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Summary. An earthquake is modelled kinematically by specifying the tan- 
gential slip history on a fault surface which expands within a uniformly 
rotating, self-gravitating, slightly anelastic earth model. The total amount of 
energy released by such an idealized earthquake is the sum of three distinct 
quantities: kinetic energy of rotation, gravitational potential energy and 
thermodynamic elastic internal energy. The first two of these quantities may 
also be interpreted as the work done throughout the earth model against the 
action of the apparent centrifugal and real gravitational body forces respec- 
tively. The total energy released by an earthquake fault is in general con- 
siderably smaller than any of its three individual constituents, since the 
work performed against body forces is very nearly balanced by the work 
performed against the initial hydrostatic pressure in the earth model. The 
smallest individual constituent is the change in the kinetic energy of rotation 
of the earth model, which may be as much as two orders of magnitude larger 
than the total energy released, even though the corresponding change in the 
angular velocity of rotation due to the redistribution of mass is extremely 
small. The total energy released by an earthquake fault may also be expressed 
in terms only of the final static displacement and the initial and final static 
traction on the fault surface itself. This alternative representation of the 
energy change is explicitly independent of both the rotation and the self- 
gravitation of the earth model. All of the energy released by an earthquake 
fault must be dissipated somewhere within the earth model. Energy may be 
dissipated during faulting either in heating on the walls of the fault surface, 
where work must generally be done against the action of the frictional trac- 
tion acting to resist slip, or at the instantaneously expanding boundary of 
the fault surface, where some energy may be required to overcome cohesion 
and where there may be additional heating. The remainder of the energy 
released, which is generally referred to as the seismic energy, is dissipated 
both during and subsequent to faulting by the slight bodily friction which 
must be assumed to exist throughout the entire volume of any physically 
realizable earth model. The seismic energy may also be expressed in terms 
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only of the displacement and incremental traction histories on the instan- 
taneous fault surface during the course of faulting. This alternative represen- 
tation of the seismic energy is explicitly independent of both the rotation 
and the self-gravitation of the earth model, and so therefore is the seismic 
efficiency, which is defined to be the ratio of the seismic energy to the 
total energy released. Classical formulae for the total energy released by an 
earthquake fault, the seismic energy and the seismic efficiency are based not 
only upon the neglect of rotation and self-gravitation, but also upon the 
assumption that the initial hydrostatic pressure and deviatoric stress are 
infinitesimal quantities; those classical formulae, upon which many seismo- 
logical applications depend, are justified if the initial deviatoric stress at the 
hypocentre is small compared to the hypocentral rigidity. 

I Introduction 

This paper is intended to present a general formalism which may be used as a basis for any 
calculations involving the concept of energy in the theory of seismic faulting. We model an 
earthquake fault as a surface across which a jump discontinuity in tangential displacement 
may develop, as a result of some stress relaxation process. We suppose this faulting to occur 
in a finite earth model which is both rotating and self-gravitating. We allow for the possi- 
bility of a large and not necessarily isotropic initial static stress field and, in addition, an 
intrinsic elastic anistropy. The results obtained will be valid for earth models which have 
fluid as well as solid portions, in which case there will be internal fluid-solid interfaces 
where tangential slip may occur. In the interest of brevity, we shall generally argue as if there 
are no internal fluid-solid interfaces, and occasionally the modifications required to extend 
certain results to that more general case will be briefly indicated. 

Faulting is, of course, presumed to occur in the solid portion of the earth model. Specific 
forms for the history of slip on the fault surface are not proposed, nor do we seek to deter- 
mine which forms may have certain properties which are deemed to be physically realistic. 
We do give a complete and systematic discussion of the release and consequent dissipation of 
energy in an earthquake faulting episode, under the presumption that the history of slip 
on the fault surface happens to be known. This is a necessary first step in an overall program 
which seeks to develop realistic models of seismic faulting based on an energy balance 
fracture criterion. 

2 Formulation of a model for earthquake faulting 

Prior to the onset of faulting, we consider a model of the Earth which is in mechanical 
equilibrium while in a state of uniform diurnal rigid body rotation about its own centre of 
mass. We suppose this earth model to be composed of a self-gravitating, perfectly elastic 
continuum occupying a finite simply connected volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV with surface aV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALef SZ denote 
the angular velocity of rotation of this earth model about its centre of mws zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 

denote the time. We shall, unless otherwise noted, adopt the point of view of an observer 
situated in a non-inertial frame of reference which for all times 1 maintains a state of 
uniform rotation with angular velocity a. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,, W2, W3 be a Cartesian axis system in this 
uniformly rotating frame of reference, with its origin at the centre of mass 0 ,  and let W3 be 
aligned along the axis of rotation, so that SZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= $Xi3. A point or material particle in V will be 
denoted by its position vector x, measured in the uniformly rotating frame of reference. The 
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unit outward normal to a V  at the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx will be denoted by ii(x). We shall use E to denote 
all of space, as viewed in the uniformly rotating frame of reference. 

Let pdx) denote the initial mass density, and let Tdx) denote the initial equilibrium static 
stress field, which need not be isotropic, throughout the volume V .  Let pdx) denote the 
initial hydrostatic pressure field, and let T ~ ( X )  be the deviatoric part of the stress field TO(x), 
i.e. 

Let #o(x) denote the initial gravitational potential produced throughout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE by the mass 
density field po(x), i.e. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG is Newton's constant of universal gravitation. The mechanical equilibrium of this 
uniformly rotating earth model is guaranteed by the condition 

poV(#o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ J / )  =V.To, (3) 

fi.To=O, (4) 

which must be satisfied throughout the volume V ,  and by the free surface boundary condition 

which must be satisfied on the boundary a V .  Here J/(x) is the rotational potential due to the 
apparent centripetal acceleration, i.e. 

We shall use C to denote the inertia tensor of this earth model, as viewed in the uniformly 
rotating frame of reference, i.e. 

C = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJv po(x) [ (x.x) I - xx] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd V. 

In order to insure the secular stability of this equilibrium configuration, we shall take it for 
granted that the rotation axis B3 is the principal axis of greatest inertia of the earth model, 
and we shall use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC = B3 .C .B3  to denote the greatest principal moment of inertia. 

Suppose that, at time t = 0, earthquake faulting begins to occur somewhere within this 
earth model. This faulting, which is assumed to have a finite duration in time, will excite 
the natural elastic-gravitational modes of oscillation of the earth model. In any physically 
realizable earth model, there will be a dissipative mechanism present which must necessarily 
lead to the eventual decay of every non-secular mode, including the Eulerian free nutation or 
Chandler wobble, as well as any very long-period modes which owe their existence to the 
presence of fluid regions in the earth model. The final equilibrium Configuration after the 
elapse of an arbitrarily long time must again be a state of uniform rigid body rotation about 
the centre of mass. Conservation of angular momentum requires that the axis of rotation 
in this final configuration be aligned along the initial axis of rotation B3. The rate of angular 
rotation will in general be slightly different, since the redistribution of the mass of the earth 
model will give rise to a change in the magnitude of the principal moment of inertia. 
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Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52 is changed to 52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+652, where 652 may be of either sign, but is assumed to be 
infinitesimal, i.e. I652/52 I e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Let r(x, t )  denote the position vector of the material particle x 
at time t >  0, measured in the frame of reference which is rotating uniformly with angular 
velocity 52. A convenient way to accommodate the change 652 in the angular rate of rotation 
is to decompose r(x, t)  in the form (Dahlen & Smith 1975) 

r(x,t) = Q(t)-[x + s(x,t)l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7 )  

where Q(t) is the proper orthogonal tensor whose component matrix Q(t) relative to fi,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPz, 
k3 is 

sin 652f 

0 

The quantity s(x, t ) ,  which is also assumed to be infinitesimal, is then the displacement of 
the material particle x at time t > 0, as viewed by an auxiliary observer situated in the refer- 
ence frame which is rotating uniformly with the new angular velocity 52 + &! = (52 + 6 52) 23. 
We shall use s(x) to denote the ultimate static material particle displacement as viewed by 
that observer, i.e. the limit of s(x, t )  as t + m. Relative to the original frame of reference 
which is rotating uniformly with angular velocity 52, the Lagrangian particle position vector 
r(x, t )  in the new static equilibrium configuration is then 

r(x,t)= Q(t).[x +s(x)] .  (9 1 

A fault surface is by definition a simply connected, open surface in the volume V across 
which the material particle displacement suffers a jump discontinuity. Let T denote the 
finite duration of the faulting episode, and let C denote the final fault surface. A point on 
the surface 2: will be denoted by its position vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ,  and the unit normal to C at the point 
f' will be denoted by 8(f ') .  According to the usual convention, i j@) is taken to point out of 
the positive side of C. Faulting is assumed to initiate at time t = 0 at a single point on the 
surface C; the zone of faulting then spreads continuously away from that point until at time 
t = T it occupies all of C. Let C(t)  denote the instantaneous fault surface at time t 0; for 
0 d t Q T ,  C( t )  is then a simply connected subset of C, and for t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 T ,  C(t )  is the constant 
domain C. We shall denote the instantaneous edge or boundary of the surface C( t )  by aC(t) .  
The two material particles which, prior to faulting, are located across from each other on the 
positive and negative sides of C at the point [ will be denoted by ti, respectively, and the 
jump discontinuity s(f'+, t )  - s([-, t )  will be denoted by [s ( f ' ,  t)]'. We shall make the quite 
reasonable assumption that [ s ( f ,  t)]: = 0 on the edge of the fault aC(t),  except where that 
edge might coincide with the outer surface a V ,  i.e. for all f' on aC(t)  - aC(t)na V.  We shall 
also restrict consideration to faulting in which the slip is purely tangential, i.e. we shall not 
allow the material on either side of the fault either to separate or interpenetrate. The linear- 
ized condition which guarantees this is evidently just that [P(t).s(f', t)]: = 0 for all points t 
on C(t) .  Second-order accuracy is however essential in calculations of energy, and we shall 
require for that purpose a tangential slip condition which is correct to second order in 
s(x, t). The requisite condition may be shown to be 

[ i j  :t).s(t,t) - S ( 5 , f ) . V f ' ( i ) ( U . S ( ~ , t ) ) + ~ S  ( t>f) .Vf'Q(t) .S(& f)l: = 0, (10) 

where V, has been used to denote the surface gradient operator on C(t), i.e. v, =v- 
P(5) [O($).V]. On the final fault surface C, for t 2 T ,  [s( f ' ,  t)]' will be independent of the 
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time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  and we shall denote this final static value of the slip on the fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ by 
[s(r)]I. This model of a jump discontinuity in the tangential material particle displacement 
across a growing fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t) in V will be assumed to be a complete kinematical 
description of the seismic faulting which accompanies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan earthquake. 

Apart from the presence of the already imagined slight bodily dissipation, the behaviour 
of the material comprising the earth model is assumed to be perfectly and linearly elastic, as 
well as isentropic, everywhere except on the instmtaneous fault surface Z(t). We shall use 
T(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  and T(x, t), respectively, to denote the incremental non-symmetric Piola-Kirchhoff 
stress and the incremental Cauchy stress at the material particle x at time t. Both?(x, t )  and 
T(x, t )  are presumed to depend linearly upon the displacement gradient tensor Vs(x, t), i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

- 
T = A : V s ,  

T=I ' :Vs,  

or, written in terms of Cartesian components relative to j i , ,  j i 2 ,  S3, 

The most general form of the two fourth-order, isentropic elastic tensors A(x) and I'(x), con- 
sistent with both the first and second laws of thermodynamics and with the principle of 
material frame-indifference, is (Dahlen 1972) 

and 

where the components c$kl possess the familiar symmetry relations of an elastic tensor 
C(x), i.e. 

(1 5) c.. = Cjik1 = c.. = c 
ilk1 rllk kl i j .  

In general, the only symmetry relations which the components A$k1 and rokl are required to 
satisfy are 

The two incremental stress tensors T(x, t )  and T(x, t )  are related, correct to first order in 
4x9 t ) ,  by 

zj = ci -!= qy ak sk  - T$ ak  4 ,  (17) 

and the two fourth-order isentropic elastic tensors A(x) and r (x)  are therefore related by 

A .. = r.. + ~0 6 

In general, in order to specify completely a particular self-gravitating perfectly elastic earth 
model, we must prescribe, as well as 52, po(x) and To(x), all of the 21 independent 
components of the in siru jsentropjc elastic tensor C(x). If the jnjtjal stress js everywhere 
hydrostatic, i.e. To(x) = -po(x)I where po(x) is the initial pressure, and if the material which 
comprises the earth model is everywhere elastically isotropic, then the components of the 

(1 8) ilk1 ilk1 11 k l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq% 
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tensor C(x) may be written in the form 

c i j k l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (K - 2/31c() Gijhkl t p ( 6 i k 6 j l  +6 i16 jk ) ,  

where K(X) and p(x) are the isentropic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin situ bulk modulus and rigidity. More generally, 
we may always decompose the tensor C(x) into an isotropic and an anisotropic part, namely 

and where 

y .... = y  .... =o,  

Fluid portions of the earth model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare characterized by the vanishing of all of the quantities 
TO(X),P(X) and ~ ( x ) ,  so that C(x), h(x) and r(x) take the forms 

(22) I I l l  IlV 

c.. = K6..6 
Ikl  I J  k l i  

A. .  Ilk1 = ~ 6 . . 6  11 kl  -PO(6ij6kl -6i16jk) ,  (23) 
r i j k [  = K 6 i j 6 k l .  

In any reasonably realistic model of the Earth, the anisotropy will be relatively slight, i.e. we 
shall have I y#~l(x) I e p(x) in the solid portions of the earth model; we shall not however be 
obliged to make this assumption in what follows. 

The outer surface a V  of the earth model must remain free of traction for all times; the 
boundary condition which guarantees this is that 

il.t= 0. (24) 
We require also a condition which guarantees that the traction across the instantaneous fault 
surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t )  will always be continuous. Dahlen (1972) has derived such a condition in terms 
of the incremental Piola-Kirchhoff stress tensor T(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt). Correct to first order in s(x, t), we 
must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ u ( t ) .T  ( 5 9  t )  - vt * (s(& 0 W).To(t))l'- = 0 ( 2 5 )  

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall points on Z(t). The continuity condition (25) can also be written in terms of the 
incremental Cauchy stress tensor T(x, t )  by making use of equation (18); this alternative 
version 

[ m - ( T ( t ,  t )  - s(t,t).Vt To(l)) - ToQ)*v,(m*s(t? m: = 0 (26) 

is also correct only to first order in s(x, t ) .  The condition (26) may also be obtained by a 
somewhat more direct argument, without ever introducing the incremental Piola-Kirchhoff 
stress tensor T(x, t ) .  Continuity across Z of po(x) ,  T ~ ( X )  or To(x) has not been assumed, nor 
shall it be in what follows; it is of course required that [ij([).To(t)]: = 0. 

We shall use pl(x, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand &(x, t ) ,  respectively, to denote the incremental perturbations in 
the Eulerian mass density and gravitational potential associated with the elastic-gravitational 
displacement s(x, t). If s(x, t )  is known, then pl(x, t )  may be determined, correct to first 
order in s(x, t), from the linearized continuity equation 

The corresponding gravitational potential perturbation &(x, t )  may then also be determined 

P1 = -V-(PoS).  (27) 
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Energy balance in earthquake faulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA245 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
throughout all of space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  and again correct only to first order in s(x, t), by solving the 
incremental Poisson equation 

on the fault surface Z( t ) .  The solution for &(x, t )  in terms of s(x, t )  may be written 
immediately in a version which is analogous to the expression (2) for @dx), namely 

The two surface integral contributions to &(x, t )  in equation (31) have the form of a gravita- 
tional potential due to two surface mass distributions po(x)A(x).s(x, t )  on the surface a V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- [ p d [ ) P ( [ ) . s ( [ ,  t) ] :  on the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t ) ;  this is to be expected on physical grounds. By 
inserting equation (27) into (3 1) and making use of Gauss' theorem, we may obtain a some- 
what simpler form for &(x, t ) ,  namely 

It should be pointed out that in writing equation (31), it has been implicitly assumed that 
the elastic-gravitational particle displacement s(x, t )  is continuous throughout the volume V ,  

except on the fault surface Z(t). Equation (31) is therefore inappropriate for any earth 
model which may have internal fluid-solid interfaces; it is on the other hand readily demon- 
strated that the alternative version (32) is not subject to this restriction. 

The principal dynamical equation which governs the elastic-gravitational response 
s(x, t )  of a rotating earth model to an earthquake faulting episode is the law of conservation 
of momentum. The appropriate form of this law has been obtained by Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith 
(1975). For t > 0, s(x, t )  must satisfy 

p,a:s+2p,n xa,s = -PoV[@1+2(6a/a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ/ l -pos~v[v(@o+ $)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ v X  (33) 

which must be solved throughout the volume V ,  subject to the initial conditions 

s(x, 0) = 0, 

ars(x, 0) = -6Q x x. 
(34) 

Equations (33) and (34) are correct to first order in s(x, t )  and in the change 652 in the rate 
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of angular rotation. Not unexpectedly, (33) and (34) are precisely the dynamical equations 
which would govern the response of the earth model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas viewed by the auxiliary observer 
who is rotating uniformly with the new angular velocity 52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt6Q.  We emphasize however that 
the perturbation 6Q is as yet unknown, and that these equations have been derived strictly 
from of the point of view of an observer in the original frame of reference rotating 
uniformly with angular velocity Q, by making use of the representation (7). Alternatively, 
we may write the dynamical equation (33) in terms of the incremental Cauchy stress tensor 
T(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  instead of the incremental Piola-Kirchhoff stress tensor T(x, t ) ,  by making use of 
relation (18); this alternative version is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PO a;s+2po52~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,s= -poV[$,+2(6R/R) J/]-pIV(@o+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ / ) -  V.(s-VTo)+ V.T,  (35) 

which must also be solved subject to the initial conditions (34). Equations (33) and (35) are 
equivalent; with T(x, t )  and T(x, t )  given in terms of Vs(x, t )  by equations (1 l ) ,  and with 
p,(x, t )  and 4(x, t )  given in terms of s(x, t )  by equations (27) and (32) respectively, either 
of the two dynamical equations (33) or (35) represents an integro-differential equation for 
the elastic-gravitational displacement s(x, t )  throughout the volume V. 

Suppose now that Z(t )  and the slip [ s ( f ,  t)]: on Z(t )  are known, and that we seek to 
determine the change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6i2 in the angular rate of rotation and the dynamical displacement 
response s(x, t ) ,  including the ultimate static displacement s(x), throughout the volume V 
of the earth model. A convenient approach to this problem is to introduce the concept of 
the equivalent body and surface force distributions which must be applied to the rotating 
earth model in the absence of any specified faulting in order to produce the same response 
6R and s(x, t )  as that produced by the faulting process. The form of the required equivalent 
body force distribution throughout the volume V has been derived by Dahlen (1972). The 
need to include an equivalent surface force distribution on the outer surface aV, in the 
event that Z(t)  intersects a V ,  has been noted by Backus & Mulcahy (1976). The viewpoint 
of the present paper differs slightly from that of both Dahlen (1972) and Backus & Mulcahy 
(1976), in that Dahlen (1972) did not make use of the representation (7) to separate 
explicitly the change 6i2 from the rest of the dynamical displacement s(x, t) ,  whereas 
Backus & Mulcahy (1976) neglected rotation completely. The arguments in both are how- 
ever easily extended, and the results are substantially the same. We shall denote the equiva- 
lent body force density, measured per unit volume in the uniformly rotating frame of 
reference with angular velocity 52, by Q(t).po(x) f(x, t) ,  and we shall denote the equivalent 
surface force density, measured per unit area in the same frame of reference, by Q(t).t(x,t). 
The quantities pdx)f(x, t )  and t(x, t )  are then, respectively, the equivalent body and surface 
force densities, as viewed by the auxiliary observer who is rotating uniformly with the new 
angular velocity Q + 6Q. At every point f on the fault surface Z(t) ,  we shall define a 
symmetric second order tensor field m(f ,  t) ,  called the seismic moment density tensor, by 
the relation 

mij(E> t )  = rij,c/(t) [ v k ( t )  s/(t? t)I'-. (36) 

The equivalent body force density p,(x)f(x, t )  is then given by 

where S(x-f) is the Dirac delta function, and where the gradient V is to be taken with 
respect to the coordinates x, and the equivalent surface force density t(x, t )  is given by 

t(x, t ) = L ( d  f i (x).m(t,  t )S(x-t)dA. (38) 
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It has been tacitly assumed in writing (36), (37) and (38) that the fourth-order isentropic 
elastic tensor r(x) is continuous across the fault surface Z(t). The equivalent body force 
density po(x)f(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt)  is evidently identically zero at every material particle x in the volume V ,  
except on the fault surface Z(t),  and the equivalent surface force density t(x, I )  is likewise 
identically zero at every material particle x on the surface aV, except on aZ(t )naV.  The 
model of the earth we are considering is one which is completely isolated from interaction 
with any external bodies. Since an earthquake is a process which occurs wholly within this 
isolated system, the net force and torque exerted upon the earth model by the body and 
surface force distributions which are equivalent to the earthquake must necessarily be zero. 
It is easily verified that this is so, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s, pof dV + s,, t d A  = 0, 

J v x x p 0 f d V +  I,.. t dA  = 0. 

The latter condition, that there be no net torque, is guaranteed by the symmetry m(t, t) = 
mT(t, t) of the seismic moment density tensor. For t > T, each of the quantities m(5, t), 
h(x)f(x, t) and t(x, t) assumes a final time-independent value, which we shall denote, 
respectively, by m(t), po(x)f(x) and t(x); these are defined in terms of the final static slip 
[s(l)]_' on the fault surface Z by equations (36), (37) and (38), respectively. 

The problem of determining the response of a rotating earth model to the action of 
an imposed body force distribution has been considered in some detail by Dahlen & Smith 
(1975); the extension required in the more general case that there is also an imposed surface 
force distribution is straightforward. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x), 1 G n G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, be the set of all the complex 
normal mode displacement eigenfunctions of the earth model, with associated real non- 
secular normal mode eigenfrequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc.+ # 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*a, 1 G n G 00. Let the eigenfunctions be 
normalized in such a way that 

where an asterisk denotes the complex conjugate, and assume that they form a complete 
linear space of complex vector-valued functions over the volume V. Following Dahlen & 
Smith (1975), we shall write s(x, t) in the form 

where H(t)  is the Heaviside step function. Upon defining the coefficients f , ,  1 G n G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and 
gn, 1 < n G m , b y  
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the dynamical complex normal mode excitation amplitudes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,, 1 Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Q m, may be shown 
to be given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[f, - ( 6 ~ / ~ ) g , ]  2i0, - 2 i  p , s , . ( i n x s , ) * d ~  . (44) I[ s, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A misprinted sign in the denominator of the corresponding formula of Dahlen & Smith 
(1975) has here been repaired. 

The change 6R in the rate of angular rotation, which appears explicitly in the expression 
(44) for the excitation amplitudes %, 1 G n Q 00, cannot be determined without simul- 
taneously solving for the final static displacement field s(x). Conservation of angular 
momentum requires that the angular momentum of the new uniformly rotating static 
equilibrium configuration of the earth model, subsequent to faulting and after all the normal 
modes of oscillation have decayed, be equal to that of the original equilibrium configura- 
tion. Correct to first order in s(x), the relation expressing this invariance of the angular 
momentum of the earth model is 

To determine 8i-l and s(x), we must in general solve the static version of the conservation 
of momentum law, in either of the two forms 

subject to the constraint (45), as well as to the boundary condition 

(48) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi.? = t 

on the outer surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV. All of the first-order quantities which appear in equations (46), 
(47) and (48) are assumed to have attained their ultimate static values. 

This problem of determining 6R and s(x) can be converted into an infinite system of 
simultaneous linear algebraic equations by expanding s(x) in the form 

m 

s(x)= c uF;l%,(x), 
n = l  

so that s(x, t )  is of the form 

We define also the coefficientsf:""', 1 Q n Q 00, and gtnai, 1 s n Q m, by 

f p l  = s, po(x) f(x).s,*(x)dV+ 1" t(x).s,*(x)dA, 

g y  = 2 p,(x)  VIj(x).s,*(x) dV. s, 

(49) 

The quantity 6R and the coefficients up', 1 s n Q 00, can then, in principle, be determined 
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Energy balance in earthquake faulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
simultaneously by solving the coupled system of equations (Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith 1975) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r -. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf n  

and 

249 

The dynamical displacement s(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) ,  as determined by the above procedure, will necessarily 
be real for all times t. This is guaranteed by the fact that all of the normal mode displace- 
ment eigenfunctions s,(~), 1 < n < =, are either real or occur in complex conjugate pairs, as 
demonstrated by Dahlen & Smith (1975). To express the response 6R and s(x, t )  in terms of 
the seismic moment density tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(t, t ) ,  we need only to substitute (37) and (38) into 
the expressions (42) and (5 1) for the coefficientsf, andffmd, 1 G n G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. Upon interchanging 
the orders of integration and applying Gauss' theorem, we obtain 

It might be noted that the equivalent body and surface forces pdx)f(x, t )  and t(x, t )  have an 
advantage over the seismic moment density tensor m(t, t )  in that they are uniquely defined 
by the prescribed faulting [ s ( t ,  t)]: on Z(t ) .  That is, there is only one possible choice of the 
quantities p,(x)f(x, t )  and t(x, t )  which, when inserted into (42) and (5 l) ,  yields the same 
response as that produced by the prescribed faulting; there is, on the other hand, more than 
one choice of the tensor m([, t )  which, when inserted into (54) and (55), has this property. 
This situation is discussed in some detail by Backus & Mulcahy (1976). 

We have solved the problem of determining the response of a rotating earth model to a 
kinematically prescribed episode of earthquake faulting under the supposition that there is a 
dissipative mechanism present throughout the volume V of the earth model which is suffi- 
ciently slight that it does not appreciably alter the perfectly elastic dynamical equations (33) 
or (35 )  which govern the response. In essence, this amounts to the supposition that each of 
the normal mode displacement eigenfunctions s,(x), 1 G n G 00, of the earth model is 
unaffected by the dissipation, but that each of the associated non-secular eigenfrequencies 
%, 1 G n G 00, which would be purely real for a perfectly elastic earth model, is actually of 
the form a,( 1 + i/2Q,) where 0 < a' e 1. When this substitution is made in either of the 
expressions (41) or (50) for s(x, t ) ,  it is clear that s(x, t )  -+ s(x) when t -+ 00, as has already 
been stipulated. 

3 Zbe net release of energy 

We consider now the change in the energy of the earth model due to the faulting process. 
To determine the total amount of energy which is released by an earthquake, it is not neces- 
sary to know any of the details of the temporal history of the faulting. Making use of a 
standard thermodynamical procedure, we only need to compare the total energy in the final 
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uniformly rotating equilibrium configuration, after the decay of the non-secular natural 
modes of oscillation, to the corresponding total energy in the initial uniformly rotating 
equilibrium configuration. Three types of energy must be taken into account: kinetic energy 
of rotation, gravitational potential energy and thermodynamic elastic internal energy. 

We consider first the net change in the kinetic energy of uniform rotation of the earth 
model. We shall show that this change may be surprisingly large in comparison with the total 
energy which is released. Suppose that in the final uniformly rotating state, the principal 
moment of greatest inertia of the earth model has been changed from its initial value C to 
the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC+6C. The change in the kinetic energy of rotation, which we shall denote b y 9  
is then given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9-= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%(C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 C )  (52 + 6 52)2 - % cn2. (56) 

We may eliminate 6C from the expression (56) by making use of the law of conservation of 
angular momentum, which requires that 

(C + 6 C)  (n + 6 52) = c'52. (57) 

9-= %C522(652/52), (58) 

The change F i n  the kinetic energy of rotation of the Earth model is therefore, simply, 

and this expression is exact. Note that Y i s  linear in the change 652, so that an individual 
earthquake may act either to increase or decrease the rotational kinetic energy of the model, 
depending upon the sign of 652. 

The rotational kinetic energy %Ca2 of the earth is about 2 x loz9 J. According to Ben 
Menahem & Israel (1970), a typical large earthquake (M = 8.5) can give rise to a change 
A(1od) in the length of the day of only a few ps, i.e. I652/52 1 = lo-''. It should be 
emphasized that such a change is essentially negligible in comparison with changes in the 
length of the day which are actually observed. Changes of order A(1od) 3 1 ms, 
i.e. I652/S2 I 3 are observed to occur on a wide variety of time scales, and are known to 
be generated by a wide variety of geophysical phenomena other than earthquakes. The 
essentially unobservable change I 652/52 I = lo-'' in the angular velocity of rotation which 
might be produced by a large earthquake is nevertheless associated with a substantial change 
,F= 2 x 1019 J in the kinetic energy of rotation of the Earth. We may compare this with 
the total energy EGR which is assigned to an earthquake of magnitude Mz8.5 by the 
well-known empirical formula of Gutenburg & Richter (Richter 1958); when EGR is 
measured in J, this formula, as corrected by Kanamori & Anderson (1975), reads 

loglo EGR = 4.8 + 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASM. (59) 

For M = 8.5, we obtain EGR = 3.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lO"J, which is about two orders of magnitude smaller 
than F. Even if we allow for the uncertainties which are inherent in any simple empirical 
formula such as (59), it is clear that there is a serious discrepancy between the relative 
magnitudes of 9- and EGR and the strong intuitive notion that the slight change in angular 
velocity of rotation of the Earth must play a fairly neghgible role in the mechanics of an 
earthquake. We shall now show how this discrepancy may be resolved. 

We first seek an alternative characterization of the quantity F; we begin by noting that 
F m a y  be rewritten exactly in the form 

p , [ n + s n ) x  ( X + S ) ] . [ ( ~ + ~ Q ) X ( X + S ) ] ~ V - %  ~ ~ [ S ~ X X ] * [ S Z X X ] ~ V .  (60) 
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Energy balance in earthquake fmrlting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 1 

The condition that the angular momentum of the earth model must remain constant may 
be rewritten, also exactly, in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p o ( x + s ) x [ ( n + s a ) x ( x + s ) ] d V -  p ~ x x [ n x X ] d V = O .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, s, 
We now form the dot product of equation (61) with the vector n+651, and subtract the 
result from equation (60). Upon making use of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(49, as well as the identities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Q x x) . (n  x s) = - s j a j $ ,  
(n x s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.(a x S) = -sisiaia,+, 

we can finally write 9 in the form 

where terms of third and fourth order in the infinitesimal quantities 6R and s(x) have been 
neglected, so that (63) is correct to second order in those quantities. It is of interest to com- 
pare the form (63) for the change 9 with the corresponding expression which has been 
obtained by Dahlen (1973) for the change in the gravitational potential energy of the 
earth model. That change, which we shall denote by A, may be written in the form 

which also is correct to second order in the infinitesimal quantity s(x). The correspondence 
between equations (63) and (64) is quite striking, and it allows an immediate alternative 
interpretation of the quantity 37 The change A in the gravitational potential energy of 
the earth model is the same as the total work which has been performed against the action 
of the gravitational body force. The change .T in  the rotational kinetic energy is therefore 
evidently the same as the total work which has been performed against the action of the 
apparent centrifugal force arising from the rotation of the earth model. The sum of the two 
changes 9 a n d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, i.e. 

is then the total work which has been performed against the action of both real and apparent 
body forces. The combination &(x) + $(x) of the initial gravitational potential and the 
initial rotational potential is the initial geopotential, and the final change in the geopotential 
due to the change &(x) in the gravitational potential and the change 6f2 in the rate of 
angular rotation of the earth model is correct to first order in the latter quantity, @,(x)+ 

It is well known that in the Earth, the geopotential &(x) + $(x) differs from the purely 
gravitational potential &(x) by only about one part in 290 (Jeffreys 1959). In general, we 
might therefore expect that the total change F + A in the rotational kinetic energy and 
the gravitational potential energy of the earth produced by an earthquake will be about 290 
times larger than the change Yalone. It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas already been pointed out that the changer  
due to a typical magnitude M = 8.5 earthquake is about two orders of magnitude larger than 
the energy E G ~  which has been empirically assigned to such an earthquake. The total change 
s+ A, which consists largely of work which has been done against the action of the 

2(6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa m  w. 
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252  F. A. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
earth's gravitational field, will in that case be about three to four orders of magnitude larger 
than EGR. The original discrepancy between .Fand EGR, after identification of Y a s  the 
work done against the apparent centrifugal force in the rotating Earth, has therefore led to 
an even larger discrepancy, which is also contrary to intuition, between the sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9-t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and 
EGR. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 denote the change in the stored thermodynamic elastic internal energy of the 
earth model, which is the only form of energy remaining to be considered. The situation 
with regard to the determination of this change 42 is rather different than that with regard 
to the two previously considered changes y and A, since the absolute amount of elastic 
energy which is stored in either the initial or the final equilibrium configuration cannot be 
specified. The change 9 in the amount of stored elastic energy is however a perfectly well- 
defmed concept (Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1973); it is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.- r 

The first term in equation (66) is linear in the final static strain tensor % [ V s ( x ) ~ t V s ~ ( x ) ] ,  
and is just the first order work which has been performed against the initial static stress field 
To(x) .  This may be further decomposed into first order work performed against the initial 
hydrostatic pressure po(x)  and first order work performed against the initial deviatoric stress 
~ ~ ( x ) ,  by making use of equations (1). I t  might be noted that there are second order contri- 
butions to the work done against To(x)  as well, arising from the explicit dependence dis- 
played in equation (13) of the fourth order isentropic elastic tensor A ( x )  on To(x) .  Both of 
the integrals in equation (66) are improper, because of the fact that s ( x ) ,  which appears 
differentiated in the integrands, suffers a jump discontinuity across the final fault surface Z. 
The remedy for t h s  situation is obvious. Let Vo, with surface ah, be a volume element 
which completely surrounds the fault surface Z, so that V-Vo is a possibly punctured 
volume which does not contain Z. The change in the elastic energy which is stored within 
this volume V-Vo is well-defined, and is given by a formula identical to (66)  except that the 
domain of integration V is replaced by V-Vo. The change 9 in the stored elastic energy of 
the entire earth model can then be accurately defined to be the limit of this quantity as the 
volume collapses to zero, in such a way that the surface a h exactly envelops both sides 
of the final fault surface Z. We shall assume implicitly in what follows that the integrals in 
equation (66) are to be evaluated by carrying out this limiting process. 

The total change in the energy of the earth model, which we shall denote by AE,  is 
given by 

A E =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStA+@, (67)  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.d is defined by equation (65)  and 9 is defined by equation (66) .  This quantity 
A E  must necessarily be negative, since an earthquake is a phenomenon which occurs spon- 
taneously; the corresponding positive quantity -AE is then the total amount of energy 
released by the earthquake. An application of Gauss' theorem before passing to the limit 
K, -+ 0 in equation (66)  can be used to write A E  in the form 

x d v +  HJ ni(2T; + Fii) si d A  - [ui(2T; + Fii) si]T d A  . 
a v  z: 
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The first volume integral in equation (68) vanishes identically by virtue of the static equili- 
brium condition (3) in the initial uniformly rotating configuration of the earth model. The 
second volume integral in equation (68) vanishes identically by virtue of the corresponding 
first order static equilibrium condition (46) in the final uniformly rotating configuration of 
the earth model; the equivalent body force p,(x)f(x) in equation (46) does not appear in this 
context. Finally, the surface integral over the outer surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV of the earth model in 
equation (68) also vanishes identically, by virtue of the boundary conditions (4) and (24) 
which guarantee that a V is a traction-free surface. We have therefore succeeded in expressing 
the total change A E  in the energy of the earth model in terms only of the initial and final 
static tractions and the final static displacement on the final fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC; written in 
invariant notation 

A E =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-%Jz [3-(2T,tT).s]'_dA. 

The result (69) is valid also for an earth model which has internal fluid-solid disconti- 
nuities. Gauss' theorem must in that case be applied separately to each fluid or solid por- 
tion, and additional surface integrals of the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-?4[5(g) .(2To(,$)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt)).~(,$, t)]: then 
arise in (68) over all the interfaces where slip may occur. These additional surface integrals 
may all be shown to vanish, essentially because the traction at a fluid-solid interface must 
be normal to the interface, whereas the slip is necessarily tangential. To demonstrate that 
these additional surface integrals vanish, correct to second order in the displacement s(x, t), 
requires the use of the second-order tangential slip condition (1 0) on fluid-solid interfaces. 

The final formula (69) for the total change in energy A E  due to an earthquake fault is 
remarkable in that it is explicitly independent of both the rotation and the self-gravitation of 
the earth model. The absence of rotation and self-gravitation correspond, respectively, to the 
limits 52 -+ 0 and G + 0. Since equation (69) does not explicitly contain either 52 or G, it is 
clear that exactly the same expression would have been obtained if both rotation and self- 
gravitation had never even been considered. Both r a n d  A would in that case have been 
identically zero, and only elastic internal energy would have been available for release by an 
earthquake fault. It should be mentioned that Dahlen (1973), in a note added in proof, has 
given a formula for A E  which is similar to (69), but whch is incorrect because of a failure 
to take into account the perturbation 2(6!2/R) J / ( x )  in the rotational potential in the final 
uniformly rotating configuration of the earth model. 

We are now able to resolve the discrepancy that the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Ft .Xperformed against the 
action of body forces appears to be so much larger than the traditional empirical estimate 
EGR of the total energy involved in earthquake faulting. We shall assume implicitly that 
EGR provides at least a rough estimate of the total energy change A E ,  as it is intended to 
do. If that is so, then the work .Ft A performed against the action of body forces must 
evidently be very nearly equal and opposite to the change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 in stored elastic energy. The 
discrepancy will be resolved if we are able to understand the reason for this balance between 
,F+ A and 9. The clue lies in the fact that both .7t .A and Q are quantities of first order 
in the displacement s(x). Both may evidently therefore be of either sign; the sign of Ft .k 
for any given earthquake will depend in an obvious way upon the nature of the permanent 
elevation changes in the vicinity of the earthquake epicentre. The dominant contribution 
to 4Y is clearly the work which has been performed against the initial hydrostatic pressure 
po(x ) .  We now investigate the extent to which the total energy change A E  depends upon 
p o ( x ) .  Making use of equations (lo), (17) and (26), and applying Gauss' theorem on curved 
surfaces, the formula (69) for A E  can be transformed, correct to second order in s(x), into 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
8
/2

/2
3
9
/5

9
0
9
1
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



254 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dahlen 

the form 

A E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - % (to + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(tf)) [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs]: dA + [( P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 7 0  - P(P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*TO. P)) * (S s)]T dA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL %.L 
- ?4 g ((6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.To. P)V ( i j .  s) - P -(s .v [TO) -To .WE (i' .s)) . [SIT dA , 

where to([) and tf([) are tangent vectors on Z defined by 

to=  'i.ro-D(P.To.P) 

tf = to + 3.  (T - Y3 tr T I) - 0 (3. T .P - 1/3 frT) , 

and where an angle bracket has been used to denote the average value of a quantity on both 
sides of Z, i.e. (tf([)> = %[tf(l+)+ tf(l-)]. The quantity to([) is just the tangential com- 
ponent of the initial traction on the fault surface X. Equation (70) is considerably less 
elegant and tidy than (69), but in conjunction with (12) and (14), it reveals that A E  is 
explicitly independent of the initial hydrostatic pressure po(x). This makes it clear that the 
balance between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9- + A  and 4Y is in essence a balance between the work pdrformed against 
body forces and that concomitantly performed against the initial hydrostatic pressure po(x). 
This is not surprising, since the origin of the ficld po(x) in the earth model may be attributed 
directly to the presence of the body forces. The initial deviatoric stress ~ ~ ( x ) ,  which does 
make both a first and second order explicit contribution to the sum AE, is, in contrast, 
tectonic in origin. The quantities to(&') and (tf(E)) can, in general, be expected to be of 
roughly the same magnitude, so that AE, although strictly of first order, is virtually of 
second order in s(x). 

Equation (70) bears a strong resemblance to the classical expression which is conven- 
tionally used in seismological investigations to determine the total enwgy released by an 
earthquake fault. Savage (1969) has given a particularly clear discussion of the assumptions 
which are embodied in deriving this classical expression. Both rotation and self-gravitation 
are ignored, and the initial static stress Tdx) is assumed not only to be infinitesimally small, 
but also to be the result of an infinitesimal, purely elastic internal strain away from some 
more natural unstrained, unstressed state. The total change AEckd in the elastic strain 
energy of the earth model upon introducing an earthquake fault may be shown under these 
circumstances to be 

In this approximation, the quantity tf(&') can be interpreted physically as just the tangential 
component of the final traction on 2 ;  it therefore satisfies [tf([)J: = 0. In any realistic earth 
model, the magnitude of the initial deviatoric stress will be such that I ~ ~ ( x ) l e p ( x ) .  
Equation (70) shows that in that case A E c w d  will provide a very good approximation to 
AE;  in fact, 

''classical = AE[1+ 0(70/~ l ) l .  (73) 

The conclusion (73) was reached earlier by Dahlen (1973), but the argument given there is 
fallacious. The conclusion is correct only because of offsetting algebraic errors, including 
a failure to utilize the tangential slip condition (lo), which is correct to second order in 
s(x). 

4 The dissipation of released energy 
The ultimate fate of all the energy released by an earthquake fault is to be dissipated some- 
where within the volume of the earth model; this is a requirement of the law of conservation 
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of energy. Three regions of energy dissipation may be distinguished, both spatially and 
temporally. First, energy may be dissipated during faulting, i.e. for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< T,  in heating on 
the walls of the instantaneous fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t) ,  where work must generally be performed 
against the frictional traction which acts there to resist slip. Second, energy may also be 
dissipated during this interval 0 G c G T ,  either in overcoming material cohesion and thereby 
creating fresh fault surface area, or simply in additional heating, along the instantaneously 
expanding edge a Z ( t ) - a Z ( t ) n a V  of the fault. Third and finally, the remainder of the 
released energy must constitute the energy of oscillation of the various non-secular 
normal modes of the earth model, and this energy of oscillation will be dissipated by the 
slight bodily anelasticity which has already been assumed to exist throughout the entire 
volume V ;  bodily dissipation will commence at the onset of faulting, i.e. at = 0, and will 
continue until every non-secular normal mode of oscillation has thoroughly decayed. We 
shall denote the energy dissipated by bodily friction, which is generally referred to as the 
seismic energy, by E,. We examine now the partition of released energy A E  into seismic 
energy E, and energy AE-E,  which is dissipated during faulting either on the walls or 
immediately at the edge of the expanding fault surface. We begin by considering the 
rates of change with time of the kinetic energy, the gravitational potential energy and the 
elastic internal energy of the earth model, during and subsequent to faulting; attention is 
fixed for the moment on a particular instant t 2 0. 

The instantaneous rate of change of the overall kinetic energy of the earth model, which 
we shall denote by .F(t), is given exactly by 

y(t> = - [ a , ~  +(a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+6n) x (X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+s) l .  [a ts  +(a +ha) x (x +S)J d ~ ,  (74) d4 s, 
and the condition that the instantaneous rate of change of the angular momentum of the 
earth model must be zero may be written, also exactly, in the form 

The instantaneous rate of change of the gravitational potential energy of the earth model, 
which we shall denote by A(t), is given correct to second order in s(x, t )  by 

and the instantaneous rate of change of the stored elastic internal energy of the earth model, 
which we shall denote by @(t), is defined as 

d 

dt 
&(t) = - (%jv T:(aisj + ajsi )  d V +  $4 Aijkl aisj  &s, d V ) .  (77) 

The sum p(t)+.d(t)+9?(t) is then the instantaneous rate of change of the total energy 
content of the earth model. 

During the time interval 0 < t < T that active faulting is occurring, we must devote special 
attention to the propagating edge or tip of the fault. Let d#) denote distance measured from 
a point E on this instantaneous fault tip aZ(t)  - aZ(t) n a V. Experience indicates that the 
macroscopic manifestation of either a non-zero material cohesion or fault tip heating will be 
e-”’(#) singularities in each of the incremental variables a,s(x, t),Vs(x, t ) ,  and therefore 
T(x, t )  and T(x, t ) ,  all along the curve aZ(t ) -aX( t )naV.  Following the procedure 
employed by Kostrov (1974), we can allow in a very general way for the possible existence 

N 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
8
/2

/2
3
9
/5

9
0
9
1
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



256 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dahlen 

of either or both sorts of fault tip dissipation by simply recognizing that such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-"'(Q singu- 
larities may be present. The volume integrals in each of equations (74), ( 7 9 ,  (76) and (77) 
are rendered improper by the presence of these singularities, but as long as no singularity is 
stronger than e--"'(t), every such improper integral will exist, provided they are suitably 
defined in the obvious way. We let Vo(t), with surface aVo(t), be a closed interior volume 
element which, at the instant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  surrounds the instantaneous fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t) ,  and we 
define each of the volume integrals in equations (74), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(75), (76) and (77) to be the limit of 
the corresponding volume integral over the possibly punctured volume V- Vo(t), as Vo(t) + O  
in such a way that Vo(t) completely envelops Z(t). The principal consequence of recognizing 
that there may be ~-" '( t)  singularities is then that in carrying out the differentiation of any 
integral defined over the volume V- Vo(t), we must remember to take the time variation of 
the volume of integration into account. We may for this purpose suppose that Vdt) has 
almost entirely collapsed onto the fault surface Z(t), so that only a cylinder or torus 
surrounding the edge aZ(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- aZ(t)  n a V of the fault surface remains. Let K ( f ) ,  with surface 
a&(t) ,  denote the volume of thls cylinder or torus, and let Z-(f) be a subset of Z which at 
the instant t lies just inside Z(t) ,  so that the surface a Vo(t) consists of a &(t) plus both sides 
of Z-(t). Both &(t) and a K ( t )  will be timedependent during the interval of faulting 
0 G t G T ,  since both are assumed to move with the edge of the fault aZ(t) - aZ(t) r7 a V .  
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(E) denote the rupture velocity of the fault tip aZ(t) as it passes through the point E on 
Z; at any point on the final fault boundary ax, it must be the case that v(E) = 0. Let 
fi(x, t )  be the unit inward normal to K( t )  at the material particle x on aK( t ) ,  and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(x, t )  
be the inward normal velocity of a K ( t )  as it passes through the material particle x. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx on 
a K( t )  tends to t on aZ(t)  - aZ(t) fl a V as K( t )  + 0, then the condition which guarantees 
that K ( r )  and a K ( t )  move with aZ(t) - aZ(t) n a V is 

d x ,  t )  = fi(x, t )  . v(l). (78) 

Upon applying the standard theorem for differentiating an integral defined over a moving 
volume, as well as Gauss' theorem, and making use of (75) to help reduce (74), we can 
finally write the sum Y(t) +.k(t) t @(t) in the form 

,- 

where 

w = I a r  s +(a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 s ~ )  x (X + S) 1 + P o  s i  a j @ o +  T: '/4(aisi + a j s i )  

t ?h [ p0si t pos i  si ai a,&, + A i j k l  ai si a, sr]  (80) 

is, correct to second order in 652 and s(x, t), the density of total energy in the earth model, 
measured per unit volume at the material particle x at time t. 
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In deriving the result (79), we have also made use of the symmetry (16) of the isentropic 
elastic tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(x) and of the fact that $J~(X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) is a linear functional of s(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt), as expressed 
by equation (32). The first two volume integrals in (79), as well as the surface integral over 
the outer surface aV, all vanish identically, since they contain replicas of (3), (33), (4) and 
(24). Upon defining a quantity @(t) by the relation 

@(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - limit [qw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h . (Tot T) . a,s] d A ,  

equation (79) is therefore reduced to the simple final result 

.9 ( t )  t,ry'(t) t@(t) t @t) = - limit [3 *(To+ T) . d,s]'_ d A .  (82) 
z-(t)-+ W )  r ( r )  

The proof of (82) fails if the earth model contains any internal fluid-solid interfaces, but 
the result itself remains valid. The additional considerations needed to verify this are similar 
to those used to verify that (68) also remains valid in that case. 

Equation (8 1) states precisely that @(t) is the instantaneous flux of macroscopic total 
energy into the propagating fault tip a Z ( t ) - a Z ( t ) n a V ;  this flux is seen to arise quite 
naturally as a macroscopic measure of the total energy dissipation at the fault tip. There are 
two distinct contributions to this energy flux, both of which have a simple physical interpre- 
tation. The first is an advective contribution due to the physical motion of the surface 
a VAt) as it moves with the fault tip aZ(t) - aZ(t) n a V ,  while the second arises from the 
work which is being instantaneously performed by the traction exerted on the surface 
aV,(t). The interpretation of equation (82) is perhaps most elegant if there is no fault tip 
heating; it is then the statement that the instantaneous rate of change of the total energy of 
the earth model, including the surface energy associated with the formation of fresh fault 
surface, is equal to the instantaneous rate of working of the traction on the fault surface 
Z(t). The outer surface aV of the earth model is traction-free, and no work is performed 
there. The fact that we must in general allow for heating as well as cohesion at the fault 
tip in the energy balance (82) has been pointed out by Richards (1976). In any model of 
seismic faulting based on a macroscopic energy balance fracture criterion, it is the quantity 
@(t), which incorporates both possibilities, that would generally be independently 
prescribed; how much of the total flux@(t) goes into doing work against cohesion and how 
much goes simply into heating cannot be decided without making additional essentially 
microscopic assumptions about the cohesive strength of the material comprising the earth 
model. 

The flux of energy into the tip of an expanding crack in an elastic solid body which is 
neither rotating nor self-gravitating and which is not subject to a large initial static stress, 
has been discussed previously and in some detail by Freund (1972). By a simple extension 
of an argument in that paper, the expression (81) for the quantity Q(t) can be simplified, 
and equation (82) can be given a slightly different physical interpretation. Suppose that at 
a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf' on aZ(f)  - aZ(t) r l  a V, the cross section of the volume &(I) is chosen to be a 
rectangle with sides of dimension el perpendicular to the fault surface Z and e2 parallel to 
the fault surface Z. Note that in this instance 4 ( x ,  t )  = 0 if x is on a face of aK( t )  which is 
parallel to Z. If now &(f)  is allowed to vanish by first letting el + 0 aild then letting e2 -+ 0, 
and if the integrals over the two faces of a K ( t )  which are perpendicular to Z are assumed 
to vanish as -+ 0, then @(t) may be reduced to 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ’(t) is a subset of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ which at the instant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt lies just outside the instantaneous fault 
surface Z(t). According to equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(83), the quantity@(t) may be alternatively viewed as 
minus the rate of working of the macroscopic traction which prevails immediately at the 
instantaneous position of the fault tip aZ(t) - aZ(t) n a V ;  there is no contribution to @(t) 
from aZ(t) n a V ,  since the integrand in equation (83) is not singular along that curve. The 
fundamental energy rate balance (82) can now be rewritten in the form 

. 9 ( r )  + A ( t )  + @(t) = - limit / [P . (To+T) .ats]: d A  
x - ( t ) + x ( t )  E ( t )  

(84) 

[P. (TotT) .a ts ]TdA.  s - limit 
~ * ( t ) + w )  Z+(+ r ( t )  

This alternative version states that the instantaneous rate of change of the sum of the kinetic 
and gravitationalelastic potential energies of the earth model is equal to the rate of working 
of the tractions on the fault surface Z(t), including the working at the instantaneous fault 
tip aZ(t)  - aZ(t) n a V ,  where if there is either cohesion or heating both the tractions and 
the material particle velocities may be singular. In general the rate of working of the trac- 
tions on both Z(t) and aZ(t) - aZ(t)  n aV will be negative (or possibly zero), correspond- 
ing to a dissipation of the total energy of the earth model. 

We now integrate either equation (82) or (84) with respect to time from f = 0 to t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. 

Thus far the slight bodily dissipation of the earth model, which must be present if the 
non-secular normal modes of oscillation are ever to decay, has not been explicitly intro- 
duced. We now assume that the only effect of this slight bodily dissipation is to add to the 
sum y(t) +d(t) + 8 ( t )  throughout the interval 0 < t < 00 a small negative quantity, repre- 
senting the instantaneous rate of working against the bodily friction. The total seismic 
energy E, which is dissipated by bodily friction is then evidently given by 

JOm [ * t )+A( t )+@(t) ]d t  = 9+”M+@++Es,  

where, as before, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY+ ”M is the net work which has been performed against the action of 
body forces, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA49 is the net change in the stored elastic energy of the earth model. Com- 
bining equations (82) or (84) with (67) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(85), we obtain 

-AE = .E~ + lom @(r> dt + jomdr limit I [P.  (To+T) .  a,s]’dA. (86)  
W t ) + W t )  Y ( t )  

This equation, which might well have been written down from first principles, is precisely a 
statement of the already mentioned tripartite partition of the total energy released by an 
earthquake fault. The total energy released, which must be positive, is -AE. Each of the 
three terms on the right-hand side of equation (87) will in general also be positive (or 
possibly zero). The first term E, is the seismic energy dissipated by bodily friction, the 
second term is the total energy which has been dissipated in the generally irreversible 
creation of fresh fault surface at the propagating tip fault aZ(t)  - aZ(t) n a V ,  and the third 
term is the total energy which has been dissipated in doing work on the walls of the fault, 
where the traction is evidently frictional in nature. Generally, energy will be dissipated on 
the fault surface Z(t) and at the fault tip aZ(t) - aZ(t) fl a V only during faulting, 0 < t < T ,  
and both of the infinite upper limits of integration in equation (86) can therefore be 
replaced by T .  
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Substituting the identity 
change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E ,  we obtain for 

E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - %  J’, [ i ,+T .s ] fdA 

(87) into (86), and making use of the form (69) for the energy 
the seismic energy E, the final form 

dt limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,[ i ,. a,T. SIT d A  - Jow@(r) dt (88) 

The seismic energy dissipated throughout the volume V of the earth model has here been 
expressed in terms only of quantities on the fault surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(t) and at the fault tip aZ(t)-  
aZ(t) n a V .  The first term in equation (88) depends only upon the final displacement and 
incremental traction on the final surface of faulting Z, but the second term depends 
intimately on the entire history of the displacement and incremental traction on the grow- 
ing fault surface Z(t). It is apparent that there can in general be no simple equation which 
relates E, only to the final static changes in the earth model. It should be noted that the 
infinite upper limit of integration in the second term of equation (88) cannot in general be 
replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  since the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(t).atT(t, t )  need not vanish on either side of Z for c > T ,  

even though [ s ( t ,  r ) ] :  has attained its final static value [s(t)J:. The seismic energy E,, by 
its definition, must be strictly quadratic in the infinitesimal particle displacement s(x, t). 
This is true for the first two terms in equation (88) by inspection, and it is easily shown to 
be true for the third term as well. 

By far the most important point we wish to make regarding the seismic energy E, is that 
it is explicitly independent of both the rotation and the self-gravitation of the earth model, 
i.e. exactly the same expression for E, would have been obtained if neither rotation nor self- 
gravitation had ever been considered. This is evident from the fact that equation (88) does 
not contain explicitly either the rate of rotation 52 or the gravitational constant G. It has 
been pointed out already that the same remark is valid for the total energy change A E ,  given 
by equation (69). The seismic efficiency of an earthquake, which we shall denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ,  is 
customarily defined as 

77 = -E, lAE,  (89) 

i.e. it is the fraction of the net released energy which is not dissipated immediately at the 
earthquake source, and which is therefore available for exciting the various non-secular 
normal modes of the earth model. Since both E, and A E  are explicitly independent of the 
rotation and self-gravitation of the earth model, it is clear that the seismic efficiency q must 
be as well. 

Kostrov (1 974) has derived an expression for the seismic energy which is similar to (88), 
using an argument in which rotation is neglected, and, more seriously, the initial static stress 
field To(x) and the initial gravitational potential &,(x) are assumed to be infinitesimal 
quantities. The expression he obtains may be written in the form 

5 
- %  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1’ t .[s]: d~ tJomdr limit J att*[sl: d~ - 

(90) 

Eclassical = 
x - ( t ) - x ( t )  y ( t )  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/4
8
/2

/2
3
9
/5

9
0
9
1
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



260 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dahlen 

where t(f,r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(f)-[T((,r) -(1/3)ri-T(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr)I] - i ( f ) [ q t ) . T ( ( ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )+ ( f )  - ( Y 3 )  rrT(f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ) ]  is the 
tangential component of the incremental traction acting on Z, and 

is the corresponding classical formula for the macroscopic rate of energy dissipation at the 
fault tip dZ(r) - dZ(t )  fl d V .  By differentiating the second order tangential slip condition 
(10) with respect to time and inserting the result into (83) and (86),  it is straightforward to 
show, by an argument similar to that which led from (69) to (70) and (73), that 

@classical ( t )  = @(t)[1 +o(T~/P) I  (92) 

This, together with (73), justifies the continued usage of the classical formulae (72), (90) 
and (9 1) in seismological applications. 

Conclusion 

The possible influence of the rotation of the Earth upon the energy release of an earthquake 
does not appear to have been considered previously. In particular, the seemingly paradoxical 
fact that the change in the rotational kinetic energy of the Earth associated with the change 
in the angular velocity of rotation caused by a fairly large earthquake can exceed by as much 
as two orders of magnitude the conventional empirical estimate of the total energy released 
by such an earthquake has not, to my knowledge, been noted, although that deduction is 
remarkably easy. The need to consider a gravitational contribution to the energy release, 
especially if permanent elevation changes in the vicinity of the earthquake focus have 
occurred, has on the other hand often been noted, although seldom quantitatively explored. 
A not uncommon misconception appears to be that the gravitational energy contribution 
can be adequately accounted for by adding the first-order work done against gravitational 
body forces to the classical expression AE-, for the energy change in the absence of 
gravity. We have shown this ad hoc procedure to be completely unfounded, as it amounts 
essentially to having counted the relatively enormous change in gravitational potential 
energy twice. Both the total energy change AE and the seismic energy Es can be expressed 
in terms of quantities only on the fault surface of an earthquake, and in this form both AE 
and E,, and therefore also the seismic efficiency 77, are explicitly independent of the rotation 
and the self-gravitation of the Earth. 
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