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THE At AND Q BAILEY TRANSFORM AND LEMMA

STEPHEN C. MILNE AND GLENN M. LILLY

Abstract. We announce a higher-dimensional generalization of the Bailey

Transform, Bailey Lemma, and iterative "Bailey chain" concept in the setting of

basic hypergeometric series very well-poised on unitary Ae or symplectic Q

groups. The classical case, corresponding to A¡ or equivalently U(2), con-

tains an immense amount of the theory and application of one-variable basic

hypergeometric series, including elegant proofs of the Rogers-Ramanujan-Schur

identities. In particular, our program extends much of the classical work of

Rogers, Bailey, Slater, Andrews, and Bressoud.

1. Introduction

The purpose of this paper is to announce a higher-dimensional generalization

of the Bailey Transform [2] and Bailey Lemma [2] in the setting of basic hy-

pergeometric series very well-poised on unitary [19] or symplectic [ 14] groups.

Both types of series are directly related [14, 18] to the corresponding Macdonald

identities. The series in [ 19] were strongly motivated by certain applications of

mathematical physics and the unitary groups U(«) in [10, 11, 15, 16]. The

unitary series use the notation At, or equivalently U(£ + 1 ) ; the symplectic

case, Ce. The classical Bailey Transform, Lemma, and very well-poised basic

hypergeometric series correspond to the case A\, or equivalently U(2).
The classical Bailey Transform and Bailey Lemma contain an immense

amount of the theory and application of one-variable basic hypergeometric se-
ries [2, 12, 25]. They were ultimately inspired by Rogers' [24] second proof

of the Rogers-Ramanujan-Schur identities [23]. The Bailey Transform was first

formulated by Bailey [8], utilized by Slater in [25], and then recast by An-

drews [4] as a fundamental matrix inversion result. This last version of the

Bailey Transform has immediate applications to connection coefficient theory

and "dual" pairs of identities [4], and g-Lagrange inversion and quadratic trans-
formations [13].

The most important application of the Bailey Transform is the Bailey Lemma.

This result was mentioned by Bailey [8; §4], and he described how the proof

would work. However, he never wrote the result down explicitly and thus missed

the full power of iterating it. Andrews first established the Bailey Lemma explic-

itly in [5] and realized its numerous possible applications in terms of the iterative

"Bailey chain" concept. This iteration mechanism enabled him to derive many

¿7-series identities by "reducing" them to more elementary ones. For example,
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the Rogers-Ramanujan-Schur identities can be reduced to the ^-binomial the-

orem. Furthermore, general multiple series Rogers-Ramanujan-Schur identities

are a direct consequence of iterating suitable special cases of Bailey's Lemma.

In addition, Andrews notes that Watson's ^-analog of Whipple's transforma-

tion is an immediate consequence of the second iteration of one of the simplest

cases of Bailey's Lemma. Continued iteration of this same case yields Andrews'

[3] infinite family of extensions of Watson's ^-Whipple transformation. Even

Whipple's original work [26, 27] fits into the q = 1 case of this analysis. Paule

[22] independently discovered important special cases of Bailey's Lemma and

how they could be iterated. Essentially all the depth of the Rogers-Ramanujan-

Schur identities and their iterations is embedded in Bailey's Lemma.

The process of iterating Bailey's Lemma has led to a wide range of applica-

tions in additive number theory, combinatorics, special functions, and mathe-
matical physics. For example, see [2, 5, 6, 7, 9].

The Bailey Transform is a consequence of the terminating 403 summation

theorem. The Bailey Lemma is derived in [1] directly from the 6</>5 summa-

tion and the matrix inversion formulation [4, 13] of the Bailey Transform. We

employ a similar method in the At and Q cases by starting with a suitable,

higher-dimensional, terminating ¿(f>5 summation theorem extracted from [19]

and [14], respectively. The Ae proofs appear in [20, 21], and the Q case is

established in [17]. Many other consequences of the Ae and Q generalizations

of Bailey's Transform and Lemma will appear in future papers. These include

Ae and Q g-Pfaff-Saalschiitz summation theorems, g-Whipple transforma-

tions, connection coefficient results, and applications of iterating the Ae or Q

Bailey Lemma.

2. Results

Throughout this article, let i, j, N, and y be vectors of length I with

nonnegative integer components. Let q be a complex number such that \q\ < 1.

Define

(2.1a) («)» = («;  q)oo-=\[{\-aqk)

and, thus,

(2.1b) (a)„s(a; ?)» := «./(«O«, •

Define the Bailey transform matricies, M and M*, as follows.

Definition (M and M* for At ). Let a, x\, ... , xt be indeterminate. Sup-
pose that none of the denominators in (2.2a-b) vanishes. Then let

(2.2a)        M(i;j;Ae):=f[(q^-A fl(aq^) ;
r,S=l    V S >   >r-Jr k=l    V *</«*+(/!+    •+/<)
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and

(2.2b)
M*{i; j, Ae)

.+/«)-1
:=TTfl_a^+(''+-+*«)l TT (aq^)

x n f^^-^y (_i)(í.+-+«-ü.+-+A)í(("+-+,«>^«+-+*,)#
r,j-l ^   ** ''>"*

Definition ( M and Af * for Q ). Let jcj , ... , xi be indeterminate. Suppose

that none of the denominators in (2.3a-b) vanishes. Then let

(2.3a)

and

M(i;j;Q):= ]
r,s=\

{«%*''*)    '_.(qX'X°qÍr+Í%-J,

(2.3b)

M*(i;j;Ce)
i

r,s=l

(*l**"A),  f       (X'X°qÍr+%-Jr n
Kr<s<e

1 - xrxsqj'+i*

1 - xrxs<3"'+'*

x (_i)(í.+-+<,)-ü.+-+A)í(t'«+•+i')äül+ •+;')).

As in the classical case [1], we have the following theorem.

Theorem (Bailey Transform for ^ and Q ). Leí G = At or Ce. Let M and

M* be defined as in (2.2) and (2.3), with rows and columns ordered lexicograph-

ically. Then M and M* are inverse, infinite, lower-triangular matricies. That

is,

(2.4) ils(ik,jk)= £ MV'> y> G)M*(y> J> <?)>
k=\ Jic<yk<ik

*=i,2.i

where S(r,s)=l if r = s, and 0 otherwise.

Equations (2.2) and (2.3) motivate the definition of the Ae and Q Bailey

pair.

Definition (G-Bailey Pair). Let G — At or Q. Let Nk > 0 be integers for
k = 1, 2, ... , i . Let A = {A(yG)} and B = {5(j,; G)} be sequences. Let M
and Af* be as above. Then we say that A and B form a G-Bailey Pair if

(2.5) B(N;G)=    E    M{N;y;G)A(y,G).
0<yk<Nk
*=1,2.1

As a consequence of the Bailey transform, (2.4), and the definition of the
G-Bailey pair, (2.5), we have the following result.



THE A,  AND C,  BAILEY TRANSFORM AND LEMMA 261

Corollary (Bailey Pair Inversion). A and B satisfy equation (2.5) if and only if

(2.6) A(N;G)=    £    M%N;y;G)B{y.G}.
0<yk<Nk

kml.i.t

Define the sequences A' = {A.[y.At)} and B' = {B'(y.Aty¡ by

(2.7a)

and

(2.7b)

k=\ Nk      k=l

(aqlo)N^.+N}aqlp(j) *»■' *>

^;4,,:=    £       II
o<yk<Nk    lfe=i

*=1,2.1

Xk ) í--)"l n (*-*»-»
-1

Nr-yr

(aq/pa){Nl+...+Nl)_{yi+...+yi] {p)yt+...+yi

(aq/(T)N¡+...+Nt

x{aqlpar+-+y B{y,At)

Define the sequences A' = {A[y.Cl)} and B' — {i! ,c,} by

(<*Xk)Nk {qxkß l)Nk

{ßxk)Nb  [qxka-i)
Nk

I)(2.8a) A'{NQ).= Y[
k=l L

and

(2.8Ô)

JV,-f----r-Jv>

^i\:(JV;Q)

n(4
*=1,2.<

r,i=l

1yr-y¡

-i

AV-y,

x n [(í*^a)^(íw»-*)í.j
l<r<í<¿

x (-) i")
yi+-+yi

(J-; Q)

These definitions lead to our generalization of Bailey's lemma.

Theorem (The G-generalization of Bailey's Lemma). Let G = At or Ce. Sup-

pose A - {AiN.G)} and B = {Z?(/V;G)} form a G-Bailey Pair. If A' = {A',N.G)}

and B' — {B'{N.G)} are as above, then A' and B' also form a G-Bailey Pair.
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3. Sketches of Proofs

Proof of (2.4). In each case, At and Ce, we begin with a terminating 4^3 sum-
mation theorem. In the Ce case, it is first necessary to specialize Gustafson's

Ce (,¥(> summation theorem, see [14], terminate it from below and then from

above, and further specialize the resulting terminating 605 to yield a terminat-

ing 403. In both the Ae and Ce cases, the 4^3 is modified by multiplying
both the sum and product sides by some additional factors. Finally, that result

is transformed term-by-term to yield the sum side of (2.4).   D

Proof of (2.6). Equation (2.6) follows directly from the definition, (2.5), and
the termwise nature of the calculations in the proof of (2.4).   D

Proof of Bailey's Lemma. The definitions in (2.7) and (2.8) are substituted into

(2.5). After an interchange of summation, the inner sum is seen to be a special

case of the appropriate 6^5. The 6</>5 is then summed, and the desired result

follows.   D

Detailed proofs of the Ce case will appear in [17], as will a discussion of

the Ce Bailey chain and a connection coefficient result associated with the Ce

Bailey Transform.
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