelve PCR amplifications were all negative, not shown. Three–six-d-old males of each stock
(lines 1–12, tetracycline treated and non-treated) were injected with 500 TCID50 DCV, collected 6 d later, and DCV levels analysed by Western blot with
anti-DCV. Anti-tubulin was used as a loading control.
doi:10.1371/journal.pbio.1000002.g003
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lines, we compared, by Western blots, their resistance to DCV
with the original lines (Figure 3B). In all the six cases, the loss
of Wolbachia makes the flies more sensitive to DCV. The same
procedure was applied to six stocks that did not carry
Wolbachia initially (Figure 3B). There is much heterogeneity in
the levels of DCV proteins 6 d after infection in these stocks
(e.g., line 7 is very resistant to DCV infection), but,
importantly, there is no increase in the levels of DCV
proteins in the tetracycline treated stocks. These results show
that increase sensitive to DCV after tetracycline treatment is
always associated with an initialWolbachia infection. From this
set of data, plus the same result of increased sensitivity with
tetracycline treatment of VF-0058–3, we can state that the
probability that initial Wolbachia infection and increased
sensitivity upon tetracycline treatment are independent is
very low (Fisher’s exact test, p¼ 0.0006). In conclusion, we can
confidently state that it is Wolbachia that protects D.
melanogaster from DCV infection.

Wolbachia Effect on Other Viral Infections
Wolbachia and DCV are commonly found in D. melanogaster

natural populations and laboratory stocks; their interaction
could be very specific. We investigated if Wolbachia protection
extends to infections by two other RNA viruses and a DNA
virus.

Nora virus is a recently described common natural
pathogen of D. melanogaster [49]. Similar to DCV, Nora virus
is a small, non-enveloped virus with a single-stranded,
positive-sense RNA genome. It is similar to picornaviruses
and dicistroviruses, but it has a unique genome organization.
Using reverse-transcription PCR (RT-PCR) with Nora virus–
specific primers, we found that the VF-0058–3 and VF-0058–
3t stocks are not infected with it while another laboratory
stock, Oregon R, is (Figure 4A). An extract of Oregon R adult
flies was injected into VF-0058–3 and VF-0058–3t adult flies,
and the levels of Nora virus replication were accessed, by
semi-quantitative RT-PCR, after 3 d (Figure 4A). We
observed, in four independent repeats, that Nora virus levels
are lower in Wolbachia-infected flies; Wolbachia infection also
protects Drosophila from Nora virus infection.

Flock House virus (FHV) belongs to the Nodaviridae family
of insect viruses. These are small viruses containing two
single-stranded, positive-sense genomic RNAs [50]. FHV was
isolated from a coleopteran [51] and is not a natural pathogen
of D. melanogaster. However, it can be cultured in D.
melanogaster cells and proliferates and causes death in adult
flies when injected [38,50]. We injected FHV in VF-0058–3
and VF-0058–3t adult flies and followed their survival (Figure
4B). Wolbachia-infected flies were much more resistant to FHV
infection; with an infection dose of 50 TCID50, all VF-0058–3t
flies die by day 13, while only 40% of VF-0058–3 flies die by
day 21. We can detect, by Western blot, increase in FHV
proteins with time in both infected stocks (Figure 4C).
Surprisingly, we only detected a slight increase in FHV
proteins in the infected VF-0058–3t flies, compared with the
infected VF-0058–3 flies. We confirmed this result by
determining, in cell culture, the viral titer per infected fly, 6
d post-infection (Figure 4D). We find, on average, only 1.8-
fold more FHV in Wolbachia-free flies. and the difference is
not statistically significant (Mann-Whitney test, p ¼ 0.05764).
We can conclude that Wolbachia presence also increases the

resistance of D. melanogaster to FHV infection although it does
not or only slightly affects FHV levels.
Finally, we wanted to test the effect of Wolbachia on a DNA

virus infection; however, there is no known DNA virus that is
a natural pathogen of D. melanogaster. Insect Iridescent Virus 6
(IIV-6) (also named Chilo iridescent virus (CIV)) is a large virus
with a double-stranded DNA genome from the Iridoviridae
family [52]. It was first isolated from a lepidopteran but can
infect a large number of different insects and cultured insect
cells [53,54]. IIV-6 can infect and replicate in D. melanogaster
cells [54] and cause adult flies death upon injection (Peter
Christian, personal communication). We confirmed that IIV-6
infection causes premature death in adult flies, approxi-
mately halving their lifespan when 1,000 TCID50 are injected
per fly (Figure 4E). Importantly we can show that IIV-6
replicates in adult D. melanogaster. Infected flies become
iridescent as they accumulate virions, a characteristic of
iridoviruses due to their paracrystalline packing (Figure 4F).
Moreover, IIV-6 titer per fly after 10 d of infection,
determined in cell culture, was approximately 109 TCID50,
when a dose of 103 TCID50 was injected (Figure 4G). Contrary
to the results obtained with DCV and FHV infection,
Wolbachia-infected flies actually died faster than Wolbachia-
free flies when infected with IIV-6 (Figure 4E). This probably
represents just a cumulative effect of the deleterious effects
of Wolbachia and IIV-6 infection. In fact, Wolbachia infection
has a long-term deleterious effect that results in a shorter
lifespan in the absence of viral infection (Figure 4E). In
accordance with this interpretation, the average IIV-6 titer,
10 d after injection, is only 1.8-fold higher in Wolbachia-
infected flies compared with Wolbachia-free flies, and not
significantly different (Mann-Whitney test, p¼0.08118) (Figure
4G). In conclusion, Wolbachia presence does not protect D.
melanogaster from IIV-6 infection.

Discussion

We have shown that Wolbachia infection in D. melanogaster
induces resistance to DCV infection. Several lines of evidence
lead to this conclusion. The resistance to DCV was maternally
transmitted and sensitive to tetracycline, as is Wolbachia; in
embryos infected with bacteria inducing resistance to DCV,
we can only detect the presence of Wolbachia; all tested D.
melanogaster lines that carried Wolbachia became more sensi-
tive to DCV after tetracycline treatment; lines that did not
carry Wolbachia did not become more sensitive to DCV after
tetracycline treatment. Finally, when transmission to the next
generation was imperfect, due to treatment of larvae with a
low dose of tetracycline, Wolbachia and resistance to DCV co-
segregated. Following Occam’s razor principle—Pluralitas non
est ponenda sine necessitate. ‘‘Plurality should not be posited
without necessity.’’ —the simplest and most plausible
hypothesis is thatWolbachia is the causative agent of resistance
to DCV.
Infection by Wolbachia considerably increased the lifespan

of DCV-infected flies. This is due to a strong reduction in
viral titers, as observed by Western blot and titration by cell
culture. At 3 d post infection, the DCV titer in Wolbachia-
infected flies was 10,000 times less than that in Wolbachia free
flies. This difference is larger than that reported between the
wild type and mutants in the anti-viral resistance genes Dcr-2,
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ago-2, and hop [36,38,40]. Wolbachia is clearly a major factor
affecting Drosophila resistance to DCV.

Wolbachia and DCV are common symbionts of D. melanogast-
er. However, the interaction is not specific to DCV; we found
that Wolbachia also induced resistance to two other RNA
viruses. In the case of Nora virus, there was also reduction in
the viral titer of infected flies. FHV infection, in terms of
mortality, was also much less severe in the presence of
Wolbachia, to a degree similar to that seen with DCV. But, with
this virus, Wolbachia only slightly affected viral titer. The
resistance to FHV is most probably an increase in resistance
to the damaged caused by the viral infection rather than an
ability to inhibit virus proliferation. However, we cannot
exclude the possibility that there is strong inhibition of FHV
proliferation in certain essential adult tissues or that a small
decrease in viral titer is enough to significantly increase the
lifespan of infected individuals.

DCV and Nora virus differ from FHV in two ways: they are
both natural pathogens of Drosophila and both are picorna-
virus-like. An endogenous virus and its host could be co-
adapted so that a small advantage, in this case provided by the

bacteria to the host, would profoundly tilt the equilibrium
between virus and host, whereas an exogenous pathogen may
be less sensitive to bacterial infection of its host. On the other
hand, Wolbachia could interfere with the life cycle of
picornavirus-like viruses but not of FHV, a nodavirus. We
cannot distinguish between these possibilities with such a
small sample of viruses; it would be interesting to extend the
analysis to other RNA viruses that infect D. melanogaster (e.g.,
Sigma (a rhabdovirus) [43], Drosophila X virus (a birnavirus)
[55], and Drosophila A virus (picornavirus-like) [43]).
We have also tested the interaction ofWolbachia with a DNA

virus, IVV-6. Wolbachia did not protect Drosophila from this
virus; it actually decreased the lifespan of infected flies. We
think this is due to the cumulative effect ofWolbachia and IIV-6
infection, since, in the genetic background of the flies we were
using,Wolbachia had a negative effect on long-term survival. It
would be interesting to also extend the analysis to other DNA
viruses, however there are no DNA viruses known to infect D.
melanogaster. To our knowledge, this is the first report of a DNA
virus proliferating in adults of D. melanogaster.
An obvious question is how Wolbachia induces resistance to

Figure 4. Wolbachia Interaction with Other Viruses

(A) RT-PCR was done with Nora virus primers on RNA of VF-0058–3, VF-0058–3t, and Oregon R flies (left). PCR with RpL32 was done as control. Three–six-
d-old males of VF-0058–3 and VF-0058–3t lines were injected with a virus extract of Oregon R flies and collected 3 d later. RNA was extracted and RT-
PCR done with primers for Nora virus and RpL32. The same number of PCR cycles was done for both samples. The assay was repeated three more times,
from infection of flies with virus extract, with similar results.
(B) Fifty 3–6-d-old males, per sample, of VF-0058–3 and VF-0058–3t lines were injected with 50 TCID50 FHV, and their survival was followed daily. The
assay was repeated twice with males and once with females with similar results.
(C) Extracts of VF-0058–3 and VF-0058–3t flies 3, 6, and 9 d after injection with 50 TCID50 FHV or not injected were probed in a Western blot with anti-
FHV. Anti-tubulin was used as a loading control.
(D) Titration, in cell culture, of FHV levels per fly of VF-0058–3 and VF-0058–3t flies 6 d after injection with 50 TCID50 FHV. Squares are replicates (10 per
sample), lines are geometric means of replicates. Virus titres in VF-0058–3 and VF-0058–3t are not significantly different (Mann-Whitney test, p ¼
0.05764).
(E) Fifty 3–6-d-old males, per sample, of VF-0058–3 and VF-0058–3t lines were injected with 1,000 TCID50 IIV-6 or buffer, and their survival followed. The
assay was repeated once with males and the IIV-6 injected flies survival curves were also repeated with females, with similar results.
(F) Iridescent-infected male 20 d after injection with 1000 TCID50 IIV-6 (right) and not infected same age male (left) are shown.
(G) Titration, in cell culture, of IIV-6 levels per fly of VF-0058–3 and VF-0058–3t flies 10 days after injection with 1000 TCID50 IIV-6. Squares are replicates
(10 per sample), lines are geometric means of replicates. Virus titres in VF-0058–3 and VF-0058–3t are not significantly different (Mann-Whitney test, p¼
0.08118).
doi:10.1371/journal.pbio.1000002.g004
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RNA viruses. The different effect on DCV/Nora virus and
FHV raises the possibility that this effect is multifactorial;
interfering with virus replication in some cases and increas-
ing resistance of Drosophila to viral infection damage in
others. One important question to address is whether the
effect is cell-autonomous or systemic. Wolbachia is widespread
throughout tissues of the infect host [18,56], so both
hypotheses are possible. This could be investigated in tissue
culture with Wolbachia-infected cells. If the effects are cell
autonomous, one explanation for increased resistance to
viruses could just be competition for resources, since both
microorganisms occupy the same niche, the host’s cytoplasm.
For example, Wolbachia is thought to acquire much of its
energy from the metabolism of amino acids imported from
the host cytoplasm [46]. DCV, on the other hand, is very
sensitive to perturbations in host translation [57]. The
presence of Wolbachia could reduce the pool of cytoplasmic
amino acids to a point that interferes with translation of viral
proteins. Another possibility is that Wolbachia infection could
trigger cell-autonomous mechanisms of resistance to intra-
cellular pathogens, such as a reduction in cellular metabo-
lism. A further explanation for a cell-autonomous effect
would be that Wolbachia has been selected to actively interfere
with virus replication in co-infected cells. Wolbachia has a
complete type IV secretion system [46], which many bacteria
use for translocation of effector molecules into host cells (e.g.,
Legionella and Agrobacterium). Genes encoding proteins with
ankyrin repeats, involved in protein–protein interactions, are
over-represented in the Wolbachia genome [46,58] and are
good candidates for mediators of anti-viral resistance.

If the effect is systemic, a strong hypothesis is thatWolbachia
could alter the host–immune response, increasing resistance
to viral infection. The pre-activation of the host immune
system, for example, could allow for a faster response upon
viral infection. This would be similar to what happens in a
herpesvirus-induced resistance to Listeria in mice, due to the
production of cytokines [59]. It was also reported recently
that the presence of gut flora slightly increases the resistance
of Aedes aegypti to Dengue virus, presumably through
activation of the Toll pathway [60]. In tissue culture of D.
melanogaster cells, infection with Wolbachia slightly increases
the expression of innate immune genes [61]. There is also a
report that Wolbachia increases resistance of D. melanogaster to
the pathogenic fungus Beauveria bassiana [62]. All these reports
support a model of general activation of innate immunity.
However it has also been shown that in adult D. simulans and
Aedes albopictus Wolbachia does not activate the expression of
anti-microbial peptides [63], in D. simulans, Wolbachia infec-
tion does not alter sensitivity to Beauveria and renders the
host more sensitive to parasitoid wasps [64], and in D.
melanogaster, Wolbachia presence does not affect Spiroplasma
levels [65]. In summary, it is not clear if there is a general
activation of innate immunity in adult D. melanogaster infected
with Wolbachia that would render them more resistant to
other pathogens. It would be interesting to identify immune
pathways involved in anti-viral resistance activated by
Wolbachia infection. It would also be important to analyze
Wolbachia-induced resistant to other microorganisms, includ-
ing pathogenic bacteria.

A different hypothesis would be that Wolbachia infection
actually inhibits some of the immune responses against viral
infection and that increases the lifespan of infected D.

melanogaster. This may be true if the host response to infection
damages the host itself, as in the case of septic shock in
mammals. This could explain the increased resistance to FHV
infection without a strong effect on viral titers. Finally, a
similar hypothesis would be that Wolbachia inhibits, cell-
autonomously or systemically, apoptosis induced upon viral
infection. Some published data support this hypothesis; FHV
induces apoptosis in tissue culture cells [66],Wolbachia inhibits
apoptosis in the germline of Asobara tabida [8,9], and the
Wolbachia protein Wsp inhibits apoptosis in human cells [67].
This new host-microorganism-microorganism interaction

adds to the perception that the response of a host to a
particular pathogen also depends on its interactions with
other microorganisms. Other examples are herpesvirus
latency-induced protection to Listeria in mice mentioned
above [59], the suppression of HIV-1 infection by human
herpesvirus 6 in human cells [68], symbiotic bacteria
protection against fungi in a shrimp and an aphid [69,70],
symbiotic bacteria protection against parasitic wasps in an
aphid [71], and symbiotic bacteria protection against fungal
infection in a wasp [72]. As also mentioned above, there is a
recent report that gut flora has a protective role against
Dengue virus in A. aegypti [60]. However, this is, to our
knowledge, the first report where bacteria that confer
protection against viruses have been identified.
This interaction has some practical consequences. Re-

searchers working on Drosophila immunity against viruses
should take in consideration the presence of Wolbachia in the
stocks they are analyzing. On the other hand, researchers
working on Wolbachia should consider that any observed
effects of Wolbachia could be mediated through effects on
viral infections. A practical application of this discovery
would be, if possible, to induce resistance to viruses, by
infection with Wolbachia, in insects that are beneficial to
humans (e.g., honeybee) or transmit arboviruses (e.g., mos-
quitoes). However, introducing Wolbachia to virus-transmit-
ting vectors could be a double-edged sword. If the interaction
Wolbachia-vector-virus were similar to the one seen in this
report with DCV, then it would be beneficial because it could
decrease the probability of the vector being infected or
transmitting the disease. If, however, it were similar to the
interaction with FHV, then there would be the risk of having
healthier infected vectors with high titers of viruses, therefore
increasing disease transmission. This latest possibility should
be taken into account in proposed strategies of introducing
Wolbachia in vectors of arboviruses [73,74].
Finally, this is, to our knowledge, the first report of a strong

beneficial effect of Wolbachia infection in D. melanogaster. The
induced resistance to natural viral pathogens may explain the
prevalence of Wolbachia in natural populations. It also
indicates that the fitness benefit of having Wolbachia is
dependent on the viral infection status of the population.
This may explain differences in Wolbachia infection frequen-
cies between populations [17,25] and variable fitness effects in
different D. melanogaster lines [28,30]. It would be interesting
to broaden the analysis to otherWolbachia strains and to other
Wolbachia–host combinations. If Wolbachia induces resistance
to viruses in other hosts, this would have major implications
for our understanding of the very widespread presence of this
endosymbionts in arthropods and filarial nematodes.
After the submission of this manuscript, an independent

report with similar findings to ours was published [75]. In
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agreement with our data, Hedges et al. show that the
treatment of Wolbachia-infected flies with tetracycline renders
them more sensitive to three RNA viruses: DCV, Cricket
Paralysis virus, and FHV. Moreover, they also show that the
levels of DCV increase in infected Wolbachia-free flies.

Materials and methods

Fly strains and husbandry. The set of w1118 iso isogenic flies were
obtained from the DrosDel collection in our laboratory [42]. These
lines were cleaned of viruses similarly to the protocol in Brun and
Plus, 1978 [43]. Flies were aged to 30 d at 25 8C and their eggs were
collected in agar plates, treated with 50% bleach for 10 min, washed
with water, and transferred to fresh vials.

The wild-type laboratory lines used in Figure 3B have the origins
described in Table 1.

Stocks were treated with tetracycline (cleaned of Wolbachia
infection) by raising them for two generations in ready-mix dried
food (Philip Harris) with 0.05 mg/ml of tetracycline hydrochloride
(Sigma). Sub-optimal tetracycline treatment was done by raising flies,
for one generation, in food with 0.00625 mg/ml of tetracycline
hydrochloride. Virgin adult females, emerging from these vials, were
collected and individually crossed with males to establish isofemale
lines.

Sensitive and resistant-to-viruses flies were raised together by
placing in a vial one w1118 iso female, one VF-0058–3 female, and two
w1118 iso males. The progeny of the two different females could be
distinguished by the eye color, because only the progeny of VF-0058–
3 females have a functional white gene. Flies were only collected from
vials that had adults of both phenotypes.

Virus production. DCV-C [77] was kindly provided by Dr. Peter
Christian and raised as in Johnson and Christian 1999 [78].

Nora virus extract was prepared from a naturally infected Oregon
stock present in the laboratory. Thirty adult flies were squashed in
900 ll of 50 mM Tris-HCl, pH 7.5. Extract was then frozen at�80 8C,
thawed and twice centrifuged for 10 min at top speed in a tabletop
centrifuge, at 4 8C. The supernatant was aliquoted and stored at�80
8C.

IIV-6 [79] was kindly given by Dr. Peter Christian and raised in
Schneider Drosophila line 2 (DL2) cells [54]. DL2 cells were kept in
Schneider’s Drosophila Medium (Invitrogen) supplemented with 10%
Fetal Bovine Serum, 2mM L-Glutamine, 100 U/ml penicillin, and
100lg/ml streptomycin (all Invitrogen). Seven days after infection, the
cell culture was collected and frozen at �80 8C. The culture was
thawed, frozen, and thawed again to disrupt cells and centrifuged
twice at 600g for 10 min to remove cell debris. Virus was pelleted by
centrifugation at 10,000g for 10 min and re-suspended in water. Virus
suspension was placed over a 30% sucrose solution and the virus was
pelleted again by centrifugation at 30,000g for 30 min and re-
suspended in water. The virus was then pellet by centrifugation at
15,000g for 10 min and re-suspended twice. The final re-suspension
was done in 50 mM Tris-HCl, pH 7.5, aliquoted, and stored at�80 8C.
All centrifugations and re-suspensions were done at 4 8C.

FHV was kindly provided by Dr. J.-L. Imler [38] and dilutions of
this aliquot were used in this work.

Virus injection. Three-to-six–d-old flies were injected with a
Nanoject II injector (Drummond). Viruses were re-suspended or
diluted in 50 mM Tris-HCl, pH 7.5, and 69 nl of virus solution was
injected, per fly, in the thorax, between the mesopleura and the
pteropleura. Flies were injected while anesthetized with CO2. Fifty
flies were injected per sample, ten flies were placed per vial, and vials
were changed twice a week. DCV injected flies were kept at 18 8C.
Nora virus–, FHV- and IIV-6–injected flies were kept at 25 8C. Flies
were counted daily for all survival curves except for VF-0058–3 and
VF-0058–3t injected with buffer, as shown in Figure 4E, which were
counted at least twice a week.

Virus titration. Five flies were pooled per sample. Flies were
squashed in 50 mM Tris-HCl, pH 7.5, frozen, thawed, and centrifuged
for 10 min at 20,000g and supernatant was collected (DCV and FHV).
For IIV-6, centrifugation was done twice at 600g and the supernatant
passed through a 0.45-lm filter before the assay. Viruses titers were
determined in cell culture and calculated by the Reed and Muench
end-point calculation method [80]. DL2 cells in 96-well plates were
infected with the serial dilutions of virus suspensions. DCV and FHV
infection was scored by the presence of cell death, IIV-6 was scored by
non-proliferation of cells and presence of very large cells. Extracts of
non-infected VF-0058–3 or VF-0058–3t flies did not cause any
cytopathic effect in tissue culture cells.

Western blots. Five to eight males were pooled per sample. Rabbit
polyclonal antibodies raised against purified DCV was kindly given by
Dr. Peter Christian. Rabbit polyclonal antibodies raised against FHV
capsids was kindly given by Dr. Jean-Luc Imler [38]. Specificity of
antibodies was verified by lack of signal on Western blot lanes of non-
infected flies (Figures 1E and 4C). E7 mouse monoclonal anti-b-
tubulin was acquired from Developmental Studies Hybridoma Bank
[81].

Propidium iodide staining. Embryos 0–2-h-old were collected,
treatedwith 50%commercial bleach for 10min, fixed for 30min in 4%
formaldehyde, 50% heptane, the vitelline membranes were removed
by vortexing the embryos in 50% heptane, 50% methanol, then
embryos were washed briefly in methanol and for 10 min in 50%
methanol, 50% PBS and finally placed in PBS 0.1% tween-20. Embryos
were treated with RNAse H 0.25 lg/ll for 30 min at 37 8C, washed in
PBS 0.1% tween-20, stained with PBS 0.1% tween-20 and 1 lg/ml
propidium iodide (Sigma) for 30 min, washed in PBS 0.1% tween-20
and mounted in Vectorshield. Images were taken in a confocal
microscope.

PCR, sequence analysis, and RT-PCR. A fragment of bacterial 16S
rRNA gene was amplified from DNA of Drosophila embryos surface
sterilized by treatment with 50% commercial bleach for 10 min. DNA
was extracted using Wizard Genomic DNA purification kit (Promega).
Primers used were 27f (59-GAGAGTTTGATCCTGGCTCAG-39) and
1495r (59-CTACGGCTACCTTGTTACGA - 39). The PCR program
was: 94 8C for 4 min; 25 cycles of 94 8C for 30 s, 58 8C for 1 min, and 72
8C for 2 min; 72 8C for 10 min. The PCR product was ligated into pCR
2.1 TOPO vector (Invitrogen) and transformed into DH5a cells.
Nineteen plasmid DNA preparations and 96 bacteria cultures were
sent for sequencing. Three sequencing reactions failed and 8 clones
did not carry an insertion in the cloning plasmid. From all the other

Table 1. Origins of Wild-Type Laboratory Lines Used in This Work

Number on Figure 3B Ashburner Lab Identification Origin Via

1 W-10 Harwich, MA, USA, 1967 unknown

2 W-12 Jerusalem, Israel, 1970 Stock number W500, Umeå DSC, Sweden

3 W-20 Oregon, USA, 1925 or earlier Oregon-R stock, NIG, Mishima, Japan

4 W-23 Tai, Ivory Coast, 1983 Stock number 255.1, CNRS, Gif, France

5 W-30 Sengwa Wildlife Reserve, Zimbabwe, 1990 NIG, Mishima, Japan

6 Aljezur 1 Aljezur, Portugal, 2005 Collected by L. Teixeira

7 W-16 Crete, Greece, 1975 Stock number W570, Umeå DSC, Sweden

8 W-29 Stäket, Sweden Stock number W830, Umeå DSC, Sweden

9 W-19 Villeurbanne, France CNRS, Gif, France

10 W-26 Novosibirsk, Russia Glasgow, UK

11 W-35 Line 2b, as described in [76] Lund, Sweden

12 Oregon R Oregon, USA 1925 or earlier unknown

doi:10.1371/journal.pbio.1000002.t001
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104 sequences, we selected a sequence of at least 600 bp with good
quality and aligned it with a fragment of the 16S rRNA gene of
Wolbachia (GenBank accession number EU096232) using Clustal W 2
[82].

PCR amplification of Wolbachia-specific genes was done either on
the DNA extracts of embryos as described above (Figure 2E) or on
DNA extracts of adult flies (Figure 3). Adult flies were squashed in 25
mM NaCl, 10 mM Tris-HCl pH¼8.0, 1 mM EDTA, 200 lg/ml
proteinase K and incubated for 30 min at 37 8C. Proteinase K was
inactivated at 95 8C for 5 min. The supernatant was directly used for
PCR amplification. wsp primers were wsp 81F (59-TGGTCCAA-
TAAGTGATGAAGAAAC-39) and wsp 691R (59-AAAAATTAAACGC-
TACTCCA-3 9) [ 4 5 ] . wspB pr imer s were wspB - F ( 5 9-
TTTGCAAGTGAAACAGAAGG - 3 9) a n d w s p B - R ( 5 9-
GCTTTGCTGGCAAAATGG-39) [46]. As a positive control for
cytoplasmic DNA extraction we used the primers for mitochondrial
12S rRNA, 12SAI (59-AAACTAGGATTAGATACCCTATTAT-39) and
12SBI (59-AAGAGCGACGGGCGATGTGT-39) [4]. The PCR program
used was: 94 8C for 4 min; 30 cycles of 94 8C for 1 min, 55 8C for 1 min,
and 72 8C for 1 min; 72 8C for 10 min. The wsp primers amplification
product from VF-0058–3 embryos was purified, as described above,
and sequenced. The sequence obtained was identical to a fragment of
the wsp sequence of wMel (GenBank accession number DQ235407).

PCR amplification with primers specific for Spiroplasma 16S rRNA
gene was done on DNA extracts of adult flies. Primers used were
SpoulF (59-GCTTAACTCCAGTTCGCC-39) and SpoulR (59-
CCTGTCTCAATGTTAACCTC-39) [48]. The PCR program was: 94
8C for 4 min; 30 cycles of 94 8C for 30 s, 55 8C for 1 min, and 72 8C for
1 min; 72 8C for 10 min. As a positive control for cytoplasmic DNA
extraction, we used the primers for mitochondrial 12S rRNA, as
described before.

Nora virus presence in VF-0058–3, VF-0058–3t, and Oregon R
stocks was analyzed by RT-PCR. RNA of 100 flies, per sample, was
extracted using Trizol (Invitrogen). cDNA was synthesized from 5 lg
of total RNA with Superscript III (Invitrogen), using random
hexamers primers, at 50 8C. The Nora primers used for PCR were

Nora-F (59-TTAAGGTGTTAGAGAACAGC-39) and Nora-R (59-
CGTAAACACCAACTTACTTC-39) [49]. RpL32 primers, used as a
positive control for RNA extraction, were RpL32-F (59-TCCTAC
CAGCTTCAAGATGAC-39) and RpL32-R (59-CACGTTGTGCAC-
CAGGAACT-39). The PCR program used was as follow: 94 8C for 4
min; 10 cycles of 94 8C for 30 s, 60 8C minus 0.6 8C per cycle for 1 min
and 72 8C for 1 min; 20 cycles of 94 8C for 30 s, 54 8C for 1 min, and 72
8C for 1 min; 72 8C for 10 min. The PCR amplification fragment
obtained with the Nora primers was purified, as described above, and
sequenced. The sequence was 98% identical to a fragment of Nora
virus genome sequence (GenBank accession number DQ321720). For
semi-quantitative analysis of Nora virus in infected flies, the
procedure was as above except that 25 flies were used per sample
and the PCR amplification for each sample was done with a total of
20, 25, and 30 cycles.
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