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1. Introduction

Economists have long been interested in the different frequency components of the data. For example,

business cyde theory is primarily concerned with understanding fluctuations in the range of 1.5 to

8 years while growth theory focuses on the longer run components of the data. In addition, some

economic hypotheses are naturally formulated in the frequency domain, such as Milton Friedman's

hypothesis that the long-run Phillips curve is positively sloped, while the short run Phillips curve is

negatively sloped, and the proposition that money growth and inflation are highly correlated in the

long run, and less correlated in the short run. As a final example, certain frequency components of

the data are important as inputs into macroeconomic stabilization policy. For instance, a policy maker

who observes a recent change in output is interested in knowing whether that change is part of a trend

(i.e., part of the lower frequency component of the data) or is more transitory (i.e, part of the higher

frequency component).

The theory of the spectral analysis of time series provides a rigorous foundation for the notion that

there are different frequency components of the data. An advantage of this theory relative to other

perspectives on decomposing time series, is that it does not require a commitment to any particular

statistical model of the data. Instead, it relies on the Spectral Representation Theorem, according to

which any time series within a broad class can be decomposed into different frequency components.

The theory also supplies a tool for extracting those components. That tool is the ideal band pass filter.

it is a linear transformation of the data, which leaves intact the components of the data within a

specified band of frequencies and eliminates all other components. The adjective, ideal, on this filter

reflects an important practical limitation. Literally, application of the ideal band pass filter requires

an infinite amount of data. Some sort of approdmation isrequired.

In this paper, we characterize and study optimal linear approximations, assess alternative ap-

proaches developed in the literature and provide empirical illustrations. To explain what we mean

by an optimal linear approximation, let y denote the data generated by applying the ideal, though

infeasible, band pass filter to the raw data, xt. We approximate Vtby a linear function, or filter, of

the observed sample Zg'S. We select the filter weights to make as close as possible to the object of

interest, yg, in the sense of minimizing the mean square error criterion:

E[(ve—t)IxJ, xm[x1,...,XTJ, (1.1)

where the expectation operator is evaluated using the time series properties of St. Thus, is the linear

projection of Vt onto every element in the data set, x, and there is a different projection problem for

1



each date t. We derive closed form formulas for the filter weights in these projections.

We illustrate the use of I in two empirical applications: one concerns the relationship between

inflation and unemployment and the other, the relationship between money growth and inflation. We

use the filtering technology developed here to characterize the change in the dynamics of these variables

before and after 1960. A bootstrap procedure is applied for conducting the relevant statistical inference.

The optimal approximation to the band pass filter requires knowing the true time series repre-

sentation of Zg. In practice, this is not known and must be estimated. It turns out, however, that

for standard macroeconomic time series, a more straightforward approach that does not involve first

estimating a time series model works well. That approach uses the apprcimation that is optimal

under the (most likely, false) assumption that the data are generated by a pure random walk.1 The

procedure is nearly optimal for the type of time series representations that fit US data on interest rates,

unemployment, inflation, and output. The filter is easy to implement, and is described as follows. To

isolate the component of x with period of oscillation between pg and p,, where 2 � pg <Pu <00, OUr

recommended approximation of y, , is computed as follows:2

= Boz + Bix÷i + ...+ Br_1_zr_1 + BtXT (1.2)

+Bix,_1 + ... + Bt_z2 + B_ixi,

for t =3,4,...,T—2. In (1.2),

B2 = (jb) —in (ja) j> 1 (1.3)
1r3

b—a 2ir 2irB0 = —,a=—,b=—.
p.j pg

and are simple linear functions of the B,'s.3 The formulas for i when t = 2 and T —1 are

straightforward adaptations on the above expressions. The formulas for and' are also of interest.

'Our formulas assume there is no drift in the random walk. If there is a drift in the raw data, we assume it has been
removed prior to analysis. For more details, see footnote 5 below.

tmIf the data are quarterly and p, = 6, Pu = 32, then y, is the component of x, with periodicities between 1.5 and 8
ysars.

mlnparticular,ñr_, istbesumoftheBj'soverj =T—g,T—t+1,... and a1_, isthesunoftheB,'soverj =t—1.t,...
Exploiting the fact that B0 + 2E, B1 = 0,

1-L-i

E B1, fort=3,...,T—2.

Also, i,.., solves
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For example,

=
(Bo) xr + Bir_i + ...+ B7_2x2 + Er_txi, (1.4)

where a2-... isconstructed using the analog of the formulas underlying the B1 's in (1.2). The expression

for j' is useful in circumstances when an estimate of is required in real time, in which case only

a one-sided filter is feasible. As we discuss below, the need for real time estimates of lit arises in a

macroeconomic stabilization context.

Note from (1.2) that our recommended filter varies with time, and is not symmetric in terms of

future and past Zt'5. it is easy to adjust our recommended filter weights to impose stationarity and

symmetry, if these features were deemed to be absolutely necessary. Simply construct (1.2) so that

is a function of a fixed number, p, of leads and lags of x and compute the weights on the highest lead

and lag using simple functions of the B,'s.5 This is the solution to our projection problem when Zt is a

random walk, and i is restricted to be a linear function of {Xt, Xt±1, ...,xj} only. With this approach,

it is not possible to estimate lit for the first and last p observations in the data set. In practice, this

means restricting pto be relatively small, to say three years of data. This filter renders stationary time

series which have up to two unit roots, or which have a polynomial trend up to the power of two.

It is important to emphasize a caveat regarding our recommended filter, (1.2)-(1.3). That filter

does not closely approximate the optimal filter in all circumstances. To illustrate this, we display an

example in which the first difference of the data displays substantial negative autocorrelation, and our

recommended filter does not work well. For cases in which the appropriateness of our recommended

filter is questionable, it makes sense to estimate the time series representation of the data to be filtered,

and then compute, using the formulas we provide, the optimal filter based on the estimated time series

representation.6 Our formtilas work for a fairly large class of time series models. Still, the class can be

extended even further by applying the kind of algebraic manipulations we do in the appendix.

The outline of the paper is as follows. In section two we describe precisely the component of the

4Here T..1 = -B0 - B. -
5The weights on x,, ..., are Bo, ..., B,_, respectively. The weight onXi_p and x+,, B,, is obtained using

It is easy to verily that in this case there Is no need to drift-adjust the raw data because the output of the formula is
invariant to drift. The reason is that the optimal symmetric filter when the raw data are a random walk has two unit roots.
The first makes z stationary and the second eliminates any drift. In contrast, the output of the potentially asymmetric
filter just discussed in the text is not invarient to drift. When p /. that filter has just one unit root.

'Software for computing the filters in MATLAB is avaIlabLe from the authors on request. The default option in this
software takes as input a raw time series, removes its drift, and then filters it using our recommended random walk filter.
Alternatively, any other formula in this paper can also be implemented simply by overriding the default.
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data we seek to identilSr. We then discuss how we estimate it in a finite data set. Section 3 does

a quantitative evaluation of alternative approaches to this estimation problem. Section 4 relates our

analysis to the relevant literature. We stress in particular, the important papers by Baxter and King

(1999) and Hodrick and Prescott (1997). Section 5 presents two empirical applications to illustrate

the use of the filtering technology analyzed here. These examples complement the ones presented in

Baxter (1994), Baxter and King (1999), Hornstein (1998), King and Watson (1994), King, Stock and

Watson (1995), and Stock and Watson (1998). Section 6 concludes.

2. The Problem and Its Solution

Our analysis accommodates two types of r processes. In one, Xt has a zero mean, and is covariance

stationary. If the raw data have a non-zero mean, we assume it has been removed prior to analysis. If

the raw data are covariance stationary about a trend, then we assume that trend has been removed.

We also consider the unit root case, in which Z — is a zero mean, covariance stationary process.

If in the raw data this mean is non-zero, then we suppose that it has been removed prior to analysis.7

As we will see, the latter is actually only necessary when we consider asymmetric filters. Any sampling

uncertainty in the parameters needed obtain Z from the raw data is ignored in our analysis.

We begin this section by defining precisely the object that we seek: the component of Xt that lies

in a particular frequency range. We then explain why this is difficult to compute directly in a finite

data set and that some sort of approximation is necessary. We describe a method for obtaining an

optimal approximation. Several examples are presented which convey the intuition about the formulas

we develop to implement this.

2.1. The Ideal Band Pass Filter

Consider the following orthogonal decomposition of the stochastic process, xt:

(2.1)

TRemoving this mean corresponds to 'drift adjusting' the z, process. We elaborate on this briefly here. Suppose the
raw data are denoted w,, and they have the representation, w1 = p + w,.j + u,, where u is a zero mean, covariance
stationary process. Then, WI CSfl equivalently be expressed as w, = (t — j)p + x,, where x, = Ze...j +u1 for all t and j
is a fixed integer, which we normalize to unity for concreteness. The variable, x1, is the 'drift-adjusted' version of Wi,
and can be recovered from observations on w1 as follows: X = Wi, x2 = 102— p, z3 = 103 — In practice, p must.
be estimated, with jz = (103. — — 1). Though we set j = I, it is readily confirmed that the output of our filter is
invariant to the value of j chosen. In sum, in the unit root case, we assume x1 is the result of removing a trend line from
the raw data, where the slope of the line is the drift in the raw data and the level is arbitrary.
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The process, yg, has power only in frequencies belonging to the interval {(a,b.) Li (—b, -a)} E (—ir, jr).

The process, , has power only in the complement of this interval in (—ir, ir). Here, 0 <a b � r. It

is well known (see, for example, Sargent (1987, p. 259)), that,

= B(L)x, (2.2)

where the ideal band pass filter, B(L), has the following structure:

B(L) = BL', L'x

where the B,'s are given by (1.3). With this specification of the B,'s, we have

B(e_L1) = 1, for w E (a, b) U (—b, —a) (2.3)

= 0, otherwise.

Our assumption, a > 0, implies, together with (2.3), that B(1) = 0. Note from (2.2) that to compute

Ye using B(L) requires an infinite number of observations on Xt.8Moreover, it is not dear that simply

truncating the B,'s will produce good results.

This.canbeseenin twoways. First,considerFigure la, whichdisplaysBj forj=O,...,200, when
a = lir/96 and = 2nJ18. These frequencies, in monthly data, correspond to the business cycle, e.g.,

periods of fluctuation between 1.5 and 8 years. Note how the By's die out only for high values of j.

Even aft& j = l20, i.e., 10 years. the B/s remain noticeably different from zero. Second, Figures lb

- ld show that truncation has a substantial impact on B(e1'"). They display the Fourier transform of

filter coefficients obtained by truncating the B/s for j > p and j < —p for p = 12, 24, 36 (i.e., 1 to 3

'As already noted, we want to consider not just cases in which x, is covariance stationary, but also cases in which it
has a unit root. In the unit root case, the covariance function and hence, the spectral density of z,, are not well defined
This creates a problem of how to interpret the notion that (2.1) represents an orthogonal decomposition. We do so as
follows. Let z(A) for IAI < 1 be a covariance stationary stochastic process in which the unit root of x, is replaced 1w
A. Denote the spectral density of this process, which is well defined, by Then, (see Sargent (1987, p. 268)) he
cross-spectrum between y, and , A), is

= B(e"') [i —B(e")] 12.34.'), tAl < 1.

By the definition of B (see (2.3)), this cross spectrum is zero for all w, for each A. Since the covanance between y and as
any lag is just the suitably weighted integral of this spectrum, it follows that Vt and i, are uncorrelated at all leads and
lags, for each A. In the unit root case, our Interpretation of (2.1) as an orthogonal decomposition reflects that we define

g,s(w;1)= limg,.e(i.i;A) =0,

for all w E (—ir, ir).
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years).9 These differ noticeably from B(e").

2.2. Optimal Approximations

Suppose we have a finite set of observations, .r = [Xl, ..., Zn and that we know the population second

moment properties of {xe}. Our estimate of y = (yl, ..., yr) is , the projection of y onto the available

data:

= P (yIxj.

This corresponds to the following set of projection problems:

= P[ytlx], t = 1, ...,T. (2.4)

For each t, the solution to the projection problem is a linear function of the available data:

= (2.5)
j=-f

where / = T— t and p = t— I, and the E's solve

mm E[(y_)2,x]. (2.6)

Presumably, the solution to this problem would be different if instead of having the true second moment

properties of {Zt}, we had to rely on sample estimates. Studying the solution to (2.6) in this latter case

is beyond the scope of this paper. In any case, we report réèults below which suggest that in practice,

reasonable approximations to the solution can be obtained without knowing the details of the time

series representation of Xt.

To discuss the solution to (2.6), it is useful to first define the following filter:

= L"x xe_a.

The strategy for estimating y1, 1,2, ...,yr described above in effect uses a different filter for each t. The

filters differ according to the values of p and f, which vary with t.

Alternative strategies for estimating the Vt's impose various restrictions. For example, one might

impose stationarity, i.e., constancy of p and f, and/or symmetry, i.e., p= f, on the sequence of

'The figure reports B0 + 2 B, cos(wj) for vsrious values of p.
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projection problems defined above. A feature of these alternatives is that they do not use all the

available observations on Xt to estimate the yt's. There may be advantages to restricting one's attention

to stationary and/or symmetric filters. For example, stationarity may have econometric advantages.

Symmetry has the advantage of ensuring that there is no phase shift between i and y)° Thus, there

is a trade-off between stationarity and symmetry and obtaining the best possible estimate of y in the

sense of (2.6). One of our objectives is to quantif' the severity of this trade-off in settings that are of

practical interest.

For given t, we can obtain a closed form solution to the projection problem, (2.4), by formulating

it in the frequency domain:

mm IB(e') — E7"(e")I2fx(w)dw, (2.7)
Bj=—f,....p —

where f(') is the spectral density of Zg.1'This formulation of the problem emphasizes that the solution

to the projection problem, (2.4), depends on the time series properties of the data being filtered. This

is true, despite the fact that the ideal band pass filter is not dependent on the time series properties of

the data.

2.3. Time Series Representations

We consider the following class of time series representations for xt:

= Xt...1 + O(L)ee, Er = 1, (2.8)

so that - tk
—

(1—e")(1—e")

'°This observation follows from standard results. The phase-shift between t and y is determined by the phase of the
z—transform of the cross-covariance function between i and y,, g,(z). This is given by:

=

where f,(z) is the z—transform of the covariance function of the data being filtered. The phase in g111(e) is related to
the complex part of gj,(e). Given that B(e) and f(e)are real, this is zero if and only if. B"(e) is real.
But, this is equivalent to the requirement, '(&") = âP.I(e), i.e., that =

"This formula corresponds to one derived under similar circumstances by Sims (1972). Sims (1972) posits a situation in
which some variable, y,,is related to x, by a distributed lag, y, = B(L)x1 +e,, while the econometrician imposes that the

lag structure has the form, B(L). He assumes that the restrictions imposed by the econometrician on h''(L) exclude
the true distributed lag, B(L). Sims showed that, in population, the econometrician's estimate of B'(L), obtained by a
least squares regression of y, on x,'s, solves (2.7).
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We place a simple structure on 0(L), by assuming it is a finite-ordered polynomial'2:

0(z)=Oo+Oiz+...+Oqz', q�O. (2.10)

We suppose that p and f are large by comparison with q.'3 Specifically,

Define

(2.11)

withc_,.=cforar,andc,.Oforr>q.
The case where Xe is difference stationary corresponds to 0(1) 0. The covariance stationary case

corresponds to 0(1) = 0, when the time series representation of Xt is xe = [0(L)/(1 — L)Jrt =

where is a finite-ordered polynomial in L.

Formulas for the solution to (2.7) when Xt has the time series representation, (2.8), are derived in

Appendix A. The solution when Xt is a random walk (i.e., 0(L) 1) was presented in the introduction.14

Other special cases are discussed in the next subsection.

2.4. The Optimal Approximation and f

The key to understanding the solution to (2.7) is to note that for finite p and I, it is not possible to

construct EP'1(e') so that àl'.f(e')= B(e") for all w. The two functions can be made close over

some subintervals, but only at the cost of sacrificing accuracy over other subintervals. The existence of

this trade-off implies that some weighting scheme is needed to determine which intervals to emphasize

in constructing EP'f(e"). The weighting scheme implicit in our optimization criterion is the spectral

density of The reason for this is that the optimization problem seeks to make y and as close as

t2The case where (1 —e)(1 —e')f(e.,) is a rational polynomial is a conceptually straightforward, though algebraically
intensive, extension of what we do here. Our analysis suggests that the extension to the rational polynomial case may
not be necessary to achieve good results in practice.

'This is only imposed to simplify the projection formulas in the Appendix. The reqinrement could be dropped by a
suitable extension of the formulas derived there.

'1The random walk case is simple, and can be established with the following time-domain argument. The problem is
that not all the observations on x1 are available to evaluate ye in (2.2). The missing data are the xe's after the end of the
data set and before the beginning. We can use the assumed time series model for x, to forecast and backcast these missing
observations based on the actual data. We obtain by incorporating the actual data and the estimates for the missing
observations into the formula for ye. In the random walk case, the formulas for the missing observations are particularly
simple: for j < t—T, Ptxe_,lza..,xrI =x and for j > C—i, P(z,..,Irj,...,xrI = z. With these observations, it is
easy to verify (1.2)-(1.4), where Br., is the sum of the B,'s over all j � T — C and B..1 is the sum of the B,'s over all

j C — 1. This time domain strategy for solving our problem follows the one implement by Stock and Watson (1998) in
a business cycle context and by Ceweke (1978) and Wallis (1981) in a seasonal adjustment context.
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possible, and this translates into making the product of B and f, similar to the product of and

Ix. Thus, the optimization criterion picks the á's so that EP'f(e"') resembles B(e') closely for

values of w where f(w) is large and places less emphasis on regions where f is relatively small. We

illustrate this principle using four examples. The four examples tilt the graph of f(w), w (0, ir) in

various ways and the effects on the 's are displayed.

In what we call the 'lID case', 9(z) = 1 —z, so that f(w) = 1 for all w. In this case, the optimization

criterion assigns equal weight to all frequencies. In the appendix, it is shown that the B"1's that solve

(2.7) in this case are given by:

lID case: E" = B1, for j = —1,—f + 1, ...,O ,p. (2.12)

For p = /= 12, Pu = 24, Pt =4 (see (1.3)), B'i(e") and B(e') are displayed in Figure 2a.15

In our other three examples, Xt has a single unit root. That (2.12) is not the solution to (2.7) in this

case can be seen using a simple argument by contradiction. Thus, suppose (2.12) is the solution to (2.7)

in the unit root case. Since B(1) = 0, it follows that Vt is covariance stationary. But, since most likely

EP"(l) 0, will not be covariance stationary.'6 This implies that i and, hence, Vt —, has infinite

variance. This variance can be made finite by just altering the filter weights so that P'1(i) =0. This

is a contradiction to the assumption that the filter weights solve (2.7).

The preceding considerations suggest that a necessary condition for Pf(L) to solve (2.7) when Xt

has a unit root is that E1"1(i) =0. We impose this in the formulas derived in the appendix.

•To illustrate these formulas, we analyze the following additional examples. The case where Xt is a

random walk is discussed in the introduction. In the 'Near lID case',

O(z)=1—;(1—t)z, i>0, qsmall. (2.13)

'5That (2.12) is the solution to (2.7) in the lID case can be verified trivially using the time domain strategy in footnote
12. The frequency domain strategy is also straightforward in this case. The first order condition of (2.7) associated with
the optimal choice of B,1 is

J B(e)e'dw= f
for j = —f,—f+ 1 0, ...,p. Equation (2.12) follows by evaluating these integrals using the well known fact

f 2a,h=0
j_,e

"We have not ruled out the possibility that there is some combination of p and / for which B(1) = 0, when the
B'1's are constructed as in (2.12).
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Note that if, = 0, then this reduces to the lID case just discussed. However, with q positive, no

matter how small, f(") diverges to infinity for c — 0. Outside of a small region around u =0, the

spectrum of XC in the Near lID case looks like the one in the lID case: constant at unity. In this case,

the solution to (2.7), for p =f, is

Near lID case: E'' =B + -2p' j = 0, (2.14)

where

=_
[BO+2BJ}I

and the B,'s are defined in (1.3).17 In this case, it is optimal to truncate the ideal band pass filter and

then adjust all the weights by a constant to ensure BP(i) =0. This differs from the Random Walk

case discussed in the introduction. In the latter, optimality dictates truncating the ideal band pass

filter, and then only adjusting the highest order terms to ensure âP'/(i) =0.

Figure 2 allows us to assess the impact on the optimal filter approximations of the three speci-

fications of / already described and of the fourth one that will be described shortly. We begin by

comparing E12.12(e_) in the Near lID and lID cases (see Figures 2a and 2b). We can think of

the Near lID case as adapting '2"2(e') from the lID case by shifting it up towards zero in the

neighborhood of ei, =0. This improvement is achieved at the cost of making E'2"2(e_") diverge from

B(e') for values of ti slightly above zero. In the lID case, when f(w) = 1 for all , this cost

outweighs the improvement. In the Near lID case, when f(0) = oo, the situation is reversed. For

frequencies well above t = 0, l2l2(C_iU) for. the'two cases essentially coincide. The example shows

that shifting power towards one frequency range causes the optimal filter to become more accurate in

that range, at the expense of doing poorly in another range.

We now compare B'2'12(e") in the Near lID and Random Walk cases (see Figure 2b). The

spectrum of Xe jfl the Random Walk case resembles the one in the Near lID case in that it diverges

to infinity for w — 0. However, it declines more slowly as w increases above zero.18 As a result,

7Verifying this is only a little more complicated than the problem of verifying (2.12), discussed in footnote 12. Consider
the case, p = f, so that the solution to (2.7) is symmetric with B"1 = for j = 0 p (this symmetry property is an
unsurprising feature of the p = / case, and is established rigorously in Appendix A.) The p +1 unknown B'1's may be
found by solving the condition, E"(i) =0, and the p first order conditions associated with (2.7):

j B(e')e'1f3(w)dw =

for j = 0,..., p — 1. That these indeed are the first order conditions can be verified with some algebra, but in any case is
established carefully in Appendix A. It is easily verified that the B'1's in (2.14) satisfy these conditions.

"In the random walk case, f('.i) = 1/(2(1 — cos(w))I.
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by comparison with the lID case, the Random Walk case assigns relatively heavy weight to the low

frequencies and relatively low weight to the others. The effects on the optimal filter are evident in

Figure 2b: the Random Walk case does better than the Near lID case in the region of w =0, but at

the cost of performing relatively poorly at the higher frequencies.

A final case, the Persistent case, is studied in Figure 2c. There,

(2.15)

Taking the Random Walk case as a benchmark, this case goes to the opposite extreme relative to the

Near lID case. The Persistent case tilts power in XL even more towards frequency zero and away from

the higher frequencies. It almost corresponds to the case in which it is not the first difference, but the

second difference of Xt, that is a white noise. We compare 12"2(e") for these two cases in Figure

2c. Note how E12"2(e") for the Persistent case does better in a neighborhood of w = 0 than the

Random Walk case. This is achieved in exchange for a very pronounced deterioration in performance

in the higher frequencies.

3. Quantitative Assessment of Various Filters

A key purpose of this section is to explore the quantitative importance of three factors in the solution

to (2.7). We examine the role of asymmetry and time nonstationarity of the â"I's. We also ass the

importance of knowing the details of the time series representation of XL. Clearly, the importance of

these three factors depends on the actual time series properties of Xt. To make the analysis interesting,

we use difference stationary and trend stationary time series representations that fit standard US

macroeconomic data.

Our findings are as follows. First, in minimizing (1.1), the biggest gains come from allowing

the filter weights to vary over time. These gains reflect that allowing nonstationarity substantially

increases the amount of information in x that can be used in estimating g. Second, allowing the

filter weights to be asymmetric further increases the amount of information in x that can be used

in constructing , though by a lesser amount. So, we find that nonstationarity and asymmetry are

valuable in minimizing the distance metric. It turns out that the cost of these features is relatively

minor. We display evidence that the degree of asymmetry and nonstationary in the optimally filtered

data is quantitatively small.'9 Finally, we find that there is relatively little gain in knowing the precise

19This is similar to results obtained for the Hodrick-Prescott filter, which is also nonstationary and asymmetric. Chris-
tiano and den Haan (1996) show that, apart from data at the very beginning and end of the data set, the degree of
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details of the time series representation generating the Xt'8. In particular, the gain from using the true

time series representation of Zt to compute g rather than proceeding as though Zt is a random walk,

is minimal in practice. These are the findings that lead us to the view that an adequate, though not

optimal, procedure for isolating frequency bands in macroeconomic time series is to proceed as if the

data were a random walk and use filters that are optimal in that case.

The second purpose of this section is to evaluate other filtering approaches used in the literature.

These include the band-pass filtering approach recommended by Baxter and King (1999) and the filter

proposed by Hodrick and Prescott (1997) (HP). In addition, we consider the band-pass approxima-

tion based on regressing data on sine and cosine functions, as described in Christiano and Fitzgerald

(1998, AppendL'c) and Hamilton (1994, pages 158-163). We call this last procedure the Trigonometric

Regression procedure.

The first subsection describes the statistics that we use in our analysis. The next subsection studies

the properties of the solution to (2.7). The third subsection compares these properties with those of

alternative filters that are used in the literature. The second and third subsections are based on unit

root representations of the data. The final subsection considers robustness of our results by considezing

trend stationary representations instead.

3.1. Some Useful Statistics

We evaluate the filtering procedures by studying the dynamic correlations, corre()t,yt-r), and the

relative standard deviations, (vart()/var(yt))'12 , for various t.20 This section explains why we look

at these statistics, and how we compute them.

These statistics have three features which make them useful for our purposes. First, when the

are based on variable lag filters, they are non-trivial functions of time. We use the quantitative

magnitude of this variation to assess the degree of non-stationarity in l?t Of course, statistics based on

Vt alone, or statistics based on when fixed lag filters are used, are invariant with respect to t, given

the data generating mechanisms that we consider. Second, for filters that solve a projection problem.

nonstationarity in this filter is quantitatively small.
30Following convention, a statistic for a particular date is defined across the ensemble of realizations for the underlying

stochastic process at that date.

12



the projection criterion, Ef(y — t)2I(eJ, is a simple function of the correlation between Vt and Ut:2'

— Ut)2I(tJ = [i — corrt(Ut,yg)2j var(yg).

Here, is the relevant information set in the projecLion. This relation indicates that we are free to

think of the projection criterion in terms of Corrt(, ye), an object that we find easier to interpret than

— )2I1ZgI itself. In evaluating our results, it is useful to be aware of two other results that are

true when solves a projection problem:

fvart(Ut)1"2
corrt(yt,Vt) =

var(t) j , var(yg) � var(yt).

Third, one of our concerns is to quanti1' the phase shifts that exist between yg and when the latter

is computed using non-symmetric filters. As explained below, the dynamic correlations between Vt and

are useful for this.

We now briefly discuss how we compute these statistics. We evaluate the variance of Vt using the

following relation:

var(yt) = ! ff(w)d

21This is a standard result. To see it, note that by the orthogonality property of projections, we can write yt = e + t,
where e1 is orthogonal to fl& and, hence, t itselL Then,

vart(y, — = var(yt)—vart($) = var() [i — 1((ft))] = var(y1) [i —p(0)2].

The last equality follows from the following observation:

— covt(e,Ve) — vart(9.) — _______corr1(yt,y1) —
— 1'2 — — I/S — I i,

[var,(yt)vart(yi)J (vare(y.)var1(yq,)J

22That is, (11 = {z1 xr} for all tin the case of Optimal, TS12,...,zO Z.p3 in the case of Optimal Fixed,
p = / = 12, etc.

In practice, we approximate an integral like this by the Riemann sum

To guarantee that var(yj) is accurately computed, and because it only needs to be computed a few times, we set N to a
very high value, 10,000.
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We evaluate the variance of using the following expression:

vare(t) = j IB"(e")l2fx(w)d.i.

Here, var is a non-trivial function of tune when p and / vary with t.

The dynamic correlations between. Yt and I are computed using the following the expression:

COVt(t, f' real [rP'f(e—')eul9(';P'f)'11/z(ui)] 1iL
corrt(yt,yt_r) = - =

/varg(ye)var(yt) i/varg(yt)var(yt)

For convenience, we have written E" in polar form:

PI(e_1l) =

where rP'f(e') is real and the function O(t; p, f) is the phase ofPJ(e') (see Sargent (1987, chapter

XI). We use the location of the peakof thiscorrelation function to determine whether there is a phase

shift between Vt and !• To see the rationale for this, couiáler the followingspecial cases. When E"
is symmetric, so that 0(t;p, I) 0 and there is no phase shift between and , then. it is easily

verified that corrt(Üt, y.) is symmetric about r = 0. When Br" is not symnietnc, s that there

is a nonzero phase shift between Vt and , then this symmetry property of the correration Iwictiost

fails. Consider,, for example, the extreme case in which BP"(L) = L" and h 0, so that r"f(e') = I
and 9(cap,j) = —hw. In this case, it is easy to see that co is symmetric about r =h. In

general,sthen symmetry fails the phase of EP'I(e') does not satisfr this proportionality property,

The integraud in the expression for var,(u.) exhibits substantial variation, particularly in the region about w = a
and w = b. To ensure that these integrals are computed accurately, we divided the interval, w E (0, r) into five regions:
(0,a — A1), (a — A1,a + A1), (a + A1,b — A2), (b — A3,b+ As), (b+ As,T), with A1, A > 0. The integral in each
region was evaluated using the Riemann approximation formula described in the previous footnote, with N = 100 in each
interval.

To verify our covariance formula, note first from the results in Sargent (1987, chapter XI), that

COV(OL, vt—k) = -.J (e)B(e")e'f1(ui)dui.
Then, note that the integral from 0 to r is the complex conjugate of the integral from —r to 0. Finally, we have taken

into account of the deftnition of B to limit the range of integration.
2The connect on between the symmetry of á1 and its phase was pointed out in a previous footnote. To see why

symmetry of B"' also implies symmetry of the covariance function, note that when 8 0, the covariance can be written

! rB(e)r'(e")e'f2(w)dw
Jo

which is the covariance (unction of a stochastic process whose spectral density is B(e )r""(e')f() . The result
follows from the symmetry about k = 0 of the covariance function of a stochastic process.
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and so the asymmetry in EP'f(e') is manifested in more exotic forms of asymmetry in p(r).

3.2. Difference Stationary Data Generating Mechanisms

We estimated time series models of the form (2.8) for four data sets often studied in macroeconomic

analysis. In each case, we fit a model to the monthly, quarterly and annual data. The variables,

Zt, considered are: inflation, output (GDP for the annual and quarterly frequencies and industrial

production for monthly), the rate of interest (measured by the three-month return on US 'freasury

bills) and the unemployment rate. Inflation is measured as the first difference of the Log of the consumer

price index (CPI); the rate of interest is measured as the logarithm of the net rate; and output was

transformed using the logarithm. The data set covers the period 1960-1997. The estimation results

are presented in Table 1. With one exception, the Box-Pierce statistic ('Q') indicates little evidence

of serial correlation in the errors, as indicated by the p—values in the table. In the exceptional case,

monthly inflation, the addition of higher order lags does not raise the p—value.

The spectral density of (1— L)re for each model is graphed in Figure 3. Note that the spectral

densities of output, interest rates and unemployment are very similar. They exhibit relatively high

power in the low frequencies. Quarterly and monthly inflation deviates from this pattern in having

relatively more power in the higher frequencies.
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Table 1: Time Series Representations for Selected US Data

variable, Xt )__0 J__02 f, f 0 Q F1equency

log(CPIt/CPIg_i) 0.0021 -0.75

0.32

0.00 (36.1) M

0.0042 -0.23 -0.27 0.11 (30-3) Q

0.015 0.81 0.34 (9-1) A

log(CDPg) 0.0075 0.28 0.21 020 0.16 0.20 (36-4) M

0.0088 0.25 0.16 0.10 0.12 0.09 (30-4) Q

0.021 0.34 0.89 (9-1) A

Log(Tbillt) 0.064 0.26 0.05 (36-1) M

0.105 0.45 -.16 0.24 (30-2) Q

0.21 0.58 0.54 (9-1) A

Unempk'ymentt 0.18 -0.02 0.19 0.17 0.20 0.05 0.021 (36-5) M

0.27 0.65 0.48 0.41 0.66 (30-3) Q

0.96 0.28 — — 0.80 (9-1) A

3.3. Properties of the Optimal Filter Approximation

We evaluate various procedures for computing g under a variety of specifications of the time series

representation for Zg, variousdata sampling intervals and frequency bands. The procedures we consider

are listed in Table 2. Comparison of Optimal Symmetric and Optimal Fixed permits us to assess the

importance of time stationarity in the filter. Comparison of Optimal and Optimal Symmetric permits

us to assess the importance of symmetry. Comparison of Optimal and Random Walk permits us to

assess the importance of getting the details of the time series representation of Xt just right.

16
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Note: All time series models estimated using the RATS command, boxjenk. Data

cover the period 1960-1997. Q denotes the p—value of the Box-Pierce test of the

null hypothesis of zero autocorrelation in the residuals. In (n, rn), n denotes number

of autocorrelations in residuals used, and m denotes degrees of freedom of chi-square

test statistic.



Table 2: Band Pass Filter Approximation Procedures Considered

Name Definition

Optimal Optimal

Random Walk Optimal, assuming random walk zt ((1.2)-(??))

Optimal, Symmetric Optimal, subject to p =I
Optimal, Fixed Optimal, subject to p =1=36

Random Walk, Fixed Optimal, subject to p =f = 36, assuming random walk Xg

This section reports our results, based on the unit root representations in Table 1, and on the

Near lID ((2.13) with q = .01) and Persistent, (2.15), representations considered in the previous

section. Given the evidence in Figure 3, it is not surprising that the findings for many of the time

series representations in Table 1 are very similar. Therefore, of the time series representations in Table

1, we only present results for inflation. We selected this time series representation because it provides

the weakest support for our contention that the Random Walk filter is close to optimal. Results based

on the Persistent representation are similar to those for the other representations in Table 1, and so

we do not present these. Results based on annual, monthly and quarterly data sampling intervals are

also very similar. Consequently, we only present the findings based on the monthly sampling interval.

We consider three frequency bands: 1.5 to 8 years, 8 to 20 years, and 20 to 40 years.

The results we present are based on two monthly time series representations: the one estimated

using inflation (see Figure 4) and the Near lID representation (Figure 5). Consider Figure 4 first. The

first, second and third columns of the figure provide information on corrgQ?t, Vt),[varg(t)/var(yt)J1"2,

and corre(üt, Vt—k), respectively. We report results for t = 1, ...,240,since statistics are symmetric across

the first and second halves of the sample. The first, second and third rows in the figure correspond to

three different frequency bands: 1.5 to 8 years; 8—20 years; and 20—40 years, respectivel Each panel

in the first column contains four curves, differentiated according to the procedure used to compute t:

Optimal, Random Walk, Optimal Symmetric, or Optimal Fixed. Results for Optimal and Random

Walk are presented for t =1,..., T/2. Results for Optimal Symmetric and Optimal Fixed are presented

fort = 37,...,T/2, since wesetp= 1=36. Here, T =480, whichis slightly more than the number of

monthly observations in the estimation period for the monthly time series representations in Table 1.

The second column contains results for Optimal and Random Walk alone. Here, results for Optimal
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are simply repeated for convenience from the first column. As discussed above, for filters that solve a

projection problem, the correlation and relative standard deviation coincide. Finally, the third column

reports corr,(,yg...k) for five different values oft: t = 1,31,61,121,240. In ench case, k ranges from

—24 to 24. Also, the location of k = 0 is indicated by a

The main findings in Figure 4 are as follows. First, the efficiency differences between Random Walk

and Optimal are very small (column I). A minor exception to this can be found in the business cycle

frequencies for t = 4,..., 11. For these dates, the difference between corr(l, Ye) based on Optimal and

Random Walk is between 0.08 and 0.12. Although these differences are noticeable, they do not seem

quantitatively large. Moreover, the differences between Random Walk and Optimal are barely visible

when the analysis is based on the other time series representations in Table 1.

Second, imposing symmetry (see Optimal Symmetric) results in a relatively small loss of efficiency

in the center of the data set, but that loss grows in the tails. Third, imposing stationarity in addition to

symmetry (Optimal Fixed) results in a noticeable loss of efficiency throughout the data set. However,

the efficiency losses due to the imposition of symmetry and stationarity are comparatively small in the

business cycle frequencies. They are dramatic in the lowest frequencies.

Fourth, based on Optimal and Random Walk appears to be reasonably stationary, except in an

area in the tails. This tail area is fairly small (about 1.5 years) for the business cycle frequencies, but

it grows for the lower frequencies (columns 1 and 2). Fifth, Random Walk seems to imply little phase

shift between 9 and y (column 3). There is essentially no phase shift, even at the lowest frequencies.

We conclude from these results that the noticeable efficiency gains obtained by filters that use all

the data come at little cost in terms of nonstationarity and phase shift. However, the gains of going

from a simple procedure like Random Walk to Optimal are quite small.

These findings apply to all the time series models in Table 1, as well as to the Persistent time series

representation. One time series representation where these findings do not hold up in the Near lID

case, which is reported in Figure 5. In particular, the finding that Random Walk is nearly optimal

and roughly stationary no longer holds (columns 1 and 2). However, the other conclusions continue to

hold. For example, Optimal is still nearly stationary outside of tail areas. Also, imposing symmetry

and time-stationarity on the filter imposes substantial efficiency costs, especially in the low frequencies.

3.4. Properties of Alternative Filter Approximations

Next we discuss three alternative band pass filter approximations that have been used in the literature.

The first of these, the one due to Baxter and King (1999), is the fixed-lag, symmetric filter defined in

(2.14). This filter can do no better than Optimal Fixed, discussed in the previous section. That filter
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is dominated by Random Walk, which is nearly optimal for the time series models reported in Table 1.

Below, we provide a detailed analysis of two other filters: the HP filter and Thgonometric Regression.

Again, we find that Random Walk is nearly optimal and dominates the HP filter and Thgonometric

Regression.

3.4.1. Hodrick-Prescott Filter

Proponents of the HP filter offer several interpretations of what it does (see section 4 below for an

elaboration). The interpretation that we adopt here is that it approximates a band pass filter designed

to isolate, in quarterly data, frequencies corresponding to the business cycle and higher. We identify

these with cycles of period 8 years and less. We display evidence which suggests that, for data like

US GDP, unemployment and the CPI, our Random Walk filter is nearly optimal and outperforms the

HP filter. This finding also applies when these filters are used to obtain real-time estimates of yg. We

stress this here because the HP filter is sometimes used in a macroeconomic stabilization context, when

estimates of current Vt are needed.

Our discussion in this section is divided into two parts. We first discuss the evidence on t in

Columns 1 and 2 of Figure 6, ignoring the first 2-5 years' observations. We then focus separately on

those observations and on the information in Column 3 because this allows us to assess the value of

the filters for obtaining real-time estimates of Vt.

The first column in Figure 6 displays corrt(,Pt) associated with the HP filter, Random Walk, and

Optimal Fixed for t = 1,...,80 and for the indicated three quarterly time series models. We do not

display these statistics for Optimal, because they are virtually indistinguishable from Random Walk.

Interestingly, despite the fact that HP uses all the data, it nevertheless performs less well than Optimal

Fixed. Moreover, it does notably less well than Random Walk, particularly for Unemployment and

GDP. Outside of a tail area of roughly two years, corrt(,yt) exceeds 0.95 and it is closer to 0.99

towards the middle of the data set for Random Walk. For GDP and Unemployment, this statistic

based on the HP filter never exceeds 0.90.

Column 2 shows that, outside of a five year tail area, the performance of Random Walk is similar

to that of the HP filter, in terms of the standard deviation of : Random Walk undershoots Var(yt)

somewhat while HP overshoots.

Another way to compare HP filter and Random Walk focuses on the metric, (1.1), that we use to

construct optimal filters. In particular, we consider R. the absolute size of the typical estimation error,

27The HP filter parameter, A, is set to 1600, as is typical in applications using quarterly data.
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— ye (measured by its standard deviation), to the absolute size of the typical value of y (measured

by its standard deviation): R = [Vart(t — yt)/Var(yt)j2. A large value of R indicates a poor

filter approximation. In the extreme case when R5 is greater than or equal to unity, then the filter

approximation is literally useless. In this case one can do just as well, or better, estimating Ye by its

mean with i 0. In the case of Random Walk, Rt is 0.14 towards the middle of the data set and R

is no greater than 0.31 if we ignore the first two years' data. In the case of the HP filter, this number

is 0.49 for Unemployment and GDP and around 0.37 for Inflation. These results are the basis for our

conclusion that, outside of the tail area, Random Walk outperforms the HP filter.

We now turn to the implications of the results in Figure 6 for the real time performance of the

filters. We do this because it is of interest in the context of stabilization policy, when current estimates

of the output and unemployment gaps are used. For example, John Taylor has argued persuasively that

monetary policy makers set current policy as a function of the current output gap, among other things.

The output gap is the log difference between actual GDP and 'potential' GDP, and the unemployment

gap is the difference between actual unemployment and the 'natural' rate of unemployment. One

interpretation of potential GDP and the natural rate of unemployment is that they correspond to the

HP trend in actual GDP and unemployment, respectively.30 For this reason, we now investigate how

effective HP filter, Random Walk and Optimal are in estimating ye in real time.

At the outset, it should be clear that estimating the current value of Vt is likely to be a difficult

task. Suppose, for example, that the variable, X, has recently changed value. How is one to decide

whether that change is temporary (i.e., part of Ye) or more persistent (i.e., part of i)? No doubt we

can confidently answer this question with a sufficient passage of time, with more data. In the light of

hindsight, it is relatively easy to determine whether a given change in a variable was just a blip or a

Here,
r . , 1/2 ( / - . 1/2 r / - 1/2 1/2

_iVart(yt—y.)i — j Vart(pi)i i,Var.(yt)itt — i i — c i+t i ii i —icorr.e,yj,y,
Var(yi) j , t,Var(pt) / Var(t) j

As noted before, when , is the result of projecting Vt on x, then corr,(t,y,) = Varg(j,)/Var(ye), so that R1 reduces to
(1 — corrt()e,y)9'/2. This formula does not hold for HP filter, since it is not the result of the indicated projection. It
only holds approximately for Random Walk. Although that filter is the result of a projection of yt on z, that projection
incorporates a specification error by falsely assuming the data are generated liv a random walk.

See Taylor (1999). See also Orphanides (1999), who discusses the pitfalls of conditioning policy actions on current
gap measures.

30For example, according to Orphanides and van Norden (1999, p. 1), 'The difference between [actual output and
potential output is commonly referred to as the business cpcle or the outpul gap (italics added).' In practice, the concept
of output and unemployment gaps varies among practioners and does not always coincide with the one used here: the
deviation between the actual data series and its 'trend', defined as the component with fluctuations having period 8 years
and longer. Alternative gap concepts are based on different notions of trend. For them, the trend corresponds to the
'nonaccelerating inflation' level of the variable: the level which, if it obtained, would produce a forecast of zero change in
the rate of inflation in the near future. Gap concepts like this are fundamentally multivariate. To see how the HP filter
can be adapted to correspond more closely to this alternative gap concept, see Laxton and Tetlow (1992) and St-Amant
and van Norden (1997).
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movement in the trend. But, in real time without the advantage of hindsight, we can expect that even

our best estimates of Yt will be noisy. That is the case for Random Walk and HP Filter. However, we

show that the estimate based on HP filter is noisier than that based on Random Walk.

Recall the symmetry properties of the statistics in Columns 1 and 2 in Figure 6: their properties

in the second half of the sample are the mirror image of their properties in the first half. As a result,

the statistics at the left end-point of these two columns provide evidence on the real-time performance

of the filters being considered. That is because, by symmetry, these statistics can be viewed as being

based upon the estimate, ., of 'current' y'r, where T = 160. (In the case of Random Walk, frr is

computed using the one-sided filter, (1.4).) Note that the correlation between e and y is at its lowest

for I = T (t = 1) for both Random Walk and HP filter. That is, the real time correlation between the

estimated and actual gaps is lower than what it is after the arrival of new data.3' The drop is fairly

substantial.

The evidence in Column 2 shows that, for the three time series representations considered, the

real-time variance of 9 computed using Random Walk is less than what it is after new data arrives. In

this sense, the estimate of the trend implicit in this filtering procedure (and Optimal) tends to follow

the actual data more closely in real time than after the arrival of new data. We do not know if this

is a general property of Random Walk, true for all time series representations. Evidently, it is nota

general property of the HP filter. With the data generating median isms based on GDP and inflation,

we see that the real time variance of ! is at its global maximumfor t = T and t =1.
We now compare Random Walk and HP filter using the R statistic described above, for t =T.

Using Random Walk, 11r = 0.77, 0.78, and 0.69 for GNP, unemployment, and inflation respectively.

Note that these numbers are substantially larger than what they are for data points closer to the

middle. Still, they indicate Random Walk provides at least someinformation about w• Now consider

HP filter. For GDP, RT = 1.01. For unemployment and inflation, R is 1.03 and 0.80, respectively.

Evidently, these statistics indicate that Random Walk dominates HP filter in real time. Moreover, for

purposes of estimating the GDP and unemployment gaps in real time, HP filter is worse than useless.

The estimate, r =0, produces a smaller error than using the HP filter estimate, 'r•

The statistics on the real-time properties of the filters that we have just considered abstract from

scale. The evidence in Column 3 exhibits the magnitude of the error in real-time gap estimates for our

31The evidence in Columns 1 and 2 actually do not allow us to literally infer what happens with the arrival of new
data. The data set underlying the experiments in these columns are based on ailed sample of length 160.

In our context, the estimated trend is d,, where d equals i plus the drift in the data, where i, = -9, (recall our
decomposition, (2.1).)

These are counterexamples to the conjectures by Barrel! and Sefton (1995, p. 68) and St-Amant and van Norden
(1997, p. 11).
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variables. We consider the standard deviation of the error ,y-ge, for a fixed date, t = 160. We display

this statistic for the time when t is the current date and continuing as new data become available and

the data set becomes correspondingly larger. These results allow us to quantify the value of hindsight

when estimating Yt

Westudy (varlso(lhso — y16o))"7 forT = 160, 161, ..., 200,based on Random Walk, Optimal and HP

filter. For Random Walk and Optimal, the standard deviations are based on io = P(yisoIzt, ...,zJ,
for T = 160, ..., 200. In the case of HP, they are based on so, the 160th observation in the HP

filtered xl, ...,x, for T = 160,161,..., 200. There are several things worth emphasizing in the third

column of Figure 6. First, Random Walk and Optimal essentially coincide, and both dominate the

HP filter. Second the error in estimating yo declines by roughly one-half in the first year after

t =160. Thereafter, further declines in the error come more slowly. Third, after initially falling with

the arrival of the first two years' data, the error of the HP filter asymptotes to a relatively high level.

The reason is that, as the size of the data set grows, the HP filter does not asymptote to a band

pass filter. By contrast, both Random Walk and Optimal do. If T were allowed to grow indefinitely,

[var1se(o — y160)J"2 would shrink to zero for Random Walk and Optimal. The information in Figure

6 suggests that this requires a very large value ofT. These results are the basis for our conclusion that

Random Walk is nearly optimal and outperforms the HP filter in terms of real-time performance.'

In this discussion, we have emphasized the differences in the performance of the Hodrick-Prescott

filter and Random Walk. We note, however, that the quantitative magnitude of the differences is not

very great for some purposes. For example, in Appendix B we display business cycle statisticsbased on

US data using various filter approximations and the HP filter, and there is little quantitative difference

between them. The differences seem relatively larger when we consider real-time estimation of y. The

HP filter performs very poorly on this dimension. Indeed, in the case of GDP it is useless. However,

even the optimal procedure seems relatively unreliable in this case.

HOur results for the unemployment gap can be compared with those reported, using a vely different conceptual and
econometric framework, by Staiger, Stock and Watson (1997). Their estimated standard deviations of this gap range from
0.46 to 1.25 percentage points, depending on the data used in the analysis. They note how wide this range is and so it is
not surprising that our estimates fall inside it.

35These conclusions about the real time performance of the HP filter complement those obtained using different methods
by others, including Laxton and Tetlow (1992), Orphanides (1999) and St-Amant and van Norden (1997).

'We have abstracted from several real-time issues which could make the HP filter, Optimal and Random Walk seem
even worse at estimating p, in real time. We abstract from possible breaks in the underlying time series representation,
and data revisions. A more complete analysis would also take these factors into account in characterizing the accuracy
of real time estimates of the business cycle and higher frequency components of the data. For further discussion, see
Orphanides (1999) and Orphanides and van Norden (1999).
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3.4.2. Thgonometric Regression

We now discuss the Thgonometric Regression procedure. This procedure makes use of the entire

dataset, x17..., Zr, to estimate each Ye, as follows:

g=Be(L)xg, t=1,...,T,

where

B(L)x = E
{Ecos(wio}xe_l,itTu

(3.1)
1=t—r JEJ

= cos(,,1) + cos(,r(t —
1))cosfrt)}

x_i,if E .i
1tT 1EJJ94

2ir.t =

Here, J indexes the set of frequencies we wish to isolate, and is a subset ofthe integers 1. ...,T/2. It

is easy to see that B(1) = 0, so that B(L) has a unit root for t = 1,2,...,T. Evidently, B(L) only

has asecond unit root for t in the middle of the data set, when B5(L) is symmetric. For this reason.

it is important to drift adjust Xg prior to filtering.

We assume T is even. Also, J is the set of integers between jt and j, where ja = Tip,, and j = T/p. The
representation of , given in the text, while convenient for our purposes, is not the conventional one. The conventional
representation is based on the following relation:

= (a, cos(w,t) + b, sin(w,t)},
'eJ

where the nj's and b,'s are coefficients computed by ordinary least squares regression of z on the indicated sine and
cosine functions. The regression coefficients are

— J iE1cos(w,t)xt,J=1,...,T/2—j bj = J E.tsin(w,t)xii,j= 1,....T/2—1
t + oos(irt)ze, j = T/2,

'
+ z, j =T/2

The expression in the text is obtained by collecting terms In z1 and making use of the trigonometric identity. cos(x) cos(y)-
sin(x) sin(y) = cos(z — it).

E 2cos(1)= [e''1+ci'j =E[ei I)yT +e.i_1 =0,
JEJ (L—1 15, 1—s—i Sal

When T/2 E J, the expression for B,(l) Includes cc. (v(t — 1))cosfrt)}. This expression is simply the sum
of an even number of l's and -l's, so it sums toO.

39When T is even, then there cannot be an enact second unit root since It rules out the existence of a date precisely in
the middle of the daraset. By B.(L) having n unit roots we mean that it can be expressed as B.(L)(l — L)", where B1(L)
is a finite ordered polynomial. The discussion of two unit roots in the text exploits the fact that the roots of a symmetric
polynomial come in pairs.

23



Our basic finding is that when the when the data are generated by the time series representations

in Table 1, the performance of Thgonometric Regression is worse than that of Random Walk. Since

the results based on these time series representations are fairly similar, we present only those based

on the data generating mechanism for inflation. These are displayed in Figure 7, which has the same

format as Figures 4 and 5. The results for Random Walk and Optimal in Figure 7 correspond to those

reported in Figure 4, and are reproduced here for convenience. In Column 1, we see that in terms of

corrt(, Vt), Trigonometric Regression is outperformed in all frequency ranges by Random Walk, which

is nearly optimal. Column 2 shows that the estimates of y based on Thgonometric Regression overshoot

Var(yt), sometimes by a great deal, and performs worse on this dimension than either Random Walk

or Optimal. The relative performance of Thgonometric Regression is particularly poor in the lower

frequencies. Thgonometric Regression also performs poorly in real time. For example, RT = 1.04,

which is even worse than HP filter. Column 3 displays the dynamic cross correlations between and

Vt when the former are computed by Thgonometric Regression. The evidence shows that there is very

little phase shift between the variables, but there appears to be a substantial departure from covariance

stationarity. The correlations in the tails of the data set are notably smaller than they are in the middle.

Although Trigonometric Regression appears in Figure 7 to be substantialiy worse than Random

Walk, for some purposes the poor performance may not be quantitatively important. For example,

in Appendix B we find that, for standard business cycle statisties, Thgonometric Regression produces

results quite similar to Random Walk.

3.5. Robustness of Analysis to Trend Stationarity

The quantitative analysis of our filters has been based, up to now, on the assumption that the data

are generated by a difference stationary process estimated for one of the standard macroeconomic data

series. Our basic finding is that Random Walk is nearly Optimal. Here, we show that - with a slight

qualification - the same basic conclusion holds, even if we assume the data are trend stationary.

Our first step in the analysis was to redo the calculations in Table 2, by fitting moving average

representations to the residuals from regressions of log GDP, inflation, the interest rate and unem-

ployment on a constant and time trend. We then repeated the preceding calculations, using Optimal,

Random Walk, HP filter and 'frigonometric regression. Although the results are fairly similar across

different time series representations, the model for inflation poses a modestly greater challenge for

Random Walk. This is why we decided to only present results based on the time series representation

for monthly inflation.

Results are presented in Figure 8, which is in the same format as Figures 4, 5, and 7. There are
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two things worth emphasizing here. First, consider the results for Random Walk. As in the difference

stationary case (see Figure 4), Random Walk is nearly optimal in the business cycle frequencies, if

we ignore the first and last two years' observations. However, some discrepancies between Random

Walk and Optimal are apparent in the lower frequencies. Still, in the 8-20 year frequencies, there

is no noticeable difference if we ignore the first and last five years' observations. Second, note that

Trigonometric Regression still performs worse than Random Walk. Any concerns about Random Walk

that might be raised by the results in Figure 8 do not warrant adopting the 'fligonometric Regression

,roceduse. If anything, they suggest adopting something closer to Optimal.

-4. iR1ated Literature

We now briefly relate our analysis to the existing literature. Early work by Engle (1974) argued

forcefully the case that economic hypotheses are usefully cast in the frequency domain. One of the

examples studied in the next section of this paper, an analysis of the relationship between money

growth and inflation, is inspired in part by Engle's work on the same subject.

On a methodological level, the closest work to own is that of Baxter and King (1999). They

emphasize the potential usefulness of the band pass filter for constructing statistics to characterize the

dynamics in the data. They confront the same practical problem that we do. Namely, to apply the band

pass filter in a finite data set requires approximating it in some way. As noted above, the approximation

that they recommend is the filter defined in (2.14). Together with Baxter (1994), Hornstein (1998),

King and Watson (1994), and Stock and Watson (1998). They show how the Baxter-King recommended

filter -can be used to address interesting empirical questions.

Our analysis can be compared with Baxter and King in three ways. First, our approach to

approximating the band pass filter differs from theirs. We select the approximation which minimizes

(LI). Baxter d King adopt a different optimization criterion. They require that the approximating

ffiter optimize (2.7) with f 1, subject to the requirement, E(1) =0. This is equivalent to optimizing

(2.7) under the assumption thatzt has a Near lID time series representation. This is the representation

analyzed in the previous section, in which the spectral density is flat over most frequencies, and then

rises sharply in a small neighborhood of zero. This observation is useful because it clarifies the set of

circumstances in which the Baxter-King filter is expected to work well, in the sense of (i.1).° Second,

we supply formulas for the optimal approximation to the band pass filter that apply in a broad class of

time series representations. This provides alternatives to the Baxter-King filter, which is suitable for

40We have not established that the Near KID representationis the oniy one that rationalizes the Baxter-King filter as
the optimal one.
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cases when the Near lID assumption is a poor one. We do not expect the Near lID representation

to be well suited for many macroeconomic variables. As noted by Granger (1966) (see also Sargent

(1987, pp. 280-281)), the 'typical spectral shape' of macroeconomic time series is one in which there

is substantial power in a significant range of low frequencies. Third, the Baxter-King approach works

with symmetric, fixed lag filters. In the previous section we presented experiments which suggest

that adopting filters which use all the data, and which are therefore asymmetric and time-varying,

improves the estimate of Ye• There is a valid basis for concern that filters like this might result in

nonstationary 's and/or might induce phase shifts between and YL• However, we find that with

time series representations like those that fit several key postwar macroeconomic data series, these

effects are not quantitatively large.

Our approach can also be compared to that of Hodridc and Prescott (1997). They provide a linear

filter of the data, which has three interpretations. Under the first interpretation, their filter is viewed

as solving a particular projection problem: extract a signal from a data series that is the sum of

a signal and an orthogonal noise. As is evident from (2.1) and the discussion thereafter, optimally

extracting a particular band of frequencies from the data requires solving the same kind of problem.

The difference between the two approaches is that, under this interpretation of the HP filter, it is based

on a particular statistical model of the data while ours is not.41 Under this interpretation, the HP filter

has two shortcomings: (i) The underlying model has the same difficulty of interpretation as do other

trend-cycle decompositions: the concepts of 'signal' and 'noise' they seek to extract from the data do

not correspond to meaningful economic objects in standard business cycle models. The data generated

by these business cycle models do contain components that could perhaps loosely be characterized as

trend and noise. But, they do not satisfy the orthogonailty conditions posited by typical trend-cycle

decompositions, including the one underlying the HP filter (see Christiano and Eichenbaum (1990)).

(ii) Under the first interpretation of the HP filter, one has to take the underlying statistical model

seriously. For example, a parameter A, which corresponds to the relative variance of the signal and

noise in the underlying model, needs to be estimated. This gives rise to numerous estimation and

model evaluation issues that, from our perspective, are tangential. The decomposition we focus on is

guaranteed to exist under very general conditions by the Spectral Representation Theorem.42 In our

approach, the decomposition selected simply reflects the research interests of the analyst. Focusing on

41iucas (1980) also adopts a structural model like that of Hodrick-Prescott. Both assume that the data, z,, are the
sum ofa signal, s, and a noise, ng. The signal and noise are assumed to be orthogonal, and the noise is uncorrelated over
time. Lucas assumes the signal has the representation, s = pa,_ + v, where v, is a white noise and Il < 1. HOCIZiCk
and Prescott assume s = — 31—2 + Of.

42For a formal analysis of the Spectral Decomposition Theorem, see Koopznans (1974). A simplified discussion appears
in Christiano and Fitzgerald (1998. Appendix).
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a particular decomposition does not require a commitment to any particular model of the data, beyond
the relatively weak assumptions needed for the Spectral Representation Theorem to hold.

A second interpretation of the HP filter is that it is a particular bandpass filter. For A = 1600,

it has been argued that the filter does well at isolating frequencies 8years and higher (see Prescott

(1986), King and Rebelo (1993), and Singleton (1988)). No claim has ever been made that the HP filter

is an optimal approximation to this band pass filter in any sense. This is consistent with our findings

in section 3.4.1 which show that the Random Walk and Optimal filters dominateHP, especially for

computing real-time estimates of Ye• Still, it is shown in the Appendix that these differences are not

quantitatively large enough to produce substantial differences in the computation of standard business

cycle statistics. A problem is that when one wants to isolate different frequency bands or usemonthly or

annual data, it is not clear how to proceed under this interpretation of the Hodrick-Prescott approach.

The framework of this paper, which focuses on developing optimal approximations to the bandpass
filter, provides a straightforward way to proceed in these cases.

A thisi iaterpeation ci the HP filter is that it is a precisely stated algorithm whichimp1 draws
a smooth line through the dab.. All the other filters discussed in this paper do this too.

We find the second two interpretations ci the HP filter appealing. Under theseinterpretations, the

band pass filter represents a natural extension of the work of Hodrick and Prescott. The band pass
filter performs similarly to the HP filter in situations for which the latter was designed:extracting the

bnsin cycle component from quarterly time series data (see Appendix B). However, the band pass
filter - particularly the approach advocated here -n be to construct filters that axe effective in

isolating other fin y hawk as well. The next subsection describes empirical applications where

filters of this type are of interest.

5. Applications

We illustrate the use of our recommended filter, presented in the introduction, using two examples.

The first focuses on the relationship between unemployment and inflation, and the second exnJnin

the relationship between money growth and inflation.

We divide the annual data available for the period 1900 to 1997 into two parts: 1900-1960 and

The perspective adopted in this paper does offer one strate optimize, by choice of A, the version of (2.7) withB'1 replaced by the Hodridc-Prsscott filter. This strategy produces a value of A that is time-dependent and dependent
upon the properties of the true time series representation. We suspect that closed form solutions for the values of A
that solve these optimtea&irin problems do not exist. We think that this strategy for filtering the data is not a good one.
First, implementing it is likely to be coznputationally burdensome. Second, as this paper shows, identifying the optimal
band-pass filter approximation is straightforward.
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1961-1997. In each case, the data are broken into three sets of frequencies: those corresponding to

2-8 years (the business cycle), 8-20 years and 20-40 years. With respect to the Phillips curve, we find

that in the pre-1960 sample, the correlation between inflation and unemployment is negative at all

frequencies. Loosely, we characterize this as reflecting that all frequencies of the data exhibit a Phillips

curve trade-off.. The most significant change in the post-1960 sample is that the 20-40 year correlation

appears to have switched to positive, with unemployment lagging inflation by several years. We assess

this evidence in light of the Barro-Gordon model of inflation.

We then turn to the inflation-money growth relatiOn. We find that in the pre-1960 period, the

two variables move closely together in all frequencies. The relationship remains positive in the low

frequencies in the post-1960s data. However, at the business cycle and 8-20 year frequencies, there is

a substantial change.

5.1. The Phillips Curve

We consider annual data for the 1900-1960 and 1960-1997 periods separately. Figure 9a displays the

raw unemployment and inflation data for the first sample. For convenience, the figure also depicts the

NBER business cycle peak and trough dates. Casual inspection suggests a negative relationship (i.e.,

a 'Phillips curve') at all frequencies." The various frequency components of the data are displayed in

Figures 9b - 9d, and they confirm this impression. The contemporaneous correlations between filtered

inflation and unemployment are reported in Table 4, Panel A. The table also reports p—values under

the null hypothesis that there is no relationship between the variables in any frequency band." The

negative correlation in the business cycle frequencies is particularly significant, statistically. In light of

these observations, it is not surprising that the scatter plot of inflation and unemployment, exhibited

in Figure 9b, also shows a negative relationship. This is just the classic Phillips curve, of textbook

fame.

'41t is worth emphasizing that, by 'Phillips Curve', we mean a stalistical relationship, and not necessarily a relationship
exploitable by policy

45These are computed by fitting separate q.lag scalar autoregressive representations to the level of inflation (first
difference, log CPI) and to the level of the unemployment rate, and using the fitted disturbances and actual historical
initial conditions tosimulate 2,000 artificial data sets on inflation and unemployment. For annual data, q = 3; formonthly,
q = 12; and for quarterly, q = 8. The datasets on unemployment and inflation are independent byconstruction. In each
artificial data set we compute correlations between the various frequency components, as we did in the actual data. In
the data and the simulations, we dropped the first and last three years of the filtered data before computing sample
correlations. The numbers in parentheses in Table 4 are the frequency of times that the simulated correlation is greater
(less) than the positive (negative) estimated correlation. These are p-values under the null hypothesisthat there is no
relationship between the inflation and unemployment data.

40The slope of the regression line drawn through the scatter plot of points in Figure 9b is —0.42, with a t—statistic of
3.77 and an R2 of 0.20.
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Table 4: Phillips Curve and Money Growth-Inflation Correlations

Sample H. Frequency Bus. Cyc. Frequency &o 20-40 years

Panel A: CPI Inflation and Unemployment

1900-1960 (A) -0.57 (0.00) -0.32 (0.19) -0.51 (0.23)

1961-1997 (A) -0.38 (0.11) -0.16 (0.41) 0.45 (0.32)

1961, Q2 - 1997, Q4 (Q) -0.37 (0.00) -0.65 (0.00) -0.30 (0.29) 0.25 (0.34)

1961, Jan. - 1997, Dec. (M) -0.24 (0.00) -0.69 (0.00) -0.27 (0.30) 0.23 (0.40)

. Panel B: CPI Inflation and M2 Growth

1900-1960 (A) 0.45 (0.00) 0.59 (0.04) 0.95 (0.01)

1961 - 1997 (A) -0.72 (0.00) -0.77 (0.02) 0.90 (0.10)

1961, Q2 - 1997, Q44Q) -0.34 (0.00) -13.67 (0.00) -0.71 (0.05) 0.87 (0.09)

1961, Jan. - 1997, Dec. (M) -0.13 (0.02) -0.66 (0.00) -0.74 (0.04) 0.87 (0.10)

Note: Contemporaneous correlation between indicated two variables, over indicated sample

periods and frequencies. Numbers in parentheses are p- values, in decimals, against the nuli

hypothesis of zero correlation at all frequencies. For further details, see the text and footnote 25.

The post 1960 monthly inflation and unemployment data are analyzed in Figures lOa-f.47 There is

a surprising degree of similarity between the pre and post 1960s data. For example, it is plain from

the raw data in Figure lOa that for frequencies in the neighborhood of the businesa cycle, inflation

and unemployment covary negatively. That is, the Phillips curie seems to be a pronounced feature

of the higher frequency component of the data. At the same time, the Phillips curve appears to have

vanished in the very lowest frequencies. The data in Figure lOa show a slow trend rise in unemployment

throughout the 1960s and 1970s, which is reversed starting in early 1983. A similar pattern occurs

in inflation, though the turnaround in inflation begins in April 1980, roughly three years before the

turnaround in unemployment. The low frequency component of the data dominates in the scatter plot

of inflation versus unemployment, exhibited in Figure lOb. That figure suggests that the relationship

between inflation and unemployment is positive, in contrast with the pre-1960's data, which suggest

otherwise (see Figure 9b). Clearly, this scatter plot exaggerates the degree to which the inflation-

4TFigure 10 exhibits monthly observations on inflation and unemployment. To reduce the high frequency fluctuations
in inflation, Figure lOa exhibits the annual average of inflation, rather than monthly inflation raze. The scatter plot
in Figure lOb is based on the same data used in Figure lOa. Figures lOc-lOf are based on monthly inflation, e.,
1200los(cPI/cPI...) and unemployment. The line in Figure lOb represents regression line drawn through the scatter
plot. The slope of that line, based on monthly data covering the period 1959:2 - 1998:1, is 0.47 with a t—staiistic of 5.2.
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unemployment dynamics have changed in the post-1960s data.

Impressions based on casual inspection of the raw data can be formalized and quantified using the

band pass filtered data reported in Figures lOc- lOf. Thus, the frequency range from two months to

20 years (see Figures lOc and lOe) is characterized by a noticeable Phillips curve. Table 4 shows that

the correlation in the range of high frequencies (when available) and in the business cycle frequencies

is significantly negative. The correlation between inflation and unemployment is also negative in the

8-20 year range, but it is not statistically significantly different from zero in this case. Presumably,

this reflects the relative paucity of information about these frequencies in the post- 1960s data. Finally,

Figure lOf indicates that the correlation between 20-40 year components is now positive, with unem-

ployment lagging inflation. These results are consistent with the hypothesis that the Phillips curve

changed relatively little in the 2-20 year frequency range, and that the changes that did occur are

primarily concentrated in the very low frequencies.

Formal tests of this hypothesis, presented in Panel A of Table 5, fail to reject it. The table displays

p—values for the null hypothesis that the post-1960s data on inflation and unemployment are generated

by the bivariate vector autoregression (VAR) that generated the pre-1960s data. We implement the

test using 2,000 artificial post-1960s data sets obtained by simulating a three-lag VAR and its fitted

residuals estimated using the pre-1960s unemployment and inflation data.49 In each artificial data set

we compute correlations between filtered inflation and unemployment just like we did in the actual

post 1960s data. Table 5 indicates that 9 percent of correlations between the business cycle component

of inflation and unemployment exceed the —0.38 value reported in Table 4 for the post-1960s data, so

that the null hypothesis fails to be rejected at the 5 percent level. The p—value for the 8 — 20 year

correlation is quite large, and is consistent with the null hypothesis at any significance level.

The statistical evidence against the null hypothesis that there has been no change in the 20 —40

year component of the data is also not strong. This may in part reflect a lack of power stemming from

the relatively small amount of information in the sample about the 20—40 year frequency component

of the data. But, the p—value may also be overstated for bias reasons. The table indicates that there is

a small sample bias in this correlation, since the small sample mean, —0.35, is substantially larger than

the corresponding probability limit of —0.45. This bias may, at least in part, be the reason the VAR's

Consistent with these observations, when inflation and unemployment are detrended using a linear trend with a break
in slope (not level) in 1980:4 for inflation and 1983:1 for unemployment, the scatter plot of the detrended variables show a
negative relationship. The regression of detrended inflation on detrended unemployment has a coefficient of —0.31, with

statistic of -4.24 and R2 = 0.037. The slope coefficient is similar to what was obtained in an earlier footnote for the
pre-1960s period, but the R2 is considerably smaller.

49We redid the calculations in both panels of Table 4 using a 5-lag VAR and found that the results were essentially
unchanged. The only notable differences in the results are that the p—value for the business cyde correlations between
inflation and unemployment is 0.06 and the p—value for these correlations in the 20 —40 year range is 0.11.
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small sample mean overstates the pre-l960s sample mean of —0.51. A bias-adjustment procedure would

adjust the coefficients of the estimated pre-l96( VAR so that the implied small sample mean lines up

better with the pre-1960s empirical estimate. Presumably, such an adjustment procedure would shift

the simulated correlations to the left, reducing the p—value. It is beyond the scope of our analysis to

develop a suitable bias adjustment method.5° However we suspect that, given the large magnitude of

the bias, the bias-corrected p—value would be substantially smaller than the 14 percent value reported

in the table.5'

50Oe could be developed along the lines pursued by Kilian (1998).
51Th get a feel for the likely quantitathe magnitude of the effects of bias adjustment, we redid the bootstrap simulations

by adjusting the variance-covariance matrix of the VAR disturbances used in the bootstrap simulations. Let V = (VJ,
denote the vaxiance.covariance matrix. In the pre-1960s estimation results, V13 -0.1024, V1.1 = 0.0018, V23 = 6.0653.
When we set the value of V1.2 to -0.0588 and recomputed the entries in Tabled, we found that the mean correlations were
as follows business cycle, —0.75 (0.01); 8-20 year: —0.54 (0.09); 20-40 year: —0.51 (0.06). The numbers in parentheses
are the analogs of the p-values in Table 4. Note how the mean correlation in the 20-40 year frequency coincides with
the empirical estimate reported in the first row of Panel A of Table 4, and that the p-value has dropped substantially,
from 0.23 to 0.06. This confirms our conjecture that bias adjustment may have an important impact on the p—value for
the 20-40 year correlation. However, the other numbers indicate that the bias adjustment procedure that we applied, by
varying V,,2 only, is not a good one. Developing a superior bias adjustment method is clearly beyond the scope of this
paper.
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Table 5: Testing Null Hypothesis That Post-1960s Equal pre-1960s Correlations

Small Sample Std. Dev., Small

Frequency Plim Mean Sample Mean p—value

Panel A: DGM, Bivariate VAR with CPI Inflation (x) and Unemployment (y)

2-8 year -0.66 -0.61 0.0036x 0.09

8-20 year -0.36 -0.38 0.0079x '/öö 0.25

20-40 year -0.45 -0.35 0.0129xiñö 0.14

Panel B: DGM,_Bivariate VAR with CPI Inflation (x) and M2 Growth (y)

2-8 year 0.49 0.48 0.0044x '/&iö 0.00

8-20 year 0.73 0.64 0.0062x 0.00

20-40 year 0.78 0.64 0.0099x 0.37

Notes: (i) Data Generating Mechanism (DGM) in all cases is 3-lag, Bivariate VAR

fit to pre-1960s data. (ii) P-value: frequency, in 2000 artificial post-1960s data sets,

that contemporaneous correlation between indicated frequency components of x and

y exceeds, in absolute value, corresponding post 1960s estimate. (iii) Plim: mean, over

1,000 artificial samples of length 2,000 observations each, of correlation.

(iv) Small Sample Mean: mean of correlation, across 2000 artificial post-1960s data sets.

(v) Std. dev., small sample (product of Monte Carlo std. error for mean and '/):

standard deviation, across 2000 artificial post-1960s data sets, of correlations.

The low-frequency observations on unemployment have been documented using other methods (see,

for example, Barro (1987, Chapter 16)). Similarly, using the Baxter-King band-pass filtering approach,

the presence of the Phillips curve in the business cycle frequency range has been documented by King

and Watson (1994) and Stock and Watson (1998) (see also Sargent (1999, p.12)). What has not been

documented is how far the Phillips curve extends into the low frequencies of the post war data. In

addition, we draw attention to the evidence that inflation leads unemployment in the low frequency

range. We think these frequency domain properties of inflation and unemployment are interesting

because we suspect that they pose a challenge for at least simple versions of conventional interpretations

of the post war data.

One such interpretation is articulated by the theory developed in Kydland and Prescott (1977)

and Barro and Gordon (1983), which builds on the idea of the expectations-augmented Phillips curve
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initIally suggested by Friedman (1968) and Phelps (1968).52 The basic idea is that institutional im

pediments that had previously constrained US monetary policy, such as the gold standard, ceased

to do so by the early 196(le. With institutional constraints impeding discretionary monetary policy

minimized, a new monetary regime was initiated, in which the monetary authority set out to improve

economic performance by attempting to actively exploit the Phillips curve. But, according to this

view, the Phillips curve is merely a statistical relation, and does not represent a menu of inflation,

unemployment levels that can be selected by policy makers. The simplest version of the Barro-Gordon

theory predicts that the new monetary regime should have caused it to disappear, and be replaced by

a deterministic, positive relationship between inflation and unemployznent.

Our scatter diagrams show that before the 1960s inflation and unemployment are negatively related,

while they are positively related after the 1960s. At first glance, this appears to be aresounding victory

for the Burro-Gordon theory However evidence that is plain from casual inspection of the raw time

series and is formalized using the band pass filter suggests a different picture. The simple version of the

Barro-Gordon theory implies that, after 1960, the Phillips curve relationship should have evaporated,

not just at the low frequencies, but at all frequencies. It also implies that inflation and unemployment

should be perfectly in phase. Both these implications appear to be contradicted by the data.

Burro and Cordon (1983, pp. 601-602) recognize these extreme implications of their theory and

describe an extension to their model that is designed to deal with them. The extension involves malcing

the (plausible) assumption that the monetary authority's control over inflation is imperfect, perhaps

because of lags in the effects of monetary actions. Under these conditions, inflation surprisesoccur,

thus opening up the possibility that the forecast errors between inflation and unemployment might be

DOur discussion builds on Ireland (1998), who emphasizes the importance of evaluating the time series implications of
the Barro-Gordon modeL

33For convenience, we briefly remind the reader of the Burro-Cordon modeL The loss function of themonetary authorityis [(u -kT/')3 +ir3] /2, where7>0 is a parameter that specifies the relative social cost associated with inflation, w;
u is the actual unemployment rate; and t/' is the natural rate of unemployment, i.e., the rate that would prevail if
inflation were at its expected leveL Also, 0< lr < 1. Inflation surprises generate a fall in the unemployment rate according
to the 'expectations augmented Phillips curve': u — = —n (j — > 0. where w' is expected inflation. At
the time the monetary authority chooses its action, z is a state variable. The policy maker's objective is to minim:
L(wfz,u) {[ ( —r)—( —) N]2 +ir2 } /2. let t [ir,t/] = argmm LfrIw, u's). Conventionally, the Markov

equilibrium concept is used, in which equilibrium and WS depend only on ut, and not the past history of central bank
actions. This equilibrium concept has the advantage that, in the Burro-Gordon model, it is unique. The equilibrium
is an expectation function, r(t/'), with the property ir(u") = . [1N) uN] so that, in a Markov equilibrium,
u = ui'. Examining the fizit order condition associated with the monetary authority's problem and imposing the fixed
point condition, implies , ,a(1;k) >0.

The microeconomic environment in the Barro-Cordon theory is specified at the reduced form level. Environments in
which preferences and technology are stated explicitly, and which capture elements of the Barro-Gordon analysis may be
found in Ireland (1997), and Chari, Christiano and Eicheabaum (1998).
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negatively correlated. In turn, this may put the model into better conformity with the observation

that there is a Phillips curve in the high frequencies, but not in the low frequencies.

Perhaps it is possible to reconcile the last observation with plausible implementation delays.

However, we suspect that it will be difficult to identify variations on the model that make it consistent

with the observation that inflation leads unemployment in the low frequency range. This phase

relationship calls into question a basic feature of the Barro-Gordon model, according to which policy

makers set inflation in response to developments in unemployment. A fruitful approach may be to

explore modifications of the theory, in which policymakers' incentives to inflate are driven by variables

that exhibit a more plausible timing relationship to inflation than unemployment.

We hope that this discussion demonstrates that statistics based on approximations to the band

pass filter have a potentially useful role to play in helping us think about the inflation, unemployment

dynamics. This is true, whether they are used for evaluating a Barro-Gordon type conception of the

inflation process, or some other conception.

'Ireland (1998) introduces a one period lag, and he shows that this is this is strongly rejected by the data. In addition
to considering longer implementation lags, another potentially useful modification would introduce rigidities that lead
inflation surprises to have long-lasting effects. In the standard Barro.Cordon model, the effect of such a surprise is only
contemporaneous.

550ur skepticism is based in part on analysis of an extension of Ireland (1998)'s version of the Barro-Cordon model in
which a one-period implementation lag is replaced by a p > 0 period implementation lag in policy. Thus, we replace the
policymaker's objective in footnote 37 with E_ [(u — + .yir2] /2. Actual inflation, a, is a =*+8 * 'i where I is a
variable chosen p periods in the past by the policy miker, and 8* 'i captures the shocks that impact on a between the
time * is set and a is realized. Here,

where qg is a white noise and L is the lag operator. The policymaker's problem is optimized by setting * = where
is the forecast of the natural rate of unemployment available at the time * is selected. As in footnote 37, we suppose

that u' is a random walk with innovation v, so that if' = +g • ii, where

Suppose the Lucas supply curve is u = N — a(,r — x') + e, where e is a shock. We impose rational expectations, which
implies r = I. Then, it is easy to verify that inflation and unemployment evolve according to

1
+ 9(L)i1i u1 = j—v1 — aO(L)qt + Ct,

respectively. We make the simplifying assumption that all shocks are uncorrelated with each other. Then, the aoss
spectrum between these varjablás is:

= [i — — e')
—

where = cr/u. The phase angle, O(w), between inflation and unemployment is:

8(w)—tan [imaginary[g.,.(,)l f —sin(p)—

( realg.,,.(w)J J
—

[cos(i)—2(1_cos())8(e')9(&')A
subject to —w 9(,j) a. It is easy to verify that for w sufficiently small, O(w)/&. = p, so that inflation lags unemployment
by p periods at these frequencies.

5An alternative approach, based on the assumption that policy makers have bounded rationality, is pursued in Sargent
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5.2. Money Growth and Inflation

Figure 1 Ia displays annual M2 growth and CPI inflation for in the pre-1960s period. The figuresuggests,
and the results in Table 4 confirm, that the two variables move very closely with each other. The

primary exception appears to be the period of the second world war, when M2 growth was strong and

inflation rose relatively less. But, this presumably reflects the effects ofwage and price controls. The

impression of the strong contemporaneous correlation at all frequencies is confirmed by the evidence in

Figures lib - lid. Now consider Figures 12a-d. These depict the same data over the post-1960 period.

Note first that there is essentially no difference in the 20-40 year frequency. In this band,money growth

and inflation are highly correlated and there is very little phase shift between the two. However, there

is a striking change in the relationship at the higher frequencies. The two variables arenow strongly

negatively correlated. According to Table 5, the null hypothesis that the business cycle and 8-20year

correlations in the post-l960s coincide with the corresponding pre-l960s correlation is strongly rejected.

The change appears to be that in these frequencies, inflation now lags money growth by a few years.

We think these are interesting statistics which a good model ofmoney ought to confront.57

6. Conclusion

The theory of spectral analysis informs us that data can be viewed as the sum of uncorrelated compo-

nents with different frequencies of fluctuation. This way of thinking about the data makes rigorous a

perspective that is standard in macroeconomics: that the data are the sum of low frequency compo-

nents, a business cycle component and a high frequency component. The various components can in

principle be extracted by a suitably chosen 'ideal' band-pass filter.

Unfortunately, application of the ideal band pass filter requires substantially more data than is

available in typical macroeconomic time series. This is not surprising. A subinterval of frequencies ina

time series is composed of a continuum of objects, and in general there is noway that a discrete set of

observations can pin these down. However, if something is known about the time series representation

that generated the data, then it is possible to use projection theory to extrapolate from the observed

time series to the frequency components of interest. We derive a set of formulas for this that are valid

(1999) and Sims (1988). Sargent (1999, chapter 9) argues that this approach also has empirical problems too. In particular,
it has difficulty accounting (or the burst of inflation in the late 197.

57Lucas (1980) was also interested in examining the relationship between the low frequency components of inflation and
money growth. However, rather than using an approximation to the band pass filter, he used an early precursor to what
later became known as the Hodrick-Prescott filter. Our comments on the Hodrick-Prescott filter, stated in the previous
section, also apply to Lucas' filter. We think the band pass filter represents an advance over that filter. In a comment
on Lucas (1980), Whiteman (1984) presents a useful reminder of the pitfalls of trying to interpret statistics like those
discussed In this paper without the assistance of explicit economic tbeory
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under standard time series representations, and are easy to implement.. We identify one approximation

which, though it is only optimal for one particular time series representation, nevertheless works well

for standard macroeconomic time series. It is displayed in the introduction.

To illustrate the use of our recommended filter approximation, we use it to characterize the change

in the nature of the Phillips curve and the money-inflation relation before and after the 1960s. We find

that there is surprisingly little change in the Phillips curve and substantial change in money growth-

inflation relation. In this analysis, we display a bootstrap methodology for conducting statistical

inference on statistics computed using filtered data.
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A. Derivation of the Filter

This Appendix derives the optimal filtering formulas analyzed in the body of the paper.

A.1. The Problem

In our discussion we feature the unit root case (i.e., 0(1) &0 in (2.8)) and indicate later how to adjust

things to accommodate covariance stationarity. The problem is to optimize (2.7):

mm f 6(w)6(—w)f(w)dw,
—w

where f(u) is defined in (2.9) and,

= B(e) —

A necessary condition for an optimum is E1P(i) =0. Without this, the criterion is infinite. With this

condition,

1_z

is a finite-ordered polynomial in z:

b(z) = + b_2z2 + ... + bo + ... ÷ b_,jz'1 + b_1f1,

with

b2=— E â(",j=p—l,...,—f. (A.1)
s=j+1

Wesupposethatp�Oand in the sense

Write the criterion as follows:

r. (w)(—w)g(&')dt,

where

(w) = (e) -
and

1



To obtain the first order conditions, note first that

so that,

d(w_w) = )dö(_w) ÷)d(W)
= — + .(_w)e"i}, j = p— 1,..., —;.

Then, the first order conditions are:

j' [a)e'1 + (_w)e"1] g(e')dw =0, j =p — 1, ..., —f,

or,

J [E(e ")e" + E(e")e"i} g(e")dw= J' [b(e')e"i + b(e'')e"i} g(e')dw,

j=p—1,...,—f.Thisexpressionreducesfurtherto:

£ 91a =
j=p — 1,..., —1.' Our strategy for computing the EJ"s is to translate the p + f equations, (A.2) into

asystem oflinear equations in EJ",j =p,...,—j. Weobtain thep+f+1L equation in the
from the fact, BIP(i) = 0.

We begin by zqbcing the system of p + / equations, (A.2), with another system composed of the

equation with 3 = —î and the p + f—i equations formed by sthtractin.g the j — i equation in (A.2)

from thejth,j=p_1,...,_f+1.

'To see this, note that

R f f(,)dw =[ f(w)d&i +J f()dw

= j [f(.,)+ f(—w)J&,

so that R is reaL Consequently,

and

2£ f(w)dw = f [f(,) + f(—,)J d.

2



A.2. Representing the Solution as a Solution to a System of Linear Equations

Consider the term on the left of (A.2). That term, evaluated at j, minus itself at j —1, for j =

p—l,...,—f+l,is:

— E(e)e'}g(e')dw

= (e')(1 — e)e"1g(e")dw (A.3)

= £ B(e')g(e)e"dw.

To evaluate this integral and others like it, we find it convenient to apply the well-known results:

= 0, for h=

2ir,forh=O.

With this, it is easy to see that the integral in (A.3) is the product of 2ir and the constant (i.e., the

coefficient on z°) in the polynomial in z, B(z)g(z)z1.

To evaluate the integral in (A.3), consider first the case q = 0, so that g(e') = O. In this case,

(A.3) reduces to 2,rB3O, where B1 is defined in (1.3). When q> 0,

EB(e)g(e')e"1di (A.4)

= 2ir
(B1

+ :: [By1+, + B1111_11J 4)

The reason why the absolute value of j, appears in this expression is that the constant term in

B(z)g(z)z1 corresponding to a given value of j, coincides with the constant term associated with —j.

This is because B(z)g(z) = B(z')g(z1).
Now consider the term on the right of (A.2). For j =p — 1,..., —f + 1, subtract that term minus

itself at y — 1 to obtain

Jf [b(e"')e'1
— b(e )e''(i')] g(e")dw

= JT b(e')(1 — e)e1g(e')d (A.5)

= E e)g(e')e''1dw.

This integral is the product of 2,r and the constant term in the polynomial in z, hf4'(z)g(z)z, for

3



j=p—1,...,—f±1. Whenq=O,thisis2irEf'O. Whenq>O,

L. = 2iiA,E", (A.6)

where 1P is a p 4-1+1 column vector:

f,P=

and A,isap+f+lrowvector,j=p—1,...,—f-i-1.Forp—q>j>q—f:

A1= O,...,O ,c, O,...,O , (A.7)
lx(p.-J-q) lx(j-q+f)

where c = (Cq, c, ...,co, ...,c.1,CqJ. Whenj =p — q, the first set of zeros is absent in A,, and when

j = q — f, the second set of zeros is absent. Whenj > p —q, the first set of zeros is absent in A1, and

the first j — (p— q) elements of c are absent too. When j <q — f, the last set of zeros is absent in A,,

and the last q —/ —j elements of c are absent too.

We now consider equation (A.2) for j =—I:

Lii (e)g(e')etdw = Lw

This equation can be written

e"
A6 [. — e" +

1
g(e)d&.i = 2rFb, (A.8)

where b=(b.1,b,,...2,...,bo ,b_1J' is ap+f— dimensional column vector and F is thep+fdimen-

sional row vector.

F [ O,.,O (A.9)
lx(p+f—q-.1)

Ifp+f—q—1=O, therowvectorisasabove,withthezerosdeleted. Wewant toexpress theright

hand side of (A.8) in terms of E" instead of b. We do this using the matrix representation of the

relation, (A.1):

Q1" = 6, (A.1O)
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where Q is the foflowing (p + f) x (p + / +1) matrix:

—1 0 0 ••. 0 0

—1 —1 0 0 0

Q = —i —i —i ••• o o (A.11)

—1—1—'...—lo

Substitute (A.10) into (A.6) to get:

c" e"
jC { — e" +

1— g(e)&.s = 2rFQBfP = 2irA...1BIP,

say, where A..1 = FQ.

We have now achieved what we set out to do. We have a linear system of p +1+1 equations in

the p ÷ /+1 unknown J4"s. We summarize this as follows:

(A.12)

where

J B(e)g(e")e1"(P1)dw A,...1

d = fB(e )g(e')e'+f+')dw , A =27 A_1.,.1 (A.13)

j,' [e +}g(e')â.i
0

is defined in (A.9).

With a small adjustment to d and A, the filter weights are also determined by an expression like

(A.12) when x is covariance stationary. To indicate the adjustment, it is convenient to adopt a

notational convention that is different from the one used in section 2 of the paper. In the covariance

stationary case, we specify that xt has the representation

= O(L), Ee = 1,

where

O(z)Oo+9z+...+9qz,qo,

5



and the spectral density of 9(L)e is g(e'), with

g(e) =O(ei9(e") = + c(e" ÷ e") + ... + cq(e +

Here, CT is the covariance function of O(L). As before, we wish to solve (2.6) subject to (2.5). The

unknown filter weights satisfy the linear system, (A.12), in which all but the last two rows of A and d

are unchanged. The last two rows of d contain jar, B(e)g(e')edw for 1= p and —/, respectively.

The last two rows of A contain A,, and A_1, where these are evaluated using (A.7).

A.3. The Solution

We solve for the âf's using

= A1d. (A.14)

When q =0, this problem is very simple. In this case,

= B,,j=p—1,...,—f+1
- 1 e" e"B = r[i_e_÷i_ei.} (A.15)

= -ar.
jp—1

It is of interest to note that, when p = f, EPP(L) is a symmetric polynomial. To see this, note first

that ar = B, for j = p— 1,...,0,..., i—p and recall that the B,'s are themselves symmetric. But, is it

the case that = E? To see that this is indeed the case, note first from (A.1) that = -b,,.1.
But, after evaluating (A.2) at j =p — 1, we conclude:

- 1 I' 1°'"'B———I I ÷2af 1—e' 1—e"

Combining this with the middle expression in (A.15), evaluated at / =p, we find that = if.

and only if
to I e' e' e'' 1

Ja [i_e 1_ei_e_i&+ jdw=0.
To see that this relationship indeed is satisfied, first collect terms in eIkP:

r 1 — — — ... — —e'I + '=e"" A' =0—e" 1 —e"J (1 —e"')(1 —e")

6



The same is true for the term in We conclude,

Er=

so that when p = / and q =0, the filter produced by this projection is symmetric.

A.4. Computational Note

Note from (A.7), (A.4), (A.13), that, with one exception, we have closed form expressions for all the

objects- that are needed to solve our problem. The exception occurs in the unit root case, with the

expression
b e'4 e"

R(f) =J [. — e" +
1— e] g(e)di.

This expression could be solved using a numerical integration procedure. The drawback is that such

computations take time, and, as emphasized in the paper, in practice the expression needs to be

evaluated for many different values off. For this reason, we now describe a quick way to evaluate this

integraL

Note first that when I = 0,

R(0) = f [ '"•' +
1 -.'e''] g(e')dw

= £B(e)g(e")di,

since the object in square brackets is unity. The expression, R(0), can be evaluated using (A.4).

R(f) — R(f +1) = f (e"f + &'4) IjJ
= 1fB(e')g(e') (e4 +e"4) d,
= £B(e)g(e)e'4&,.

The last integral in this expression can be evaluated using (A.4). This gives us a recursive way to

compute R(0), R(1), ..., using closed-form formulas.

7



B. Second Moments of Aggregate Variables

We compare the second moment properties of aggregate time series, filtered using the various procedures

discussed in this paper. Results are presented for various frequencies: the high frequencies with period

of oscillation between 2 and 6 quarters; business cycle frequencies with period of oscillation between 6

and 32 quarters; low frequencies with period of oscillation between 32 and 80 quarters; and very low

frequencies with period of oscillation between 80 and 160 quarters. We also present results based on

combining the high and business cycle frequencies, so that we can do a direct comparison with results

based on the HP filter.

Our findings are presented in Tables B.1-B.5. The tables are differentiated according to the fre-

quency band isolated by the filter method used. The band pass filter approximations considered are

Random Walk, Random Walk Fixed, Random Walk Symmetric, the Baxter-King method (BK), and

Thgonometric Regression. All but the last two of these methods are defined in Table 2. BK is de-

fined in (2.14) and Thgonometric Regression is defined in (3.1). The HP filter used in each table is

always the same, and sets A = 1600. The data cover the period 1948 to 1998. In most cases, they are

logged prior to filtering. Exceptions are cases where the variable can potentially be negative. Thus,

'(Ex-Im)/GDP' represents net exports deflated by GDP, and this is not logged. The same is true for

'Chg Invntry/GDP' which is the change in the stock of inventories (i.e., inventory investment), scaled

by GDP. In addition, interest rates have not been logged.

Our basic finding is that results are very similar across the different filtering methods, except at

the vary lowest frequencies. There, they differ sharply. It is our impression that nothing of substantive

turns on which filter is used to isolate the higher frequency components of the data.

Three observations about the sensitivity of the Random Walk results to the choice of frequency

band are worth noting. First, consistent with findings in Hornstein (1998), the correlation between

inventory investment and sales is negative in the high frequencies, and positive in the lower frequencies.

Perhaps this reflects the predominance of different tes of shocks in these frequency bands. Second.

consumption is about 25 percent more volatile than output in the very lowest frequencies. This stands

in strildng contrast to its behavior in the higher frequencies, where consumption is substantially less

volatile than output. Third, the correlation between the price level and output is more negative in the

low frequencies than in the higher frequencies. On the other hand, the correlation between output and

inflation increases as one goes from the high frequencies to the low frequencies. The switch in the sign

of the correlation between inflation and output and the price level and output has been noted before

(see Ball and Mankiw (1994), Christiano (1991), and Cooley and Ohanian (1991)), and has generated

8
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considerable discussion. That the phenomenon is more pronounced in the lower frequencies has not

been noted before.
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Table B.1: Second Moment Properties of U.S. Data

Band Pass Filter Approximations(2 quarters to 1.5 years) and the HP Filter

======================================—_==================================—_==

Part 1: Standard Deviations: std(Variable x) / std(GDP)

=== == = ======= == = ==== == =

Filtering Procedure
==========—_===============================

Random Random Random BK HP Trigonometric

Variable x Walk Walk Walk Regression

Synisetric Fixed

GD? 0.46 0.46 0.44 0.45 1.76 0.47

Consumption 0.76 0.76 0.75 0.76 0.77 0.74

Nondur & Serv 0.49 0.48 0.47 0.48 0.48 0.48

Nondur 0.80 0.80 0.78 0.78 0.68 0.79

Services 0.47 0.47 0.48 0.48 0.39 0.46

Durables 4.19 4.23 4.31 4.25 3.04 4.12

Invesmtent 5.38 5.39 5.52 5.47 4.48 5.42

Fixed Invest 2.45 2.44 2.46 2.49 2.99 2.47

Nonresident 2.42 2.42 2.41 2.44 2.80 2.46

Structures 2.50 2.51 2.54 2.56 2.73 2.52

Equipment 3.52 3.51 3.47 3.47 3.25 3.52

Residential 4.24 4.23 4.35 4.42 6.07 4.18

Government 1.18 1.18 1.21 1.28 1.87 1.18

Federal 1.99 2.00 2.04 2.15 3.03 1.98

State & Local 1.09 1.10 1.12 1.1]. 0.79 1.07

Exports 4.83 4.87 4.92 4.87 3.16 4.77

Imports 4.54 4.56 4.68 4.63 2.92 4.44

(Ex—Im)IGDP 0.67 0.67 0.66 0.66 0.63 0.68

Employment 0.48 0.48 0.49 0.49 0.61 0.48

Hours 0.77 0.77 0.79 0.79 0.96 0.77

GDP/Hrs 0.74 0.75 0.74 0.73 0.49 0.72

Inventory Stk 0.63 0.63 0.65 0.67 1.09 0.65

GD? deflator 0.29 0.29 0.30 0.33 0.52 0.29

CPI 0.41 0.41 0.40 0.45 0.80 0.40

Inflation (GD?) 1.81 1.83 1.88 1.85 0.72 1.79

Inflation (CPI) 2.42 2.43 2.46 2.41 1.04 2.37

Final Sales 0.82 0.83 0.83 0.83 0.82 0.82

3—Mo 'I'Bill 0.99 0.99 1.03 1.02 0.69 0.97

TBill—Inf(GDP) 2.07 2.08 2.17 2.3.3 0.76 2.04

Chg Invntry/GDP 0.56 0.57 0.58 0.57 0.27 0.56

Notes: Ci) data cover the period 1948-1998 (source: DRI/McGraw Hill). (ii) Most

data were logged prior to filtering (exceptions include (Ex-Im)/GDP. Inflation,

Tbill-Inflation, Chg Invntry/GDP). (iii) Fixed lag filters (Random Walk Fixed

and BK) use 12 lags (three years). (iv) See Table 2 and section 3.4 for

definitions of Band Pass filter approximation procedures.



Table B.1, continued

===========—_======================================—_=========================

Part 2: Correlations: corr(Variable x, Variable y)

======== ============ ===== === === = =======—_===============================

Filtering Procedure

Random Random Random BK HP Trigonometric
Var x Var y Walk Walk Walk Regression

Symmetric Fixed

GD? GD? 1.00 1.00 1.00 1.00 1.00 1.00

Consumption GD? 0.59 0.58 0.56 0.57 0.83 0.57

Nondur & Serv GD? 0.33 0.33 0.27 0.29 0.81 0.33

Nondur GD? 0.34 0.33 0.27 0.29 0.78 0.35

Services GD? 0.17 0.16 0.14 0.16 0.72 0.14

Durables GD? 0.54 0.53 0.53 0.54 0.73 0.51

Invesmtent GD? 0.79 0.79 0.79 0.79 0.88 0.80

Fixed Invest GD? 0.60 0.59 0.59 0.60 0.84 0.61

Nonresident GD? 0.50 0.49 0.51 0.51 0.76 0.52

Structures GD? 0.29 0.29 0.33 0.33 0.46 0.33

Equipment GD? 0.45 0.44 0.43 0.44 0.82 0.47

Residential GD? 0.49 0.48 0.48 0.48 0.59 0.50

Government GD? 0.21 0.22 0.23 0.22 0.19 0.23

Federal GD? 0.09 0.10 0.12 0.12 0.14 0.11

State & Local GD? 0.28 0.28 0.29 0.28 0.12 0.29

Exports GD? 0.26 0.26 0.24 0.23 0.28 0.26

Imports GD? 0.21 0.20 0.20 0.21 0.68 0.21

(Ex—Im)/GDP GD? 0.89 0.89 0.89 0.89 0.89 0.89

Employment GD? 0.49 0.47 0.47 0.48 &81 0.51

Hours GOP 0.68 0.67 0.68 0.69 0.88 0.69

GDPIHrs GD? 0.64 0.65 0.63 0.62 0.33 0.64

Inventory Stk GD? 0.40 0.39 0.41 0.42 0.58 0.43

GD? deflator GD? -0.20 -0.19 —0.16 -0.18 —0.51 —0.20

CPI GD? —0.09 —0.08 —0.05 —0.09 —0.47 —0.07

Inflation (GD?) GD? -0.26 —0.26 -0.23 —0.23 0.06 -0.28

Inflation (CPI) GD? 0.03 0.02 0.04 0.04 028 0.01

Final Sales GD? 0.69 0.68 0.67 0.68 0.95 0.69

3-Mo TBi11 GD? 0.33 0.32 0.34 0.32 0.38 0.33

TBill—Inf (GD?) GD? 0.39 0.38 0.36 0.35 0.28 0.40

Chg Invntry/GDP GD? 0.58 0.57 0.57 0.57 0.64 0.57

GDP/Hours Hours -0.13 -0.13 -0.14 -0.14 —0.17 —0.11

Inventory Stk Sales -0.13 -0.15 -0.17 -0.11 0.59 —0.07

Chg Invtry/GDP Sales —0.19 —0.20 -0.22 -0.21 0.37 -0.20



Table 0.2: Second Moment Properties of U.S. Data

Band Pass Filter Approximations(1.5 to 8 years) and the HP Filter

====================== ======================—====——=——===== ====== ====—_====—_= ==

Part 1: Standard Deviations: std(Variable x) / std(GDP)

================ === ===== ======= ================== == —_====—_===== ====== == = = = =

Filtering Procedure

========== = = = ============= ============ ===== == === === ==== =

Random Random Random BK HP Trigonometric

Variable x Walk Walk Walk Regression

Symmetric Fixed

GDP 1.70 1.73 1.55 1.69 1.76 1.72

Consumption 0.74 0.73 0.75 0.76 0.77 0.71

Nondur & Serv 0.45 0.45 0.46 0.47 0.48 0.44

Nondur 0.65 0.65 0.68 0.66 0.68 0.64

Services 0.35 0.35 0.35 0.38 0.39 0.34

Durables 2.86 2.78 2.86 2.89 3.04 2.73

Invesmtent 4.53 4.46 4.47 4.37 4.48 4.41

Fixed Invest 3.09 3.02 2.86 2.95 2.99 2.91

Nonresident 2.82 2.80 2.84 2.83 2.80 2.73

Structures 2.64 2.65 2.83. 2.76 2.73 2.56

Equipment 3.23 3.19 3.20 3.22 3.25 3.13

Residential 6.37 6.08 5.79 5.98 6.07 5.91

Government 1.79 1.78 1.72 1.94 1.87 1.70

Federal 2.95 2.93 2.83 3.16 3.03 2.76

State & Loca1 0.73 0.73 0.74 0.77 0.79 0.75

Exports 2.87 2.78 3.07 2.98 3.16 2.71

Imports 2.65 2.63 2.65 2.67 2.92 2.59

(Ex—Im)/GDP 0.64 0.63 0.65 0.64 0.63 0.65

Employment 0.60 0.60 0.61 0.61 0.61 0.58

Hours 0.96 0.96 0.98 0.97 0.96 0.96

GDP/Hrs 0.47 0.47 0.49 0.47 0.49 0.46

Inventory Stk 1.10 1.3.1 1.13 1.14 1.09 1.11

GDP deflator 0.50 0.49 0.49 0.56 0.52 0.48

CPI 0.80 0.77 0.73 0.83 0.80 0.76

Inflation (GDP) 0.58 0.57 0.59 0.57 0.72 0.58

Inflation (CPI) 0.91 0.88 0.86 0.86 1.04 0.88

Final Sales 0.80 0.80 0.79 0.81 0.82 0.80

3—Mo TBi11 0.65 0.62 0.63 0.64 0.69 0.61

TBill—Inf(GDP) 0.53 0.51 0.61 0.57 0.76 0.52

Chg Invntry/GDP 0.23 0.23 0.25 0.23 0.27 0.23

Notes: See Table B.1



Table 8.2, continued

Part 2: Correlations: corr(Variable x, Variable y)

======== == ========= === = = =—_=====—_======== ======= ===== ==== ===== = ===========t==

Filtering Procedure
=========—== =========================== =================

Random Random Random BK HP Trigonometric
Var x Var y Walk Walk Walk Regression

Symmetric Fixed

GDP GD? 1.00 1.00 1.00 1.00 1.00 1.00

Consumption GD? 0.84 0.84 0.85 0.84 0.83 0.84

Nondur & Serv GDP 0.86 0.86 0.84 0.84 0.81 0.86

Nondur GD? 0.82 0.82 0.80 0.81 0.78 0.82

Services GD? 0.78 0.79 0.74 0.76 0.72 0.80

Durables GD? 0.72 0.73 0.76 0.75 0.73 0.71

Invesmtent GD? 0.90 0.91 0.90 0.89 0.88 0.91

Fixed Invest GD? 0.86 0.87 0.87 0.85 0.84 0.88

Nonresident GDP 0.82 0.81 0.76 0.77 0.76 0.81

Structures GD? 0.56 0.56 0.46 0.47 0.46 0.54

Equipment GD? 0.87 0.87 0.83 0.84 0.82 0.86

Residential GD? 0.58 0.60 0.59 0.59 0.59 0.61

Government GD? 0.17 0.21 0.18 0.22 0.19 0.28

Federal GDP 0.13 0.17 0.17 0.19 0.14 0.23

State & Local GD? 0.04 0.04 -0.11 0.03 0.12 0.03

Exports GD? 0.30 0.29 0.29 0.29 0.28 0.28

Imports GD? 0.77 0.78 0.75 0.74 0.68 0.78

(Ex—Im)/GDP GD? 0.89 0.90 0.90 0.89 0.89 0.90

Employment GD? 0.84 0.84 0.80 0.81 0.8]. 0.85

Hours GD? 0.89 0.89 0.88 0.89 0.88 0.89

GDP/Hrs GDP 0.32 0.32 0.29 0.30 0.33 0.32

Inventory Stk GDP 0.57 0.58 0.53 0.58 0.58 0.59

GDP deflator GD? -0.46 -0.48 -0.42 —0.45 -0.51 —0.43

CPI GD? —0.43 -0.45 —0.42 —0.44 —0.47 -0.41

Inflation (GD?) GD? 0.19 0.19 0.09 0.13 0.06 0.18

Inflation (CPI) GD? 0.40 0.40 0.30 0.34 0.28 0.41

Final Sales GD? 0.97 0.97 0.96 0.97 0.95 0.97

3-Mo TBill GD? 0.42 0.41 0.50 0.42 0.38 0.44

TBi11-Inf(GD?) GD? 0.31 0.29 0.44 0.34 0.28 0.32

Chg Invntry/GD? GD? 0.75 0.75 0.74 0.71 0.64 0.74

GDP/Hours Hours —0.15 -0.15 -0.20 —0.18 —0.17 -0.15

Inventory Stk Sales 0.60 0.61 0.56 0.62 0.59 0.62

Chg Invtry/GDP Sales 0.57 0.57 0.53 0.51 0.37 0.55



Table B.3: Second Moment Properties of U.S. Data

Band Pass Filter Approximations(8 to 20 years) and the HP Filter

============================================================================

Part 1: Standard Deviations: std(Variable x) / std(GDP)

== ====== = = === == = = === == ========== = =

Filtering Procedure
==============================================—======—==

Random Random Random BK HP Trigonometric

Variable x Walk Walk Walk Regression

Sysinetric Fixed

GD? 2.10 1.88 1.30 0.37 1.76 2.23

Consumption 0.81 0.81 0.82 0.80 0.77 0.82

Nondur & Serv 0.55 0.55 0.53 0.50 0.48 0.56

Nondur 0.65 0.66 0.69 0.65 0.68 0.66

Services 0.51 0.52 0.45 0.43 0.39 0.52

Durables 2.73 2.81 3.05 3.01 3.04 2.80

Invesmtent 2.36 2.44 3.93 4.11 4.48 2.38

Fixed Invest 2.03 2.07 3.05 3.17 2.99 2.20

Nonresident 2.60 2.65 2.77 2.85 2.80 2.69

Structures 2.90 2.95 2.75 2.78 2.73 2.93

Equipment 2.66 2.79 3.16 3.22 3.25 2.78

Residential 3.32 3.74 6.14 6.39 6.07 3.66

Government 2.62 2.62 2.45 2.45 1.87 2.80

Federal 4.17 4.12 3.95 3.98 3.03 4.51

State & Local 0.94 1.00 0.90 0.86 0.79 0.99

Exports 2.25 2.33 2.83 2.87 3.16 2.47

Imports 2.63 2.58 2.95 2.80 2.92 2.54

(Ex—Im)/GDP 0.71 0.71 0.60 0.60 0.63 0.73

Employment 0.44 0.50 0.60 0.63 0.61 0.43

Hours 0.82 0.88 0.95 0.97 0.96 0.79

GDP/Hrs 0.39 0.41 0.40 0.40 0.49 0.42

Inventory Stk 1.17 1.18 1.15 1.19 1.09 1.15

GD? deflator 0.65 0.67 0.82 0.77 0.52 0.64

CPI 0.93 1.02. 1.15 1.11 0.80 0.92

Inflation (GD?) 0.42 0.42 0.68 0.62 0.72 0.47

Inflation (C?I) 0.51 0.55 0.98 0.96 1.04 0.54

Final Sales 0.98 0.97 0.89 0.87 0.82 1.00

3—Mo TBi11 0.47 0.54 0.67 0.67 0.69 0.48

TBi11—Inf (GD?) 0.54 0.57 0.65 0.51 0.76 0.60
Chg Invntry/GDP 0.08 0.08 0.18 0.17 0.27 0.08

Notes: See Table B.1



Table B.3 continued

========== = = == = = ====== = = ======= ===—=========—= ==== ============ ======== ==

Part 2: Correlations: corr(Variable x, Variable y)

========= = = = = = === = = == == ==—_============ ========== ====== === = === = =======s==

Filtering Procedure
========= =—===——======= == ========================== ======

Random Random Random BK HP Trigonometric
Vex x Var y Walk Walk Walk Regression

Symmetric Fixed

GD? GD? 1.00 1.00 1.00 1.00 1.00 1.00

Consumption GDP 0.84 0.82 0.82 0.82 0.83 0.86

Nondur & Serv GD? 0.79 0.77 0.83 0.86 0.81 0.81

Nondur GD? 0.82 0.80 0.80 0.83 0.78 0.83

Services GD? 0.70 0.66 0.79 0.83 0.72 0.73

Durables GD? 0.80 0.78 0.70 0.70 0.73 0.82

Invesmtent GD? 0.69 0.66 0.82 0.84 0.88 0.67

Fixed Invest GD? 0.73 0.68 0.80 0.82 0.84 0.70

Nonresident GD? 0.66 0.65 0.78 0.80 0.76 0.64

Structures GD? 0.51 0.39 0.48 0.52 0.46 0.55

Equipment GD? 0.73 0.75 0.85 0.87 0.82 0.66

Residential GD? 0.33 0.26 0.54 0.56 0.59 0.37

Government GD? 0.86 0.78 0.38 0.30 0.19 0.83

Federal GD? 0.82 0.72 0.29 0.22 0.14 0.79

State & Local GD? 0.54 0.56 0.41 0.36 0.12 0.54

Exports GD? —0.18 0.02 0.15 0.25 0.28 —0.27

Imports GD? 0.55 0.48 0.70 0.75 0.68 0.58

(Ex-Im)IGD? GD? 0.90 0.89 0.87 0.86 0.89 0.90

Employment GD? 0.68 0.70 0.81 0.85 0.81 0.66

Hours GD? 0.92 0.91 0.92 0.92 0.88 0.92

GD?/Hrs GD? 0.61 0.49 0.33 0.26 0.33 0.66

Inventory Stk GD? 0.92 0.89 0.76 0.74 0.58 0.93

GD? deflator GD? —0.77 -0.67 -0.54 —0.53 -0.51 —0.75

C?I GD? —0.54 —0.47 -0.48 —0.49 -0.47 -0.55

Inflation (GD?) GD? —0.10 0.03 0.19 0.32 0.06 -0.25

Inflation (CPI) GD? -0.05 0.12 0.38 0.45 0.28 —0.18

Final Sales GD? 1.00 1.00 0.97 0.98 0.95 1.00

3—Mo Thill GD? 0.03 0.03 0.15 0.19 0.38 0.03

TBi11-Inf (GD?) GD? 0.11 0.00 -0.05 —0.13 0.28 0.22

Chg Invntry/GDP GD? 0.23 0.29 0.53 0.62 0.64 0.08

GD?/Hours Hours 0.26 0.09 —0.07 —0.14 —0.17 0.30

Inventory Stk Sales 0.94 0.92 0.78 0.78 0.59 0.94

Chg Invtry/GDP Sales 0.14 0.19 0.32 0.45 0.37 -0.01

=================================—======—_===================================



Table 2.4: Second Moment Properties of U.S. Data

Band Pass Filter Approximations(20 to 40 years) and the HP Filter

Part 1: Standard Deviations: std(Variable x) / std(GDP)

Filtering Procedure
===

Random Random Random BK HP Trigonometric

Variable x Walk Walk Walk Regression

Syinetric Fixed

GD? 0.91 0.90 0.54 0.03 1.76 0.39

Consumption 1.23 1.16 '0.82 0.80 '0.77 1.54

Nondur & Serv 0.88 0.84 0.53 0.51 0.48 0.9.0

Nondur 0.94 0.83 0.70 0.65 0.68 0.89

Services 0.84 0.87 '0.45 0.43 0.39 1.45

Durables 3.35 3.44 3.04 3.01 3.04 7.05

Invesmtent 5.40 4.92 3.93 4.10 4.48 5.11

Fixed Invest 4.47 3.94 2.98 3.16 2.99 5.75

Nonresident 5.39 4.85 2.75 2.84 2.80 6.89

Structures 3.73 4.52 2.73 2.78 2.73 11.63

Equipment 8.37 7.02 3.14 3.21 3.25 14.36

Residential 2.82 3.20 5.99 6.38 6.07 3.21

Government 4.14 4.22 2.38 2.46 1.87 5.50

Federal 9.68 8.42 3.85 3.99 3.03 15.67

State & Local 2.77 2.36 0.90 0.87 0.79 3.29

Exports 6.71 5.62 2.83 2.87 3.16 13.84

Imports 4.88 4.18 2.97 2.82 2.92 8.64

(Ex-Im)/GDP 0.50 0.79 0.61 0.60 0.63 1.81

Employment 1.10 1.16 0.59 0.63 0.61

Hours 1.26 1.18 0.94 0.91 0.96 2.31

GDP/Hrs 0.48 0.53 0.40 0.40 0.49 1.43

Inventory Stk 3.57 2.97 1.13 1.19 1.00 5.67

GD? deflator 6.31 5.35 0.81 0.78 0.52 8.40

CPI 6.95 5.90 1.13 1.12 0.80 8.91

Inflation (GD?) 1.24 1.14 0.72 0.62 0.72 1.40

Inflation (CPI) 1.33 1.19 0.99 0.96 1.04 1.50

Final Sales 0.80 0.87 0.89 0.88 0.82 0.39

3—Mo TBill 0.95 0.90 0.66 0.67 0.69 2.07

TBill—Inf(GDP) 1.43 1.25 0.72 0.52 0.76 3.34

Chg Invntry/GDP 0.23 0.22 0.20 0.17 0.27 0.40

Notes: See Table 3.1



Table B.4. continued

== ==== == == = ===== === ============ ======= ==== —======—— ======—===== = =============

Part 2: Correlations: corr(Variable x, Variable y)

== ===== ==== = == ==== ======—_===—_== ======= ==== == == —_====—_============= —===—— ======

Filtering Procedure
== ======== ==—_====—_= == === ==== ============== ========—=====

Random Random Random BK HP Trigonometric
Var x Var y Walk Walk Walk Regression

Synsnetric Fixed

GDP GDP 1.00 1.00 1.00 1.00 1.00 1.00

Consumption GDP 0.98 0.91 0.81 0.82 0.83 0.97
Nondur & Serv GD? 0.97 0.84 0.82 0.86 0.81 0.45

Nondur GDP 0.99 0.93 0.79 0.83 0.78 1.00
Services GDP 0.87 0.69 0.77 0.83 0.72 —0.21

Durables GD? 0.93 0.89 0.71 0.70 0.73 0.97
Irivesmtent GD? 0.94 0.78 0.82 0.84 0.88 0.97

Fixed Invest GDP 0.86 0.75 0.79 0.82 0.84 0.63

Nonresident GD? 0.83 0.72 0.77 0.80 0.76 0.60
Structures GDP -0.43 —0.03 0.47 0.51 0.46 —1.00

Equipment GDP 0.91 0.79 0.84 0.87 0.82 0.88
Residential GD? 0.95 0.60 0.53 0.56 0.59 0.91

Government GD? -0.85 -0.35 0.40 0.31 0.19 —1.00
Federal GD? —0.91 —0.46 0.31 0.23 0.14 —0.95
State & Local GD? 0.63 0.39 0.38 0.37 0.12 0.78

Exports GD? 0.96 0.62 0.13 0.24 0.28 0.98

Imports GD? 0.93 0.77 0.69 0.74 0.68 1.00

(Ex—Im)/GD? GD? 0.12 0.06 0.87 0.86 0.89 —0.84

Ethployment GD? 0.35 0.44 0.80 0.85 0.81 0.75
Hours GDP 0.94 0.89 0.92 0.92 0.88 0.96
GDP/Hrs GD? —0.37 —0.11 0.35 0.27 0.33 —0.89
Inventory Stk GD? 0.84 0.76 0.75 0.75 0.58 0.78

GD? deflator GD? —0.60 —0.35 -0.52 —0.54 —0.51 —0.83
CPI GD? —0.59 —0.33 —0.46 —0.49 —0.47 —0.80
Inflation (GD?) GD? 0.93 0.55 0.15 0.31 0.06 0.97
Inflation (C?I) GD? 0.85 0.52 0.34 0.45 0.28 0.91
Final Sales GD? 0.97 0.96 0.97 0.98 0.95 0.82
3-Mo TBi].]. GD? -0.16 —0.07 0.16 0.18 0.38 —0.70
TBi11-Inf(GD?) GD? —0.92 —0.56 0.00 —0.14 0.28 —0.84

Chg Irivntry/GD? GD? 0.76 0.56 0.52 0.61 0.64 0.51'

GDP/Hours Hours -0.67 —0.54 -0.06 —0.14 —0.17 —0.98
Inventory Stk Sales 0.93 0.79 0.77 0.78 0.59 1.00

Chg Invtry/GDP Sales 0.58 0.32 0.29 0.44 0.37 —0.08

====================================================—_=====—_====—_============



Table B.5: Second Moment Properties of U.S. Data

Band Pass Filter Approximations(2 quarters to 8 years) and the HP Filter

==========—=============—_=======—_=================_============

Part 1: Standard Deviations: std(Variable x) / std(GDP)

===================

Filtering Procedure

==================================== = = = = == = = = = === = = == = = =

Random Random Random BK HP Trigonometric

Variable x Walk Walk Walk Regression

Syninetric Fixed

GDP 1.77 1.80 1.62 1.71 1.76 1.79

Consumption 0.74 0.73 0.74 0.75 0.77 0.71

Nondur & Serv 0.45 0.45 0.46 0.46 0.48 0.44

Nondur 0.65 0.65 0.69 0.67 0.68 0.65

Services 0.36 0.36 0.36 0.38 0.39 0.35

Durables 2.94 2.87 2.95 2.97 3.04 2.83

Invesmtent 4.58 4.52 4.56 4.48 4.48 4.46

Fixed Invest 3.04 2.97 2.82 2.89 2.99 2.87

Nonresident 2.79 2.77 2.80 2.80 2.80 2.70

Structures 2.63 2.63 2.79 2.76 2.73 2.54

Equipment 3.24 3.20 3.22 3.23 3.25 3.14

Residential 6.22 5.96 5.65 5.80 6.07 5.79

Government 1.74 1.73 1.67 1.83 1.87 1.66

Federal 2.87 2.87 2.75 2.99 3.03 2.70

State & Local 0.76 0.76 0.77 0.79 0.79 0.77

Exports 3.03 2.95 3.25 3.17 3.16 2.89

Imports 2.79 2.78 2.84 2.83 2.92 2.74

(Ex—Im)/GDP 0.65 0.64 0.66 0.65 0.63 0.66

Employment 0.59 0.59 0.60 0.60 0.61 0.58

Hours 0.94 0.94 0.96 0.96 0.96 0.94

GDP/Hrs 0.49 0.49 0.51 0.50 0.49 0.49

Inventory Stk 1.08 1.08 1.10 1.11 1.09 1.09

GDP deflator 0.48 0.47 0.47 0.52 0.52 0.46

CPI 0.77 0.74 0.70 0.78 0.80 0.74

Inflation (GD?) 0.72 0.71 0.75 0.73 0.72 0.71

Inflation (CPI) 1.05 1.03 1.04 1.03 1.04 1.03

Final Sales 0.80 0.80 0.79 0.81 0.82 0.80

3—Mo TBill 0.67 0.65 0.67 0.67 0.69 0.64

TBill—Inf(GDP) 0.73 0.72 0.81 0.78 0.76 0.72

Chg Invntry/GDP 0.27 0.26 0.29 0.27 0.27 0.26

Notes: See Table B.1



Table B.5. continued

Part 2: Correlations: corr(Variable x Variable y)

======================================= ======_==============================
Filtering Procedure

Random Random Random BK HP Trigonometric

Var x Var y Walk Walk Walk Regression

Symmetric Fixed

GD? GD? 1.00 1.00 1.00 1.00 1.00 1.00

Consumption GD? 0.82 0.83 0.83 0.83 0.83 0.83

Nondur & Serv GD? 0.82 0.82 0.79 0.80 0.81 0.83

Nondur GDP 0.78 0.79 0.76 0.77 0.78 0.79

Services GD? 0.72 0.73 0.67 0.69 0.72 0.74

Durables GD? 0.70 0.71 0.73 0.73 0.73 0.69

Invesmtent GD? 0.89 0.90 0.89 0.88 0.88 0.90

Fixed Invest GD? 0.85 0.85 0.85 0.84 0.84 0.86

Nonresident GD? 0.80 0.80 0.74 0.75 0.76 0.79

Structures GD? 0.54 0.54 0.45 0.46 0.46 0.53

Equipment GD? 0.84 0.84 0.80 0.81 0.82 0.83

Residential GD? 0.57 059 0.58 0.58 0.59 0.60

Government GD? 0.18 0.21 0.19 0.21 0.19 0.28

Federal GD? 0.13 0.17 0.17 0.18 0.14 0.23

State & Local GD? 0.07 0.06 -0.07 0.02 0.12 0.05

Exports GD? 0.30 0.28 0.29 0.29 0.28 0.28

Imports GD? 0.69 0.71 0.67 0.67 0.68 0.70

(Ex—Im)/GD? GD? 0.89 0.90 0.90 0.89 0.89 0.90

Employment GD? 0.82 0.82 0.78 0.79 0.81 0.83

Hours GD? 0.88 0.88 0.86 0.87 0.88 0.88

GDP/Hrs GD? 0.35 0.36 0.33 0.33 0.33 0.35

Inventory Stk GDP 0.56 0.57 0.53 0.56 0.51 0.58

GD? deflator GD? -0.45 -0.46 -0.40 -043 -0.51 -0.42

CPI GD? —0.41 —0.43 —0.40 —0.42 -0.47 —0.39

Inflation (GD?) GD? 0.09 0.09 0.01 0.04 0.06 0.09

Inflation (C?I) GD? 0.32 0.31 0.22 0.25 0.28 0.32

Final Sales GD? 0.95 0.95 0.94 0.94 0.95 0.95

3—Mo TBi11 GD? 0.41 0.40 0.47 0.42 0.38 0.43

TBi11—Inf(GD?) GD? 0.29 0.27 0.38 0.33 0.28 0.29

Chg Invntry/GD? GD? 0.68 0.69 0.68 0.66 0.64 0.69

GDP/Hours Hours —0.14 -0.14 -0.19 —0.17 —0.17 —0.14

Inventory Stk Sales 0.57 0.58 0.53 0.57 0.59 0.59

Chg Invtxy/GD? Sales 0.43 0.43 0.38 0.38 0.37 0.43


