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Abstract In this paper, consistency is understood in the standard way, i.e. as the
absence of a contradiction. The basic constructive logic BKc4, which is adequate to
this sense of consistency in the ternary relational semantics without a set of designated
points, is defined. Then, it is shown how to define a series of logics by extending BKc4
up to minimal intuitionistic logic. All logics defined in this paper are paraconsistent
logics.

Keywords Constructive negation · Substructural logics · Ternary relational
semantics · Paraconsistent logic

1 Introduction

This paper is a sequel to (Robles and Méndez 2007), which defined a series of
logics that are included in positive intuitionistic contractionless logic extended with
the constructive contraposition axioms

(i). (A → ¬B) → (B → ¬A)

(ii). B → [(A → ¬B) → ¬A]

and the EFQ (‘E falso quodlibet’) axioms

(iii).¬A → (A → B)
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162 G. Robles

and

(iv). A → (¬A → B)

In (Robles and Méndez 2007), it is shown that in theories whose underlying logic is
any one of that series there introduced, consistency has to be understood as the absence
of the negation of a theorem and not, in general, as the absence of a contradiction.
This concept of consistency is named weak consistency.

The purpose of this paper is to carry on a similar study on negation consistency as
it is understood in the following definition:

Definition 1 Let a be a theory (a theory is a set of formulas closed under adjunction
and provable entailment. Cf. Sect. 5). Then, a is n-consistent (negation-consistent) iff
for no wff A, A ∧ ¬A ∈ a, i.e. iff a contains no contradiction (a theory is n-inconsis-
tent—negation-inconsistent—iff it contains a contradiction).

The first aim of this paper is to introduce the logic BKc4 (BKc1, BKc2 and BKc3 are
defined in (Robles and Méndez 2007) which is the basic constructive logic adequate
to consistency as understood in definition 1. The logic BKc4 is ‘adequate’ because it
has exactly the ‘syntactical power’ for consistency (a syntactical notion) when it is
defined as negation-consistency: it is a logic too strong for weak consistency and too
weak for absolute consistency (i.e., non-triviality). The logic BKc4 is basic because it is
the minimal logic adequate to negation-consistency in the ternary relational semantics
without a set of designated points (cf. Sect. 4). And it is constructive because it is
endowed with a (weak) intuitionistic-type negation.

The logic BKc4 is a peculiar relatively strong logic. It is not included in e.g. Lewis’
modal logic S5 (A7 below is not a theorem of S5) or in relevance logic R (BKc4
is not a relevance logic), but it does not contain such a weak logic as Routley and
Meyer’s basic logic B. On the other hand, though the restricted ECQ (‘E contradictione
quodlibet’) axiom

(v). (A ∧ ¬A) → ¬B

is provable, the unrestricted ECQ axiom

(vi). (A ∧ ¬A) → B

is not derivable in BKc4. So, it is a second aim of this paper to extend BKc4 preserving
this property, i.e. the unprovability of (vi), in order to prevent negation-inconsistency
from collapsing into triviality. According to this aim, BKc4 is extended with the contra-
position axioms (i) and (ii). The resulting logic is named BKc5. Next, BKc5 is extended
with some positive implication axioms up to minimal intuitionistic logic Jm. Neither
(vi) or (iii) and (iv) are, of course, provable in any of these logics. In this way, we get
the spectrum of constructive logics in which consistency is equivalent to negation-
consistency from the basic logic BKc4 up to the ‘upper bound’ Jm.

But let us take a look at these logics from another perspective. As it is known,
a logic L is paraconsistent iff the ECQ axiom (vi) is not provable in L (see
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The Basic Constructive Logic for Negation-Consistency 163

Priest and Tanaka 2004). So, all the logics defined in this paper are paraconsistent
logics. Moreover, note that the ECQ axiom (vi) is rejected not because of ad hoc
reasons but on the basis of a precise concept of consistency. Nevertheless, the ECQ
axiom (v) is provable in BKc4 (and therefore, in all the logics defined in this paper),
and, obviously, the axiom (v) comes close to unrestricted ‘E contradictione quodlibet’
(vi). Let us then qualify better the status of the logics here presented. Let us name a
logic quasi-paraconsistent iff, though (v) is provable, (vi) is not. Then, all the logics
in this paper are quasi-paraconsistent logics.

The structure of the paper is as follows. In Sect. 2, the positive logic BK+ introduced
in (Robles and Méndez 2007) is recalled. It is the result of adding the rule K to Routley
and Meyer’s basic positive logic B+. The logic BKc4 and the logic BKc5 are studied in
Sects. 3, 4, 5 and Sects. 6, 7, respectively. In Sect. 5, it will be proved that in the present
semantic context, weak consistency understood as the absence of the negation of a
theorem does entail negation-consistency (in fact, negation-consistency is equivalent
to weak consistency). In Sect. 6, a short discussion on the weak full reductio axioms,
which, maybe unexpectedly because of the weakness of the implication connective
of BKc5, are nevertheless provable in it, is included. Finally, in Sect. 8 it is shown
how to extend BKc4 and BKc5 up to minimal intuitionistic logic Jm with some strong
implication axioms. The results of (Robles and Méndez 2007) are not, on the whole,
presupposed.

2 The Positive Logic BK+

BK+ is axiomatized with
Axioms

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

The rules of derivation are

Modus ponens (MP): (� A & � A → B) ⇒ � B

Adjunction (Adj.): (� A & � B) ⇒ � A ∧ B

Suffixing (Suf.): � A → B ⇒ � (B → C) → (A → C)

Prefixing (Pref.): � A → B ⇒ � (C → A) → (C → B)

K: � A ⇒ � B → A

Therefore, BK+ is B+ with the addition of the K rule.
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164 G. Robles

We now define the semantics for BK+. A BK+ model is a triple <K , R, �> where K

is a non-empty set, and R is a ternary relation on K subject to the following definitions
and postulates for all a, b, c, d ∈ K with quantifiers ranging over K:

d1. a ≤ b =df ∃xRxab

d2. R2abcd =df ∃x(Rabx & Rxcd)

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

Finally, � is a valuation relation from K to the sentences of the positive language
satisfying the following conditions for all propositional variables p, wff A, B and
a ∈ K:

(i). (a ≤ b & a � p) ⇒ b � p

(ii). a � A ∧ B iff a � A and a � B

(iii). a � A ∨ B iff a � A or a � B

(iv). a � A → B iff for all b, c ∈ K , (Rabc & b � A) ⇒ c � B

A formula A is BK+ valid (�BK+ A) iff a � A for all a ∈ K in all models.
In (Robles et al. 2007) or in (Robles and Méndez 2007), it is proved that BK+ is

sound and complete in relation to the semantics defined above. We also note that the
postulates

P3. Rabc ⇒ b ≤ c

P4. (a ≤ b & b ≤ c) ⇒ a ≤ c

and

P5. R2abcd ⇒ Rbcd

are immediate in all BK+ models.
As it is known, in the standard semantics for relevance logics (see e.g., (Routley

et al. 1982), there is a set of ‘designated points’ in terms of which the relation ≤ is
defined and with respect to which formulas are determined to be valid. The absence
of this set in BK+ semantics (and the corresponding changes in d1 and the definition
of validity) are the only but crucial differences between B+ models and BK+ models.

As it is shown in (Robles et al. 2007) or in (Robles and Méndez 2007), the logic
BK+ is the basic positive logic in the ternary relational semantics when there is not
a set of designated points and validity is defined in respect of all points in K. That
is, BK+ is the basic positive logic in the semantics just referred to in the same sense
that Routley and Meyer’s B+ is the basic positive logic in general ternary relational
semantics.
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The Basic Constructive Logic for Negation-Consistency 165

3 The Logic BKc4

We add the unary connective ¬ (negation) to the positive language. Then, BKc4
(the logic BK+ with a constructive negation) can be axiomatized by adding the fol-
lowing axioms to BK+

A7. ¬A → [A → (A ∧ ¬A)]

A8. [B → (A ∧ ¬A)] → ¬B

A9. (A ∧ ¬A) → ¬(A → A)

We note the following

Proposition 1 BKc4 is well axiomatized in respect of BK+. That is, given BK+, each
negation axiom is independent of the other two axioms.

Proof By MaGIC, the matrix generator developed by J. Slaney (see Slaney 1995).
�

The following are some theorems and rules of inference of BKc4 (a proof for each
one of them is sketched to their right):

T1. � ¬(A ∧ ¬A) A8

T2. � A → B ⇒ � ¬B → ¬A A7, A8

T3. ¬A → [A → ¬(A → A)] A7, A9

T4. � ¬B ⇒ � [(A → B) → ¬A] A7, A8

T5. � (A → ¬A) → ¬A

Proof By the theorem of BK+

(A → B) → [A → (A ∧ B)]

we have

(A → ¬A) → [A → (A ∧ ¬A)]

Then, T5 follows by A8. �

T6. � A ⇒ � ¬A → ¬B K, T2

T7. � B ⇒ � [(A → ¬B) → ¬A] T5, T6

T8. � [B → ¬(A → A)] → ¬B T7

T9. � A ⇒ � ¬¬A A1, T7

T10. � A ⇒ � ¬(B → B) ↔ ¬A T6
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166 G. Robles

T11. � A ⇒ � [(A → ¬B) → ¬B] K, T5

T12. � (A ∧ ¬A) → ¬B A9, T6

T13. � (A ∧ ¬A) → ¬(B → B) T12

T14. � A ⇒ � (A ∧ ¬A) ↔ ¬A A1, K

T15. � ¬A → (A → ¬B) A7, T12 (or T3, T6)

T16. ¬A → [A → ¬(B → B)] T15

T17. � ¬A ↔ (A → ¬A) T5, T15

T18. � [(A → B) ∧ (A → ¬B)] → ¬A A8

T19. � A → ¬B ⇒ � [(A → B) → ¬A] K, T18

T20. � A → B ⇒ � [(A → ¬B) → ¬A] K, T18

T21. � (A → B) → ¬(A ∧ ¬B) T19

T22. � (A → ¬B) → ¬(A ∧ B) T20

T23. (¬A ∨ ¬B) → ¬(A ∧ B) T2

T24. � ¬(A ∨ B) → (¬A ∧ ¬B) T2

T25. � (¬A ∧ ¬B) → ¬(A ∨ B) A7, A8

Note that BKc4 is a relatively strong logic: it has the weak contraposition axioms as
rules: T2, T4, T7 (but note that � A → ¬B ⇒ � B → ¬A is not provable (MaGIC));
double negation introduction as a rule: T9; the principle of non-contradiction: T1;
specialized reductio: T5; the weak reductio axioms as rules: T19, T20, the restricted
ECQ axiom T12, and the restricted EFQ axioms T15 and T6 (as a rule).

We end this section with some notes on the axiomatization of BKc4 . The logic BKc1
is the basic constructive logic adequate to consistency understood as the absence of
the negation of a theorem (cf. Robles and Méndez 2007). It is axiomatized by adding
T3 and T8 to BK+. Therefore, BKc1 is deductively included in BKc4 The converse does
not hold: A9 is not derivable in BKc1 (MaGIC).

Now (I owe this point to a referee of the JoLLI), we have:

Proposition 2 Let BKc4(ii) be the result of adding A9 to BKc1. BKc4 and BKc4(ii) are
deductively equivalent.

Proof (a) BKc4(ii) is obviously included in BKc4. (b) We prove that A7 and A8 are
theorems of BKc4(ii). We note the following theorems and rules of inference of BKc1
(cf. Robles and Méndez 2007):

(i). ¬A → (A → ¬B)

(ii). � A → B ⇒ � ¬B → ¬A

(iii). � A ⇒ ¬¬A

(iv). � ¬B ⇒ � (A → B) → ¬A
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The Basic Constructive Logic for Negation-Consistency 167

and the theorem of BK+

(v) (A → B) → [A → (A ∧ B)]

used above in the proof of T5. Then, by (ii) and A9

(vi) ¬¬(A → A) → ¬(A ∧ ¬A)

By A1, (iii) and (vi),

(vii) ¬(A ∧ ¬A)

So, A8 is derivable by (iv) and (vii). And finally, A7 is proved by (i) and (v). �

Therefore, BKc4 can be viewed as the result of adding A9 to BKc1. More exactly,
we have:

Proposition 3 Let BKc4(iii) be the result of adding the principle of non-contradiction
(PNC) T1 (of BKc4) to BKc1. Then, BKc4 and BKc4(iii) are deductively equivalent.

Proof That BKc4(iii) is included in BKc4 is obvious. And the converse is immediate by
(i) above (¬A → (A → ¬B)) and T1. �

Therefore, BKc4 can exactly be viewed as the result of adding the principle of
non-contradiction to BKc1. Note, however, that T1 is immediate from A8 and that
A9 is, given BK+, independent of A7 and A8 (cf. proposition 1). We shall return to
the relation between BKc1 and BKc4 at the end of Sect. 6. Meanwhile, it is of some
interest, maybe, to present some other axiomatizations of BKc4 as alternatives to those
discussed above. We have:

Proposition 4 The following systems (1) and (2) are deductively equivalent to BKc4:

(1.) A7, T8 and A9
(2.) A8 and T3

Proof The proof of case (1) is easy and is left to the reader. So, we prove case (2).
Note that T1, T5 and T18-T22 of BKc4 are derivable by just using A8, given BK+.
Then, T8 follows by A1, K and T20. Therefore, system (2) includes BKc4 by T1, T3
and T8, using proposition 3. �

Finally, we remark the following facts: (a) in BKc4(iii) of proposition 3, T1 can
be substituted for any one of T12, T13, T18–T22. (b) When present, A9, T3 and T8
can be substituted for T12 (T13), T15 and T7, respectively, in all the axiomatizations
discussed above. (c) A7, A8, T1, T2, T4–T11, T14, T18–T25 do not axiomatize BKc4
(MaGIC). (d) All formulations of BKc4 in propositions 2–4 are well axiomatized in
the sense of proposition 1, given BK+
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168 G. Robles

4 Semantics for BKc4

A BKc4 model is a quadruple 〈K , S, R, �〉 where S is a non-empty subset of K , and
K , R and � are defined, similarly, as in BK+ models except for the addition of the
following clause and postulates:

(v) a � ¬A iff for all b, c ∈ K , (Rabc & c ∈ S) ⇒ b � A

P6. (Rabc & c ∈ S) ⇒ a ∈ S

P7. a ∈ S ⇒ (∃x ∈ S)Raax

�BKc4 A (A is BKc4 valid) iff a � A for all a ∈ K in all models.
In order to prove soundness, we need the following two lemmas (see Robles and

Méndez 2007)

Lemma 1 (a ≤ b & a � A) ⇒ b � B.

Proof The proof is by induction on the length of A. The conditional and negation
clauses are proved with P2. �

Lemma 2 �BKc4 A → B iff for all a ∈ K in all models, a � A ⇒ a � B.

Proof The proof is by lemma 1, P1 and d1. �

Next, we prove the theorem of semantic consistency (soundness).

Theorem 1 If �BKc4 A, then �BKc4 A.

Proof Given the semantic consistency of BK+ (see Robles and Méndez 2007), we
only have to prove that A7, A8 and A9 are valid (we use lemma 2).

A7 is valid: suppose a � ¬A, a � A → (A ∧ ¬A) for a wff A, a ∈ K in some
model. Then, Rabc, b � A, c � A ∧ ¬A for b, c ∈ K . Now, c � A or c � ¬A. But by
P3 (cf. Sect. 2) and Rabc, b ≤ c; by b � A and lemma 1, c � A. So, c � ¬A. Then,
by clause (v), Rcde, d � A for d ∈ K and e ∈ S. By P6, c ∈ S. On the other hand, by
a � ¬A and clause (v), it follows that (Raxy & y ∈ S) ⇒ x � A for all x ∈ K and
y ∈ S. But we have Rabc and c ∈ S. So, b � A, which contradicts b � A above.

A8 is valid: suppose a � B → (A ∧ ¬A), a � ¬B for some wff A, B and
a ∈ K in some model. Then, Rabc, b � B for b ∈ K , c ∈ S. By clause (iv),
c � A ∧ ¬A i.e., c � A and c � ¬A, from which, by clause (v), it follows that (Rcxy

& y ∈ S) ⇒ x � A for all x ∈ K and y ∈ S. But given c ∈ S, we have Rccx for
some x ∈ S, by P7. Then, c � A, contradicting c � A above.

A9 is valid: suppose a � A ∧ ¬A, a � ¬(A → A) for some wff A and a ∈ K in
some model. Then, Rabc, b � A → A for b ∈ K , c ∈ S. On the other hand, we have
a � A and a � ¬A whence (Raxy & y ∈ S) ⇒ x � A for all x ∈ K and y ∈ S. But
a ∈ S (Rabc, c ∈ S, P6). So, Raax for some x ∈ S, by P7. Then, a � A contradicting
a � A above. �
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5 Completeness of BKc4

First, we state some definitions. A theory is a set of formulas closed under adjunction
and provable entailment (that is, a is a theory if whenever A, B ∈ a, then A ∧ B ∈ a;
and if whenever A → B is a theorem and A ∈ a, then B ∈ a); a theory is prime if
whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; a theory is regular iff all theorems of
BKc4 belong to a; a theory is null iff no wff belongs to a. Finally, a is n-consistent
iff for no wff A, A ∧ ¬A ∈ a. Next, we define the canonical model. Let KT be the
set of all theories and RT be defined on KT as follows: for all formulas A, B and a,
b ∈ KT , RT abc iff if A → B ∈ a and A ∈ b, then B ∈ c. Further, let KC be set
of all prime non-null theories, SC the set of all prime non-null n-consistent theories
and RC the restriction of RT to KC . Finally, let �C be defined as follows: for any wff
A and a ∈ KC , a �C A iff A ∈ a. Then, the BKc4 canonical model is the quadruple
〈KC , SC , RC , �C〉.

We prove the completeness theorem in respect of the present semantics.

Theorem 2 If �BKc4 A, then �BKc4 A.

First, we prove some useful lemmas.

Lemma 3 If a is a non-null theory, then a is regular.

Proof Let A ∈ a and B be a theorem. By the rule K, A → B is a theorem. So,
B ∈ a. �

Lemma 4 Let a, b be non-null theories. The set x = {B| ∃A[A → B ∈ a & A ∈ b]}
is a non-null theory such that RT abx.

Proof It is easy to prove that x is a theory such that RT abx. We prove that x is
non-null. Let A ∈ b. By lemma 3, A → A ∈ a. So, A ∈ x by RT abx. �

Lemma 5 Let a ∈ KT , b a non-null element in KT and c a prime member in KT

such that RT abc. Then, RT axc for some x ∈ KC such that b ⊆ x.

Proof It is an easy adaptation of the standard proof for relevance logics (see Robles
and Méndez 2007). �

We now introduce the following definitions (see Robles and Méndez 2007):

Definition 2 A theory a is w-inconsistent1 (weak inconsistent 1) iff it contains the
negation of a theorem (a is w-consistent1—weak consistent 1—iff it is not
w-inconsistent1).

Definition 3 A theory a is w-inconsistent2 (weak inconsistent 2) iff for some theorem
¬A, A ∈ a (a is w-consistent2—weak consistent 2) iff it is not w-inconsistent2.

Next, we prove some results on the relationship between n-consistency with
w-consistency1 and w-consistency2. We have:
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170 G. Robles

Proposition 5 Let BK+,¬ be any negation extension of BK+, and a be any BK+,¬
theory. Then, (a) if a is w-inconsistent1, then a is n-inconsistent, and (b) if a is
w-inconsistent2, then a is n-inconsistent.

Proof (a) Let ¬A ∈ a, A being a theorem. By the K rule, ¬A → A is a theorem. So,
A ∈ a, and consequently, A ∧ ¬A ∈ a. (b) The proof is similar to case (a). �

Proposition 6 Let BK+,¬ be any negation extension of BK+ in which the rule

r. � B ⇒ � (A ∧ ¬A) → ¬B

holds, and let a be any BK+,¬ theory. Then, a is n-consistent, iff a is w-consistent1.

Proof By proposition 5 and the rule r. �

Proposition 7 (a) Let BK+,¬ be any negation extension of BK+ in which the prin-
ciple of non-contradiction (PNC) T1 (¬(A ∧ ¬A)) holds. (b) Let BK+,¬ be any
negation extension of BK+ in which there is a theorem of the form ¬¬A and T12
( (A ∧ ¬A) → ¬B) holds. Now, let a be any BK+,¬ theory (in any of the senses (a)
or (b) explained above). Then, a is n-consistent, iff a is w-consistent2.

Proof By proposition 5 and the conditions of proposition 7. �

We have the following corollary of propositions 5–7:

Proposition 8 Let a be a BKc4 theory. Then, a is n-consistent iff a is w-consistent1 iff
a is w-consistent2.

At the end of this section, we shall show that BKc4 is indeed the basic constructive
logic for n-consistency in the ternary relational semantics without a set of designated
points. Therefore, in the present semantic context, n-consistency cannot be indepen-
dent of w-consistency1 or w-consistency2. But we have proved that w-consistency1 is
independent of n-consistency in (Robles and Méndez 2007), and that w-consistency2
is also independent of n-consistency in (Robles and Méndez, in preparation).1

Next, we prove the primeness lemma:

Lemma 6 (Primeness lemma) If a is a non-null n-consistent theory, then there is a
prime non-null n-consistent theory x such that a ⊆ x.

Lemma 6 follows from any of the three propositions 9–11 below.

1 In (Robles and Méndez 2007), it is incorrectly stated that w-consistency 1 and w-consistency2 are not
equivalent, the latter being entailed by the former in the context of BKc1. Now, T15 of BKc4 is also a
theorem of BKc1 (cf. proposition 2). So, let a be a w-inconsistent2 theory. Then, A ∈ a, ¬A being a
theorem. By T15, A → ¬B is also a theorem. Therefore, a contains every negation formula, whence it
is w-inconsistent1. Consequently, w-consistency1 entails w-consistency2, given BKc1, and thus, the two
weak sense of consistency are equivalent, given BKc1.
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First, we prove a proposition on the preservation of w-consistency1 of theories
when extended to prime theories. Let B+,¬ be any negation extension of (Routley and
Meyer’s basic positive logic) B+ in which the rule contraposition

con. � A → B ⇒ � ¬B → ¬A

is provable. We note that the following De Morgan law

dm1. � (¬A ∨ ¬B) → ¬(A ∧ B)

is provable in B+,¬ (A2, A5, con). We have:

Proposition 9 Let a be a w-consistent1 B+,¬ theory. Then, there is some prime
w-consistent1 B+,¬ theory x such that a ⊆ x.

Proof Define from a a maximal w-consistent1 theory such that a ⊆ x. If x is not
prime, then there are wff A, B such that A ∨ B ∈ x, A /∈ x, B /∈ x. Define the set
[x,A] = {C | ∃D[D ∈ x & �B+,¬ (A ∧ D) → C]}. Define [x, B] similarly. It is not
difficult to prove that [x,A] and [x, B] are theories strictly including x. By the maxi-
mality of x, they are w-inconsistent1. That is, ¬C ∈ [x,A], ¬D ∈ [x, B] for some the-
orems C, D. By definitions, we have �B+,¬ (A∧E) → ¬C, �B+,¬ (B∧E′) → ¬D for
some E, E′ ∈ x. By basic theorems of B+, �B+,¬ [(A∨B)∧(E∧E′)] → (¬C∨¬D).
So, ¬C ∨¬D ∈ x and by dm1, ¬(C ∧D) ∈ x. But by Adj., �B+,¬ C ∧D. Therefore,
if x is not prime, it would be w-inconsistent1, which is impossible. �

Therefore, in any logic including B+ plus con (or B+ plus dm1), w-consistent1
theories can be extended to prime w-consistent1 theories.

Next, we prove a proposition on the preservation of w-consistency2. Let B+,¬ be
any negation extension of B+ in which the following De Morgan law

dm2. � (¬A ∧ ¬B) → ¬(A ∨ B)

holds. Then, we have:

Proposition 10 Let a be a w-consistent2 B+,¬ theory. Then, there is some prime
w-consistent2 B+,¬ theory x such that a ⊆ x.

Proof Proceed similarly, as in proposition 9 until we have to conclude that [x,A] and
[x, B] are w-inconsistent2. Then, C ∈ [x,A], D ∈ [x, B] for some theorems ¬C,
¬D. As in proposition 9, it follows C ∨ D ∈ x, but by Adj., �B+,¬ ¬C ∧ ¬D and,
consequently, �B+,¬ ¬(C ∨ D) by dm2 . Therefore, x is w-inconsistent2, which is
impossible. �

Note that, in fact, only the De Morgan law dm2 as a rule

rdm2. � (¬A ∧ ¬B) ⇒ � ¬(A ∨ B)

is needed.
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Therefore, in any logic including B+ plus dm2 (rdm2), w-consistent2 theories can
be extended to prime w-consistent2 theories.

Finally, we prove a proposition on the preservation of n-consistency. Let BK+,¬ be
any negation extension of BK+ in which dm2 and the PNC T1 (of BKc4) hold. Then,
we have:

Proposition 11 Let a be a n-consistent BK+,¬ theory. Then, there is some prime
n-consistent BK+,¬ theory x such that a ⊆ x .

Proof Proceed similarly, as in the two previous propositions until one has to conclude
the n-inconsistency of [x,A] and [x, B], i.e., C ∧ ¬C ∈ [x,A], D ∧ ¬D ∈ [x, B] for
some wffC,D. Reasoning similarly, as above, it follows that (C∧¬C)∨(D∧¬D) ∈ x.
Now, by T1 and Adj., ¬(C ∧ ¬C) ∧ ¬(D ∧ ¬D) is a theorem. So, ¬[(C ∧ ¬C) ∨
(D ∧ ¬D)] is also a theorem by dm2. As x is regular (it is non-null), ¬[(C ∧ ¬C) ∨
(D∧¬D)] ∈ x. Therefore, [(C ∧¬C)∨ (D∧¬D)]∧¬[(C ∧¬C)∨ (D∧¬D)] ∈ x,
contradicting the n-consistency of x. �

Note that, as in the preceding proposition, the rule rmd2 is sufficient.
Therefore, in any logic included in BK+ plus dm2 (rdm2) and T1, n-consistent

theories can be extended to prime n-consistent theories.
Given proposition 8, lemma 6 follows by any of the propositions 9, 10 or 11.
Now, given the completeness of BK+ (see Robles and Méndez 2007), in order to

prove that of BKc4, it is obvious that we just have to prove that P6, P7 and clause (v)
are canonically valid. We now prove lemma 7 from which the canonical validity of P6
and P7 follows immediately.

Lemma 7

(1) Let a, b be non-null elements in KT and c be a n-consistent member in KT such
that RT abc. Then, a is n-consistent as well.

(2) Let a be a n-consistent member in KT . Then, there is some n-consistent member
x in KT such that RT aax.

Proof

(1) Assume the hypothesis of case 1. By reductio, suppose that for some
wff A, A ∧ ¬A ∈ a. By A9, ¬(A → A) ∈ a. Now, by A7, ¬(A → A) →
{(A → A) → [(A → A) ∧ ¬(A → A)]} is a theorem. So, {(A → A) →
[(A → A) ∧ ¬(A → A)]} ∈ a. Now, A → A ∈ b by lemma 3. Thus, by
RT abc, (A → A) ∧ ¬(A → A) ∈ c contradicting the n-consistency of c.2

(2) Suppose a is a non-null n-consistent theory. Define the non-null theory x such
that RT aax (cf. lemma 4). By reductio, suppose that for some wff A, A∧¬A ∈ x.
Then, for some B ∈ a, B → (A∧¬A) ∈ a. But, by A8, ¬B ∈ a. Consequently,
B ∧ ¬B ∈ a, contradicting the n-consistency of a. �

2 The proof can be simplified by using proposition 8 (see Robles and Méndez 2007).
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We now prove the canonical adequacy of P6 and P7. They read canonically as
follows:

P6. Let a, b ∈ KC , c ∈ SC and RCabc. Then, a ∈ SC .
P7. Let a ∈ SC . Then, there is some x ∈ SC such that RCaax.

Proof Proof of P6: Immediate from lemma 7 (1).
Proof of P7: suppose a ∈ SC . By lemma 7 (2), there is a non-null n-consistent theory
y such that RT aay. By lemma 6 y is extended to a prime non-null n-consistent theory
x such that y ⊆ x. Obviously, RCaax. �

Finally, we prove that clause (v) holds canonically:

Proof If a �C ¬A, then (RCabc & c ∈ SC) ⇒ b �
C A:

Suppose ¬A ∈ a, RCabc, c ∈ SC and (by reductio) A ∈ b. By A7, A → (A∧¬A)

∈ a. Then, (A ∧ ¬A) ∈ c contradicting the n-consistency of c.
If a �

C ¬A, then there are b ∈ KC , c ∈ SC such that RCabc and A ∈ b:
Suppose¬A /∈ a. Define the setsx = {B|�BKc4 A → B},y = {B| ∃C[C → B ∈ a

& C ∈ x]}. It is easy to show that x and y are non-null theories such that RT axy

(cf. lemma 4). Moreover, A ∈ x. If y is not n-consistent, then for some wff B,
B ∧ ¬B ∈ y. Then, C → (B ∧ ¬B) ∈ a, �BKc4 A → C for some wff C. By Suf.,
�BKc4 [C → (B ∧ ¬B)] → [A → (B ∧ ¬B)]. So, A → (B ∧ ¬B) ∈ a. By A8,
¬A ∈ a contradicting the hypothesis. Now, as y is non-null, it is extended to a prime
non-null n-consistent theory c such that y ⊆ c. Clearly, RT axc (RT axy and y ⊆ c).
Then, x is extended to a prime non-null theory b such that RCabc and A ∈ b by
lemma 5. �

We end this section with a brief discussion on the reasons for dubbing BKc4 ‘the
basic constructive logic for n-consistency’ in the ternary relational semantics without
a set of designated points.

Axioms A7 and A8 are needed (and sufficient) in the proof of the canonical ade-
quacy of clause (v). On the other hand, the ‘principle of non-contradiction’ (PNC) T1
and the De Morgan law T25 are sufficient to prove the primeness lemma (cf. prop-
osition 11). Therefore, a reasonable conclusion is that A7 and A8 should suffice for
axiomatizing the basic constructive logic for n-consistency (I owe this point and its
development to a suggestion by a referee of the JoLLI). But surprisingly enough, T25,
which is valid in the semantics by using the mere clauses (no semantic postulates
being needed) is not derivable from A7 and A8 (MaGIC). Consequently, our conclu-
sion forcibly has to be that A7, A8 and T25 (added to BK+) is the system we are
searching for. And it has to be so, I think, but not in the present semantic context, as I
will show in the following lines.

Given BK+ and BK+ semantics, P7 is the ‘corresponding postulate’ to A8. That
is, the axiom is proved valid with the postulate, and this one is proved valid with the
axiom. But notice that this is not the case, regarding A7 and P6: A9 is needed in the
canonical proof of P6. The fact is that A7 is too weak an axiom to prove P6 canonically
valid, if the positive context is BK+.

So, let us explore which postulates would validate A7. BK+ semantics being sup-
posed (for stronger positive logics other possibilities would be open), it is easy to see
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that in addition to P6, the three following possibilities are obtained:

P6(i). (R2abcd & d ∈ S) ⇒ (∃x ∈ S)Rabx

P6(ii). (Rabc & Rcde & e ∈ S) ⇒ (∃x ∈ S)Racx

P6(iii). (R2abcd & d ∈ S) ⇒ (∃x ∈ S)Racx

Now, given BK+ semantics plus P7, P6 and P6(i) are equivalent; P6(ii) is provable
canonically only if A7, A8, A9 and

(i). ¬A → [(A → A) → ¬A]

are present. And finally, P6(iii) is only provable if A8 and

(ii). ¬A → (B → ¬A)

are theorems (note that (i) and (ii) are equivalent, BK+ being supposed).
It is clear that P6(ii) must be rejected: we would be obliged to strengthen BKc4 with

(i), which is not provable in it (MaGIC). Therefore, we are left with two possibilities:
P6 (P6(i)) or P6(iii). If we choose P6, A9 (in fact, the restricted ECQ axiom T12) is
automatically valid; if we choose P6(iii), the restricted K axiom (ii) has to be intro-
duced. And this axiom seems to be perhaps too much of a strengthening of A7. So,
we choose P6.

As A7 and A8 (with T25) do not seem to be semantically (though syntactically
they are indeed) isolated in the present semantic context, we can consider BKc4 as the
basic constructive logic for n-consistency in the ternary relational semantics without
a set of designated points.

Anyway, what about the other possibility? As we have noted above, P7 is the cor-
responding postulate to A8. On the other hand, (ii) is proved valid with P6(iii), which,
in its turn, is proved canonically valid with A8 and (ii). Now, let BKc4(b) be axioma-
tized by adding A8 and (iii) to BK+. What about this logic? BKc4(b) is a most peculiar
logic. Contrarily to what happens with BKc4, BKc4(b) is undefinable (so it seems)
with a propositional falsity constant. We think that it is, in fact, the basic constructive
paraconsistent (in a strong sense of the concept) logic with the PNC in the ternary
relational semantics without a set of designated points. It has the PNC as a theorem,
and negation introduced via implication of a contradiction. But it has not the slightest
flavour of the ECQ axioms and just a little scent of the EFQ axioms, namely, the
rule

(iii). � A ⇒ � ¬A → ¬B

Moreover, BKc4 and BKc4(b) are independent logics.
Could BKc4(b) possibly be the basic constructive logic for n-consistency in the

ternary relational semantics without a set of designated points?
We promise to discuss BKc4(b) and the question just noted in another paper.
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6 The Logic BKc5

The logic BKc5 is the result of adding to BKc4 the following axioms:

A10. (A → ¬B) → (B → ¬A)

A11. B → [(A → ¬B) → ¬A]

But we prove that A8 and A11 are sufficient to axiomatize BKc5.
First, we note that T1, T5, T11, T18–T22 of BKc4 are derivable from BK+ plus A8.

Next, we prove

T26. � A → ¬¬A A11, T11

T27. � ¬B → [(A → B) → ¬A] A11, T26

T28. � ¬A → (B → ¬A) T27, K

On the other hand, by the theorem of BK+

(A → B) → [A → (A ∧ B)]

and T28, we have

T29. ¬B → [A → (A ∧ ¬B)]

Now, the weak contraposition axiom

T30. � (A → B) → (¬B → ¬A)

is proved as follows. By T27

(i). ¬(A ∧ ¬B) → [[A → (A ∧ ¬B)] → ¬A]

Then, T30 follows by (i), T21 and T29. So, we have

T31. (A → ¬B) → (B → ¬A) T26, T30

Finally, A7 is derivable from T29, and A9 by T1 and T31. Therefore, BKc4 is
included in BKc5.

Some other theorems of BKc5 are, for example,

T32. � A → [(A → ¬B) → ¬B] A11, T31

T33. � (A ∧ B) → ¬(A → ¬B) A10, T21

T34. � (A ∧ ¬B) → ¬(A → B) A10, T22

T35. � A → (¬A → ¬B) T15, T26
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Moreover, it is especially remarkable that the full (weak) reductio axioms are deriv-
able:3

T36. � (A → B) → [(A → ¬B) → ¬A]

Proof

1. (A ∧ B) → ¬(A → ¬B) T33

2. (A → B) → [A → (A ∧ B)] By BK+
3. [A → (A ∧ B)] → [A → ¬(A → ¬B)] Pref., 1

4. (A → B) → [A → ¬(A → ¬B)] (Transitivity, 2, 3)

5. [A → ¬(A → ¬B)] → [(A → ¬B) → ¬A] T31 (A10)

6. (A → B) → [(A → ¬B) → ¬A] Transitivity, 4, 5

�

T37. � (A → ¬B) → [(A → B) → ¬A]

Proof Similar to the proof of T36 by using T34. �
Now, on the axiomatization of BKc5, we note the following

Proposition 12

(1) In the formulation of BKc5, A8 can be substituted by A9.
(2) Moreover, in the formulation of BKc5, A8 can be substituted by the PNC T1.
(3) Let BKc5(b) the result of adding A7, A8 and A10 to BK+. Then, BKc5 and BKc5(b)

are deductively equivalent.
(4) T1–T3, T6, T9, T10, T12–T16, T23–T26, T28–T30, T31 (A10) and T35 are deriv-

able from A7, A9 and A10. But A7, A9 and A10 do not axiomatize BKc5. Nev-
ertheless, if any of T4, T5, T7, T8, T11, T17 (from right to left), T18–T22, T27,
T32–T34, T36 or T37, which are not derivable from A7, A8 and A10, is added
to these axioms, the resulting system is equivalent to BKc5.

(5) T1, T2, T4–T14, T18–T26, T30, T31 (A10), T33, T34, T36 and T37 are derivable
from A8, A9 and A10. But A8, A9 and A10 do not axiomatize BKc5. However, if
any of T3, T15, T16, T17 (from left to right), T27, T28, T29, T32 or T35, which
are not derivable from A8, A9 and A10, is added to these axioms, the resulting
system is equivalent to BKc5 .

3 It is conjectured in (Robles et al. 2005) that the full (weak) reductio axioms T36 and T37 cannot be
introduced in B+ supplemented with the contraposition axioms A10 and T30 and the specialized law of
reductio T5. The resources of the logic seem to be insufficient to prove the canonical adequacy of the
corresponding semantical postulates. Moreover, in (Robles and Méndez 2004), it is conjectured that this
also happens in the case of the full (strong) reductio axioms (¬A → B) → [(¬A → ¬B) → A] and
(¬A → ¬B) → [(¬A → B) → A] in respect of Routley and Meyer’s logic B. Now, interestingly enough
(we think), not only can T36 and T37 be introduced in BKc5, they are also derivable.
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(6) BKc5 and the equivalent formulations in (1), (2) and (3) are well axiomatized in
respect of BK+ (cf. proposition 1).

Proof The proof of case (1) is easy and is left to the reader. Case (2) is proved as
follows:

By A11

(a). A → [(¬A → ¬A) → ¬¬A]

whence by the K rule

(b). A → (B → ¬¬A)

Again, by A11 and T1,

(c). [B → ¬¬(A ∧ ¬A)] → ¬B

Then,

T12. (A ∧ ¬A) → ¬B

follows by using (b) and (c).
Next, we prove case (3). We prove that BKc5 is included in BKc5(b), the converse

being obvious:
By A8,

T1. ¬(A ∧ ¬A)

and by T1, K and A10,

A9. (A ∧ ¬A) → ¬(A → A)

So, note that BKc4 is included in BKc5(b). Now, by A10,

T26. A → ¬¬A

and by A10 and T26,

T30. (A → B) → (¬B → ¬A)

On the other hand, by T15 and A10,

T28. ¬A → (B → ¬A)

whence by BK+

T29. ¬B → [A → (A ∧ ¬B)]
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Then, T27 is proved as follows:

(a). ¬B → [¬(A ∧ ¬B) → ¬A]

by T29 and T30. So, by (a) and T21,

T27. ¬B → [(A → B) → ¬A]

Finally, by T26 and T27,

A11. B → [(A → ¬B) → ¬A]

Regarding cases (4) and (5), the proofs of non-derivability are by MaGIC; the proofs
of derivability are left to the reader: they are easy leaning on the proofs provided for
BKc4 and BKc5 throughout the paper. Finally, case (6) is proved again with MaGIC.

�

Given the axiomatization of BKc4 provided in propositions 2–4 and those of BKc5 in
proposition 12, a number of alternative formulations of the latter logic can be provided.
But, enough ‘axiom chopping’ having been displayed in this paper (maybe too much,
in fact), this point will not be pursued here any further: it is not the aim of this paper
to ‘exhaustively axiomatize’ (cf. Méndez 1987) BKc4 (BKc5) with A7–A9 (A7–A11)
and T1–T25 (T1–T37).

7 Semantics for BKc5

A BKc5 model is a quadruple 〈K , S, R, �〉 where K , S, R and � are defined (in a similar
way) as in a BKc4 model save for the addition (besides clause (v) and postulates P6
and P7) of the postulates

P8. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2acbx

P9. (R2abcd & d ∈ S) ⇒ (∃x ∈ S)R2bcax

�BKc5 A (A is BKc5 valid) iff a � A for all a ∈ K in all models.
It is clear that in order to prove the soundness of BKc5, we just have to prove that

A10 and A11 are valid and that in order to prove completeness, we have to prove that
P8 and P9 hold canonically.

As remarked in (Robles and Méndez 2007), A10 and A11 are proved valid with P8
and P9, respectively. On the other hand, P8 is proved canonically valid with A7, A8
and A10, and P9 is proved canonically valid with A7, A8 and A11, in a similar way,
as they were proved in (Robles and Méndez 2007).
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8 Concluding Remarks: Strengthening the Logics

We show how to define some logics between BKc4 and minimal intuitionistic logic
from some well-known ones (cf. Robles and Méndez 2007).

Consider the following axioms and rule of inference:

A12. (B → C) → [(A → B) → (A → C)]

A13. (A → B) → [(B → C) → (A → C)]

A14. [A → (A → B)] → (A → B)

A15. � A ⇒ � (A → B) → B

A16. A → [(A → B) → B]

A17. A → (B → A)

The logic TW+ (‘Contractionless Positive Ticket Entailment’) is B+ plus A12 and
A13; the logic T+ (‘Positive Ticket Entailment’) is TW+ plus A14; the logic E+
(‘Positive Logic of Entailment’) is T+ plus A15; the logic R+ (‘Positive Logic of
Relevance’) is T+ plus A16; the logic J+ (Positive Intuitionistic Logic) is R+ plus
A17. Therefore, TWK+, TK+, EK+ and RK+ are TW+, T+, E+ and R+ plus the K
rule, respectively. We note that RK+ and JK+ are deductively equivalent logics. Now,
negation can be introduced in these positive logics in a similar way as it has been
introduced in BK+. The logics TWKc4, TKc4 , EKc4, RKc4 and JKc4, as well as the
logics TWKc5, TKc5, EKc5, RKc5 and JKc5, can also be defined in this way. It is clear
that JKc5 is minimal intuitionistic logic defined with a negation connective. On the
relationship between these logics we note the following proposition:

Proposition 13

(1) TWKc4 and TWKc5, TKc4 and TKc5, EKc4 and EKc5 are different logics.
(2) RKc4 (= JKc4) is deductively equivalent to RKc5 (= JKc5).

Proof (1) By MaGIC, A10 and A11 are not derivable in EKc4.
(2) The axioms A10 and A11 can be proved in RKc4 (JKc4) as follows:

By A13, A7 and A8, we have

(a). (A → B) → (¬B → ¬A)

By A12, A7 and A8,

(b). ¬B → [(A → B) → ¬A]

Now, by A17 and (a)

(c). A → [¬A → ¬(B → B)]

From (c) and T8

(d). A → ¬¬A
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Therefore, by (a) and (d),

(e). (A → ¬B) → (B → ¬A)

which is A10. Similarly, by (b) and (d),

(f). B → [(A → ¬B) → ¬A]

which is A11. �
As for semantics, consider the following set of postulates:

P10. R2abcd ⇒ (∃x ∈ K)(Rbcx & Raxd)

P11. R2abcd ⇒ (∃x ∈ K)(Racx & Rbxd)

P12. Rabc ⇒ R2abbc

P13. (∃x ∈ K)Raxa

P14. Rabc ⇒ Rbac

P15. Rabc ⇒ a ≤ c

Given B+, postulates P10, P11, P12, P13 and P14 are the corresponding postulates
to A12, A13, A14, A15 and A16, respectively (see (Routley et al. 1982); given BK+,
P15 is the corresponding postulate to A17. Therefore, models for the different LKc
logics are defined by simply adding the corresponding postulates to the BKc logic.
Thus, TKc4 models, for example, are defined by adding postulates P10, P11 and P12
to postulates P6 and P7 in BKc4 models. Soundness and completeness follow from
those of the BKc logics and the fact that the postulates added to the models are the
corresponding postulates to the axioms added to the logic.

Now, let us briefly compare BKc4 and its extensions with BKc1 and its extensions.
As we have seen (cf. Sect. 3), the basic constructive logic for w-consistency1 BKc1

can be axiomatized by adding to BK+ T3 and T8 (of BKc4). Then, in (Robles and
Méndez 2007), the logic BKc2 is defined. It is the result of adding the contraposition
axioms A10 and A11 to BKc1. Finally, in the aforementioned paper, it is shown how
to extend BKc2 with A12, A13, A15, A16 and A17. The contraction axiom A14 is not
considered because if it is added to BKc1, w-consistency would collapse into n-consis-
tency. We remarked (cf. proposition 3) that BKc4 can be viewed as the result of adding
the PNC T1 to BKc1. By case (2) of proposition 12, BKc5 can similarly be understood
as the result of adding T1 to BKc2. So, we have:

Proposition 14 BKc1 and BKc2 are included in (but do not include) BKc4 and BKc5,
respectively.

Proof T3 and T8 are theorems of BKc4, but A8, for example, is not provable in BKc2
(MaGIC). �

Moreover, let SKc1 (SKc2) be any extension of BKc1 (BKc2) defined by adding any
selection of axioms A12, A13, A15, A16 and A17; and let SKc4 (SKc5) be the extension
of BKc4 (BKc5) defined by adding the same selection. We have:
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Proposition 15 SKc1 (SKc2) is included in (but does not include) SKc4 (SKc5), respec-
tively.

Proof (a) By proposition 14. (b) Let JWKc2 be the result of adding to BKc2 A12,
A13, A15, A16 and A17. Although A7 is provable in JWKc2, A8 and A9 are not
(MaGIC). �

We end by noting that the EFQ axioms (iii), (iv) and the ECQ axiom (vi) (cf.
Introduction) are unprovable in all logics defined in this paper: they are not deriv-
able in minimal intuitionistic logic Jm. Therefore, though in JWKc5 (in fact, in BKc4)
negation-inconsistency is equivalent to w-inconsistency1 and w-inconsistency2 (cf.
proposition 8), it cannot be defined as absolute inconsistency, i.e. triviality.
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