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THE BALANCED-PROJECTIVE DIMENSION 
OF ABELIAN p-GROUPS 

BY 
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ABSTRACT. The balanced-projective dimension of every abelian p-group is de-
termined by means of a structural property that generalizes the third axiom of 
countability. As a corollary to our general structure theorem, we show for A = Wn 

that every pA-high subgroup of a p-group G has balanced-projective dimension 
exactly n whenever G has cardinality Nn but pAG *" O. Our characterization of 
balanced-projective dimension also leads to new classes of groups where different 
infinite dimensions are distinguished. 

O. Introduction. We consider throughout p-primary abelian groups, or equiva-
lently, torsion modules over the integers localized at p. With possible generalizations 
in mind, we shall refer to them as "modules". 

Recall that a submodule N of M is said to be isotype if paM n N = paN for all 
ordinals a, and nice if < paM, N)jN = pa(MjN) for all a. If N is both isotype and 
nice, it is said to be balanced in M, and the corresponding exact sequence 
o ~ N ~ M ...... MjN ...... 0 is called balanced-exact. This notion gives rise to a 
relative homological algebra. The category of balanced-exact sequences has enough 
projectives, these are the totally projective p-groups. The balanced-projective dimen-
sion (b.p.d.) of a module M can be defined in the usual fashion: There is an exact 
sequence 

where Tn is totally projective for each n and the image of 8n is balanced in Tn-I' We 
set b.p.d. M = n if n is the smallest index ~ 0 with Im8n totally projective, and 
define b.p.d. M = 00 if no such n exists. An obvious version of Schanuel's lemma 
guarantees that n is well defined. Evidently, b.p.d. M = 0 if and only if M is totally 
projective. 

We are able to characterize, for each n, the modules that have balanced-projective 
dimension n. Our characterization (Theorem 4.5) generalizes the well-known char-
acterization of totally projective p-groups as modules satisfying the third axiom of 
countability [HI]. Two other versions of the third axiom concept [H2] also carry over 
to the more general case (Theorem 3.2). 
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100 L. FUCHS AND P. HILL 

As an application, we show that there are modules having arbitrary balanced-
projective dimension. 

Our characterization leads to some new classes of modules (abelian p-groups). 
The classes are labeled by ordinals with larger ordinals corresponding to classes of 
more complicated modules. The class labeled with a finite ordinal n consists of those 
modules whose balanced-projective dimension is n. We show that there are non-
empty classes for arbitrarily large ordinals. This means roughly that not only are 
there modules with infinite balanced-projective dimension but indeed with arbi-
trarily large infinite balanced-projective dimension (when the balanced-projective 
dimension is viewed as the characterization given herein). It may come as a surprise 
that such modules can in fact be found among the balanced submodules of totally 
projectives. 

1. Families of submodules. 
DEFINITION 1.1. Let K denote an infinite cardinal. By an H(K)-family in the 

module M is meant a collection C(j' of submodules of M such that 
HI. ° E C(j'; 
H2. C(j' is closed under module union, i.e. EN; E C(j' if N; E C(j' for each i; 
H3. if C E C(j' and if A is any submodule of M of cardinality ~ K, then there is a 

B E C(j' that contains both C and A such that B/C has cardinality at most K. 

It is readily checked that H3 can be replaced by the apparently weaker, but-in 
the presence of HI and H2-equivalent condition: 

H3'. if A is a sub module of M whose cardinality does not exceed K, then there 
exists a sub module B E C(j' containing A whose cardinality is likewise at most K. 

A G(K)-family in M is ddined analogously with H2 replaced by the following 
condition. 

G2. C(j' is closed under unions of chains. 
Here, however, H3' is no longer applicable. 

Finally, by an F(K)-family in M is meant a well-ordered ascending chain of 
sub modules that is continuous, begins at 0, ends at M, and the quotient of any two 
adjacent members has cardinality at most K. 

Evidently, every H(K)-family is a G(K)-family, and every G(K)-family contains 
F( K )-families. We wish to establish a few easy lemmas on these families which will 
be needed later on. 

LEMMA 1.2. The intersection of any two H(K)-families (G(K)-families) in M is again 
one. 

PROOF. If C(j' and!!} are the two families in M, then C(j' n !!} obviously satisfies 
HI-H2 (HI-G2 resp.). To verify H3 for C(j'n!!}, suppose that C E C(j'n!!} and 
suppose A is a sub module of M of cardinality ~ K. There is a chain (C, A) t:;:;; Bl t:;:;; 

C1 t:;:;; B2 t:;:;; C2 t:;:;; ••• of submodules of cardinalities ~ Ie over C with Bn E C(j' and 
Cn E!!}. Now UBn = UCn E C(j'n!!} is as desired. 

LEMMA 1.3. Let {3: B .... C be an epimorphism. 
(a) If !II is an H(K)-family in B, then there is an H(K)-family C(j' in C such that 

{3(!II) = C(j'. 
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THE BALANCED-PROJECTIVE DIMENSION OF ABELIAN p-GROUPS 101 

(b) If"C is an H(K) (or G(K»-family of submodules in C, then there is an H(K) (or 
G(K»-family [lJ in B such that f3([lJ) = "C. 

PROOF. (a) Given [lJ, define "C = {f3B': B' E [lJ}. Then HI and H3' are obvious 
for "C, while H2 follows at once from 'f.(f3B;) = 13 ('f.B;). 

(b) Given "C, define [lJ = {B' ~ B: f3B' E "C}. It is straightforward to see that [lJ 
is as desired. 

It is now easy to derive the following 

LEMMA 1.4. Let 13: B"""* C be an epimorphism and [lJ, "C be H(K)-families in Band 
C, respectively. Then there exist subfamilies [lJ' ~ [lJ and "C' ~ "C which are them-
selves H( K )-families and satisfy f3[lJ' = "C'. 

PROOF. According to the proof of Lemma 1.3, there are H(K)-families [lJl' "C1 in 
Band C respectively such that f3[lJl = "C and f3[lJ = "C1. By Lemma 1.2, [lJ' = [lJ n 
[lJl and "C' = "Cn "C1 are likewise H(K)-families. They evidently satisfyf3[lJ' = "C'. 

LEMMA 1.5. Let A be a submodule of B. If d is a G(K)-family in A, then there is a 
G(K)-family [lJ in B satisfying d= {A n B': B' E [lJ} (which we write briefly as 
d= A n [lJ). 

PROOF. Set [lJ = {B' ~ B: A n B' Ed}. Obviously, conditions HI and G2 hold 
for [lJ, so we only need to show that [lJ satisfies condition H3 in order to conclude 
that [lJ is a G(K)-family. Suppose that HE [lJ. Consequently, H n A Ed. Let K 
be a submodule of B of cardinality not exceeding K. Since (H, K> n A has 
cardinality at most Kover H n A and since H n A Ed, there exists A o Ed 
containing (H, K> n A that still has cardinality at most Kover H n A. Observe 
that (H, Ao, K> n A = A o Ed and that (H, Ao, K> has cardinality at most K 

over H. Therefore, (H, Ao, K> E [lJ and [lJ satisfies H3. Since d~ [lJ, it is 
immediate that d= {A n B': B' E [lJ}. 

We can now establish the following 

LEMMA 1.6. Let A be a submodule of B and let d and [lJ, respectively, be 
G(K)-families in A and B. There exist subfamilies d' ~ d and [lJ' ~ [lJ such that d' 
is an F( K )-family in A while [lJ' remains a G (K )-family in B with the property that 
d' ~ A n [lJ' ~ d. 

PROOF. First, an application of Lemma 1.5 yields a G(K)-family [lJ6 in B that 
satisfies d= A n [lJ6. According to Lemma 1.2, [lJ' = [lJ6 n [lJ survives as a G(K)-
family in B. Clearly, 

A n [lJ' = {A n N: N E [lJ'} ~ A n [lJ6 = d. 

To find a suitable F(K)-family d' in A and finish the proof, we simply construct an 
F(K)-subfamily [lJ" of [lJ' and set d' = {A n N: N E [lJ"} = A n [lJ". 

The next lemma is of considerable interest and will prove to be useful in a later 
section. The main part of its proof is a generalization of the proof of Lemma 1.5. 
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102 L. FUCHS AND P. HILL 

LEMMA 1.7. Let 

a < K, 

be a well-ordered continuous ascending chain of submodules of M whose union is M. If 
~" is a G(K)-family in M" for each a, then 

~= {N ~ M: N Ii M" E ~"foreach a} 
is a G(K)-family in M. 

PROOF. Since conditions HI and G2 are obvious for ~, we only need to verify 
H3. If X ~ M, denote X Ii M" simply by X". Now suppose that N E ~ and that 
K ~ M has cardinality at most K. By hypothesis, N" E ~" and the cardinality of K" 
does not exceed K. Moreover, I(N, K)"IN"I ~ K. Therefore, there exists L(a) E ~" 

containing (N, K)" with IL(a)/N,,1 ~ K. Set L = (L(a) for a < K, and observe 
that (N, K) ~ L since (N, K)" ~ L(a). Moreover, ILINI ~ K since IL(a)IN,,1 ~ K. 

Trivially, L( a) ~ L", but we desire equality (in order to conclude that L E ~). If 
LO = (N, K) and Ll = L, we have already observed that L~ ~ Ll(a) ~ L~, and the 
middle term belongs to ~". Letting L n + 1 replace L n, we can inductively construct an 
ascending sequence of submodules L n of M so that I L nl N I ~ K and so that 
L~ ~ Ln+l(a) ~ L~+l, where Ln+\a) E ~". Finally, define U' = UU and notice 
that L~ = UU(a) belongs to ~". Thus L W is a member of ~. Since L W::2 L°::2 
(N, K) and since IL WIN I ~ K, ~ satisfies H3 and the lemma is proved. 

2. Separability and compatibility. As indicated in the introduction, we shall need to 
generalize the third axiom of count ability so that it applies to an arbitrary infinite 
cardinal K. In order to do this, we first need the notion of separability used in [H3 
and H4], which generalizes the concept of a nice submodule. The height of an 
element x in M is denoted by lxi, and we write IxlM if it is not clear from the 
context what the containing module M is. Likewise, if N is a submodule or even a 
subset of M, we let 

I x + N! = sup { ! x + y!: yEN} 

whenever x E M. 
DEFINITION 2.1. Let K be an arbitrary cardinal. A submodule N of M is 

K-separable in M if, for each x E M, 

Ix + NI=lx + sl 

for some subset S of M whose cardinality does not exceed K. 

It is convenient to consider also the coset valuation on a quotient module defined 
by 

II x + N II = sup { I x + y I + 1: yEN}. 

The following proposition is immediate. 

PROPOSITION 2.2. A submodule N of Mis K-separable if and only if cof(IIx + NIl) ~ 
K; in this connection, the cofinality of an isolated ordinal is understood to be zero. 
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THE BALANCED-PROJECTIVE DIMENSION OF ABELIAN p-GROUPS 103 

Using the preceding notion of separability and the notion of an H(K)-family in 
Definition L1, we obtain in a natural fashion a generalization of the third axiom of 
countability (called Axiom 3 groups in [GD-

DEFINITION 23. Let K = N" be an infinite cardinal. A module M satisfies Axiom 
3:K (and M is said to be an Axiom 3:K module) if M has an HCK)-familyof 
K-separable submodules. If K = N -1 is finite, M satisfies Axiom 3: K provided that 
M has an HCN o)-family of K-separable submodules; this is precisely the third axiom 
of countability with respect to nice submodules. 

Some basic facts about separability and Axiom 3: K modules are established next. 

PROPOSITION 2.4. Suppose that N is a nice (= N _I-separable) submodule of M. If 
N ~ N' ~ M, then N' is K-separable in M if and only if N'jN is K-separable in MjN. 

PROOF. The proposition is well known for the case K = N -1 is finite. The general 
case will follow from Proposition 2.2 if we can demonstrate that IIx + N'II M = 
IIx + N + N'jNIIM/N for each x E M. However, for x fixed, yEN' and zEN, 
we evidently have 

Ilx + N + N'jNIIM/N = sup{lx + y + NIM/N + I} 
= sup{lx + y + ZIM + I} =IIx + N'IIM. 

Another situation that commonly arises where a submodule is K-separable is 
described in the following proposition. 

PROPOSITION 2.5. Suppose that N is K-separable in M. If N ~ N' ~ M and N'jN 
has cardinality not exceeding K, then N' is also K-separable. 

PROOF. Assume that N' is not K-separable_ By Proposition 2.2, cofCllx + N'II) 
exceeds K for some x E M. Since there are at most K cosets of N in N', it follows 
that IIx + y + Nil = IIx + N'II for some yEN'. This, however, is impossible since 
N is K-separable and cofCllx + y + Nil) :s;;; K. 

We say that a module N is absolutely K-separable if N is K-separable in any 
module in which it appears as an isotype submodule. The next result is fundamental 
to our determination of those modules that have balanced-projective dimension n. 

THEOREM 2.6. If N is a module that satisfies Axiom 3: K, then N is absolutely 
K+-separable, where K+ as usual denotes the smallest cardinal greater than K. 

PROOF. If K is finite, N is totally projective and the result is contained in [H4]. 
Suppose that K is infinite and that N is an Axiom 3: K module that is an isotype 
submodule of M. Assume that cofCllx + NIl) > K+ for some x E M. Let C(j' be an 
HCK)-family of K-separable submodules of N. Observe that if lX < IIx + Nil, there 
must exist yEN such that Ix + yl > lX. On the other hand, IIx + All < IIx + Nil if 
A ~ N and if the cardinality of A does not exceed K+. Due to the properties of an 
H( K )-family, there must exist consequently a continuous ascending chain indexed by 
K+ of submodules A" E C(j' so that 

IIx+AoII<IIx+AI11< ... <IIx+AaII< ... <IIx+NII· 
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104 L. FUCHS AND P. HILL 

For convenience, let f3 = K+ and set A = Ua <f3A a · Again, Ilx + All < Ilx + Nil 
since cof(llx + All) = K+ and cof(llx + NIl) > K+. Sin~e Ilx + All < Ilx + Nil, there 
exists yEN such that Ix - yl > Ilx + All > Ilx + Aall for each IX < K+. Thus 
IIY + All = Ilx + All, and cof(lly + All) = cof(lIx + All) = K+. This, however, im-
mediately yields a contradiction since Ily + All = Ily + All M = IIY + All N and since 
A E C(j' is K-separable in N. We conclude therefore that cof(llx + NIl) ~ K+ and that 
N is K + -separable in M. 

As in [H3] we say that two sub modules A and B of M are compatible and write 
AIIB if for each pair (a, b) E A X B, there exists c E A n B such that la + cl M 
;;" la + bl M' By an argument similar to the proof of Lemma 1 in [H3], we can easily 
establish the following 

PROPOSITION 2.7. Let K be an infinite cardinal and let N be K-separable in M. If A 
is any submodule of M, there exists a submodule B ::::2 A such that BIIN and the 
cardinality of B does not exceed KIAI. 

Here we have denoted the cardinality of A by IAI, but there should be no danger 
of confusion with the height valuation. 

The following'result will prove very useful. 

PROPOSITION 2.8. Let N be a nice submodule of M and let N' and B be arbitrary 
submodules of M. If the conditions 

(2.8.1) 

(2.8.2) 

(2.8.3) 

are satisfied, then BIIN'. 

N~N', 

BIIN, 

(N'/N)II(B, N)/N) 

PROOF. Suppose that Ib + yl = A, where b E Band yEN'. According to condi-
tion (2.8.3), there exists x E M such that Ib + x + NIM/N ;;" A with x + N E N'/N 
n (B, N)/N. Obviously, we can choose the representative x of the coset x + N so 
that x E B n N'. Since N is nice in M and since Ib + x + NIM/N ;;" A, there exists 
zEN such that Ib + x + ZIM;;" A. Since BIIN, condition (2.8.2) implies that 
Ib + x + cl ;;" A for some c E B n N. Observe that w = x + c is contained in 
B n N' since x and c are. Therefore Ib + wi ;;" A means that BIIN', and the 
proposition is proved. 

3. Equivalent axioms. In §1, we defined H(K)-, G(K)- and F(K)-families of 
submodules. From these different kinds of families stem three different but closely 
related axioms. For simplicity and agreement with [H2] these axioms are denoted as 
Axioms H, G, and F. If K = ~ -1 is finite, it is understood that Axiom H, Axiom G, 
and Axiom F take on their usual meaning [H2]. The axioms are generalized to 
include K = ~ a (IX ;;" 0) as follows (with K fixed). 

Axiom H = Axiom 3: K. M has an H(K)-family of K-separable submodules. 
Axiom G. M has a G(K)-family of K-separable submodules. 
Axiom F. M has an F(K)-family of K-separable submodules. 
Although we will not state it as a formal axiom, there is another property of M 
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THE BALANCED-PROJECTIVE DIMENSION OF ABELIAN p-GROUPS 105 

that is closely related to the above properties, the existence of a composition series_ 
A continuous (there are no jumps at limit ordinals) ascending chain of K-separable 
submodules 

is called a composition series (of K-separable submodules) if the chain begins with 0, 
ends with M (in the sense that M = U a < T Na), and Na + 1/ Na is cyclic for each lX_ It 
should be observed that an F(K+)-family of K-separable submodules can be refined 
to a composition series by an application of Proposition 2S 

In order to characterize those modules having a given balanced-projective dimen-
sion, the following result is essentiaL It generalizes the main theorem of [H2]_ 

THEOREM 3-2_ Axioms F, G and H are all equivalent_ 

PROOF_ It is immediate that Axiom H implies Axiom G and that Axiom G implies 
Axiom E Moreover, we have observed that Axiom F yields a composition series_ 
Thus it suffices to show that the existence of a composition series (of K-separable 
sub modules) implies that M satisfies Axiom 3: K, and we may assume that K is 
infinite since the result is well known if K is finite_ 

Suppose that 

a < 7", 

is a composition series of K-separable sub modules Na of M_ For each a such that 
a + 1 < 7", let Na+l = (Na' xa)- We know that pXa E Na and that Nf3 = 

(xa: lX < 13)- Moreover, if cof(llxa + NalD = 0, we can choose Xa so that 

assume throughout that xa has been so chosen_ Once the xa's have been selected 
(and we assume now they have been chosen once for all) observe that each element x 
in M can be represented uniquely as 

where the c/s are integers such that 1 < Ci < P and where a(O) < a(l) < ... < 
a( n); let us agree that the vacuous sum represents zero. The representation (*) is 
called the standard representation of x. For agreement with [H2] let T = 7", the 
index for the composition series of M. Define a subset S of T to be a closed subset 
if it enjoys the following properties: 

(a) If a E S, then the standard representation of pXa involves no elements of T 
outside of S. In other words, a(i) E S for each i in the standard representation of 
pXa' 

(b) If a E S and we define Na(S) = (Xy: yES and y < a), then IIxa + Nail = 

IIxa + Na(S)II· 
A few observations are made. First, Na(S) ~ Na since Na = (Xy: y < a). There-

fore, equality in (b) is tantamount to the inequality < . It is now easy to see that the 
union of any number of closed subsets of T is again closed. Another essential 
feature of the closed sets of T is described in the following assertion. 
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Claim. If R is any subset of T of cardinality not exceeding K, there exists a closed 
subset S of T containing R of cardinality not exceeding K. 

Our argument supporting this claim is brief. Since the standard representation of 
an element x requires only a finite number of ordinals aU), obviously the closure of 
an arbitrary subset in regard to property (a) alone does not transcend the cardinality 
of the set if the set is infinite. Therefore, since (a) is an inductive property, we can 
concentrate solely on property (b). However, since cof(llxa + Nail) ~ K for each 
a E T, it is clear that we can choose Sl ~ T of cardinality not exceeding K with 
Sl ~ R so that 

cof(llxa + Na(Sl) II) ~ cof(llxa + Nail) 

for a given a E R. In fact, we can select Sl so that it is true for all a E R. Letting 
R = 'So and inductively repeating the process for Sj+l instead of Sj for i < W, we 
obtain the desired set S = USj; namely, S has property (b) and the cardinality of S 
does not exceed K. 

Define the collection 'fl of submodules of M by N E 'fl if and only if, for some 
closed subset S of T, 

N = (xa: a E S). 

We denote this special submodule of M by M(S). Naturally, the empty set is 
considered to be a closed set, so 0 = M(0) belongs to 'fl. Moreover, M(S) = 

(M(S;) if Sj is closed for each i and S = USj. We have demonstrated also that if A 
is any submodule of M of cardinality not exceeding K, then A ~ M(S) for some 
closed subset S of cardinality not exceeding K. To prove that M satisfies Axiom 
H = Axiom 3:K, it suffices now to prove that M(S) is, in fact, K-separable in M 
whenever S is a closed subset of T. 

Let N = M(S) = (xa: a E S), where S is a closed subset of T, and assume that 
N is not K-separable in M. Let cof(IIy + Nil) > K for some y E M. Among all such 
choices of y, choose one that produces a minimal a( n) in its standard representation 

y = cOxa(O) + C1Xa(1) + ... +cnxa(n)' 

Obviously, a(n) (/:. S, for if a(n) E S then the last term in the standard representa-
tion of y can be deleted (without destroying the required property of y). Likewise, if 
IIy + Nil = p., then IXa(n)1 < P. for the same reason. Indeed, we can say more. Let 
A = IIxa(n) + Na(n)II. Since cof(p.) > K and Na(n) is K-separable in M (being one of 
the terms in the composition series), we know that A"* p.. If A> p., then 
IIxa(n) + Na(n)II ~ P. + 1 implies that IXa(n) + zi ~ p. for some z E Na(n)' Conse-
quently, if y' = y - (cnxa(n) + cnz), then 

Ily' + Nil = IIY + Nil = p.. 

But y' E Na(n)' and therefore its standard representation involves only a's less than 
0'.( n). However, this is contrary to the choice of y and a( n), so we conclude that 
A < p.. As we have noted, a( n) (/:. S. Since a( n) (/:. S and since S is closed, no 
element x belonging to N = M(S) uses the generator xa(n) in its standard represen-
tation. Thus, in particular 
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since N n Na(n)+l ~ Na(n)- Because A < }-L, certainly there must exist wEN such 
that Iy + wi ~ A, but w cannot reside in Na (n)+l. Among all possible choices for w 
choose one that produces a minimal f3( m), where the standard representation of w 
is 

(with 1 .,;; d; < P and f3(O) < f3(1) < ... < f3(m»- Note that we have made sure 
that f3(m) > a(n). Since Iy + wi ~ A, we conclude that IIxp(m) + NP(m)11 ~ A + 1 
and consequently IIxp(m) + NP(m)(S)11 ~ A + 1. This means that IXP(m) + vi ~ A for 
some v E Np(m)(S). Since w' = w - (dmxP(m) + dmv) E NP(m)(S) and since 
Iy + w'l ~ A, we have a contradiction on the choice of wand f3(m). Therefore, N 
must be K-separable in M, and the theorem is proved. 

4. A determination of the balanced-projective dimension. The main theorem of this 
section establishes a necessary and sufficient structural condition on a module M in 
order that b.p.d. M = n. First, we need some preliminary results. 

LEMMA 4.1. Let B ~ T -. M be balanced exact. Suppose that 't'T and 't'M are 
H(K)-families of T and M, respectively, where K is an infinite cardinal. If't'T maps 
onto 't'M in the sense that 't'M = {( N, B) I B: N E 't'T} and if the members of 't'T are 
nice and those of 't'M are K-separable, there exists a G (K )-subfamily 't' ~ of 't'T such 
that NIIB for each N E 't'~. 

PROOF. Define 't'~ = {N E 't'T: NIIB}. Obviously 't'~ satisfies conditions HI and 
G2. The nontrivial part is to show that 't'~ satisfies condition H3. Let N E 't'~ and 
suppose that N ~ A ~ T with IAINI.,;; 1(. By hypothesis, (N, B)IB E 't'M. Thus 
(N, B)IB is K-separable in M. According to Proposition 2.4, (N, B)IN is K-sep-
arable in TIN because both Band N are nice in T. By virtue of Proposition 2.7, 
there is an extension N' of A such that N'INII(B, N)IN and N'IN has cardinality 
not exceeding K. In view of Proposition 2.8, we conclude that N'IIB. Since N E 't'T' 
we can manage to choose N' E 't'r. for we can capture N' with a member A' of 't'T 
so that A' INstill has cardinality at most K. Then we repeat the process (with A' 
replacing A) obtaining a sequence 

N ~ A ~ N' ~ A' ~ Nil ~ A" ~ 

where the N's are compatible with B and the A's, with the exception of the first, 
belong to 't'T. Since both properties are inductive, the union of the sequence has the 
desired property for N'. Since we can choose N' E 't'T and since N'IIB, we observe 
that N' E 't'~ and the lemma is proved. 

THEOREM 4.2. Let B ~ T -. M be balanced exact, where T is totally projective. If 
M satisfies Axiom 3: K+, then B must satisfy Axiom 3: K. 

PROOF. If K = ~ -1 is finite, we interpret K + to be ~ o. In this special case the 
theorem is proved in [H4], so assume that K is infinite. Let 't'T and 't'M denote 
H(K+)-families of nice submodules of T and K+-separable submodule of M, respec-
tively. By Lemma 1.4, without loss of generality we may assume that 't'M = 

{(N, B)IB: N E 't'T}. Furthermore, by Lemma 4.1, there is a G(K+)-subfamily 't'~ 
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of C(/T such that NIIB for each N E C(/~. Let ~T be an F(K+)-subfamily of C(/~. 

Observe that C(/B = {B n N: N E ~T} is an F(K+)-family of submodules of B. It is 
easy to show that the members of C(/ B are nice in B. Indeed if x E Band 
Ix + B n NIB = J.1., then Ix + NIT;;:: J.1. so Ix + ylT;;:: J.1. for some yEN since N E 

C(/T is nice in T. But Ix + ylT;;:: J.1. implies that Ix + ziT;;:: J.1. for z E B n N, and 
Ix + zlB ;;:: J.1. since B is isotype. 

Since C(/B is an F(K+)-family of nice submodules, C(/B can be refined (by 
Proposition 2.5) to an F( K )-family of K-separable submodules. Theorem 3.2 implies 
that B is an Axiom 3: K module. 

The converse of Theorem 4.2 is also valid. Before we prove the converse we need 
one more preliminary result. 

LEMMA 4.3. Let B H T .... M be balanced exact. Suppose that C(/B and C(/T are 
G(K)-families of Band T, respectively, where K is an infinite cardinal. If B n C(/T = 
{B n N: N E C(/ T } ~ C(/ B and the members of C(/ T are nice and those of C(/ Bare 
K-separable, there exists a G (K + )-subfamily C(/ ~ of C(/ T such that Nil B for each 
N E C(/~. 

PROOF. Define C(/~ = {N E C(/T: NIIB}. Clearly C(/~ satisfies conditions HI and 
G2. To show that C(/~ satisfies condition H3 for K+, assume that N E C(/~ and that 
N ~ A ~ T with AjN having cardinality not exceeding K+. Since N E C(/~ ~ C(/T' 
we know that N n B E C(/B' Therefore, Bj(N n B) has a G(K)-family of K-separa-
ble submodules; namely, such a family is 

C(/ B / N n B = {C j N n B: C E C(/ Band C ;;2 N n B}. 
Theorem 2.6 implies that BjB n N is absolutely K+-separable, and so is (B, N)jN 
~ BjB n N. 

We next observe that (B, N)jN is isotype in TjN. Suppose that b + N E 

p\TjN). Since N is nice in T, we know that pA(TjN) = (pAT, N)jN and 
Ib + xI T ;;::.\ for some x E N. Recall that NIIB, so Ib + cl B = Ib + cl N ;;::.\ for 
some c E B n N. It quickly follows that b + N E pA«B, N)jN) since b + N = b 
+ c + N and since b + c E pAB. We have shown that (B, N)jN is isotype in TjN 
and therefore K+-separable. Now invoke Proposition 2.7 to obtain an extension N' 
of A (with N ~ A ~ N' ~ T) such that N'jNII(B, N)jN in TjN, where N'jN 
has cardinality not exceeding K+. Proposition 2.8 yields N'IIB. Again, by an 
argument similar to that used in the proof of Lemma 4.1, we can choose N' E C(/T 
without sacrificing N'IIB. Thus we can choose N' E C(/~. Hence C(/~ is a G(K+)-sub-
family of C(/T with NIIB for each N E C(/~. 

THEOREM 4.4. Let B H T .... M be balanced exact, where T is totally projective. If 
B satisfies Axiom 3: K, then M must satisfy Axiom 3: K+. 

PROOF. As in Theorem 4.2 we may assume that K is infinite, for the result follows 
from [H4] when K is finite. Let C(/B and C(/T denote G(K)-families of K-separable 
sub modules of B and nice submodules of T, respectively. By Lemma 1.6, there is an 
F(K)-subfamily C(/~ of C(/B and a G(K)-subfamily C(/~ of C(/T such that C(/~ ~ B n C(/~ 

~ C(/B' According to Lemma 4.3, there exists a G(K+)-subfamily C(/:j of C(/~ such that 
NIIB for each N E C(/:j. Let ~T be an F(K+)-subfamily of C(/:j. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE BALANCED-PROJECTIVE DIMENSION OF ABELIAN p-GROUPS 109 

Define 'flM = {(N, B)IB: N E!?2T }. Clearly, 'flM is an F(K+)-family in M, but 
we need to show that its members are K+-separable. However, (N, B)IN ;:; BIB n N 
is an Axiom 3: K module as in the proof of Lemma 4.3, so (N, B) IN is absolutely 
K + -separable in TIN and is isotype (by the same argument of Lemma 4.3). Thus 
(N,B)IN is K+-separable in TIN. We switch back to (B, N)IB. Since Nand B 
are both nice, Proposition 2.4 implies that (N, B)IB is K+-separable in M = TjB 
since (N, B) IN is K + -separable in TIN. This completes the proof of the theorem. 

Weare now ready for the main result. 

THEOREM 4.5. For each n ~ 0, it is true that b.p.d. M ~ n if and only if M satisfies 
Axiom 3: ~n-1. 

PROOF. Since M satisfies Axiom 3: ~ -1 if and only if M is totally projective and 
since this is precisely when b.p.d. M = 0, the theorem holds for n = o. The proof 
proceeds by induction on n ~ 1. Let B ~ T"""* M be a balanced-exact sequence 
where T is totally projective. 

First, assume that b.p.d. M ~ n. Then b.p.d. B ~ n - 1, and the induction 
hypothesis implies that B satisfies Axiom 3: ~ n _ 2. Theorem 4.4 asserts that M 
satisfies Axiom 3: ~ n -1. Conversely, suppose that M satisfies Axiom 3: ~ n -1. By 
Theorem 4.2, B satisfies Axiom 3: ~ n-2. The induction hypothesis yields b.p.d. 
B ~ n - 1, so b.p.d. M ~ n. 

5. Balanced-projective dimensions of unions of chains. It is frequently useful to 
have an estimate for the balanced-projective dimension of a union of chains if the 
balanced-projective dimensions of the members of the chains are known. 

An obvious modification of Auslander's lemma [A] yields the following result: 

LEMMA 5.1. Let 

(1) (0: < A) 

be a well-ordered continuous ascending chain of submodules of M. If each Ma (0: < A) 
is balanced in M and if b.p.d. M a+1IM" ~ nfor all 0: < A, then b.p.d. M ~ n. 

In an alternative version of this lemma, b.p.d. Ma+11Ma ~ n is replaced by b.p.d. 
Mo. ~ n - 1 for 0: < A. Recall that Hill [H5] has shown that a stronger statement 
holds whenever the Ma's are totally projective and A = Woo Even if the Mo.'s are just 
isotype in M, then M has to be totally projective as well. 

We intend to prove two theorems in the same vein. The first shows that in Lemma 
5.1, balancedness can be weakened. We follow an argument used by Simmons [S]. 

THEOREM 5.2. Let A be a limit ordinal and (1) a well-ordered continuous ascending 
chain of submodules of M such that each Mo. (0: < A) is isotype in M. If b.p.d. 
Mo. ~ n - 1 for all 0: < A, then b.p.d. M ~ n. 

PROOF. Let ° ~ B ~ T ~ M ~ 0 be the canonical balanced-projective resolution 
of M. Observe that if we take the canonical balanced-projective resolution ° ~ Eo. 
~ To. ~ Mo. ~ ° of an isotype submodule Mo. of M, then To. will be a summand of 
the totally projective module T. Thus B" can be viewed as a submodule of B. This 
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gives rise to a direct system of balanced-exact sequences 

0 ~ Ba ~ Ta ~ Ma ~ 0 
~ ~ ~ (a<f3<"A.) 

0 ~ Bf3 ~ Tf3 ~ Mf3 ~ 0 

whose limit is the given balanced-projective resolution for M since evidently both 
UTa = TandUMa = M. 

Since Ta is a summand of Tf3 , we conclude that Ba is balanced in Bf3. Thus 
o = Bo ~ Bl ~ ... ~ Ba ~ ... ~ B).. = B is a well-ordered continuous ascending 
chain of balanced submodules. By the alternative version of Auslander's lemma (or 
by induction on N), it follows that 

b.p.d. B ~ 1 + sup b.p.d. Ba. 
a<).. 

If b.p.d. Ma = 0 for all a < "A., then for each a, Ba is a summand of Ta, so of Tf3 and 
hence of Bf3 (a < f3 < "A.). By Lemma 5.1 (or almost any other consideration), b.p.d. 
B = 0 and we obtain b.p.d. M ~ 1. If n ~ 2 and b.p.d. Ma ~ n - 1 for a < "A., then 
b.p.d. Ba ~ n - 2, and therefore b.p.d. B ~ n - 1. This implies b.p.d. M ~ n, as 
claimed. 

The next result improves on the upper bound given in Theorem 5.2 for the 
balanced-projective dimension in case the chains are relatively short. 

THEOREM 5.3. Let "A. be a limit ordinal with cof("A.) ~ wn - 1 (1 ~ n < w). If (1) is a 
well-ordered continuous ascending chain of submodules of M such that Ma is isotype in 
M and b.p.d. Ma ~ nforeach a <"A., then b.p.d. M ~ n. 

PROOF. Set K = ~n-l. By taking a cofinal subset of the Ma's we may assume 
without loss of generality that "A. ~ W n - 1• By Theorem 4.5, Ma has an H(K)-family 
rt'a of K-separable submodules. Lemma 1.7 ensures that 

rt' = {N ~ M: N n Ma E rt'a for a < "A.} 
is a G(K)-family in M. It remains to show that the members of rt' are K-separable in 
M. By way of contradiction, assume that N E rt' and that cof(lIx + NIl) ~ Wn for 
some x E M. For y < cof(lIx + NIl), choose Xy E N so that SUPy{ Ix + xyl} = 
Ilx + Nil· Since there are at least Wn of the elements Xy and not more than Wn - 1 of 
the submodules Ma, clearly most of the x/s must be contained in a single Ma. More 
precisely, there exists a < Wn - 1 such that Ma contains a cofinal subset of the x/so 
Since the Ma's ascend, obviously we can choose a so that Ma also contains the fixed 
element x. However, this is impossible since N n Ma is K-separable in Ma by virtue 
of N n Ma E rt'a' and the theorem is proved. 

6. Applications. Our results suggest the idea of introducing classes of abelian 
p-groups which generalize the notion of balanced-projective dimension. The classes 
are labeled by ordinal numbers. 

For a module M, consider the cardinals K such that M has an H(K)-family of 
K-separable submodules. Such K does exist, e.g. K = IMI is such. If ~ a = K has this 
property and a is minimal, a ~ -1, define the class of separability, or simply, the 
class of M as cl M = a + 1. 
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Our Theorem 4.5 asserts that cl M = b.p.d. M whenever the latter is finite. Note 
that cl M ~ 0, and cl M = ° precisely when M is totally projective. 

The following upper bound for cl M is relevant. 

THEOREM 6.1. If a ~ ° and a module M has cardinality K a or is of length < W a , 

then cl M ~ a + L Moreover, cl M ~ a if a is not a limit ordinal. 

PROOF. A module M of cardinality not exceeding K a is the union of a suitable 
well-ordered continuous ascending chain of submodules, all of which have cardinal-
ity less than K a. By Proposition 2.5, each of the submodules is K a-separable. 
Theorem 3.2 implies that cl M ~ a + L Moreover, cl M ~ a if a is isolated. 

In a module of length < Wa , each sub module is evidently K p-separable for some 
f3 < a. Hence the claim is immediate. 

Observe that, for a = 0, Theorem 6.1 includes the well-known facts that both 
countable and bounded p-groups are totally projective. The next result is of utmost 
importance. It establishes the existence of nonempty classes of separability for 
arbitrarily large ordinals. In particular, it implies the existence of p-groups of 
balanced-projective dimension n for every integer n ~ ° as well as for n = 00. 

THEOREM 6.2. Let a be an isolated ordinal and Gap-group of cardinality K a such 
that pWaG =1= 0; there always exists such a G even among the totally projectives. The 
class of any pWa_high subgroup H of G is precisely a. 

PROOF. Since any subgroup H of G has cardinality not exceeding Ka, Theorem 6.1 
implies cl H ~ 0'. On the other hand, H being a pWa_high subgroup is isotype in G. 
It stays isotype under the canonical map G"""* G/pwaG. Moreover, G = (H, pYG) 
for each y < Wa. We conclude that Ig + HI = Wa for every g E G/pw"G which is not 
contained in H-and there is one since pWaG =1= 0. Hence H cannot be K a_1-separa-
ble in GjpwaG. Thus, by Theorem 2.6, H cannot contain any H(K)-family of 
K-separable submodules if K < K a -1. It follows that cl H is not less than a, and the 
theorem is proved. 

COROLLARY 6.3. If n is a nonnegative integer and G has cardinality K n but 
pWnG =1= 0, then any pWn-high subgroup of G has balanced-projective dimension exactly 
n. 

It should be pointed out that even balanced subgroups associated with totally 
projective p-groups belong to classes of separability of arbitrarily large ordinals. In 
fact, if B is balanced in a totally projective p-group T, then cl B = (cl T / B) - 1 
whenever (cl T / B) - 1 is not a limit ordinal. 

The results herein are also applicable to the category ~ of valuated p-groups. 
According to [RW] the projective dimension of the abelian p-groups G computed in 
~ is precisely one more than its balanced-projective dimension (in the category of 
nonvaluated groups). Thus, for example, Theorem 6.2 yields the following corollary. 

COROLLARY 6.4. There exist groups in ~ having arbitrary projective dimension. 

REMARK. The preceding corollary can also be derived from the results of Hill and 
White [HW]. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 L. FUCHS AND P. HILL 

REFERENCES 

[A] L. Auslander, On the dimension of modules and algebras. III, Nagoya Math. J. 9 (1955),67-77. 
[G] P. Griffith, Infinite Abelian groups, Univ. of Chicago Press, 1970. 
[HI] P. Hill, On the classification of abelian groups, photocopied manuscript, 1967. 
[H2] ___ , The third axiom of countability for abelian groups, Proc. Amer. Math. Soc. 82 (1981), 

347-350. 
[ID] ___ , Criteria for freeness in abelian groups and valuated vector spaces, Lecture Notes in Math. 

vol. 616, Springer-Verlag, Berlin and New York, 1977, pp. 140-147. 
[H4] ___ , Isotype subgroups of total~y projective groups, Lecture Notes in Math., vol. 874, Springer-

Verlag, Berlin and New York, 1981. 
[H5] ___ , Criteria for totally projectives, Canad. J. Math. 33 (1981), 817-825. 
[HW] P. Hill and E. White, The projective dimension of valuated vector spaces, J. Algebra 74 (1982), 

374-401. 
[RW] R. Richman and E. Walker, Valuated groups, J. Algebra 56 (1979),145-167. 
[S] J. Simmons, Cyclic purity: A generalization of purity to modules, Dissertation, Tulane Univ., 1983. 

DEPARTMENT OF MATHEMATICS, TuLANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118 (Current 
address of L. Fuchs) 

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36849 

Current address (P. Hill): Department of Mathematics, Baylor University, Waco, Texas 76798 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	0050103
	0050104
	0050105
	0050106
	0050107
	0050108
	0050109
	0050110
	0050111
	0050112
	0050113
	0050114
	0050115
	0050116

