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Abstract— Over the last decade, a variety of evolutionary
algorithms (EAs) have been proposed for solving multi–objective
optimization problems. Especially more recent multi–objective
evolutionary algorithms (MOEAs) have been shown to be efficient
and superior to earlier approaches. In the development of new
MOEAs, the strive is to obtain increasingly better performing
MOEAs. An important question however is whether we can
expect such improvements to converge onto a specific efficient
MOEA that behaves best on a large variety of problems.
The best MOEAs to date behave similarly or are individually
preferable with respect to different performance indicators. In
this paper, we argue that the development of new MOEAs cannot
converge onto a single new most efficient MOEA because the
performance of MOEAs shows characteristics of multi–objective
problems. While we will point out the most important aspects
for designing competent MOEAs in this paper, we will also
indicate the inherent multi–objective trade–off in multi–objective
optimization between proximity and diversity preservation. We
will discuss the impact of this trade–off on the concepts and
design of exploration and exploitation operators. We also present
a general framework for competent MOEAs and show how
current state–of–the–art MOEAs can be obtained by making
choices within this framework. Furthermore, we show an example
of how we can separate non–domination selection pressure from
diversity preservation selection pressure and discuss the impact
of changing the ratio between these components.

Index Terms— Multi–objective optimization, evolutionary al-
gorithms, proximity, diversity, selection pressure, density estima-
tion, exploitation, exploration

I. INTRODUCTION

MULTI–OBJECTIVE optimization problems consist of
m objectives fi(z), i ∈M = {0, 1, . . . ,m− 1}, that,

without loss of generality, must all be minimized. However,
there is no no expression of weight for any of the objectives,
which means that the objectives cannot be combined in a
single scalar objective to be minimized. As a result of this,
sets of solutions exist such that each solution in this set is
equally preferable. To formalize this notion, the following four
concepts are of importance:

1) Pareto dominance. A solution z0 is said to
(Pareto) dominate a solution z1 (denoted z0 Â
z1) if and only if

(

∀i ∈M : fi(z
0) ≤ fi(z

1)
)

∧
(

∃i ∈M : fi(z
0) < fi(z

1)
)

2) Pareto optimal. A solution z0 is said to be Pareto
optimal if and only if ¬∃z1 : z1 Â z0

3) Pareto optimal set. The set PS of all Pareto optimal
solutions: PS = {z0|¬∃z1 : z1 Â z0}

4) Pareto optimal front. The set PF of all objective
function values corresponding to the solutions in PS :
PF = {f(z) = (f0(z), f1(z), . . . , fm−1(z))|z ∈ PS}

The optimal solution for a multi–objective optimization
problem is the Pareto optimal set PS . The size of this set
may however be infinite, in which case it is impossible to
find this set using a finite number of solutions. In this case, a
representative subset of PS is the desired result. The notion
of searching a space by maintaining a finite population of
solutions is characteristic of EAs, which makes them natural
candidates for multi–objective optimization aiming to find a
good approximation of the Pareto optimal front.

The current state–of–the–art MOEAs are capable of effi-
ciently obtaining good approximations of the Pareto optimal
front [1]. These current methods outperform earlier attempts.
Different investigations regarding the performance of the algo-
rithms have been published [2], [3], [4], [5], [6], [7]. However,
comparing performances of MOEAs is not a trivial task since
there is more than just a single goal that is of importance in
finding a good approximation of the Pareto optimal front [3],
[8], [9], [10], [11]. As a result, most of the currently best
MOEAs do not outperform each other, but perform similarly or
are preferable with respect to different performance indicators.

Simultaneously to the discovery of new MOEAs, research is
also being devoted to investigating which components are the
most important in designing competent MOEAs along with
guidelines on the influence of certain operators on the perfor-
mance of MOEAs [12], [7], [13], [14]. The combined research
can be seen as an attempt at convergence towards a single
framework that describes the components along with their
settings for constructing the best possible performing MOEA.
However, we will argue in this paper that this convergence
is not possible because the performance of MOEAs shows
characteristics of multi–objective problems.

The remainder of this paper is organized as follows. In
Section II we discuss the goal in multi–objective optimization
and indicate an important and inherent trade–off between
proximity and diversity preservation. In Section III we describe
how this trade–off has an impact on the concepts of exploita-
tion and exploration in MOEAs. In Section IV we discuss
the most important components for constructing competent
MOEAs. Instances have to be chosen for these components to
construct an actual MOEA. These choices however result in
a bias that has a component regarding proximity with respect
to the Pareto optimal front as well as a component regarding
diversity preservation. Depending on the choices made, the
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bias towards each goal individually will be larger or smaller.
We present our conclusions in Section V.

II. MULTI–OBJECTIVE OPTIMIZATION GOALS

In this section we discuss the goal in solving multi–objective
optimization problems. In Section II-A we indicate that al-
though the optimum of a multi–objective optimization problem
is well defined, there is more than one goal to take into account
when evaluating approximations to the optimum. In Section II-
B we discuss a few important performance indicators and in
Section II-C we discuss the subtlety and the inherent trade–off
in actually defining the goodness of an approximation.

A. Approximation sets, optimality and benchmarking
In this paper, we only consider the subset of all non–

dominated solutions that is contained in the final population
that results from running a MOEA. We call such a subset
an approximation set and denote it by S. The size of the
approximation set depends on the settings used to run the
MOEA with.

Regardless of the size of PS , we are interested in finding
an approximation set of finite size that is a good approximate
representation of PS . Ideally, we would like to obtain an
approximation set that contains a selection of solutions from
PS such that the solutions in the approximation set are as
diverse as possible. However, we do not have access to PS on
beforehand. Therefore, we want to get close to PS but in such
a way that the approximation set S that we find, is as diverse
as possible, without compromising as much as possible the
proximity of S with respect to PS . Regarding this diversity,
it is important to note that it depends on the mapping between
the parameter space and the objective space whether a good
spread of the solutions in the parameter space is also a good
spread of the solutions in the objective space. However, it is
common practice to search for a good diversity of the solutions
in the objective space along the approximation set [1]. The
reason for this is that a decision–maker will ultimately have
to pick a single solution. Therefore, it is often best to present
a wide variety of trade–off solutions for the specified goals.

There is an inherent trade–off in the intuitive two–sided
goal since it is desirable to obtain a diverse approximation
set as well as it is desirable to obtain an approximation set
that is close to the optimal one. However, this trade–off only
exists if we assume that we are not able to find the optimal
approximation set. The optimal approximation set is well
defined if we assume a fixed size of the approximation set. The
optimal approximation set is a selection of solutions from PS

such that the solutions in the approximation set are as diverse
as possible. Since the distance to the Pareto optimal front for
any solution in the optimal approximation set is 0 and we
assume a fixed size of the approximation set, optimality can
now be obtained by optimizing only a single objective, which
is diversity. In general, there are two ways to benchmark EAs.
Either we know the optimum and determine the resources such
as population size and number of evaluations that are required
on average to obtain the optimum in a predefined percentage of
all runs, or we fix the number of evaluations on beforehand and

determine the maximum score that the EAs obtain on average
over all runs. The first way of benchmarking results in values
for different EAs that can directly be compared to each other
and be used to determine whether one EA is a more competent
optimizer than is another. This is also the case for multi–
objective optimization since the optimal approximation set is
well defined. The second way of benchmarking represents a
more practical situation, since we usually do not assume that
an unlimited number of function evaluations is available. For
single–objective optimization, the objective value can directly
be used as the score in this type of benchmark. In multi–
objective optimization this is not the case due to the trade–
off in the two–sided goal in multi–objective optimization that
we have pointed out. This trade–off will be reflected in the
score that we use to compare the results of the EAs in the
benchmark. It is this type of benchmarking of MOEAs and
the resulting trade–off that we investigate in this paper.

B. Performance indicators
In this section, we discuss performance indicators. A per-

formance indicator is a function that, given an approximation
set S, returns a real value that indicates how good S is
with respect to a certain feature that is measured by the
performance indicator. Performance indicators are commonly
used to determine the performance of a MOEA and to com-
pare this performance with other MOEAs if the number of
evaluations is fixed on beforehand. However, there are some
important limitations to the use of performance indicators.
We first describe a few important performance indicators.
Subsequently, we will discuss the limitations of performance
indicators and point out the resulting implications for our
investigation of the balance between proximity and diversity
in MOEAs.

1) Selected performance indicators: Since we are usually
interested in the performance of a MOEA as measured in the
objective space, we define the distance between two multi–
objective solutions z0 and z1 to be the Euclidean distance
between their objective values f(x) and f(y):

d(z0, z1) =

√

√

√

√

m−1
∑

i=0

(fi(z1)− fi(z0))2 (1)

If we only want to measure diversity, we can use the FS
(Front Spread) indicator. This performance indicator was first
used by Zitzler [15]. The FS indicator indicates the size of
the objective space covered by an approximation set. A larger
FS indicator value is preferable. The FS indicator for an
approximation set S is defined to be the maximum Euclidean
distance inside the smallest m–dimensional bounding–box
that contains S. This distance can be computed using the
maximum distance among the solutions in S in each dimension
separately:

FS(S) =

√

√

√

√

m−1
∑

i=0

max(z0,z1)∈S×S{(fi(z0)− fi(z1))2} (2)
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In combination with the FS indicator, it is also important
to know how many points are available in the set of non–
dominated solutions, because a larger set of trade–off points
is more desirable. This quantity is called the FO (Front Occu-
pation) indicator and was first used by Van Veldhuizen [16].
A larger FO indicator value is preferable.

FO(S) = |S| (3)

The ultimate goal is to cover the Pareto optimal front. An
intuitive way to define the distance between an approximation
set S and the Pareto optimal front is to average the minimum
distance between a solution and the Pareto optimal front over
each solution in S. We refer to this distance as the distance
from a set of non–dominated solutions to the Pareto optimal
front and it serves as a proximity indicator, which we denote
by DS→PF

. This performance indicator was first used by
Van Veldhuizen [16]. A smaller value for this performance
indicator is preferable.

DS→PF
(S) =

1

|S|
∑

z0∈S

minz1∈PS
{d(z0, z1)} (4)

An approximation set with a good DS→PF
indicator value

does not imply that a good diverse representation of the
Pareto optimal set has been obtained, since the indicator only
reflects how far away the obtained points are from the Pareto
optimal front on average. An approximation set consisting
of only a single solution can already have a low value for
this indicator. To include the goal of diversity, the reverse
of the DS→PF

indicator is a better guideline for evaluating
MOEAs. In the reverse distance indicator, we compute for
each solution in the Pareto optimal set the distance to the
closest solution in an approximation set S and take the average
as the indicator value. We denote this indicator by DPF →S

and refer to it as the distance from the Pareto optimal front
to an approximation set. A smaller value for this performance
indicator is preferable. In the definition of this indicator, we
must realize that the Pareto optimal front may be continuous.
For an exact definition, we therefore have to use a line
integration over the entire Pareto front. For a 2–dimensional
multi–objective problem we obtain the following expression:

DPF →S(S) =

∫

PF

minz0∈S{d(z0, z1)}df(z1) (5)

In most practical test applications, it is easier to compute
a uniformly sampled set of many solutions along the Pareto
optimal front and to use this discretized representation of
PF instead. A discretized version of the Pareto optimal front
is also available if a discrete multi–objective optimization
problem is being solved. In the discrete case, the DS→PF

indicator is defined by:

DPF →S(S) =
1

|PS |
∑

z1∈PS

minz0∈S{d(z0, z1)} (6)

An illustration of the DPF →S indicator is presented in
Figure 1. The DPF →S indicator represents both the proximity

and the diversity goal in multi–objective optimization. The
DPF →S indicator for an approximation set S is zero if
and only if all points in PF are contained in S as well.
Furthermore, a single solution from the Pareto optimal set will
lead to the same DPF →S indicator as a more diverse set of
solutions that has objective values that are slightly further away
from the Pareto optimal front. Moreover, a similarly diverse
approximation set of solutions that is closer to the Pareto
optimal front, will have a lower DPF →S indicator value.
However, an approximation set of solutions that is extremely
diverse but far away from the Pareto optimal front, such as
the non–dominated solutions of a randomly generated set of
solutions, has a bad DPF →S indicator value. This underlines
the important point that diversity is not equally important as is
proximity because a larger diversity is often not hard to come
by. What is important is the diversity along the objectives of
a set of non–dominated solutions that is as close as possible
to the Pareto optimal front.

A performance indicator that is closely related to the
DPF →S indicator, is the hypervolume indicator by Knowles
and Corne [9]. In the hypervolume indicator, a point in the
objective space is picked such that it is dominated by all
points in the approximation sets that need to be evaluated. The
indicator value is then equal to the hypervolume of the multi–
dimensional region enclosed by the approximation set and the
picked reference point. This value is an indicator of the region
in the objective space that is dominated by the approximation
set. The main difference between the hypervolume indicator
and the DPF →S indicator is that for the hypervolume indi-
cator a reference point has to be chosen. Different reference
points lead to different indicator values. Moreover, different
reference points can lead to indicator values that indicate
a preference for different approximation sets. Since in the
DPF →S indicator the true Pareto optimal front is used, the
DPF →S indicator does not suffer from this drawback. Of
course, a major drawback of the DPF →S indicator is that in a
real application the true Pareto optimal front is not known on
beforehand. In that case, the Pareto front of all approximation
sets could be used as a substitute for the actual Pareto optimal
front.

2) The relation between performance indicators and the
comparison of MOEAs: If we want to use performance
indicators to investigate the performance of a MOEA and
compare it with other MOEAs, there are some important
limitations to consider that have been proven by Zitzler et
al. [11]. These limitations are related to the extent to which
performance indicators are capable of truly indicating whether
one approximation set S0 is better than S1 in a certain sense.
To this end, the concept of domination has to be extended to
approximation sets. Zitzler et al. [11] consider the following
dominance relations for approximation sets:

1) Strict Pareto dominance. An approximation set S0 is
said to strictly (Pareto) dominate an approximation set
S1 (denoted S0 ÂÂ S1) if and only if ∀z1 ∈ S1 :
(

∃z0 ∈ S0 :
(

∀i ∈M : fi(z
0) < fi(z

1)
))

2) Pareto dominance. An approximation set S0 is said
to (Pareto) dominate an approximation set S1 (de-
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PSfrag replacements

S0

S1

PF

f0(x)

f1(x)

Fig. 1. The approximation set S1 is closer to the (discretized) Pareto optimal
front but has less diversity, while approximation set S0 is further away from
the front but has greater diversity: both sets have approximately the same
DPF →S indicator value though.

noted S0 Â S1) if and only if ∀z1 ∈ S1 :
(

∃z0 ∈ S0 : z0 Â z1
)

3) Better. An approximation set S0 is said
to be better than an approximation set S1

(denoted S0
B S1) if and only if S0 6=

S1 ∧
(

∀z1 ∈ S1 :
(

∃z0 ∈ S0 :
(

∀i ∈M : fi(z
0)

≤ fi(z
1)
)))

4) Weak Pareto dominance. An approximation set S0 is
said to weakly (Pareto) dominate an approximation set
S1 (denoted S0 º S1) if and only if ∀z1 ∈ S1 :
(

∃z0 ∈ S0 :
(

∀i ∈M : fi(z
0) ≤ fi(z

1)
))

5) Incomparable. An approximation set S0 is said to be
incomparable to an approximation set S1 (denoted S0 ‖
S1) if and only if ¬

(

S0 º S1
)

∧ ¬
(

S1 º S0
)

It was shown by Zitzler et al. [11] that for any finite combi-
nation of performance indicators such as the ones presented in
the previous section, there is no function of these performance
indicators that specifies for any two approximation sets S0

and S1 whether S0
B S1 holds. Thus, using the terminology

and definitions by Zitzler et al. [11], we may not draw any
conclusions regarding whether one approximation set is better
than another approximation set on the basis of performance
indicators such as the ones we have described so far.

Although the result by Zitzler et al. [11] is very important,
its implications only apply to cases in which it is clear from a
domination point of view that one approximation set is better
than another approximation set. For instance, if S0 ÂÂ S1

holds, then S0 is truly preferable over S1. However, there are
some important further aspects to consider that relate to the
comparison of competent MOEAs. Even if S0 ‖ S1 holds,
we could still prefer S0 over S1. Consider for instance the
example in Figure 2. Following the definitions for comparing
approximation sets by Zitzler et al. [11], S0 ‖ S1 holds.
However, S0 has many more non–dominated solutions and
a much larger diversity than does S1. Even if S1 had only
a single solution placed somewhere on the line between
the current two solutions in S1, the two approximation sets

PSfrag replacements

S0

S1

PF

f0(x)

f1(x)

Fig. 2. Although approximation sets S0 and S1 are very different and
approximation set S0 has many more non–dominated solutions and a better
diversity than S1, using the dominance criteria by Zitzler et al. [11] S0 and
S1 can only be classified as incomparable.

would still be incomparable. Still, it is fair to say here that
approximation set S0 is preferable.

The class of incomparable approximation sets is very large
and it can be argued that this class includes sets that may
clearly be called preferable over other sets in the same class.
It can furthermore be argued that this class is filled with pairs
of approximation sets such that one approximation set of this
pair is not clearly preferable over the other approximation set.
This is for instance often the case if the two approximation
sets intersect in the objective space and have a comparable
diversity and size. Another example of pairs of approximation
sets that are not easily said to be preferable over each other
is given in Figure 3. This example represents the arguable
statement that the class of incomparable approximation sets
contains a large number of approximation sets that represent
a true trade–off between the goals of proximity and diversity.

The existence of trade–off approximation sets in the class of
incomparable approximation sets is very important when com-
paring MOEAs. As the efficiency of newly designed MOEAs
increases, results such as the one in Figure 3 will become ever
more likely to occur. Clearly, if two algorithms have the same
emphasis on diversity preservation as they have on getting as
close as possible to the Pareto optimal front, these algorithms
will end up with approximation sets that are incomparable,
unless one algorithm is truly less competent than the other,
in which case testing the results of the algorithms using the
categorization by Zitzler et al. [11] will point out which
algorithm is superior. However, if one algorithm places more
emphasis on diversity preservation and the other algorithm
places more emphasis on getting get as close as possible to
the Pareto optimal front, results such as the ones in Figures 2
and 3 are likely to occur. The categorization by Zitzler et
al. [11] will in both cases point out that the algorithms are
incomparable although it can be argued very plausibly in the
case of Figure 2 that one result is less preferable than the other.
In this case, performance indicators such as the ones that we
have described can offer additional information. In the case of
Figure 2 we will find that although the DS→PF

and DPF →S
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PSfrag replacements

S0

S1

PF

f0(x)

f1(x)

Fig. 3. Whereas approximation set S0 is very diverse and has an overall good
approximation of the Pareto optimal front, approximation set S1 is less diverse
but has a better proximity with respect to the Pareto optimal front. These
two approximation sets represent a trade–off in that, without a preference
for diversity or proximity with respect to the Pareto optimal front, neither
approximation set can be called preferable. Using the dominance criteria by
Zitzler et al. [11] S0 and S1 are classified as incomparable.

indicators are relatively similar, the FS and FO indicators will
be significantly better for S0 than for S1. This will lead us to
conclude that S0 is indeed preferable. In the case of Figure 3
we will find that the DPF →S and FO indicators are relatively
similar, but the DS→PF

indicator is better for S1 whereas the
FS indicator is significantly better for S0. This will lead us to
decide that neither approximation set is preferable.

Concluding, there is a good chance that two MOEAs are
classified as being incomparable with respect to the definitions
of Zitzler et al. [11] unless a truly significant competence
difference between the MOEAs exists. Moreover, if the results
of two MOEAs are classified as being incomparable, the one
MOEA may still be called more preferable than the other
depending on the balance between proximity and diversity.
On the other hand, if the two MOEAs are both competent,
the trade–off that lies in the balance between proximity and
diversity can cause the results of the two algorithms to be quite
different or to be quite similar and yet we cannot clearly say
that one MOEA is more preferable than the other.

C. Multi–objective trade–off between the goals
Unless an unlimited number of evaluations is allowed, it will

depend on towards which goal we bias our MOEA whether
we will arrive at a lower DS→PF

indicator value or at a
higher FS indicator value. Depending on the importance that
we associate with diversity along the resulting approximation
set, a larger or smaller bias will be needed towards diversity
preservation. In this sense, there is a Pareto optimal set of
MOEAs such that, depending on the emphasis on approaching
the Pareto optimal front or on preserving diversity, all MOEAs
in this set are incomparable and moreover no MOEA in this
set is more preferable than any other MOEA in this set. The
inherent trade–off in performance is reflected by the DPF →S

indicator value that we use in this paper as a plausible joint
indicator of the two goals, since a less diverse approximation

set that is closer to the Pareto optimal front will result in the
same indicator value as a more diverse approximation set that
is slightly further away from the Pareto optimal front.

III. BALANCING PROXIMITY AND DIVERSITY IN
EXPLOITATION AND EXPLORATION

The fact that the multi–objective optimization goal is two–
sided, has a direct implication on the notions of exploitation
and exploration as commonly used in EA terminology. To
avoid confusion, we will give an exact definition of what we
consider to be exploitation and exploration:

1) Exploitation indicates the parts of an EA that are
concerned with the selection of a set of parent solutions
from the current population and the construction of a
new population given the current population, the selected
set of parent solutions and the set of offspring solutions.
This definition of exploitation thus includes traditional
selection, but also all replacement schemes such as
crowding.

2) Exploration indicates the part of an EA that is con-
cerned with the generation of new offspring solutions
from a given set of parent solutions. Since we are only
interested in how a new set of solutions is generated if
we supply a set of solutions, our definition of exploration
includes the way in which mating is performed. The
actual operator that constructs a new solution using a
set of mated parents is called the variation operator.

In this section, we indicate the implications that the two–
sided goal in multi–objective optimization has on the classical
exploitation and exploration concepts in EAs. These two
phases can be split into two subprocedures that aid the search
for proximity as well as for diversity amongst non–dominated
solutions. This is an important issue that should be considered
when constructing new MOEAs. In the following subsections
we discuss the splitting of the exploitation and exploration
phases in more detail. Furthermore, we also indicate the
importance of elitism in multi–objective optimization, and
discuss its contribution to exploitation and exploration.

A. Exploitation of proximity
In a practical application, we do not have access to a

performance indicator such as the DS→PF
indicator that

can give us an idea of how close we are to the Pareto
optimal front. To ensure selection pressure towards the Pareto
optimal front in the absence of such an indicator, the best
we can do is to find solutions that are not dominated by any
other solution. A selection operator that selects non–dominated
solutions in combination with effective exploration operators
will effectively drive the search towards the Pareto optimal
front.

A straightforward way to obtain selection pressure towards
non–dominated solutions is to count for each solution in the
population the number of times it is dominated by another so-
lution in the population, which is called the domination count
of a solution [7], [17]. The rationale behind the domination
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count approach is that ultimately we would like no solution
to be dominated by any other solution, so the less times a
solution is dominated, the better. A lower domination count is
preferable. Using this value we can apply truncation selection
or tournament selection to obtain solid pressure towards non–
dominated solutions.

Another approach to ensuring a preference for solutions that
are dominated as little as possible, is to assign a preference to
different domination ranks [18], [19]. The solutions that are in
the j–th rank are those solutions that are non–dominated if the
solutions of all ranks i < j are disregarded. Note that the best
domination rank contains all solutions that are non–dominated
in the complete population. A lower rank is preferable. Using
this value we can again apply for instance either truncation
selection or tournament selection. Similar to the domination
count approach, this approach effectively prefers solutions that
are closer to the set of non–dominated solutions.

B. Exploitation of diversity
To ensure that diversity is preserved, the selection procedure

must be provided with a component that prefers a diverse
selection of solutions. However, since the goal is to preserve
diversity along an approximation set that is as close as possible
to the Pareto optimal front, rather than to preserve diversity
in general, the exploitation of diversity should not precede the
exploitation of proximity.

In most multi–objective selection schemes, diversity is used
as a second comparison key in the exploitation phase. This
prohibits tuning the amount of diversity exploitation that can
be done compared to the amount of proximity exploitation.
An example is the approach taken in the NSGA–II in which
solutions are selected based on their non–domination rank
using tournament selection [19]. If the ranks of two solutions
are equal, the solution that has the largest total distance
between its two neighbors summed over each objective, is
preferred. This gives a preference to non–crowded solutions.

The explicit exploitation of diversity may serve more than
just the purpose of ensuring that a diverse subset is selected
from a certain set of non–dominated solutions. If we only ap-
ply selection pressure to finding the non–dominated solutions
and enable diversity preservation only to find a good spread of
solutions in the approximation set, we increase the probability
that we only find a subset of a discontinuous Pareto optimal
front. Diversity exploitation will most likely be too late in
helping out to find the other parts of the discontinuous Pareto
optimal front as well. Therefore, we may need to spend more
attention on diversity preservation during optimization and
perhaps even increase the amount of diversity preservation.
Another reason why we may need to increase the exploitation
of diversity preservation is that a variation operator is used that
can find many more non–dominated solutions, which could
cause a MOEA to converge prematurely onto subregions of
a Pareto optimal front or onto locally optimal sets of non–
dominated solutions, unless the population size is increased.
However, given a fixed number of evaluations, this can be a
significant drawback in approaching the Pareto optimal front.
This problem can be alleviated by placing more emphasis on

diversity exploitation and by consequently reducing the effort
in the exploitation of proximity. By doing so, the variation
operator is presented with a more diverse set of solutions from
which a more diverse set of offspring will result. Furthermore,
solutions that are close to each other will now have a smaller
joint chance that they will both be selected, which improves
the ability to approach the Pareto optimal front since premature
convergence is less likely.

C. Exploration of proximity
Although it is important to have a competent selection

mechanism that is capable of selecting a diverse set of so-
lutions close to the set of non–dominated solutions, it is also
important to have an exploration mechanism that is capable of
producing new non–dominated solutions for the optimization
process to proceed towards the Pareto optimal front. However,
based on a proper selection of solutions, competent exploration
operators should be able to generate new solutions in which
good features of the selected solutions are combined so as to
obtain better solutions. Essentially, this does not differ much
from the necessity to generate better solutions by combining
information from parent solutions in single–objective EAs.

As an alternative to classical recombination and mutation,
more involved operators exist that are capable of analyzing
the structure of the problem based on the selected solutions.
This problem structure can subsequently be used to generate
better solutions with a larger probability than can be done
using classical operators. Such operators exploit observable
regularities of a certain form and attempt to respect these reg-
ularities as much as possible when constructing new solutions.
Examples of such competent operators are the ones used in the
mGA [20], the fmGA [21], the GEMGA [22], the LLGA [23]
and the BBF–GA [24].

Another interesting and relatively new field of EAs that
attempts to model the regularities of the problem structure,
uses probabilistic models to describe the probability distribu-
tion of the selected samples. By drawing new samples from
the estimated probability distribution, a more global statistical
inductive type of iterated search is obtained. Algorithms that
use such techniques have obtained an increasing amount of
attention over the last few years, obtaining promising results
on a large variety of problems [25], [26], [27], [28], [29],
[30], [31], [32], [7]. It has been indicated that the use of such
approaches can be beneficial in multi–objective optimization
as well [7], [33].

D. Exploration of diversity
Similar to the necessity of proximity exploration, explo-

ration of diversity is equally important. If we are not able to
construct a diverse set of good solutions, there will be hardly
any diversity to be preserved at all. Just as is the case for the
construction of new non–dominated solutions, the construction
of a diverse set of new solutions depends on the competence of
the exploration operators and the solutions that were offered
to them. Ideally, an exploration phase results in new non–
dominated solutions that are spread across a wide range in the
objective space. Such behavior can be stimulated by clustering
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the selected solutions based on their objective values and by
using a simpler exploration operator in each cluster separately.
In the case of the probabilistic operators, such an approach
constructs a mixture model. By clustering the objective space,
the exploration of diversity along the set of non–dominated
solutions has been shown to be effectively stimulated [7], [33].

Note that, although it is crucial to have good exploration in
both the proximity sense as well as in the diversity sense, the
actual implementation thereof is relatively independent from
the necessity of having a robustly tunable trade–off between
proximity exploitation and diversity preserving exploitation.
Clearly, better exploration operators will lead to better results,
but if the two selection components are not properly estab-
lished and combined, the resulting MOEA is likely not to be
in the Pareto optimal set of best approaches for multi–objective
optimization.

E. Exploitation and exploration by use of elitism
In the use of elitism, the best solutions of the current

generation are copied into the next generation. Alternatively,
an external archive of a predefined maximum size na may
be used that contains only non–dominated solutions. This is
actually a similar approach to using elitism in a population,
because this archive can be seen as the first few population
members in a population for which the size is at least np and
at most np + na, where np is the size of the population in
an archive–based approach and na is the size of the external
archive.

Note that the notion of elitist solutions is also subject to the
twofold goal in multi–objective optimization. On the one hand,
we can choose to only maintain the non–dominated solutions,
as is usually done. On the other hand, since diversity is also
important, it is a valid choice to let the elitist set be equal to the
set of solutions that was selected for exploration. This set may
very well have been chosen to contain more diversity than is
contained when merely selecting the non–dominated solutions.
This approach allows elitism to incorporate solutions based
on their added value to diversity as well. Clearly, care must
be taken that most of this diversity contributes to diversity
along the front of non–dominated solutions, but otherwise
such twofold elitism corresponds directly to the twofold multi–
objective goal. Moreover, seen in this way, elitism directly
contributes to exploitation as it determines which solutions
are certainly selected to survive a generation.

Elitism plays an important role in multi–objective optimiza-
tion since many solutions exist that are all equally preferable.
It is important to have access to many of them during optimiza-
tion to advance the complete set of non–dominated solutions
further. An ideal variation operator is capable of generating
solutions that are better in the proximity sense across the entire
current set of non–dominated solutions as well as possibly
outside it to extend the diversity of the set of non–dominated
solutions even further. However, obtaining new and diverse
non–dominated solutions is hard, especially as the set of non–
dominated solutions approaches the Pareto optimal front. If
a non–dominated solution gets lost in a certain generation,
it may take quite some effort before a new non–dominated

solution in its vicinity is generated again. For this reason,
elitism is commonly accepted [4], [13] to be a very important
tool for improving the results obtained by any MOEA. Seen
in this way, elitism also helps in exploration since it allows
to preserve good solutions which are hard to generate for the
exploration operator.

IV. A GENERAL FRAMEWORK FOR MULTI–OBJECTIVE
EVOLUTIONARY ALGORITHMS BASED ON THE MOST

IMPORTANT COMPONENTS FOR BALANCING PROXIMITY
AND DIVERSITY

In Section IV-A we briefly discuss a few of the most
prominent multi–objective evolutionary algorithms and point
out how proximity and diversity exploitation are balanced.
With only a single exception, none of these algorithms are
capable of tuning the amount of diversity exploitation versus
proximity exploitation.

In Section IV-B we present a general framework that con-
tains the most important components for building competent
MOEAs and point out how the trade–off goal between prox-
imity and diversity is addressed by making different choices
in this framework.

In Section IV-C, we give an example instance of the general
framework presented in the previous section. In this example
instance, we use a single control parameter to define the ratio
between proximity exploitation and diversity exploitation. For
diversity exploitation, we use a heuristic based on nearest
neighbor information.

A. Existing multi–objective evolutionary algorithms
One of the most important aspects that caused the pioneer-

ing MOEAs such as the VEGA (Vector Evaluated Genetic Al-
gorithm) by Schaffer [34], the approach by Fonseca and Flem-
ing [17], the NPGA (Niched Pareto Genetic Algorithm) [35]
and the NSGA (Non–dominated Sorting Genetic Algorithm)
by Srinivas and Deb [36], to perform inferior to more recent
MOEAs, is the absence of elitism.

The current state–of–the–art in multi–objective evolution-
ary optimization is represented by a Pareto set of different
MOEAs, which include the NSGA–II by Deb et al. [19], the
SPEA by Zitzler and Thiele [3], the SPEA–II by Zitzler et
al. [37], the PAES (Pareto Archived Evolution Strategy) by
Knowles and Corne [38], the M–PAES (Memetic PAES) by
Knowles and Corne [39] and the MIDEA (Multi–objective
Mixture–based Iterated Density Estimation Evolutionary Al-
gorithm) by Thierens and Bosman [33], [7]. These MOEAs
differ both in exploitation as well as in exploration. Although
their multi–objective frameworks are defined apart from the
actual exploration operators that can be used to construct a
specific MOEA, specific exploration operators have often been
associated with them in the literature. In NSGA–II and SPEA,
binary encodings and standard crossover operators have often
been applied. For NSGA–II, real–valued variables and the
SBX operator have also been used. In PAES and M–PAES,
the evolution strategy is used and in the MIDEA, learning
and sampling from probabilistic (mixture) models is mainly
used. Each of these exploration mechanisms can be used in
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each of the MOEAs, resulting in more similar approaches. It is
therefore more interesting to focus on the differences between
the selection and elitism strategies in these MOEAs.

In the NSGA–II, the solutions in the population are sorted
using rank–based non–domination, after which all ranks are
included in a preselection up to a size of 1

2n. Using a diversity
selection approach, the last rank that will cause more than
1
2n solutions to be included in the preselection is filtered
to ensure a preselection of the right size. This preselection
is used to apply tournament selection and recombination so
as to generate 1

2n new solutions. The tournament selection
operator compares two individuals first on their domination
rank and secondly on how crowded they are as explained in
Section III-B. Since the goal of diversity preservation is thus
always secondary, the amount of diversity preservation cannot
be tuned.

In the SPEA, the non–dominated solutions found so far
are stored externally from the population. If the number of
non–dominated solutions exceeds the size of this external
storage, clustering is performed on the external storage in the
objective space and some solutions are discarded from each
cluster. Crossover and mutation are applied to solutions that
are selected from both the population as well as the external
storage. Selection is performed using tournament selection
with a tournament size of 2. The most characteristic and
profound item in SPEA is the way fitness is assigned before
selection. Each solution in the external storage is assigned a
strength proportional to the number of solutions it dominates
in the population. Each solution in the population is assigned
one plus the sum of the strengths of the solutions in the
external storage that dominate it. The additional value of one
is required to ensure that the externally stored solutions are
always better (a lower strength is preferable). This mechanism
prefers individuals near the set of non–dominated solutions
and distributes them at the same time. Again, this is a choice in
how much effort is devoted to diversity preservation and how
much is devoted to the selection of non–dominated solutions.
There is no means of tuning their ratio.

In the PAES, a population of non–dominated individuals is
maintained. At any time, only a single solution is adapted. If
the adaptation has led to an improvement in non–domination, it
is included into the population and the dominated solutions are
deleted. If the adaptation has led to a non–dominated solution
that increases diversity, the new solution is either added to
the population or replaces a current solution, depending on
whether or not the maximum population size has already been
reached. The improvement in diversity is measured using a
grid. Grid locations with a lower niche count are preferred.
Similar to the NSGA–II, acceptance is first based on non–
domination, after which a certain diversity measure is used in
case the domination rank is identical.

In the M–PAES, an external storage is used similar to SPEA.
Local search is applied to each solution in the population,
after which an acceptance criterion similar to the one used
in PAES is used in combination with a selection of solutions
from the external storage, to determine whether the locally
searched solution should be recorded into the external storage.
Recombination is applied to random combinations of solutions

chosen from both the population as well as the external
storage. Again, a grid structure is used to choose between
two non–dominating solutions.

In none of these approaches, the exploitation of diversity
can be tuned. The only way to spend more effort on diversity,
is to use exploration operators that stimulate the generation
of a wider spread set of non–dominated solutions, such as
the clustering approaches in the MIDEA. The only exception
in the current state–of–the–art MOEAs, is the most recent
variant of the MIDEA approach [7] in which a preselection
is first made from the population, based solely on non–
domination. The size of the preselection is larger than the
final selection size. From the preselection, the final selection
is made based solely on diversity. By increasing the ratio
between the preselection size and the final selection size, the
balance between effort spent on proximity exploitation and
diversity exploitation can be tuned.

B. A general multi–objective algorithmic framework

Based on the current state–of–the–art MOEAs, a few items
can be outlined that are of major importance when constructing
competent MOEAs:

• Selection of better solutions should be done based both
on non–domination as well as on diversity preservation,
although non–domination is the most important since it is
diversity along the objectives for a set of non–dominated
solutions that we are interested in.

• Elitism should be used by saving the best solutions of the
previous generation either using a fixed population size or
a non–fixed population size (external archive approach).

• Diversity selection should be applied at least when too
many non–dominated solutions are in the elitist popula-
tion or in the external archive, so as to ensure diversity
preservation along the set of non–dominated solutions.

Similar considerations have led to the definition of the
UMMEA (Unified Model for Multi–objective Evolutionary
Algorithms) by Laumanns et al. [14]. Although the UMMEA
framework is important, the underlying message is different
from the one in this paper. On the one hand, important
considerations and choices, such as the use of elitism, lead
to better MOEAs in general. To this end, a general framework
such as the UMMEA framework is crucial for designing of
new efficient MOEAs. On the other hand, the main point
in this paper is that by making certain choices in such a
framework, different MOEAs can be constructed that are
incomparably good when aiming to satisfy both the goal of
proximity as well as diversity. Furthermore, unless diversity
exploitation and proximity exploitation are separated such
that the ratio between them can be controlled, we have no
means to explore even a subrange of the possible instances of
the general framework. In the next section, we shall present
one possible instance in which we do have control over
this ratio and illustrate some results on two multi–objective
optimization problems. Before we do so, we first present
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1 P ← Generate a set of solutions randomly
2 Repeat until termination

2.1 S ← Select solutions from P based on
non–dominance and diversity

2.2 E ← Select elitist solutions from P
2.3 O ← Construct new solutions by applying

an exploration operator to S
2.4 P ← (E ,O)

Fig. 4. A general framework for multi–objective evolutionary algorithms
containing the most prominent components.

a general framework in which the current state–of–the–art
MOEAs can be placed.

In Figure 4, a general framework is presented based on the
considerations in this paper. First of all, it should be noted
that we do not enforce a fixed population size, which allows
for the modelling of external archives by using a subset of
the population. First, a set of solutions should be selected.
As explained, both proximity as well as diversity play an
important role due to the composite goal in multi–objective
optimization. Second, an elitist set is selected. This set does
not have to be identical to the set used for exploration. In
the archive–based approaches for instance, only the non–
dominated solutions are explicitly saved, whereas the selected
solutions may be chosen from both the archive as well as
the remainder of the population. Exploration is applied to the
set of selected solutions, after which the new population is
constructed by combining the elitist solutions with the newly
generated solutions. Furthermore, MOEAs that have been
shown to guarantee global convergence in the limit, require
that we can distinguish between old solutions (elitist ones) and
the offspring [40], [41], [42]. To this end, it should be noted
that the population, the elitist collection and the offspring
collection cannot be sets since this would not allow for
multiple occurrences of the same solution. Although allowing
these collections to be multisets would solve this problem,
it does not allow to distinguish the elitist solutions from the
offspring once the new population is constructed. Therefore,
we point out that these collections are actually vectors of
solutions such that the elitist solutions in the new population
can be found by inspecting the first |E| solutions of P . This
thus allows the MOEAs that guarantee global convergence also
to be modelled by our general framework.

The current state–of–the–art MOEAs all fit the general
framework in Figure 4. For NSGA–II for instance, the popula-
tion is of size n, S is determined by first making a preselection
of size 1

2n using truncation selection on the domination ranks,
after which tournament selection based on domination ranks
and diversity is used on the preselection to obtain the final
selection. The elitist set equals the preselection set. For SPEA,
the initial population is of size n = np. The archive equals the
first na solutions in the population. On beforehand, na = 0.
The solutions in P are assigned a fitness value as defined in
the SPEA selection procedure, after which the actual selection
takes place. The elitist set is exactly the first na solutions in
the population. However, if na is larger than the maximum

number of solutions that are allowed in the archive, a selection
is made using the cluster–based pruning method. Exploration
operators are used to generate a new population of size np

which is joined with the elitist set.
The other state–of–the–art MOEAs can be fit into the

general framework in a similar manner. These algorithms
are the result of making choices for the components in the
general framework that explicitly points out the trade–off to be
made in selection and elitism between proximity and diversity.
As a result, some algorithms are really better than others,
as has been indicated in an empirical study [4]. However,
with respect to the multi–objective goal of proximity versus
diversity, the current state–of–the–art of these algorithms are
mostly non–dominating and incomparable. As an example, a
balance parameter can be set in the MIDEA framework that
represents the amount of effort spent on diversity preservation.
In the experiments that were performed using the MIDEA, this
parameter was set in such a way that a larger effort was made
towards diversity preservation [7] than is usually the case in
MOEAs. The resulting MOEA seems particularly well suited
for diversity preservation along the set of non–dominated
solutions. However, it does not always score equally good
in getting close to the Pareto optimal front. An illustration
of the influence of making such choices between diversity
preservation and non–domination selection is given in the next
section as an example of making choices within of the general
framework in Figure 4.

C. Balancing proximity and diversity exploitation: An example
instance of the general framework

In this section we present an example instance of the
general framework for MOEAs in which we are able to shift
the balance between proximity and diversity in the resulting
approximation set through a single parameter and use it
to experimentally indicate the multi–objective trade–off. In
Section IV-C.1 we first describe our example instance. Next, in
Section IV-C.2 we describe the multi–objective optimization
problems that we have used to perform our experiments with.
Finally, in Section IV-C.3 we perform a few experiments that
illustrate the existence of the trade–off between proximity and
diversity by varying the bias of our example EA towards
proximity and diversity.

1) Our example instance: If we would have access to the
Pareto optimal set, a good and robust heuristic based on nearest
neighbor information could be used to find a representative and
diverse subset of a predefined size [7]. First, an individual
with a maximum value for an arbitrary objective is deleted
from PS and added to the selected set S. Ties are broken
by iteratively considering other objectives. For all solutions in
PS , the nearest neighbor distance is computed to the single
solution in S. Different types of distance metrics can be used
here, such as for instance the Euclidean distance scaled to
the sample range in each objective. The solution in PS with
the largest distance is then deleted from PS and added to S.
The distances in PS are updated by investigating whether the
distance to the newly added point in S is smaller than the
currently stored distance. These last two steps are repeated
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until the desired number of solutions are in the final selection.
This diversity selection operator has a running time complexity
of O(|PS |2).

Unfortunately, we are of course not in the luxurious position
of having access to PS in a real–life situation. However,
this diversity preserving selection operator can be combined
with a non–domination selection operator in such a way that
we have control over how much diversity preservation is
done. One approach is to first make a preselection SP from
the population using for instance truncation selection on the
domination count. Subsequently, the final selection is made
by selection solutions from the preselection using the nearest
neighbor heuristic. The size of the preselection is bδτnc,
where n is the population size and bτnc is the finally desired
selection size (τ ∈ [ 1

n
; 1[, δ ∈ [1; 1

τ
]). Pseudo–code is given in

Figure 5. If δ is increased, a more diverse selection is possible
since more solutions are available. However, the probability
that a non–dominated solution is not selected, also increases
as δ is increased. The reason for this is that although the non–
dominated solutions are included in the preselection, there is
no guarantee that they will be included in the final selection
if we only select solutions based on their diversity. As a
result, the δ parameter is a control parameter that determines
the amount of diversity that may be preserved during multi–
objective evolutionary optimization. Although the DS→PF

indicator will most likely increase as δ is increased, since the
non–domination pressure reduces, the preserved diversity will
also most likely increase. As a result, the DPF →S indicator
is probably similar a range of values for δ, which reflects the
trade–off between proximity and diversity.

It is important to note that if the solution with the largest
domination count to end up in SP by truncation selection has a
domination count of 0, all individuals with a domination count
of 0 should be selected instead, resulting in |SP | ≥ bδτnc.
This ensures that once the search starts to converge onto a
certain set of non–dominated solutions, we enforce diversity
over all of the available solutions in the set of non–dominated
solutions. If we do not do this, we are likely to quickly loose
the ability to properly preserve diversity along the set of non–
dominated solutions since not all regions of the set of non–
dominated solutions may be properly represented in the final
selection. Pseudo–code for this example instance is given in
Figure 5.

It is interesting to note that most state–of–the–art MOEAs
are somewhat similar to our example approach for δ =
1. Compared to NSGA–II for instance, the set of selected
solutions equals the best non–dominated solutions, especially
if rank–based non–dominated selection is used. Diversity
filtering is applied if the number of non–dominated solutions
becomes larger than bτnc, which also happens in the NSGA–
II. The elitist solutions are the same as the selected solutions,
which is also similar to NSGA–II. The main difference is
the additional selection step performed by NSGA–II when
generating new offspring.

2) Multi–objective optimization test problems: The prob-
lems that we have used to illustrate the behavior of our
example instance on, are given in Figure 6.

Problem ZDT4 was introduced by Zitzler et al. [4] and is

1 P ← Generate a set of n solutions randomly
2 Repeat until termination

2.1 Select solutions:
(a) SP ← Select the best bδτnc solutions

from P based on non–domination
(b) S ← Select bτnc solutions from SP using

the nearest neighbor heuristic
2.2 E ← S
2.3 O ← Construct n− bτnc new solutions by

applying an exploration operator
to S

2.4 P ← (E ,O)

Fig. 5. Combining selection based solely on non–domination and selec-
tion based solely on diversity preservation using a single trade–off control
parameter δ in a multi–objective EA framework.

ZDT4

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ

(

1−
√

f0(y)
γ

)

• γ = 1 + 10(l−1)+
∑l−1

i=1

(

y2
i − 10cos(4πyi)

)

• y0 ∈ [0, 1]

• yi ∈ [−5, 5] (1 ≤ i < l)

Knapsack
Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i ∈M : fi(x) =
∑l−1

j=0 Pijxj

Such That • ∀i ∈M :
∑l−1

j=0 Wijxj ≤ ci

Set Covering
Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i ∈M : fi(x) =
∑l−1

j=0 Cijxj

Such That • ∀i ∈M : ∀0 ≤ j < r :
∑l−1

k=0(Ai)jkxk ≥ 1

Fig. 6. Multi–objective optimization illustration problems.

defined by a function of real–valued variables. It is very hard
to obtain the optimal front f1(y) = 1 − √y0 in ZDT4 since
there are many local fronts.

The multi–objective knapsack problem was first used to
test MOEAs on by Zitzler and Thiele [3]. We are given m

knapsacks with a specified capacity and n items. Each item can
have a different weight and profit in every knapsack. Selecting
item i in a solution implies placing it in every knapsack. For
a solution to be feasible, the capacity of each knapsack may
not be exceeded.

In the set covering problem, we are given l locations
at which we can place some service at a specified cost.
Furthermore, associated with each location is a set of regions
that is a subset of {0, 1, . . . r−1} that can be serviced from that
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location. The goal is to select locations such that all regions are
serviced against minimal costs. In the multi–objective variant
of set covering, m services are placed at a location. Each
service however covers its own set of regions when placed at a
certain location and has its own cost associated with a certain
location. A binary solution indicates at which locations the
services are placed.

We used l = 10 variables for the ZDT4 problem and l = 100
variables for the knapsack and set covering problems. We
allowed a maximum of 20·103 evaluations in any single run in
all our experiments. As a result of imposing the restriction of
a maximum of evaluations, a value for the population size n

exists for each MOEA such that the MOEA will perform best.
For too large population sizes, the search will move towards a
random search and for too small population sizes, there is not
enough information to adequately and competently generate
new good solutions. We therefore increased the population
size in steps of 25 to find the best results. To select the best
population size, we used the result with the lowest DPF →S

indicator value.
For the knapsack problem, we generated an instance by

generating random weights in [1; 10] and random profits in
[1; 10]. The capacity of a knapsack was set at half of the
total weight of all the items, weighted according to that
knapsack objective. For set covering, the costs were generated
at random in [1; 10]. We used 250 regions to be serviced.
We set the problem difficulty through the region–location
adjacency relation. Each location was made adjacent to 70
randomly selected regions.

The binary problems have constraints. To deal with them,
we can use a repair mechanism to transform infeasible solu-
tions into feasible solutions. Another approach is introduced
by the notion of constraint–domination introduced by Deb et
al. [43]. This notion allows to deal with constrained multi–
objective problems according to a very general scheme. A
solution x is said to constraint–dominate solution y if any
of the following is true:

1) Solution x is feasible and solution y is infeasible
2) Solutions x and y are both infeasible, but x has a

smaller overall constraint violation
3) Solutions x and y are both feasible and x Â y

In the above definition, the overall constraint violation is
the amount by which a constraint is violated, summed over
all constraints. We have used this principle for set covering.
For knapsack we have used a repair mechanism that was
proposed in earlier MOEA research [3]. If a solution violates
a constraint, the repair mechanism iteratively removes items
until all constraints are satisfied. The order in which the items
are investigated, is determined by the maximum profit/weight
ratio. The items with the lowest profit/weight ratio are removed
first.

3) Experimental illustrations of the trade–off between prox-
imity and diversity: For each problem, we used one–point
crossover with a probability of 0.8 in combination with bit
flipping mutation with a probability of 0.01. For the real–
valued ZDT4 problem, we encoded every variable with 30 bits.

We applied our example instance of the general framework
using both domination counting and domination ranking to
determine the preselection. We have varied the value of δ from
1 to 3 in steps of 0.25 and have kept τ fixed at 0.3. Figure 7
shows the the resulting values on each problem for the four
different performance indicators from Section II-B obtained
with the population size that resulted in the best DPF →S

indicator value, averaged over 10 runs.
The results for the two different non–domination preselec-

tion approaches do not differ much. The behavior with respect
to the different performance indicators on each problem is
similar. In the remainder of our illustrations we shall therefore
only use the domination count approach.

We already argued that for δ = 1, we have an approach
that is quite similar to NSGA–II, which is a representative
of the current state–of–the–art MOEAs. The results obtained
for δ = 1 are indeed comparable to those obtained by the
NSGA–II on the same test problems, the results of which
can be found elsewhere [7]. For small values of δ, the ability
to find solutions close to the Pareto optimal front worsens
as δ is increased and thus more effort is spent on diversity
preservation. This can be seen in the figure for the DS→PF

indicator value. Furthermore, the number of solutions on the
front rapidly drops to lower values since in our example
instance elitism does not always maintain the non–dominated
solutions. Still, the added effort spent on diversity does pay
off in a certain way, since the diversity as measured by the
front spread indicator increases as δ is increased. The most
interesting results can be seen in the figure that displays the
DPF →S indicator value. For quite a large range of values for
δ, the indicator value does not worsen, but sometimes becomes
even better. Within this range, the trade–off between diversity
preservation along the set of non–dominated solutions and
the proximity of non–dominated solutions with respect to the
Pareto optimal front is the most interesting. With respect to
the performance indicator used, there is a certain optimal
value. However, this performance indicator only reflects a
certain balance between the two goals. Since the average
distance to the front only worsens and the front spread only
increases, most different settings for the algorithm do not
outperform each other if we have no preference for these two
goals. Outperformance can only be detected if δ becomes very
large. In that case, the front spread increases slightly but the
average distance of each point in the resulting approximation
set to the Pareto optimal front increases very much. These
observations regarding outperformance are confirmed by the
results in Figure 8. The results in this figure show for the
use of one–point crossover the most frequently occurring
relation from the categorization of Zitzler et al. [11] when
comparing the approximation sets of a MOEA using one value
for δ with another value for δ. Indeed, in almost all cases,
the approximation sets are most frequently categorized as
incomparable. Only for δ = 3.0 there are some cases in which
we can speak of true outperformance. Moreover, within this
large set of incomparable MOEAs, the distance to the Pareto
front worsens monotonically as δ is increased, but the front
spread improves monotonically as δ is increased. As we argued
earlier in Section II-B.2, the additional information based on
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Fig. 7. Results for the ZDT4, the knapsack and the set covering problems
using one–point crossover in the example instance of the general elitist
framework. The results measured in four different performance indicators are
shown as a function of δ.
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Fig. 8. Comparing all combinations of the results of using one–point
crossover for all tested values of δ on the multi–objective knapsack problem.
The entries in the table represent row–versus–column relations.

the performance indicators leads us to conclude that there truly
is no preference for any of the MOEAs that are classified as
being incomparable. However, the classification in Figure 8
becomes less certain as the value of δ is increased. The reason
for this is that not all combinations of approximation sets over
the different runs are classified as being incomparable. As
δ is increased, the frequency of the classification of being
incomparable gets closer to the classification of being better
or even being strictly dominating. If these frequencies become
very close, we might already find one MOEA preferable
over another. Intuitively, all of this is reflected by the large,
relatively flat part in the DPF →S performance indicator.
We truly have no preference for any of the MOEAs that
correspond to this flat part in the graph. However, as this
indicator value increases, a preference starts to be formed
towards MOEAs with a lower value for the DPF →S indicator.
Indeed, this already happens for smaller values of δ than
δ = 3. This corresponds to the observation of the decrease of
the frequency of the incomparable classification. In general,
making modest choices on whether we spend more effort
on diversity preservation or on proximity leads to MOEAs
that have a performance such that we truly do not prefer one
MOEA over another.

In Figure 9 additional results are shown for the knapsack
problem using different variation methods than just the one–
point crossover recombination operator together with bit–
wise mutation. Each time a selection of solutions was made,
a probability distribution was estimated over the selected
solutions in the parameter space. Using the estimated prob-
ability distribution, we drew new samples that serve as the
offspring solutions. The first type of probability distribution
that we estimate, is the univariately factorized probability
distribution or univariate factorization for short in which each
random variable is assumed to be independent of each other
random variable. The second type of probability distribution
that we estimate, is the tree–structured Bayesian factorization.
Such a factorization can be estimated optimally using the
optimal dependency tree algorithm by Chow and Liu [44].
For more details on the use of probability distributions as a
variation operator, we refer the interested reader to specialized
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literature [25], [26], [27], [28], [29], [30], [31], [32], [7]. By
clustering the selected solutions in the objective space before
estimating a probability distribution in each cluster, a special
mixture probability distribution is constructed that stimulates
a diverse exploration. We have used the leader clustering
algorithm in the objective space such that four clusters were
constructed on average. If the number of clusters becomes too
large, the requirements for the population size increases to
facilitate proper factorization selection in each cluster. We do
not suggest that the number of clusters we use is optimal, but
it will serve to indicate the effectiveness of parallel exploration
as well as diversity preservation.

A similar behavior is observed for the different variation
operators as observed for only one–point crossover using dif-
ferent selection strategies on all three problems. However, one
interesting additional phenomenon can be seen in the graphs
in Figure 9. The results obtained for the approaches that use
clustering in the objective space, have an intrinsically better
performance with respect to the front spread performance
indicator than any other method. For all values of δ, both
the front spread as well as the distance to the Pareto optimal
front are better if clustering is used to construct a mixture of
univariate factorizations instead of the univariate factorization.
This is confirmed only in part by the classification results
in Figure 10. Indeed, for a larger variety of values for δ,
the univariate factorization is outperformed by the mixture
of univariate factorizations. However, based on the results
provided by the performance indicators, one would expect
the figure to show that for all values of δ, the MOEA that
uses the univariate factorization is outperformed by the MOEA
that uses the mixture of univariate factorizations. However, the
majority of the comparisons result in the classification of being
incomparable. Whereas in the case when we were comparing
one–point crossover with itself, the classifications of being
incomparable were a result of approximation sets that are in
most cases not preferable over one another such as in Figure 3,
in this case the classifications of being incomparable are a
result of cases such as the one in Figure 2. The performance
indicators now show that we can truly speak of a prefer-
ence for using the mixture of univariate factorizations over
the univariate factorization for the multi–objective knapsack
problem since they are all in favor of the mixture of univariate
factorizations. The added use of clustering seems to lead to
more advanced MOEAs than when clustering is not used to
stimulate parallel exploration. This example serves to show
that although there is an intrinsic trade–off in the choices
that are to be made in the general framework, this does not
imply that we cannot make some general choices that lead
to intrinsically better MOEAs. On the other hand, within
for instance the use of a mixture model, by changing the
value of δ, again different choices for spending more or less
effort on diversity preservation are made. Similar arguments
and comparison classifications can be made to show again
that the performance for the different goals in multi–objective
optimization when using clustering in the objective space
are mostly incomparable, which indicates that the trade–off
between diversity preservation and proximity is still present,
even if intrinsically better variation operators are used.
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Fig. 9. Additional results for the knapsack problem using different variation
operators in the example instance of the general elitist framework. Selection
is based on the domination count. The results measured in four different
evaluation metrics are shown.
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Fig. 10. Comparing all combinations of the results of using the univariate
factorization for all tested values of δ with the result of using the mixture
of univariate factorizations for all tested values of δ on the multi–objective
knapsack problem. The entries in the table represent row–versus–column
relations.

There is one more interesting thing to be observed in
Figure 9. The use of tree–structured Bayesian factorizations is
a more involved method than using univariate factorizations,
since the latter approach is quite similar to using uniform
crossover with a crossover probability of 1.0 and no mutation.
However, the use of the univariate factorization is still capable
of producing solutions that are closer to the Pareto optimal
front. One of the reasons for this is that the approach based on
estimating tree–structured Bayesian factorizations is capable
of generating solutions at locations in which the less involved
variation operators are not capable of generating new solu-
tions. This can be seen in the figure for the front occupation,
since the tree–structured Bayesian factorization approach is
capable of generating more non–dominated solutions than the
less involved variation operators. Also, a larger front–spread
is obtained using the tree–structured Bayesian factorization
because of a more effective variation of the selected solutions.
As a result of this, a better approximation of the Pareto optimal
front is more likely to be obtained, but more evaluations may
be required because a larger set of solutions may be found than
is possible using the less involved operators. This is another
important aspect to consider when evaluating MOEAs.

Before we end this empirical section of the paper, we
note that in our example instance of the general framework,
the δ parameter is used to control the combination of non–
domination selection and diversity selection. However, this
parameter also controls the combination of proximity and
diversity that is offered to the exploration operator. It would
also be interesting to see the results if we have one δ parameter
for determining the ratio between proximity and diversity
for selection and elitism and a different δ parameter for
determining the ratio between proximity and diversity for
the selection that is offered to the exploration part of the
MOEA. In this case, finer grained control and insights would
be obtained for determining the influence of added effort on
diversity for exploitation and separately for exploration. In our
example instance, these influences are linked together since
the selected solutions are also used for elitism, which may
quickly cause many non–dominated solutions to be lost as δ

is increased.

V. CONCLUSIONS

In this paper, we have argued that the quest for finding the
components that result in the best EAs for multi–objective
optimization is not likely to converge to a single, specific
MOEA. The intrinsic trade–off between the goals of prox-
imity and diversity preservation plays a prominent role in
the exploitation and exploration phases of any MOEA. By
making choices on how to effectively attend to both goals, very
effective MOEAs may be constructed. When shifting these
choices more towards proximity or more towards diversity
preservation, a different performance will be obtained that is
not inferior with respect to plausible performance indicators
that measure proximity with respect to the Pareto optimal front
and diversity along the finally obtained set of non–dominated
solutions.

Although the existence of the trade–off and consequently
the existence of such choices to be made is important, it does
not imply that the current state–of–the–art MOEAs cannot be
improved any further. It only argues that such choices will
always remain. This trade–off should therefore always be kept
in mind when designing new MOEAs and when comparing
the experimental results of different MOEAs. Specifically, if
we are able to separate the effort spent on diversity from the
effort spent on obtaining non–dominated solutions such that
their ratio can be controlled, a MOEA can be constructed that
is more of a meta–type. Depending on the demands of the final
decision maker, such a MOEA is capable of dealing with the
trade–off goals in multi–objective optimization by adjusting
the ratio.
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