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1. Introduction

The baryon asymmetry of the universe has recently been determined to an unprecedented

accuracy,

ηB ≡
nB
s

= (8.9 ± 0.4)× 10−11 , (1.1)

by combining measurements of the cosmic microwave background [1] and large scale struc-

tures [2]. Explaining its origin is one of the great challenges of modern particle physics and

cosmology. For baryogenesis Sakharov’s three conditions, B violation, CP violation and

deviation from thermal equilibrium have to be satisfied. In principle these conditions could

be met within the standard model (SM) at the electroweak phase transition (EWPT) [3]. A

more quantitative analysis shows however that the baryon asymmetry cannot be explained

within the SM because there is not enough CP violation [4] and the phase transition turns

into a smooth crossover for Higgs masses mH &80GeV [5]. In fact, electroweak baryogene-

sis requires an even stronger criterion to be satisfied: The Higgs vacuum expectation value

(vev) at the critical temperature, vc ≡ 〈φ(Tc)〉, must be larger than about Tc in order to

avoid baryon number washout after the phase transition.

Motivated by the possibility that electroweak baryogenesis can be tested at future

colliders, there were many proposals to realize this mechanism in extended settings [6].

Some recent attempts can be found in ref. [7]. In supersymmetric models a strong EWPT

can be induced by a light top squark [8]. Supersymmetry breaking also provides new

sources of CP violation. However, by now this scenario is quite constrained due to the

negative Higgs searches. In the SM a lower bound of mH >114GeV was established [10].

A strong first order phase transition could also be driven by cubic interactions of a singlet

Higgs field [9].
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Recently, an alternative idea caught attention: non-renormalizable operators could

have an impact on the EWPT. These operators parametrize the effects of new physics

beyond some cut-off scale M . In order to be relevant at weak scale temperatures we

have to assume that M . 1TeV. This new dynamics could be an ordinary quantum field

theory, e.g. an extended Higgs sector. It might as well be something more fundamental,

like strongly coupled gravity if the hierarchy problem is solved by the presence of extra

dimensions.

If the Higgs potential is stabilized by a φ6 interaction, a strong first order phase tran-

sition can occur for Higgs masses well above 100GeV [11, 12, 13]. A first order transition

is triggered by a barrier in the Higgs potential. It can be provided by the one-loop ther-

mal corrections of the weak gauge bosons. In the model under consideration, a barrier

can also be generated from a negative φ4 term, which no longer destabilizes the Higgs

potential. The latter possibility turns out to be dominant in a large part of the parameter

space. Non-renormalizable interactions also allow for new sources of the CP violation to

fuel baryogenesis [14, 15].

In the following we will investigate the strengh of the EWPT in the SM with low cut-

off, taking into account the one-loop corrections to the potential. At one-loop the phase

transition is somewhat weaker than found in the analysis of ref. [12], where only the thermal

mass part of the one-loop correction was taken into account. Still we find a strong first

order EWPT for Higgs masses up to at least 170GeV, if we require M > 500GeV. We will

study the properties of the bubble profile, finding in particular that the wall thickness varies

in a wide range from about 2 to 16 times 1/Tc. We will discuss dimension-6 interactions

between the Higgs field and the top quark which provide the necessary CP violation to fuel

baryogenesis. In the WKB approximation these operators induce CP violating terms in

the top quark dispersion relation which vary along the bubble wall and enter the transport

equations as source terms. We will discuss novel source terms in the transport equations

which enhance the generated baryon asymmetry. We find that the model can explain the

observed baryon asymmetry for natural values of the parameters.

2. The strength of the phase transition

The dynamics of the EWPT is determined by the effective Higgs potential. As proposed

in ref. [11], we add a non-renormalizable φ6 operator to the SM potential, so that

V (φ) = −µ
2

2
φ2 +

λ

4
φ4 +

1

8M2
φ6 , (2.1)

where φ2 ≡ 2Φ†Φ with the SM Higgs doublet Φ.

At finite temperature we add a thermal mass term to the potential. Because of the

positive definite φ6-term, the quartic coupling λ is allowed to take negative values. In the

high temperature expansion of the one-loop thermal potential we get the thermal Higgs

mass term
1

2

(

1

2
λ+

3

16
g22 +

1

16
g1

2 +
1

4
y2t

)

T 2φ2 , (2.2)
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where yt is the top Yukawa coupling and g2 and g1 are the SU(2)L and U(1)Y gauge

couplings. We also include the one-loop contributions due to the transverse gauge bosons

− g32
16π

Tφ3 (2.3)

and the top quark
3

64π2
y4t φ

4 ln

(

Q2

cFT 2

)

(2.4)

to the effective potential, where cF ≈ 13.94 [16]. We choose Q = mtop = 178GeV. Another

choice of Q would only change the value of the self-coupling λ. Moreover we add the leading

one-loop and two-loop corrections due to the φ6 interaction

1

8M2
(2φ4T 2 + φ2T 4) . (2.5)

Altogether we end up with the high temperature effective potential

Veff(φ, T ) =
1

2

(

−µ2 +
(

1

2
λ+

3

16
g22 +

1

16
g1

2 +
1

4
y2t

)

T 2

)

φ2 −

− g32
16π

Tφ3 +
λ

4
φ4 +

3

64π2
y4t φ

4 ln

(

Q2

cFT 2

)

+

+
1

8M2
(φ6 + 2φ4T 2 + φ2T 4) . (2.6)

With the two conditions

∂Veff(φ, 0)

∂φ

∣

∣

∣

∣

φ=v

= 0 and
∂2Veff(φ, 0)

∂φ2
= m2

H , (2.7)

where

Veff(φ, 0) = V (φ)− 3

64π2
y4t φ

4 ln

(

y2t φ
2

2Q2

)

(2.8)

is the zero-temperature potential including the one-loop correction from the top-quark, we

can express the two parameters µ and λ by the physical quantities mH and v = 246GeV.

In the following we take mH and M as the free parameters of the model. The SM bound

on the Higgs mass applies to our model, so we require mH > 114GeV. We need M . 1TeV

in order for the dimension-six operator to be of relevance for the phase transition. If M

becomes too small, for a fixed value of mH , the electroweak minimum ceases to be the

global minimum of the zero-temperature potential. As shown in figure 1, this happens

around M < 500GeV, and we exclude these values from the parameter space.

During a first order phase transition there exist two energetically degenerate phases

separated by an energy barrier at the critical temperature Tc. To obtain Tc and the non-zero

value of the vacuum expectation value vc the two conditions

∂Veff(φ, Tc)

∂φ

∣

∣

∣

∣

φ=vc

= 0 and Veff(vc, Tc) = 0 (2.9)
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Figure 1: Contours of constant ξ = vc/Tc in the M -mH-plane. M and mH are given in units of

GeV. Below the lowest line the zero-temperature minimum at φ 6= 0 is no longer the global one.

Below the metastability line the probability for thermal tunneling gets too small.

have to be fulfilled. The critical temperature in case of the EWPT is around 100GeV. At

some particular temperature below Tc, say Tn (nucleation temperature), the broken phase

bubbles nucleate, expand and percolate. The Higgs field changes rapidly as the bubble

wall passes through space. Baryogenesis has to take place outside the bubble while within

the bubble the sphaleron induced (B+L)-violating reactions must be strongly suppressed.

Otherwise the generated baryon asymmetry would be washed out after the phase transition.

The sphaleron rate is practically switched off if the “washout criterion” [17]

ξ =
vc
Tc
≥ 1.1 (2.10)

is satisfied. This is the condition for a first order transition to be strong. As was discussed

in ref. [12], the sphaleron energy and therefore eq. (2.10) are practically not affected by the

presence of the φ6 term.

In figure 1 we show the strength of the phase transition as a function of the model

parameters. As expected the EWPT becomes weaker for increasing Higgs masses. For the

smallest allowed Higgs mass we need M . 825GeV to satisfy the washout criterion. In

contrast to the SM we find a strongly first order phase transition, even for Higgs masses

above 150GeV. A large part of the parameter space meets the requirements of electroweak

baryogenesis. AsM approaches the region of wrong zero-temperature minimum, the critical

temperature becomes smaller and ξ larger. For ξ & 3 the high temperature approximation

breaks down for the top quark.
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What Higgs masses are compatible with the washout criterion depends on how small

M is allowed to be. There is no particular bound on the φ6 operator [18]. However, in

figure 1 we take M & 400GeV in order to make an expansion in powers of v/M reasonable.

In an effective field theory all operators which are allowed by the symmetries are expected

to be present. In particular, we expect dimension-6 operators involving gauge fields, such

as (1/M 2)(Φ†DµΦ)
2. These operators have to be suppressed by a higher scale of about

10 TeV in order to be in agreement with the electroweak precision data [12]. Thus a tuning

of couplings on the order of (10 TeV/M)2 is required, and has to be explained by the UV

completion of the model.

At the one-loop level the phase transition is somewhat weaker compared to the analysis

of ref. [12]. There only the thermal masses (2.2) were included in the computation. For

instance, takingmH = 115GeV, we findM = 825GeV to arrive at a strong enough EWPT,

i.e. ξ = 1.1. Including only the thermal mass corrections, one arrives at ξ = 1.43, and the

cut-off scale can be increased to about 870GeV until the phase transition becomes too

weak [12].

How important are the different one-loop contributions? For ξ & 1 the cubic term (2.3)

is still relevant: Leaving it out considerably weakens the phase transition from ξ = 1 to

ξ = 0.56, for mH = 115GeV. Omitting also the log-term (2.4) makes the phase transition

stronger again, ξ = 0.81. In addition, getting rid of the one-loop term of eq. (2.5) increases

ξ to 1.27. Thus the one-loop contributions in (2.3)–(2.5) partially cancel each other and

therefore our results agree reasonably well with those of ref. [12]. For larger Higgs masses

and stronger phase transition the picture is qualitatively similar, however, the cubic term

becomes less important.

The two-loop φ2 term of eq. (2.5) practically does not change the result, demonstrating

that the dimension-6 operator does not spoil the loop expansion. We have also checked

that adding a dimension-8 term (1/M 4)(Φ†Φ)4 only affects ξ at the order of v2/M2.

The one-loop effective potential was also discussed in ref. [13]. However, the authors

impose an erroneous lower bound on the cut-off scale, requiring a positive mass squared

for the Goldstone boson. As a result, they obtain a lower bound on the Higgs mass from

eq. (2.10) which is much too small.

3. The bubble properties

In this section we discuss some bubble properties which will enter the computation of the

baryon asymmetry, in particular the thickness Lw, and the velocity, vw of the wall. As

already mentioned, the two minima of Veff become of the same depth at Tc, but tunneling

with the formation of bubbles of the broken phase will start somewhat later at a temper-

ature Tn. The probability for thermal tunneling is exponentially suppressed by the energy

of the critical bubble, S3. The phase transition starts if the nucleation probability per

horizon volume becomes of order unity, which translates to S3(Tn)/Tn ∼ 130− 140 [19].

For ξ = 1 the amount of supercooling, i.e. the difference between the critical and

nucleation temperatures, is small. For mH = 115GeV we find Tc = 107.34 GeV and

Tc − Tn = 0.45GeV. The system is well described by the thin wall approximation. For

– 5 –
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Figure 2: The wall thickness Lw as a function of the Higgs-mass mH for several values of M ,

which are given in units of GeV. In addition lines of constant ξ are shown.

smaller values of M and stronger phase transition, supercooling becomes more and more

important. The thin wall approximation is no longer reliable. At some critical value the

phase transition does no longer proceed at all. The universe remains stuck in the symmetric

vacuum. This regime is indicated by the “metastability” line in figure 1.

Once a critical bubble is nucleated it will expand. The expansion is accelerated by the

internal pressure and slowed down by plasma friction. Finally, a stationary situation will

be reached, where the different forces are balanced, and the wall propagates with constant

velocity, vw. In order to estimate the thickness of the bubble wall, we ignore friction for a

moment and solve the field equation at the critical temperature with the effective potential

of eq. (2.6),
d2φ

dz2
=

∂

∂φ
Veff(φ) . (3.1)

The boundary conditions read φ(z → −∞) = vc and φ(z → ∞) = 0. The bubble profile

can approximately be described by a kink,

φ(z) =
vc
2

(

1− tanh
z

Lw

)

(3.2)

with Lw =
√

v2c/(8Vb), where Vb is the height of the potential barrier. This relation would

be exact for a φ4 potential and we found that it is also a good approximation in our case.

In figure 2 the wall thickness is shown in dependence of the Higgs mass mH and M . As we

decrease M at fixed mH , the wall thickness in units of 1/Tc becomes smaller. The same

happens if we decrease mH at fixed M . The main effect comes from the decrease of Tc in

these cases. Notice that LwTc varies in a wide range between about 2 and 16.
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Let us finally comment on the wall velocity. Taking into account only the friction

related to the infrared gauge field modes [20],

vw =
32πLw

11g22T
3
· ∆V

ln(mWLw) +O(1)
(3.3)

we obtain a wall velocity of order unity, except for ξ being close to one. Here ∆V is the

potential difference at the nucleation temperature and mW the mass of the W boson. The

order unity correction in the denominator is induced by friction of other particles in the

plasma, in particular the top quark [21]. Since numerically ln(mWLw) is only of order

unity, top quark friction will slow down the wall considerably. The wall velocity is further

reduced by latent heat of the nucleating bubbles. In general, the wall moves faster in the

case of a stronger phase transition.

Let us briefly discuss two representative examples. Taking ξ = 1 and mH = 115GeV,

we obtain vw = 0.24 from eq. (3.3). Including the effect of reheating, ∆V is reduced and

we arrive at vw = 0.08. If we finally switch on the order unity correction, we end up with

vw ∼ 0.05. The picture looks very much different for stronger phase transitions. Going to

ξ = 1.5, eq. (3.3) already leads to a wall velocity of order unity. Including again top quark

friction and reheating, we obtain vw ∼ 0.5. For larger Higgs masses we find a very similar

behavior. These are only very rough estimates, since eq. (3.3) breaks down for large values

of vw. Given these uncertainties we will treat vw as a free parameter in our computation

of the baryon asymmetry.

4. CP violation

Non-renormalizable interactions provide new sources of CP violation. In the absence of

gauge singlets the leading operators are of mass dimension six. In ref. [14] a |Φ|2F F̃
operator was discussed. We will focus on the operators

xuij
M2

(Φ†Φ)Φuciqj (4.1)

which have been proposed to drive baryon number generation in ref. [15]. There are

analogous terms for the down-type quarks and leptons. The fermion masses become

mij = yij
v√
2
+

v3

2
√
2M2

xij (4.2)

where yij are the ordinary Yukawa couplings. In unitary gauge, the effective Yukawa

couplings to the physical Higgs boson are given by

Yij = yij +
3v2

2M2
xij . (4.3)

Thus, there is a mismatch of order (xv2/M2) between the fermion masses and the effective

Yukawa couplings. In general, the couplings xij contain complex phases, and they are of

unknown flavor structure. While for the top quark xu33 may be of order unity, the couplings

– 7 –
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of the lighter fermions should not exceed O(M 2mf/v
3) to avoid fine tuning of the fermion

masses mf . For instance, the corresponding coupling for the electron should at most be of

order 10−4×(M/TeV)2, which is a small number. Having this in mind, and lacking a theory

of flavor mixing, we will therefore assume that the xij have a similar flavor structure as the

corresponding Yukawa couplings, i.e. xij ∼ yij , up to order unity coefficients. This structure

could be motivated by a Froggatt-Nielsen [22] type mechanism, where the operators (4.1)

and the ordinary Yukawa couplings would have the same quantum numbers.

Since the operators (4.1) do not have to be strictly aligned with the ordinary Yukawa

couplings, they will induce flavor violation and CP violation. Via tree-level Higgs exchange

they generate four-fermion interactions, which, for instance, affect K − K̄ mixing. For

example, the operator (1/Q2)(dcsd̄s̄c) is generated at a level of

1

Q2
∼ v4

M4m2
H

xd12(x
d
21)
∗ . (4.4)

For xd12 ∼ ms sin θc/v, where ms denotes the strange quark mass and θc the Cabibbo angle,

we obtain roughly Q ∼ 5 · 107GeV×(M/TeV)2. At M & 30TeV a 2-loop contribution

of order (1/(16π2)2)xd12(x
d
21)
∗/M2 becomes dominant.1 Experimentally, these operators

are constrained to be suppressed by Q & 107 GeV, especially in the presence of CP vi-

olation. This constraint is compatible with (4.4) for M & 500GeV. Later on we will

only be interested in the coupling of the top, xu33 ∼ 1. If we make the unnatural as-

sumption that only this coupling is present, a dds̄s̄ operator is generated at 2-loops with

Q ∼ 4 · 109GeV×(M/TeV)2. In the B system the experimental bounds are even more

easily satisfied.

CP violating couplings induce electric dipole moments (EDM’s). The EDM of the

neutron, for instance, is experimentally constrained by dn/e < 6.3 · 10−26 cm [23]. The

individual EDM’s of up and down quarks should therefore be not much larger. The up

quark receives the larger contribution. At one-loop we find

du
e
∼ 1

16π2
v3Im(xu13x

u
31)

M4
∼ 1 · 10−26cm×

(

TeV

M

)2

, (4.5)

which might be close to the experimental bound. In the second step we assumed a maximal

phase and |xu13| ∼ |xu31| ∼ Vub. If only the coupling xu33 is present, an EDM of roughly

du/e ∼ 5 · 10−27cm × Im(xu33) × (TeV/M)2 is induced at the 2-loop level [15]. Thus a

coupling xu33 of order unity with a large phase can be present without inducing too large

flavor changing neutral currents or EDM’s, even for M ∼ 300GeV. Other couplings also

are allowed, as long as some Yukawa-like hierarchy is respected. However, experimental

signals of non-standard flavor physics could be detected in the near future.

At low energies the non-renormalizable operators and the Yukawa couplings melt into

the couplings (4.3). However, during the EWPT the two terms in (4.3) vary differently

along the bubble wall. As a result, the fermion masses acquire position dependent phases

1This diagram is quadratically divergent which we cut off at the scale M .

– 8 –



J
H
E
P
0
2
(
2
0
0
5
)
0
2
6

which cannot be rotated away. For the phase of the top quark mass we obtain

tan θt(z) ≈ sinϕt
φ2(z)

2M2

xt
yt
, (4.6)

where we defined xte
iϕt ≡ xu33 and ignored the real part of xu33. In two Higgs doublet

models such a phase may arise from spontaneous CP violation. In supersymmetric models

position dependent phases are induced by flavor mixing, e.g. for the charginos. In the next

section we discuss how the phase (4.6) drives the generation of a baryon asymmetry as a

bubble wall moves through the plasma.

5. Transport equations

The CP violating interactions of particles in the plasma with the bubble wall create an

excess of left-handed quarks over the corresponding anti-quarks.2 In the symmetric phase

the left-handed quark density biases the sphaleron transitions to generate a net baryon

asymmetry.

In the WKB approach the CP violating interaction of a fermion with the wall leads

to different dispersion relations for particles and anti-particles [24], depending on their

complex masses. To make this method applicable, it is required that the typical de Broglie

wavelength of particles in the plasma is small compared to the width of the wall, i.e. LwT À
1. Otherwise an expansion in derivatives of the background Higgs field cannot be justified.

According to the results of section 3 this is a good approximation in a large fraction of

our parameter space. It is violated only in the cases of a very strong phase transition,

ξ & 3. From the dispersion relations we compute a force term which enters the transport

equations that describe the evolution of the plasma. An alternative approach was followed

in ref. [26].

Let us consider a single Dirac fermion, such as the top quark, with a space-time

dependent mass ReM(z̄)+ iγ5ImM(z̄), whereM(z̄) = m(z̄)eiθ(z̄) and z̄ ≡ z− vwt denotes
the relative coordinate perpendicular to the wall. For particles and anti-particles the

dispersion relations to first order in derivatives read [25]

E± = E0 ±∆E =
√

p2 +m2 ± sign(pz)θ
′ m2

2(p2 +m2)
, (5.1)

where p2 = ~p2 is the squared kinetic momentum and θ ′ = dθ/dz̄. E+ is the energy of left-

handed particles, E− corresponds to the right-handed states, and for the anti-particles the

other way round.3 In a more rigorous treatment similar dispersion relations were derived

for spin states in the Schwinger-Keldysh formalism [27, 28].

The evolution of the particle distributions fi(t, ~x, ~p) we describe by classical Boltzmann

equations. The dispersion relations (5.1) induce force terms, which are different for particles

2Quarks will turn out to be more important than leptons because of the large top mass.
3Later on the relevant particles will be relativistic, so that we can approximate helicity by chirality.
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and anti-particles. To make the system of equations tractable, we use a fluid-type ansatz

in the rest frame of the plasma [24]

fi(t, ~x, ~p) =
1

eβ(Ei−vipz−µi) ± 1
, (5.2)

where vi and µi denote velocity perturbations and chemical potentials for each fluid. The

velocity perturbations are introduced to model the movement of particles in response to

the force.

For a shorter notation let us first introduce some symbols K, which represent momen-

tum averages normalized relative to the massless Fermi-Dirac case,

〈X〉 ≡
∫

d3pX(p)
∫

d3pf ′+(m = 0)
, (5.3)

where f ′± = −βeβE0/(eβE0 ± 1)2. We define

K1,i =

〈

p2z
√

p2 +m2
i

f ′±(mi)

〉

, K2,i =
〈

p2zf
′
±(mi)

〉

,

K3,i =

〈

1

2
√

p2 +m2
i

f ′±(mi)

〉

, K4,i =

〈 |pz|
2(p2 +m2

i )
f ′±(mi)

〉

,

K5,i =

〈 |pz|p2
2(p2 +m2

i )
2
f ′±(mi)

〉

, K6,i =

〈( |pz|
(p2 +m2

i )
2
− δ(pz)

p2 +m2
i

)

f ′±(mi)

〉

,

K7,i =

〈 |pz|3
(p2 +m2

i )
2
f ′±(mi)

〉

, (5.4)

which appear in the transport equations discussed in the following. In the case of a massless

fermion we obtain K1 = 1.096T , K2 = 4.606T 2, K3 = 0.211/T , K4 = 0.105/T , K5 =

0.105/T , K6 = −0.038/T 3 and K7 = 0.105/T . For m À T the averages experience an

exponential Boltzmann suppression.

We look for solutions of the Boltzmann equation which are stationary, i.e. which only

depend on the relative coordinate z̄. We expand the Boltzmann equation in derivatives

of the fermion mass. At first order in derivatives there is no difference between particles

and anti-particles. Weighting the Boltzmann equation with 1 and pz, we obtain after

momentum averaging

κivwµ
′
i,1 −K1,iv

′
i,1 − 〈Ci〉 = K3,ivw(m

2
i )
′ (5.5)

−K1,iµ
′
i,1 +K2,ivwv

′
i,1 − 〈pzCi〉 = 0 . (5.6)

Here µi,1 and vi,1 indicate the perturbations to first order in derivatives. A prime denotes

again a derivative with respect to z̄. The statistical factor κi ≡ 〈f ′±(mi)〉 is 1 (2) for massless

fermions (bosons) and becomes exponentially small for m À T . The force term on the

right-hand side is induced by the change in the particle mass along the wall. Introducing
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inelastic rates, Γinel
p , and elastic rates, Γel

p , for a process p, the collision terms take the

form [29]

〈Ci〉 =
∑

p

Γinel
p

∑

j

µj , 〈pzCi〉 = vip̄
2
z

∑

p

Γel
p ≡ vip̄

2
zΓ

el
i . (5.7)

In 〈pzCi〉 we neglected inelastic processes. The leading order eqs. (5.5), (5.6) contain the

friction terms which enter the computation of the wall velocity [21].

To second order in derivatives, we have to distinguish between particles and anti-

particles. The perturbations contain CP odd and even components,

µi = µi,1 + µi,2o + µi,2e , vi = vi,1 + vi,2o + vi,2e . (5.8)

In the following only the odd second order perturbations will enter, so we can drop the

subscript “o” to simplify the notation. Subtracting the equations of particles and anti-

particles, we obtain

κivwµ
′
i,2 −K1,iv

′
i,2 − 〈Ci〉 = −K6,iθ

′
im

2
iµ
′
i,1 (5.9)

−K1,iµ
′
i,2 +K2,ivwv

′
i,2 − 〈pzCi〉 = K4,ivwm

2
i θ
′′
i +K5,ivw(m

2
i )
′θ′i −K7,im

2
i θ
′
iv
′
i,1 .(5.10)

Note that the CP violating source terms are proportional to derivatives of θi. A constant

phase does not contribute. The source terms proportional to the first order perturbations

have not been investigated so far in a realistic context. (See ref. [28] for a discussion in the

context of Schwinger-Keldysh formalism.) To study their relevance for the generation of

the observed baryon asymmetry will be a main issue in the next section.

We may use eq. (5.9) to solve for vi,2. Neglecting derivatives of the thermal averages,

which are higher order in derivatives, we end up with diffusion equations for the chemical

potentials

−κiDi(1−Aiv
2
w)µ

′′
i,2 − κivwµ

′
i,2 −DiAivw

∑

p

Γinel
p

∑

j

µ′j,2+

+
∑

p

Γinel
p

∑

j

µj,2 −AiDivw
∑

p

(Γinel
p )′

∑

j

µj,2 = Si , (5.11)

where

Ai =
κiK2,i

K2
1,i

. (5.12)

In the massless limit we have A ≈ 3.83. The diffusion constants are given by [29]

κiDi =
K2

1,i

p̄2zΓ
el
i

. (5.13)

To leading order in the wall velocity, neglecting derivatives of the inelastic rates and ratios

of inelastic to elastic rates, the left-hand side of eq. (5.11) reproduces the result of ref. [29].

This corresponds to dropping the terms proportional to Ai. In the next section we will

examine to what extent this simplification is justified. Since Ai is not a small number,
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the corrections will turn out to be important in certain regimes. For the source terms we

obtain

Si =
κiDivw
K1,i

(

K4,im
2
i θ
′′
i +K5,i(m

2
i )
′θ′i
)′
+

+K6,i

(

1−ADivw
d

dz̄

)

(

m2
i θ
′
iµ
′
i,1

)

− κiDiK7,i

K1,i

(

m2
i θ
′
iv
′
i,1

)′
. (5.14)

In the second line new source terms related to the first order perturbations are showing

up. As expected, no source terms are left in the case of vanishing wall velocity.

Let us apply these general results to the SM with a low cut-off. In a first step we

compute the asymmetry in the left-handed quark density. At this stage we neglect the

weak sphalerons, i.e. baryon and lepton number are conserved. The most important particle

species are the left- and right-handed top quarks and the Higgs bosons. Leptons are only

produced by small Yukawa couplings and therefore not taken into account. It turns out

that also the Higgs bosons have only a minor impact on the generated baryon asymmetry.

They change the final result only at the percent level, so we can ignore them. In a second

step, the weak sphalerons convert the left-handed quark number into a baryon asymmetry.

We take into account the top Yukawa interaction, Γy, the strong sphalerons, Γss and

the top helicity flips, Γm caused by the interactions with the bubble wall. The latter are

only present in the broken phase. The gauge interactions are assumed to be in equilibrium.

The transport equations become

(3κt + 3κb)vwµ
′
q3,2 − (3K1,t + 3K1,b)v

′
q3,2−

−6Γy(µq3,2 + µt,2)− 6Γm(µq3,2 + µt,2)−
−6Γss[(2 + 9κt + 9κb)µq3,2 + (1− 9κt)µt,2] = −3K6,tm

2
t θ
′
tµ
′
q3,1 (5.15)

−(K1,t +K1,b)µ
′
q3,2 + (K2,t +K2,b)vwv

′
q3,2−

−
(

K2
1,t

κtDQ
+

K2
1,b

κbDQ

)

vq3,2 = K4,tvwm
2
t θ
′′
t +K5,tvw(m

2
t )
′θ′t −

−K7,tm
2
t θ
′
tv
′
q3,1 (5.16)

3κtvwµ
′
t,2 − 3K1,tv

′
t,2 − 6Γy(µq3,2 + µt,2)−
−6Γm(µq3,2 + µt,2)−

−3Γss[(2 + 9κt + 9κb)µq3,2 + (1− 9κt)µt,2] = −3K6,tm
2
t θ
′
tµ
′
t,1 (5.17)

−K1,tµ
′
t,2 +K2,tvwv

′
t,2 −

K2
1,t

κtDQ
vt,2 = K4,tvwm

2
t θ
′′
t +K5,tvw(m

2
t )
′θ′t −

−K7,tm
2
t θ
′
tv
′
t,1 . (5.18)

The top quark phase, θt, is given by eq. (4.6). For the chemical potentials we take µt =

µ(uc3) and µq3 = (µ(u3) + µ(d3))/2. The index t (b) refers to the top and bottom quark,

respectively. We have omitted the tiny source of the bottom quark which is suppressed by

(mb/mt)
4. We used baryon number conservation to express the strong sphaleron interaction

in terms of µq3,2 and µt,2 [30]. Replacing the second order source terms by the first order

ones, the same system of transport equation holds for the first order perturbations.
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Using again baryon number conservation, the chemical potential of left-handed quarks,

µBL
= µq1 + µq2 + µq3 , is obtained as

µBL
= (1 + 2κt + 2κb)µq3 − 2κtµt . (5.19)

The baryon asymmetry is then given by [25]

ηB =
nB
s

=
405Γ̄ws

4π2vwg∗T 4

∫ ∞

0
dz̄µBL

(z̄)e−νz̄ , (5.20)

where Γ̄ws is the weak sphaleron rate and ν = 45Γ̄ws/(4vwT
3). The effective number of

degrees of freedom in the plasma is g∗ = 106.75. In eq. (5.20) the weak sphaleron rate

has been suddenly switched off in the broken phase, z̄ < 0. The exponential factor in the

integrand accounts for the relaxation of the baryon number if the wall moves very slowly.

6. Numerical results

In this section we present our evaluations of the transport equations (5.15)–(5.18). We will

discuss under what conditions the terms proportional to Ai may be neglected in eq. (5.11)

and investigate what is the impact of the new source terms in eqs. (5.9) and (5.10). Finally,

we will demonstrate that the SM with a low cut-off can explain the observed baryon

asymmetry for natural values of the parameters.

In our numerical computations we use the following values for the weak sphaleron

rate [31], the strong sphaleron rate [32], the top Yukawa rate [30], the top helicity flip rate

and the quark diffusion constant [30]

Γ̄ws = 1.0 · 10−6T 4 , Γ̄ss = 4.9 · 10−4T 4 ,

Γy = 4.2 · 10−3T , Γm =
m2
t (z̄, T )

63T
,

DQ =
6

T
. (6.1)

Note that in Γ̄ss ≡ ΓssT
3 the value αs = 0.086 from the dimensionally reduced theory

has been used [32]. Changing the rates Γy and Γm has only a small effect on the baryon

asymmetry, as would have the inclusion of the Higgs field chemical potential in the transport

equations. Doubling the value of DQ enhances the baryon asymmetry by 20-30% because

of more efficient diffusion. Enhancing Γss reduces the baryon asymmetry since the strong

sphalerons drive µBL
to zero if the quarks are taken massless [33]. The baryon asymmetry

also depends on whether we take the top quark to be massive or massless in the thermal

averages. If we switch on the top mass, the baryon asymmetry becomes smaller since the

thermal averages go down. In the evaluations we use the half m2
t of the broken phase to

compute the averages.

Let us first discuss under which conditions the Ai corrections in eq. (5.11) become

important. At this stage we do not yet relate the bubble wall parameters to the model

introduced in section 2. In figure 3 we display the baryon asymmetry computed with

the simplified equations (dashed lines) compared to the one obtained from the full equa-

tions (5.15)–(5.18) (solid lines) as a function of the wall velocity. We take ξ = 1.5 and

M/T = 6 for three different values of Lw. The CP violating phase in the dimension-6 oper-
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Lw=16/T

Figure 3: Comparison between eq. (5.11), where the terms proportional to Ai have been neglected

(dashed), and eqs. (5.15)–(5.18) without the first order perturbations (solid) for different values of

Lw. The other parameters are taken as ξ = 1.5 and M = 6T .

ator (4.1) we take as maximal, i.e. sinϕt = 1, and we choose xt = 1. In any case the baryon

asymmetry is proportional to xt sinϕt. Since we want to compare the left hand sides of

the transport equations, we included only the source term of the first line of eq. (5.14).

The simplified equations give a reasonable description for vw . 0.1. For large values of vw
there are sizable deviations, especially for thinner bubble walls. This behavior is expected

since the Ai corrections come with additional powers of the wall velocity. In the MSSM,

where vw ∼ 0.05 − 0.1 [34], the simplified equations are applicable. In the following we

will use the full equations (5.15)–(5.18) to compute the baryon asymmetry. Figure 3 also

demonstrates that the baryon asymmetry increases for thinner bubble walls. This behavior

is expected since the source terms involve derivatives of the background Higgs field.

In figure 4 we compare the contributions to the baryon asymmetry due to the different

source terms on the right hand side of eqs. (5.9) and (5.10), using the parameters of figure 3

and Lw = 8/T . The new source terms proportional to the first order perturbations µi,1 and

vi,1 are non-negligible. They enhance the baryon asymmetry, especially for small values

of vw. For large wall velocities they do no longer matter. The total baryon asymmetry

depends only mildly on vw, which is quite positive, given our poor understanding of this

parameter. For other wall widths the picture is similar.

As shown in figure 5 the baryon asymmetry increases rapidly for larger values of ξ. We

fixed vw = 0.01 and 0.3 and again Lw = 8/T . For large ξ the top quark mass becomes larger

in the broken phase, and the source terms involve powers of m2
t . Also the CP violating

phase in the top quark mass from eq. (4.6) becomes stronger. The source terms related to

the first order perturbations have an additional power of m2
t . Therefore they grow even

faster and dominate for large ξ. This behavior holds also for other values of Lw.
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Figure 4: The solid line represents ηB as a function of the wall velocity for Lw = 8/T , M = 6T

and ξ = 1.5. The dashed line would be the asymmetry without the source terms containing the

first order perturbations µ′

1 and v′

1 and the dotted one is the contribution due to these terms only.

0.01

0.1

1

10

100

1 1.5 2 2.5 3

1011 ηB

ξ

Figure 5: The baryon asymmetry as a function of ξ for two wall velocities. The different line types

have the same meaning as in figure 4, and again Lw = 8/T and M = 6T . On the right edge of the

figure the upper curves are for vw = 0.01 and the lower ones for vw = 0.3.
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M
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Figure 6: The baryon asymmetry in the SM with low cut-off for two different Higgs masses as a

function of M (in units of GeV) for vw = 0.01 (solid) and vw = 0.3 (dashed). The horizontal lines

indicate the errorband of the measured value.

Let us finally relate the bubble wall parameters to our SM with low cut-off. In the

figure 6 we present the baryon asymmetry in the model for mH = 115 and 150GeV as

a function of the cut-off scale M . For every value of M we compute the strength of the

phase transition and the bubble width. We consider one small vw = 0.01 and one large wall

velocity vw = 0.3. We take again a maximal CP violating phase sinϕt = 1 and xt = 1. As

expected the baryon asymmetry grows rapidly as we lower M . At the very lowest values

of M the wall thickness becomes of order 1/T (see figure 2) so that our WKB approach

ceases to be reliable. Moreover, the bubble walls may become relativistic in this regime,

and diffusion of charges into the symmetric phase may no longer be efficient. One can see

that ηB depends only mildly on the wall velocity.

Nevertheless, independent of the Higgs mass we have chosen, we can generate the

observed baryon asymmetry (1.1) without amplifying the CP violating dimension-6 oper-

ator (4.1). This requires the phase transition to be sufficiently strong, i.e. ξ & 1.5. At

this strength of the phase transition our computation of the baryon asymmetry is still

under control. For smaller values of ξ we have to take xt > 1. For instance, in the case

of mH = 115GeV and ξ = 1.1 (M = 825GeV), we could use xt ∼ 40 which is barely

consistant with the bound from the neutron EDM discussed in section 3. Thus the SM

with low cut-off can account for the observed baryon asymmetry in a wide range of the

model parameters, without being in conflict with constraints from flavor and CP violation.

At the end of this section let us briefly comment on the impact of sources from the

bottom quark and the tau lepton. In case of the bottom the source term is heavily sup-

– 16 –



J
H
E
P
0
2
(
2
0
0
5
)
0
2
6

pressed by (mb/mt)
4 ∼ 10−7. The tau lepton is more relevant because of its larger diffusion

constant of about 380/T [35]. Still its contribution is about 105 times smaller than that of

the top quark and can be safely neglected.

7. Conclusions

We have investigated the electroweak phase transition and baryogenesis in the standard

model augmented by a dimension-6 Higgs self interaction. Taking the suppression scale

of this operator to be M . 1TeV, the EWPT becomes first order, without introducing

new degrees of freedom in the model. In addition to the Higgs mass only the parameter

M enters the computation of the phase transition. There is no relevant bound on the φ6

interaction. However, dimension-6 operators involving for instance gauge fields, which are

also expected to be present in a general effective field theory, have to be tuned at the level

of 10−2 in order not to spoil the electroweak fit [12].

Requiring M > 500GeV the phase transition is strong enough to prevent baryon

number washout for Higgs masses up to 170GeV. In our analysis we have used the one-loop

thermal potential. The phase transition is somewhat weaker than found in ref. [12], where

only the thermal mass part of the one-loop correction was taken into account. We have

checked that the dimension-6 operator does not spoil the loop expansion of the effective

potential. We have computed the wall thickness which turns out to vary in a wide range

from about 2/T to 16/T . As M becomes smaller the EWPT becomes stronger and the

bubble wall thinner. For very small cut-off scales the symmetric phase becomes metastable.

A dimension-6 operator involving the Higgs field and the top quark provides a new

source of CP violation. It induces a complex phase in the top quark mass which varies along

the phase boundary. We discussed that this operator is consistent with present bounds on

EDM’s and flavor violation for M & 300GeV. However, it may leave a detectable signal in

forthcoming experiments.

As a result of the varying phase, top quarks and anti-top quarks experience a different

force as they pass through the bubble wall. We treat the system in the WKB approxima-

tion, expanding in derivatives of the background Higgs field. Our approach is valid for a

large fraction of the parameter space of the model. It will break down for very small values

of the cut-off scale M , where the bubble width becomes of order the inverse temperature.

The CP violating force enters the transport equations which describe the hot plasma. Care-

fully expanding in derivatives of the wall profile, we find novel source terms which enhance

the generated baryon asymmetry. They are especially relevant for slow bubble walls and

dominate over the known source terms for large values of the particle mass. Because of

these properties they should play a prominent role in the MSSM, where the top quark is

replaced by the charginos.

In the model considered, the observed baryon asymmetry can be explained for nat-

ural values of the parameters. The phase transition should be somewhat stronger than

required by the washout criterion. If the EWPT is not that strong, the coefficient of the

CP violating dimension-6 operator has to be taken larger than one, which is compatible
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with experiments. It would also be interesting to study the impact of other CP violating

operators, such as the one discussed in ref. [14], which has been ignored in our study.

With a low cut-off the model is expected to lead to non-standard signals in flavor

physics, such as EDM’s and flavor changing neutral currents, which can be tested in future

experiments. The LHC will be able to directly test the physics at the cut-off scale. If the

general cut-off scale is in the multi-TeV range and the φ6 interaction is anomalously large,

the model could still be identified by its non-standard Higgs self couplings. However, the

required precision will probably take a linear collider [12].

In conclusion, the standard model with low cut-off provides the missing ingredients for

electroweak baryogenesis: a strong phase transition and additional CP violation. Moreover,

its simple structure makes it an ideal laboratory to refine the computation of the baryon

asymmetry.
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