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THE BASIC LAPLACIAN OF A RIEMANNIAN FOLIATION

By EFTON PARK and KEN RICHARDSON

Abstract. We study the basic Laplacian on Riemannian foliations by writing the basic Laplacian in
terms of the orthogonal projection from square-integrable forms to basic square-integrable forms.
Using a geometric interpretation of this projection, we relate the ordinary Laplacian to the basic
Laplacian. Among other results, we show the existence of the basic heat kernel and establish
estimates for the eigenvalues of the basic Laplacian.

Introduction. Let M be a compact oriented manifold and let F be a transver-
sally oriented foliation on M. A foliation F is a Riemannian foliation if there
exists a Riemannian metric on M with the property that the distance from one
leaf of F to another is locally constant; such a metric is called a bundle-like
metric for F . Associated to F are the space of basic forms:

Ω�B(M) = Ω�B(M,F) = f! 2 Ω�(M): i(X)! = 0, i(X)d! = 0 for all X 2 Γ(TF)g,

where i(X) is the interior product with the vector field X and Γ(TF) denotes
the sections of the distribution TF associated to F . The exterior derivative d
maps basic forms to basic forms; let dB denote d restricted to Ω�B(M). The basic
Laplacian is the operator ∆B = dB�B + �BdB on basic forms, where �B is the
adjoint of dB on Ω�B(M). The analytic and geometric properties of this operator
have been studied by several researchers. In [5], the basic Laplacian was studied
as an operator on basic functions (i.e., functions that are constant on leaves of
F), and the author proved the existence of the heat kernel in this case. In [13],
the existence of the heat kernel on basic forms was proved for the case where
the mean curvature form of the foliation is basic. There are also “basic” Hodge
theorems, for example [6] and [10]. However, the proof of the Hodge theorem
in [6] does not yield various estimates that are important in applications, while
the theorem proved in [10] has the same restriction as the results in [13], namely
that the authors require the mean curvature form to be basic.

In this paper, we study the basic Laplacian on forms, without any restriction
on the mean curvature. We prove the existence and uniqueness of the heat kernel
for ∆B on forms for any Riemannian foliation, and we write down an explicit
formula for the heat kernel. We also present a proof of the Hodge theorem for
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basic forms that is similar to the proof in [10] and does not require basic mean
curvature.

We have used several techniques in obtaining our results. The main new
idea in our work is in taking a Hilbert space approach to the study of the basic
Laplacian. It follows easily from the theory of operators on Hilbert space that the
adjoint �B of dB can be expressed as �B = P�, where � is the adjoint of d and P
is the orthogonal projection of the Hilbert space L2(Ω�(M)) of all L2-forms on M
to the Hilbert subspace L2

B(Ω�(M)) spanned by the smooth basic forms on M. We
show that this projection, which we call the basic projection, can be computed
in terms of geometric data, and this is a crucial fact in the proofs of our results.
We also employ two techniques that have been used by other researchers in this
area. First, we study the Riemannian foliation F by lifting it to a transversely
parallelizable foliation bF on the oriented orthonormal transverse frame bundle bM
of (M,F). Second, we use a device that is also used in [10]: we show that ∆B is
the restriction to basic forms of a (non-selfadjoint) elliptic operator on all forms.
This is an important technical point, because the space of basic forms is not the
set of all sections of any vector bundle, and therefore the usual theory of elliptic
operators does not apply directly to ∆B.

This paper is organized as follows. In Section 1, we first define the basic pro-
jection for the transversely parallelizable foliation ( bM, bF), and give a geometric
formula for it. We then use the basic projection on ( bM, bF) to define the basic pro-
jection P for the original foliation (M,F). We prove that P maps smooth forms
to smooth forms and maps basic forms to themselves. We also record several
formulas that express how P acts on specific kinds of forms.

In Section 2, we examine relationships among the basic projection P, the
exterior derivative d and its adjoint �, and the basic Hodge star operator. We
give an explicit formula for the commutator [P, �], and by taking adjoints also
get a formula for [P, d]. From these formulas we show that on basic forms,
the basic Laplacian can be written as ∆B = ∆ + �d + d�, where ∆ is the usual
Laplacian on M and � is an order zero map from the space of basic forms to its
perpendicular space. The expression on the right-hand side makes sense for all
forms and therefore gives us a strongly elliptic operator e∆ on Ω�(M) that equals
∆B when restricted to basic forms.

In Section 3, we give a new proof of the Hodge decomposition theorem for
basic forms. We prove the existence and uniqueness of the heat kernel Kk

B(t, x, y)
of the basic Laplacian on k-forms, and we prove that Kk

B(t, x, y) = PxPyKke∆�(t, x, y),
where Px and Py are the basic projections in the x and y variables, respectively,
and where Kke∆�(t, x, y) is the heat kernel of e∆�. From this we get a basic Green’s

operator GB that is related to the Green’s operator eG of e∆� by the formula
GB = PeG. We also obtain an estimate for the growth of the eigenvalues of
the basic Laplacian. Suppose the space of basic k-forms is infinite-dimensional.

Let �B,k
0 � �B,k

1 � �B,k
2 � � � � be the eigenvalues of ∆B, and let �∆,k

0 � �∆,k
1 �
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�∆,k
2 � � � � be the eigenvalues of ∆ = ∆� ���. We prove that �B,k

j � �∆,k
j for all j,

which implies that there exists a positive constant C such that �B,k
j � Cj2=n for

large j.
In Section 4, we consider special cases of our results. We first look at the

basic Laplacian on functions, and show the formulas for the various Laplacians
we construct in Section 2 simplify in this case. Next, let f�∆

j g be the nonde-
creasing sequence of eigenvalues of ∆ on smooth functions, and let f�B

j g be the
nondecreasing sequence of eigenvalues of ∆B on smooth basic functions. Then
when the space of smooth basic functions is infinite-dimensional, we prove that
�B

j � �∆
j for all j, and therefore trL2

B
(e�t∆B) � trL2(e�t∆) for t > 0. We also

apply our results to Riemannian foliations where the mean curvature form is
basic; this is the situation studied in [10] and [13]. Under this hypothesis, we
obtain the following results. We show that the basic Laplacian and the ordinary
Laplacian (as well as the other Laplacians we define in Section 2) coincide as
operators on smooth basic functions. We then prove that the spectrum of ∆B as
an operator on basic functions is contained in the spectrum of ∆ as an operator
on functions (also proved in [10]) and that the heat kernel KB(t, x, y) of ∆B on
basic functions equals PxPyK∆(t, x, y), where K∆(t, x, y) is the heat kernel of ∆
on functions. Let f�∆,k

j g be the nondecreasing sequence of eigenvalues of ∆ on

smooth k-forms Ωk, and let f�B,k
j g be the nondecreasing sequence of eigenvalues

of ∆B on smooth basic k-forms Ωk
B. For k = 1, we prove that when the space

of smooth basic 1-forms is infinite-dimensional, �B,1
j � �∆,1

j for all j, and hence
trL2(Ω1

B)(e
�t∆B) � trL2(Ω1)(e

�t∆) for t > 0. If k > 1 and the space of smooth basic

k-forms is infinite-dimensional, we show that �B,k
j � �∆,k

j � maxx2Mf(�0,�0)xg,
where �0 is a form defined in Section 2 that comes from Rummler’s formula, and
where ( , )x denotes the pointwise inner product of forms at a point x in M. Fi-
nally, we show that when the foliation has codimension 1 and the space of smooth
basic 1-forms is infinite-dimensional, �B,k

j � �∆,k
j �maxx2Mf(P�� �, P�� �)xg;

this last inequality does not require that the mean curvature be basic.
This work can be viewed as an extension of the spectral analysis of Rie-

mannian submersions; see, for example, [12], [2], [15], and [8]. We should also
mention some important results that are not directly related to our work. In [1],
the author showed that the basic component of the mean curvature form (in our
terminology, the projection of the mean curvature form) is closed and defines a
class in basic cohomology that is independent of the choice of bundle-like metric.
Furthermore, any representative of this cohomology class can be realized as the
projection of the mean curvature form of some bundle-like metric. In [3], the au-
thor proves that for any Riemannian foliation on a compact manifold, there exists
a bundle-like metric for which the mean curvature form is basic. These results
can be used to study topological aspects of Riemannian foliations by capitaliz-
ing on the wealth of literature concerning foliations with basic mean curvature.
In our work, we are interested in fixing a bundle-like metric and studying the
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relationship between the Riemannian geometry of the manifold and the trans-
verse geometry of the foliation. Other researchers have been interested in these
geometric aspects as well ([14]).

Acknowledgments. We would like to thank Robin Forman and Philippe Ton-
deur for helpful discussions.

1. The basic projection. Throughout this paper, M will be a closed, oriented
Riemannian manifold, and F will be a transversally oriented Riemannian foliation
on M. Let Ω�(M) be the space of smooth forms on M, and let Ω�B(M) be the
space of smooth basic forms. The exterior derivative d restricts to a map dB from
Ω�B(M) to itself, and we wish to write down the formal adjoint of dB.

Suppose Ω�(M) is endowed with the usual L2-inner product h , i induced
from the metric on M, and let L2(Ω�(M)) be the completion of Ω�(M). Let
L2(Ω�B(M)) be the closed subspace of L2(Ω�(M)) spanned by Ω�B(M), let PB be
the orthogonal projection on L2(Ω�(M)) with range L2(Ω�B(M)), and let � be the
formal adjoint of d. Then for any two smooth basic forms � and �,

h�, PB��i = hPB�, ��i = h�, ��i = hd�,�i = hdB�,�i,

so PB� is the Hilbert space adjoint �B of dB (strictly speaking, when working
with unbounded operators, one must explicitly specify their domains. However,
we are ultimately only interested in smooth forms, and the domains of each of
these operators include the appropriate smooth forms).

While the Hilbert space approach provides a simple formula for �B, this
formula is not very useful from a geometric point of view. For example, it is not
at all obvious that �B maps smooth basic forms to smooth basic forms. For this
reason, it is desirable to have another way to compute �B. We accomplish this
by demonstrating that the projection PB can be computed in terms of geometric
data.

Let TF be the p-dimensional subdistribution of TM corresponding to F , and
let NF be the orthogonal distribution to TF . Let bM be the oriented orthonormal
transverse frame bundle of (M,F), and let � be the natural projection �: bM ! M.
The manifold bM is a principal SO(q)-bundle over M, where q is the codimension
of F . Associated to F is the lifted foliation bF on bM. The lifted foliation is
transversely parallelizable, and the closures of its leaves are the fibers of a fiber
bundle �B: bM ! W. (See [11] for details.) We let F denote the foliation of bM
by leaf closures of bF .

Endow bM with the metric gM + gSO(q), where gM is the (lifted) metric from
M on vectors in the manifold directions, and gSO(q) is a normalized left-invariant
metric on the fibers.

Let C1B ( bM) denote the space of smooth basic functions on bM. We define a
map A from C1( bM) to functions on bM by averaging along the leaves of F . More
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precisely, let f be a smooth function on bM, and choose x̂ in bM. Let Lx̂ be the leaf
of F containing x̂, and let ! be any form on bM which restricts to the volume
form on the tangent spaces of leaves of F near Lx̂. Define Af (x̂) by

Af (x̂) =

Z
Lx̂

f (u)!(u)
Z

Lx̂

!(u)
.

Since the leaf Lx̂ is compact, the integrals above converge. The function Af is
necessarily basic, because it is constant along the leaves. It is also clear that A
is the identity on basic functions, since basic functions are constant on the leaf
closures. Furthermore, suppose that f1 is a smooth basic function on bM and f2
is any smooth function on bM. Then A( f1f2) = f1A( f2). One of the most crucial
properties of A is:

PROPOSITION 1.1. A maps smooth functions to smooth basic functions.

Proof. The preceding remarks show that A maps smooth functions to ba-
sic functions, so we need only verify that A maps smooth functions to smooth
functions.

We begin by describing the coordinates that we will use to evaluate the
integrals. The leaves of F are closed submanifolds of bM, and all of the leaves are
isometric to one another. Given a leaf L of F , there exists a tubular neighborhood
of L that is a union of leaves of F and is diffeomorphic to L�U, where U is an
�-ball transverse to L (see [11]).

Fix a point in bM. Let L be the leaf of F containing that point, and choose a
coordinate atlas for L. Let z be any point in a tubular neighborhood T of L, and
write z in coordinates (x, y). Here y is the point of intersection of U and the leaf
of F that contains z, and x represents the local coordinates of the unique point in
the leaf L that is closest to z. Since there is no leaf holonomy, the y-coordinates
are globally well-defined on the tubular neighborhood. Let U be a finite simple
open cover of T , and let Φ be a smooth, finite partition of unity subordinate to
U . Let p be the dimension of F . Then, for any f 2 C1( bM) and (x, y) 2 T ,

Af (x, y) = Af (y) =

P
U2U

P
�2Φ

Z
R

p
x

�(x, y) fU(x, y)!U(x, y)

P
U2U

P
�2Φ

Z
R

p
x

�(x, y)!U(x, y)
.

Here the U subscripts denote composition with the inverse of the coordinate chart
on U. Observe that all of the functions in the integrands are smooth, bounded
functions, all of whose derivatives are also smooth and bounded. Furthermore, the
support of each integrand is compact. By the Lebesgue dominated convergence
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theorem, the expression above is continuous in y, and we can differentiate under
the integral with respect to any of the y coordinates. Similarly, all of the y-
coordinate derivatives of Af are continuous in y. Thus A maps smooth functions
to smooth basic functions, as desired.

Let �� denote the pullback map induced by �: bM ! M. This extends to a
bounded linear operator from L2(Ω�(M)) to L2(Ω�( bM)) that we will also denote
by ��; note that the asterisk does not denote adjoint here. Let �: L2(Ω�( bM)) !
L2(Ω�(M)) be the adjoint of ��.

LEMMA 1.2. The map �� is an isometry from L2(Ω�(M)) to L2(Ω�( bM)), and
thus ��� is the identity on L2(Ω�(M)).

Proof. We have chosen the metric on bM so that the induced measure on bM
is a product of the measures on M and SO(q). Thus the volume form cdV on bM
is the product of the volume form d� on SO(q) and the volume form dV on M.
Let ( , ) denote the pointwise inner product of forms defined in the usual way
(see, for example [3]) and fix a measureable section s: M ! bM. Then for � in
L2(Ω�(M)),

h���,���i =
Z
bM (���,���) cdV

=
Z

M

Z
SO(q)

�
��� (s (x) u) ,��� (s (x) u)

�
d�(u) dV(x)

=
Z

M

Z
SO(q)

�
� (� (s (x) u)) ,� (� (s (x) u))

�
d�(u) dV(x)

=
Z

M
(� (x) ,� (x))

Z
SO(q)

d�(u) dV(x)

=
Z

M
(� (x) ,� (x)) dV(x) = h�,�i.

Therefore �� is an isometry from L2(Ω�(M)) to L2(Ω�( bM)), and the desired
property of its adjoint � follows.

Remark. If f is a smooth function on bM, for each x 2 M, �f (x) is the average
of f on ��1(x). Similarly, there is a geometric interpretation of � on forms.
Because we do not need these facts in this paper, we will not dwell on them
here.

LEMMA 1.3. Let f be a smooth function on bM, and let cdV be the volume form
on bM. Then Z

bM f cdV =
Z
bM Af cdV .
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Proof. Let T = fT1, : : : , Tkg be a finite open cover of bM by tubular neigh-
borhoods of leaves of F . Let ΦB = f�1, : : : ,�kg be a basic partition of unity
subordinate to T . (To construct such a partition of unity, simply apply A to the
functions in any partition of unity subordinate to T .) Let Oi be a finite open
cover of Ti by simple open sets, and let Ψi = f UjU 2 Oig be a partition of
unity subordinate to Oi. If cdV is the volume form on bM, it can be written locally
as cdV = �! ^ �, where � is a transverse volume form which does not depend
on the leaf coordinates and ! is a form which restricts to the volume form of
the leaves of F (see [17]). Let p and q be the dimension and codimension of the
foliation F , respectively. Then

Z
bM f cdV =

X
Ti2T

X
U2Oi

Z
Rq
�i(y)

Z
Rp
 U(x, y) fU(x, y) j!U(x, y)j j�i(y)j

=
X

Ti2Oi

Z
Rq
�i(y)Af (y)

0
@X

U2Oi

Z
Rp
 U(x, y) j!U(x, y)j

1
A j�i(y)j

=
X

Ti2T

X
U2Oi

Z
Rq
�i(y)

Z
Rp
 U(x, y) AfU(y) j!U(x, y)j j�i(y)j

=
Z
bM Af cdV .

In the above calculation, the U subscripts denote composition with the inverse
of the coordinate chart on U, the i subscripts denote the composition with the
inverse of the transverse ball coordinate chart on the tubular neighborhood Ti,
and we use the absolute value signs to avoid orientation issues.

Let L2(M) and L2
B(M) be the completions of C1(M) and C1B (M), respectively.

We define L2( bM) and L2
B( bM) in a similar fashion.

LEMMA 1.4. The map A extends to a projection on L2( bM).

Proof. It is clear from the definition of A that A2f = Af for f 2 C1( bM). Next,
for f1 and f2 in C1( bM),

hAf1, f2i =
Z
bM (Af1)f2 cdV =

Z
bM A ((Af1) f2) cdV =

Z
bM (Af1)(Af2) cdV ,

where the second equality is a consequence of Lemma 1.3 and the third equal-
ity follows from the comments preceding Proposition 1.1. Therefore hAf1, f2i =
hAf1, Af2i, and by symmetry, hAf1, Af2i = h f1, Af2i. Hence A is formally self-
adjoint. Then for any smooth f ,

jjAf jj2 = hAf , Af i = hA2f , f i = hAf , f i � jjAf jj � jj f jj,
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whence jjAf jj � jj f jj. Thus A is a bounded operator, and therefore extends
continuously to a projection on L2( bM).

Definition. The basic projection on functions is the linear map P: C1(M) !
C1B (M) defined by P = �A��.

It is not immediately apparent that Im(P) � C1B (M), but the following propo-
sition will address this. We now investigate the relationship between P and the
Hilbert space projection PB.

PROPOSITION 1.5. We have the following:

(1) For any f 2 C(M) and x̂ 2 bM, A��f (x̂) = the average of f over the leaf
closure containing �(x̂).

(2) For any f 2 L2(M), A��f 2 Im(��).

(3) P maps smooth functions to smooth basic functions.

(4) For any f 2 C(M) and x 2 M, Pf (x) = the average of f over the leaf
closure containing x.

(5) For any f 2 C(M),
R

M f dV =
R

M Pf dV.

Proof. Choose x 2 M, and let K be the closure of the leaf of F that contains
x. Choose any x̂ 2 ��1(x), and let K be the leaf of F containing x̂. As shown
in [11], K is a principal subbundle of ��1(K) over K whose structure group is a
compact Lie subgroup H of SO(q).

Let f�1, : : : ,�r,�r+1, : : : ,�s, E1, : : : , Ek, Ek+1, : : : , Eqg be a basis of N bF at x̂,
chosen as follows. First, let f�1, : : : ,�r,�r+1, : : : ,�sg be an orthonormal basis of
the tangent space to the fiber of bM with the property that the vectors �r+1, : : : ,�s

span the tangent space of the component of K \ ��1(x) which contains x̂. This
latter set of vectors can be viewed as a basis of the Lie algebra h0 of H0, where
H0 denotes the connected component of the identity in H. We remark that if H
is a finite group, H0 is trivial, and r = s. Next, we require that fE1, : : : , Eqg be
an orthogonal set of horizontal vectors such that f��E1, : : : ,��Ekg, respectively
f��Ek+1, : : : ,��Eqg, restricts to an orthonormal basis of NK, respectively TK \

NF , at �(x̂) = x.
We can extend all of these vectors in the basis to be foliate vector fields

on bM which are global sections of NbF, by choosing the fundamental fields as-
sociated to the vectors tangent to the fibers and the basic fields associated to
the fEig. (See [11] for details.) On ��1(K), the basic fields are twisted by the
SO(q) action on the fibers and parallel along the leaves. For simplicity, we will
use the same notation for the extended vector fields as the vectors at x̂. Observe
that the properties stated in the previous paragraph remain true for the vector
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fields along K. Specifically, f�1, : : : ,�r,�r+1, : : : ,�sg forms an orthonormal ba-
sis of the tangent space to each fiber, �r+1, : : : ,�s span the tangent space of
each component of K \ ��1(y) for all y 2 K, and f�� (E1(x̂)) , : : : ,�� (Ek(x̂))g,
respectively f�� (Ek+1(x̂)) , : : : ,��

�
Eq(x̂)

�
g, restricts to an orthonormal basis of

NK, respectively TK\NF , at each point �(x̂) of K. The above facts follow from
the properties of bundle-like metrics and the induced adapted connection on bM.
(Again, see [11].)

Fix a global measureable section F of K over K which is smooth off a set
of measure zero in K. Then we can describe a point y of K with (not necessarily
smooth) coordinates (h, u) 2 H � K, where u = �(y) and Fuh = y. The fibers are
transverse to the span of the fEig, and the distribution spanned by �r+1, : : : ,�s is
clearly involutive. Recall that E�i is the 1-form defined by E�i (V) = hEi, Vi for all
V 2 Tz

bM, z 2 bM. The form Cj��r+1 ^ � � � ^ �
�

s ^ E�k+1 ^ � � � ^ E�q ^ �
��F j restricts

to the volume form of K, where �F is the characteristic form of the foliation F .
The characteristic form restricts to the volume form of the leaves of F and is
locally given by V�1 ^ � � � ^ V�p , where fV1, : : : , Vpg is a local orthonormal basis
for TF . (See [17].) The positive number C depends only on the norms of the Ei

and the angle between K\��1(x) and the span of fEk+1, : : : , Eqg. Because the Ei

are parallel along the leaves and SO(q) acts on bM by isometries, C is a constant
on K. Note that ��r+1 ^ : : : ^ �

�

s restricts to the volume form of each component
of ��1(u) \ K for u 2 K. The volume of this set is independent of u, because
the transverse metric on bM takes pairs of foliate vector fields to basic functions,
which are constant on K. Let Rh: ��1K ! ��1K denote right multiplication
by h 2 H. For each h 2 H and x̂ 2 K , f(Rh)�Ek+1(x̂), : : : , (Rh)�Eq(x̂)g is an
oriented orthonormal frame for the distribution spanned by fEk+1, : : : , Eqg. Let
�K = (��Ek+1(x̂))�^: : :

�
��Eq(x̂)

�
�. By construction, this form on K is well-defined

independent of x̂ 2 ��1(x) and is the transversal volume form of the restriction
of the foliation F to K. Thus the pullback of this form is a function of u alone.
From the comments above, we see that Cj��r+1^ : : :^�

�

s ^�
��K ^�

��F j restricts
to the volume form of K, for some constant C.

Let h1 be the identity element of H, and choose elements h2, : : : hm of H so
that H is the disjoint union of the left cosets h1H0, h2H0, : : : , hmH0. Then for any
continuous function f on M,

A��f (x̂) =

Z
K
��fZ

K
1

=

Z
K

mX
i=1

�Z
H0

��f (hih, u) Cj��r+1 ^ � � � ^ �
�

s (hih, u)j
�
j���K(u) ^ ���F (u)j

Z
K

mX
i=1

�Z
H0

Cj��r+1 ^ � � � ^ �
�

s (hih, u)j
�
j���K(u) ^ ���F (u)j
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=

Z
K

mX
i=1

�Z
H0

f (u) j��r+1 ^ � � � ^ �
�

s (hih, u)j
�
j���K(u) ^ ���F (u)j

Z
K

mX
i=1

�Z
H0

j��r+1 ^ � � � ^ �
�

s (hih, u)j
�
j���K(u) ^ ���F (u)j

=

Z
K

mX
i=1

Vol(hiH0)f (u) j���K(u) ^ ���F (u)j

Z
K

mX
i=1

Vol(hiH0)���K(u) ^ ���F (u)j

=

Z
K

mVol(H0)f (u) j�K(u) ^ �F (u)jZ
K

mVol(H0)j�K(u) ^ �F (u)j

=

Z
K

f (u) j�K(u) ^ �F (u)jZ
K
j�K(u) ^ �F (u)j

= the average of f over K.

We have used the fact that left multiplication by a group element is an isometry on
H. We remark that the integral over H0 does not appear in the above calculation
if H0 is trivial. Thus the proof of (1) is complete. (1) implies that (2) is true
for continuous functions, since (1) implies that A��f (x̂) depends only on �(x̂).
Since �� is an isometry, its range is closed, and therefore (2) is true for all f in
L2(M). Statement (4) immediately follows from (1) and (2). To prove (3), take
f 2 C1(M). Proposition 1.1 implies that A��f 2 C1(M), which by (2) can be
written in the form ��g for some smooth function g on M. Lemma 1.2 then yields
Pf = �A��f = g 2 C1(M). Statement (4) implies that Pf is constant on each
leaf closure and hence basic, and therefore (3) is proved. To prove (5), let f be
a continuous function on M. Then

Z
M

f dV =
Z
bM �

�f dbV =
Z
bM A��f dbV

=
Z
bM �

�(�A��f ) dbV =
Z

M
�A��f dV =

Z
M

Pf dV ,

where first and fourth equality follow because dbV is the product of the volume
forms on M and SO(q), and because the volume of SO(q) is 1. The second equality
is a consequence of Lemma 1.3, while the third equality follows from (2) and
Lemma 1.2. Finally, the last equality above just involves the definition of P.

PROPOSITION 1.6. Let f be a smooth function on M. Then Pf = PBf .

Proof. First, P = �A�� extends to a bounded linear operator P on L2(M), since
it is the composition of maps with this property. Second, P is an idempotent; i.e.,
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P2 = P. To show this, it suffices to show that P is the identity on basic functions.
Given a function f 2 C1B (M), ��f is basic on bM, because the leaf closures ofbM cover the leaf closures of M. Then A��f = ��f , because A is the identity on
basic functions upstairs. Thus Pf = �A��f = ���f = f . Third, P is self-adjoint;
this follows immediately from the proof of Lemma 1.4 and the formula for the
adjoint of a composition of operators. Hence P is a Hilbert space projection on
L2(M), and is therefore completely determined by its range. But it is evident
that the range of P (restricted to smooth functions) is the space of smooth basic
functions on M, and therefore the range of the extension of P is L2

B(M). This is
precisely the range of the operator PB restricted to L2(M), so (the extension of)
P and PB agree on L2(M), from whence the desired result follows.

In light of Proposition 1.6, we will henceforth denote both the operators P
and PB by just P.

We now extend the domain of the projection P to include forms. First, we
extend the map A to a map on forms. We will use the notation of the proof
of Proposition 1.5. Because bF is transversely parallelizable, the basic forms are
precisely the forms which take sets of foliate vector fields to basic functions. It
follows that the space of smooth basic forms on bM is a free module over C1B (M),
generated by the one-forms !1 = ��1, : : : ,!s = ��s ,!s+1 = E�1, : : : ,!s+l = E�l and
the various wedge products of these forms. Thus we can write any smooth basic
form on bM uniquely as

P
I

fI!I , where I = fi1, : : : , ikg (k < s + l) is a multi-index,

fI is basic, and !I = !i1 ^ � � � ^ !ik . Observe that the basis f!Ig is orthonormal.
We now define the map Ã: Ω�( bM) ! Ω�B( bM). Given any smooth form � 2

Ω�( bM), define

Ã� =
X

I

A ((�,!I))!I ,

where the A inside the summation is the functional studied earlier in this section,
and ( , ) is the pointwise inner product of forms. This definition is independent
of the choice of orthonormal basis f!Ig. To see this, let f
Ig be any other
orthonormal basis. Then 
I =

P
MIJ!J , for some orthogonal matrix MIJ of basic

functions, and

X
I

A ((�, 
I)) 
I =
X
I,J,K

A ((�, MIJ!J)) MIK!K

=
X
I,J,K

A (MIJ (�,!J)) MIK!K

=
X
I,J,K

A ((�,!J)) MIJMIK!K =
X

J

A ((�,!J))!J .

The calculation above used the remarks preceding Proposition 1.1.
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LEMMA 1.7. We have the following:

(1) Ã maps smooth forms to smooth basic forms.

(2) Ã is the identity on smooth basic forms.

(3) For all smooth forms � and smooth basic forms �, Ã(� ^ �) = � ^ Ã(�).

(4) For all smooth forms � and smooth basic forms �,
�
Ã�,�

�
= A ((�,�)).

(5) Ã is formally self-adjoint.

(6) Ã extends to a projection on L2
�

Ω�( bM)
�

.

(7) For any form 
 2 Ω�(M), Ã��
 2 Im ��.

Proof. (1) through (4) follow from the definition of Ã and the corresponding
facts for the map A on functions. Observe that for any �,� 2 Ω�( bM),

hÃ�,�i =
Z
bM
�
Ã�,�

� cdV =
Z
bM A

�
Ã�,�

� cdV =
Z
bM
�
Ã�, Ã�

� cdV .

The second equality follows from Lemma 1.3, and the third equality follows from
(4) above. Items (5) and (6) follow from the above observation and an argument
analogous to the proof of Lemma 1.4. Now, in the definition of Ã, the forms !I

could be replaced by R �

g !I for a fixed g 2 SO(q), because right multiplication is

an isometry of bM which maps leaves to leaves. Also, note that a form � on bM
is the pullback of a form on M if and only if, in a local trivialization, the form
does not depend on the fiber coordinates. Such forms are characterized by the
following two properties: (1) For any vector � tangent to a fiber in bM, i(�)� = 0.
(2) For any g 2 SO(q), R �

g � = �. Suppose that � is such a form, and consider
the form Ã�. By the definition of Ã, the first property is satisfied by the form
Ã�. Fix g 2 SO(q). Then

R �

g Ã� =
X

I

R �

g A ((�,!I)) R �

g !I

=
X

I

A
��

R �

g �, R �

g !I

��
R �

g !I

=
X

I

A
��
�, R �

g !I

��
R �

g !I = Ã�.

Therefore, the second property is satisfied by the form Ã�, so Ã� 2 Im��; this
proves (7).

Definition. The basic projection on forms is the linear map P: Ω�(M) !
Ω�B(M) defined by P = �Ã��.
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Note that we have used the same symbol that we use for the basic projection
on functions. Again, it is not immediately clear that P maps smooth forms to
smooth basic forms. We have:

LEMMA 1.8. P maps smooth forms to smooth basic forms, and for every � 2

Ω�(M), P� = PB�.

Proof. Lemma 1.7 shows that Ã��� = ��
 for some 
 2 Ω�(M) such that
��
 is basic. The definition of a basic form in terms of interior products implies
that 
 is basic. By Lemma 1.2, P� = 
 2 Ω�B(M). The proof of Proposition 1.6
can easily be modified to show that P� = PB�.

LEMMA 1.9. If � 2 Ω�(M) is basic, then ��� is basic.

Proof. For a given point in M, pick a simple open neighborhood U over
which bM is trivial, and choose coordinates (x1, : : : , xp, y1, : : : , yq) on U, where
the x coordinates are in the leaf directions and the y coordinates are in transverse
directions. On U, � is a linear combination of forms f dyj1 ^ dyj2 : : :^ dyjk where
the function f is independent of the x-coordinates. Then on ��1(U) �= U�SO(q),
��� is a linear combination of forms with the same local expression, and therefore
��� is basic.

PROPOSITION 1.10. P is the unique linear map from Ω�(M) to Ω�B(M) such that
(P�,�) = P(�,�) for every smooth form � and basic form �.

Proof. We first show that P satisfies the statement. If � 2 Ω�B(M), ��� 2

Ω�B( bM) by Lemma 1.9. Then

��(P�,�) = ��(�Ã���,�)

= (Ã���,���)

= A(���,���)

= A��(�,�),

where the second equality follows from Lemma 1.7. If we apply � to both sides
of the equation above, we have (P�,�) = P(�,�). Suppose another map Q has
this property. Then (Q� � P�,�) = 0 for any smooth form � and every basic
form �. Since P and Q must map to basic forms, we conclude that P = Q.

PROPOSITION 1.11. If � 2 Ω�(M) and � 2 Ω�B(M), then P(� ^ �) = � ^ P(�).

Proof. We have the following string of equalities:

�� (P(� ^ �)) = Ã��(� ^ �) by Lemma 1.7
= Ã(��� ^ ���)
= ��� ^ Ã��� by Lemmas 1.7, 1.9
= ��� ^ ���Ã��� by Lemma 1.7
= ��(� ^ P�).
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To complete the proof, apply � to both sides.

2. The basic Laplacian. In Section 1, we showed that the adjoint �B of the
restriction dB of the exterior derivative to Ω�B(M) is given by the formula �B = P�,
where � is the formal adjoint of d on L2(Ω�(M)). In this section, we find �B in
terms of geometrically computable quantities.

We use the notation of Section 1. Let n be the dimension of M, and let p
be the rank of TF . Recall that �F is the characteristic form of the foliation,
which is defined in [17] and introduced in the proof of Proposition 1.5. Let
�̄: Ωk(M) ! Ωn�p�k(M) be the pointwise operator defined by

�̄
 = (� 1)p(n�p�k)
� (
 ^ �F ) for all 
 2 Ωk(M),

where � is the Hodge star operator. The operator �̄ maps basic forms to basic
forms, and it has the property that �� = �̄� ^ �F for a basic form � (See [17]
for details). It is also elementary to show that for any k-form � and any basic
k-form �, � ^ �̄� = (�,�)�, where � is the transversal volume form and ( , )
is the pointwise inner product of forms. Next, let W denote the vector space of
smooth forms ! with the property that at each point of M and for all vectors
v tangent to the leaves of F , i(v)! = 0, where i(v) denotes the interior product
with the vector v. If � is a k-form in W and � is a basic k-form, then we have
in addition that � ^ �̄� = � ^ �̄�. Also, for any � 2 W, �̄2� = (� 1)k(n�p�k)�.

LEMMA 2.1. P commutes with �̄.

Proof. Let 
 be any smooth k-form. Using the pointwise metric (, ), we can
decompose 
 as 
 = 
W + 
?, where 
W

2 W and 
? is orthogonal to W. Then
we have that �̄
? = 0 and P
? = 0, using the definitions. It clearly suffices to
show that P commutes with �̄ on smooth basic k-forms for each k. If there are
no basic k-forms, then P�̄
 = �̄P
 = 0. Otherwise, for any basic k-form �,

(�, �̄P
)� =
�
�, �̄P
W

�
�

= � ^ �̄2P
W

= (� 1)k(n�p�k)� ^ P
W

= P
�

(�1)k(n�p�k) � ^ 
W
�

by Proposition 1.11

= P
�
�, �̄
W

�
�

=
�
�, P�̄
W

�
� by Proposition 1.10

= (�, P�̄
)�.

The mean curvature form � of the foliation is defined at each point x of M
to be the dual of the mean curvature vector

Pp
i=1

�
rEiEi

�
? of the leaf containing

x. Here fE1, : : : , Epg is a local orthonormal basis of TF , r is the Levi-Civita
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connection on M, and ? denotes projection onto NF . Rummler’s formula states
that d�F = �� ^ �F + '0, where '0 is a (p + 1)-form with the property that
i(v1) : : : i(vp)'0 = 0 for any set fvjg of p vectors in TF . This implies that if � is
a basic (n� p� 1)-form, � ^ '0 = 0. (See [16] and [17].)

PROPOSITION 2.2. If � is a basic k-form,

�B� = (� 1)(n�p)(k+1)+1
�̄ (d � (P�)^) �̄�.

Remark. When � is basic, this formula reduces to Theorem 12.10 in [17].

Proof. Let 
 be any basic (k� 1)-form, and let � be any basic k-form. Then

hd
,�i =
Z

M
d
 ^ �� =

Z
M

d
 ^ �̄� ^ �F

= (� 1)k
Z

M

 ^ d (�̄� ^ �F )

= (� 1)k
Z

M

 ^

�
d�̄� ^ �F + (� 1)n�p�k

�̄� ^ d�F
�

= (� 1)k
Z

M

 ^

�
d�̄� ^ �F + (� 1)n�p�k

�̄� ^ (�� ^ �F + '0)
�

= (� 1)k
Z

M

 ^

�
d�̄� ^ �F + (� 1)n�p�k+1

�̄� ^ � ^ �F

�

+ (� 1)n�p�k
 ^ �̄� ^ '0

= (� 1)k
Z

M

 ^ (d�̄� ^ �F � � ^ �̄� ^ �F ) + (� 1)n�p�k
 ^ �̄� ^ '0.

Since 
 ^ �̄� is a basic (n� p� 1)-form, its wedge product with '0 is 0. Thus,

hd
,�i = (� 1)k
Z

M

 ^

�
(d�̄� � � ^ �̄�) ^ �F

�

= (� 1)k+(k�1)(n�k+1)
Z

M

 ^ �2�(d�̄� � � ^ �̄�) ^ �F

�

= (� 1)k+(k�1)(n�k+1)+p(n�p�(n�p�k+1))
Z

M

 ^ �

�
�̄ (d�̄�)� �̄ (� ^ �̄�)

�

= (� 1)(n�p)(k+1)+1
Z

M

 ^ �

�
�̄ (d�̄�)� �̄ (� ^ �̄�)

�

= (� 1)(n�p)(k+1)+1
Z

M

�

, �̄ (d�̄�)� �̄ (� ^ �̄�)

�
dV .

Now, using item (5) of Proposition 1.5, we can apply P to the integrand of the
last integral.

hd
,�i = (� 1)(n�p)(k+1)+1
Z

M
P
�

, �̄ (d�̄�)� �̄ (� ^ �̄�)

�
dV
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= (� 1)(n�p)(k+1)+1
Z

M

�

, P�̄ (d�̄�)� P�̄ (� ^ �̄�)

�
dV

= (� 1)(n�p)(k+1)+1
Z

M

�

, �̄ (d�̄�)� �̄

�
(P�) ^ �̄�

��
dV .

Here we have used Propositions 1.10 and 1.11 and Lemma 2.1. Since the above
is true for all 
 2 Ω�B(M), the proposition is proved.

COROLLARY 2.3. If � is a basic k-form, then

�B� =
�

(� 1)(n�p)(k+1)+1
�̄d�̄ + (P�)y

�
�,

where the symbol y denotes the interior product.

Proof. Let � be a basic k-form and � be a basic (k � 1)-form. By Proposi-
tion 2.2, it suffices to show that (� 1)(n�p)(k+1)

�̄
�
(P�) ^ (�̄�)

�
= (P�)y�.

(�, �̄ ((P�) ^ �̄�)) dV = � ^ � (�̄ ((P�) ^ �̄�))

= � ^ �̄ (�̄ ((P�) ^ �̄�)) ^ �F
= (� 1)(n�p�k+1)(k�1)� ^ (P�) ^ �̄� ^ �F
= (� 1)(n�p�k+1)(k�1)� ^ (P�) ^ ��

= (� 1)(n�p�k+1)(k�1)+k�1(P�) ^ � ^ ��

= (� 1)(n�p�k+1)(k�1)+k�1 ((P�) ^ �,�) .

Because the interior product is by definition the pointwise adjoint of the wedge
product and because (n � p � k + 1)(k � 1) + k � 1 � (n � p)(k + 1) mod 2, the
result follows.

PROPOSITION 2.4. The following operator equation holds:

P� = �P + (P�� �)y � P + (� 1)p('0y)(�F^) � P.

Proof. Let � be a (k � 1)-form and let � be a k-form. Then h�, �P�i =
hd�, P�i, and since P� is basic, we can use the first six lines of the calculation
in the proof of Proposition 2.2 to get

h�, �P�i = (� 1)k
Z

M
� ^ (d�̄P� ^ �F � � ^ �̄P� ^ �F )

+ (� 1)n�p�k� ^ �̄P� ^ '0

= (� 1)k
Z

M
� ^

�
d�̄P� ^ �F � (P�) ^ �̄P� ^ �F

�

+ � ^ (P�� �) ^ �̄P� ^ �F + (� 1)(n�p�k)p� ^ '0 ^ �̄P�.
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The first term in the integral can be simplified using manipulations similar to
those in the proof of Proposition 2.2 to give

h�, �P�i =
Z

M
� ^ ��BP�

+ (� 1)k� ^ (P�� �) ^ �P� + (� 1)k� ^ '0 ^ �(P� ^ �F )

=
Z

M
� ^ ��BP� + (� 1)k� ^ (P�� �) ^ �P�

+ (� 1)k(p+1)� ^ '0 ^ �(�F ^ P�)

= h�, �BP�i + (� 1)(k�1)(n�k+1)+k
Z

M
� ^ �2 ((P�� �) ^ �P�)

+ (� 1)(k�1)(n�k+1)+k(p+1)
Z

M
� ^ �2 ('0 ^ �(�F ^ P�)) .

For an r-form 
 and an s-form !, 
y! = (� 1)(s�r)(n�s)
� (
 ^ �!) by a straight-

forward calculation. Using this formula, the above expression simplifies to

h�, �P�i = h�, �BP�i � h�, (P�� �)yP�i � (� 1)p
h�,'0y (�F ^ P�)i.

Thus, we have

�P = �BP� (P�� �)y � P� (� 1)p('0y) (�F^) � P.

Noting that �B = P� and solving for P�P, we obtain the desired result, except that
the left-hand side of the equation is P�P. Since Ω�B(M) is an invariant subspace
for d, PdP = dP, and thus P�P = P�.

COROLLARY 2.5. dP = Pd + P �
�
(P�� �)^

�
+ (� 1)pP � (�Fy) ('0^).

Proof. Take adjoints in Proposition 2.4.

We write the formula in Proposition 2.4 as P� = �P + �P, where � = (P� �
�)y + ( � 1)p('0y)(�F^). Note that � is a 0th order operator that maps Ω�B(M)
into Ω�B(M)?; to see this, apply P to both sides of the operator equation for P�P,
and observe that � is a pointwise operator. Hence P�P = P��P = 0.

Now we can find a formula for the basic Laplacian in terms of d and �. The
basic Laplacian is the map ∆B: Ω�B(M) ! Ω�B(M) defined by ∆B = �Bd + d�B.
Using Proposition 2.4 and the fact that Ω�B(M) is an invariant subspace for d, we
have, for all � 2 Ω�B(M),

∆B� = (P�d + dP�)� = (P�Pd + dP�P)�

= ((�P + �P) d + d (�P + �P))�

= ((� + �) d + d (� + �))�
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= (�d + d� + �d + d�)�

= (∆ + �d + d�)�.

In summary:

THEOREM 2.6. The basic Laplacian ∆B, as a map on Ω�B(M), satisfies the equa-
tion

∆B = ∆ + �d + d�,

where � is a 0th order operator mapping Ω�B(M) to Ω�B(M)? defined by

� = (P�� �)y + (� 1)p('0y)(�F^).

THEOREM 2.7.

∆BP = e∆P = Pe∆� = P∆P,

where e∆ = ∆ + �d + d�, e∆� = ∆ + ��� + ��� is the adjoint of e∆, and ∆ = ∆� ���. (The
operator � is defined in the previous theorem.)

Proof. The first equality is Theorem 2.6. Since P∆BP = ∆BP = e∆P, this
operator is self-adjoint. By taking adjoints, the second equality follows. Next, we
observe that

e∆P = Pe∆P = P (∆ + �d + d�) P
= P∆P + P�dP + Pd�P
= P∆P + P�PdP + (dP� P��) �P by Corollary 2.5
= P∆P� P���P = P∆P.

The last line follows from the fact that P�P = 0.

Observe that e∆ and e∆� are strongly elliptic operators on L2 (Ω�(M)), and that
∆ is (essentially) self-adjoint on L2 (Ω�(M)).

3. The spectrum of ∆B and the basic heat kernel. In this section, we use
the formulas from Section 2 to prove results concerning the spectrum of ∆B. Let
Ωk

B be the space of smooth basic k-forms on M, and let L2
�

Ωk
B

�
be its Hilbert

space completion.

PROPOSITION 3.1. There exists a complete orthonormal basis of L2
�

Ωk
B

�
con-

sisting of smooth eigenforms of ∆B, and the eigenspaces of ∆B are finite dimen-
sional.

Proof. Note that ∆B is a positive, symmetric operator on Ωk
B � L2

�
Ωk

B

�
. The

Friedrichs’ extension L of ∆B + I is a self-adjoint operator, which by definition is
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the adjoint of ∆B + I restricted to the domain eD = D\H1, where D is the domain
of (∆B + I)�, and H1 is the Sobolev space H1

�
Ωk

B

�
([19]). L has a lower bound

of 1 and is thus injective, so L�1 exists as a bounded map from L2
�

Ωk
B

�
into eD.

By Rellich’s lemma, the inclusion of H1 into L2
�

Ωk
B

�
is compact, so the operator

L�1: L2
�

Ωk
B

�
! L2

�
Ωk

B

�
is a compact self-adjoint operator. Thus there exists

a complete orthonormal basis of L2
�

Ωk
B

�
consisting of eigenforms of L�1, and

these eigenspaces are finite dimensional. If � is an eigenform with eigenvalue �,
then for each � 2 Ωk

B,

D
��1�,�

E
= hL�,�i = h�, L��i =

D
�, (∆B + I) j�eD�

E

=
D
�,
�e∆ + I

� ����eD �
E

by Theorem 2.6

=
D�e∆ + I

�
�,�

E
,

where e∆ = ∆ + d� + �d, as in the last section. The operator e∆ is second-order, so
it maps H1

�
Ωk

B

�
to H�1

�
Ωk

B

�
. Since the L2-inner product is a nondegenerate

pairing on H�1

�
Ωk

B

�
�H1

�
Ωk

B

�
and since Ωk

B is dense in H1

�
Ωk

B

�
, the preceding

computation shows that

�e∆� ��1 + 1
�
� = 0.

Elliptic regularity implies that � is smooth, and the equality above implies that
� is an eigenform of e∆ (and hence ∆B ) with eigenvalue ��1

� 1. Thus the
�-eigenspaces of L are contained in the

�
��1

� 1
�
-eigenspaces of ∆B. It is eas-

ily shown that eigenforms for ∆B must likewise be eigenforms for L, so these
eigenspaces are equal.

We now give a new proof of the de Rham-Hodge decomposition of basic
forms. In [10], the authors showed that if an rth order smooth differential operator
L: Ω�(M) ! Ω�(M) which maps Ω�B(M) to itself has the property that L� � e�
leaves Ω�B(M) invariant for some (r� 1)th order operator e� mapping Ω�B(M) into
Ω�B(M)?, then

Ω�B(M) = ∆LBΩ�B(M)� ker ∆LB,

where ∆LB is the operator LL� + L�L� e�L� Le� restricted to Ω�B(M). In addition,
this decomposition is the intersection of the decomposition

Ω�(M) =
�
LL� + L�L� e�L� Le��� Ω�(M)� ker

�
LL� + L�L� e�L� Le��
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with Ω�B(M). If we let L = d and e� = �� and use the fact that im ∆B = im dB�im �B,
we obtain the following:

THEOREM 3.2. Let F be a transversally oriented Riemannian foliation on a
closed, oriented manifold. Then ker ∆B is finite dimensional, and we have the fol-
lowing orthogonal decomposition:

Ωk
B = im dB � im �B � ker ∆B.

This is the intersection of the decomposition Ωk = e∆� �Ωk
�
� ker e∆jΩk with Ωk

B.

Let E�(L) denote the �-eigenspace of the operator L.

PROPOSITION 3.3. E� (∆B) = E�

�e∆�\Ω�B(M). The spectrum of ∆B is contained
in the real spectrum of e∆. The basic projection P maps E�

�e∆�� into E� (∆B).

Proof. Suppose that � is an eigenform of ∆B with eigenvalue �. Then �� =
∆B� = e∆� by Theorem 2.6. Next, suppose that � is an eigenform of e∆� with
eigenvalue �. Then �P� = Pe∆�� = ∆BP� by Theorem 2.7, so that either P� = 0
or P� is an eigenform of ∆B with eigenvalue �. The conclusion follows from
these two observations.

We have no reason to expect that P maps E�

�e∆�� onto E� (∆B). Also, observe
that Proposition 3.3 implies that if � is not in the spectrum of ∆B, then P maps
E�

�e∆�� to 0.
Let 0 � �B,k

0 � �B,k
1 � �B,k

2 � : : : be the eigenvalues of ∆B on Ωk
B, and let

�∆,k
0 � �∆,k

1 � �∆,k
2 � : : : be the eigenvalues of ∆ = ∆� ��� on Ωk.

PROPOSITION 3.4. If Ωk
B is infinite-dimensional, then �B,k

j � �∆,k
j for all j � 0.

Thus for large j there is a positive constant C such that �B,k
j � Cj2=n, where

n = dim M.

Proof. The operator ∆ is self-adjoint and elliptic and thus has smooth eigen-

forms. Observe that we can define �∆,k
j using the Rayleigh quotient:

�∆,k
j = sup

V�Ωk
codimV�j

inf
�2V

D
∆�,�

E
h�,�i

� sup
V�Ωk

codim V�j

inf
�2V
�=P�

D
∆�,�

E
h�,�i

= sup
V�Ωk

codim V�j

inf
�2V
�=P�

D
∆P�, P�

E
h�,�i

= sup
V�Ωk

codim V�j

inf
�2V
�=P�

D
P∆P�,�

E
h�,�i

= sup
V�Ωk

codim V�j

inf
�2V
�=P�

h∆BP�,�i
h�,�i

= sup
V�Ωk

B
codim V�j

inf
�2V

h∆B�,�i
h�,�i

= �B,k
j .
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Because ∆ is a selfadjoint second-order elliptic operator on Ω�(M), for large j

there is a C > 0 such that �∆,k
j � Cj2=n. (See, for example, [7].)

We now define the basic heat kernel Kk
B(t, x, y) on k-forms (that is, the fun-

damental solution to the basic heat equation). The basic heat kernel Kk
B(t, x, y) is

a double form of bidegree (k, k) on M � M for each t > 0 that is basic on each
factor (i.e. PxKk

B(t, x, y) = PyKk
B(t, x, y) = Kk

B(t, x, y) 2 Ωk
B(M) � Ωk

B(M) ) and is a
solution to the system

�
@
@t + ∆B,x

�
Kk

B(t, x, y) = 0 for t > 0

lim
t!0+

Z
My

Kk
B(t, x, y) ^ ��(y) = �(x) for all basic k-forms �.

If such a basic heat kernel exists, it can be used to solve the following initial
value problem. Given �0 2 Ωk

B(M), consider the system

�
@

@t
+ ∆B

�
�(t, x) = 0, lim

t!0+
�(t, x) = �0(x).

The solution is given by �(t, x) =
R

My
Kk

B(t, x, y)^��0(y). We show that Kk
B(t, x, y)

exists and is unique and give two different expressions for it.
Let e∆� = ∆ + ��� + ��� as in Section 2. There is a unique fundamental

solution Kke∆�(t, x, y) for the heat operator @
@t + e∆� acting on Ωk(M) ([9]). Let

Px: L2 (Ω�(M))
L2 (Ω�(M)) ! L2 �Ω�B(M)
�

L2 (Ω�(M)) be the basic projection

on the first factor, and define Py: L2 (Ω�(M)) 
 L2 (Ω�(M)) ! L2 (Ω�(M)) 

L2 �Ω�B(M)

�
similarly.

THEOREM 3.5. The basic heat kernel Kk
B(t, x, y) exists and is a smooth double

form on M �M that depends smoothly on t. It is unique and satisfies

Kk
B(t, x, y) = PxPyKke∆�(t, x, y) =

1X
j=1

e��jt�j(x)
 �j(y),

where 0 � �1 � �2 � � � � are the eigenvalues of ∆B corresponding to the or-
thonormal basis of eigenforms f�1(x),�2(x), : : :g. (If Ωk

B(M) is finite dimensional,
the sum is finite.)

Proof. The form Kke∆�(t, x, y) is the unique solution to the system

�
@
@t + e∆�x

�
Kke∆�(t, x, y) = 0 for t > 0

lim
t!0+

Z
My

Kke∆�(t, x, y) ^ ��(y) = �(x) for all k-forms �.
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Applying the operator PxPy to both sides of the first equation above, we obtain

�
@
@t PxPy + Px

e∆�x Py

�
Kke∆�(t, x, y) = 0 for t > 0, and�

@
@t PxPy + ∆B,xPxPy

�
Kke∆�(t, x, y) = 0 by Theorem 2.7.

This implies that PxPyKke∆�(t, x, y) solves the basic heat equation for t > 0. From

the initial condition satisfied by Kke∆�(t, x, y), we get

lim
t!0+

Z
My

Kke∆�(t, x, y) ^ �y�(y) = lim
t!0+

Z
My

�
Kke∆�(t, x, y),�(y)

�
y

dVy = �(x)

for all smooth basic forms �; the y subscript denotes the pointwise inner product
on the second term in the tensor product. By Proposition 1.5, we can apply Py

to the integrand without changing the integral, so

�(x) = lim
t!0+

Z
My

Py

�
Kke∆�(t, x, y),�(y)

�
y

dVy or

�(x) = lim
t!0+

Z
My

�
PyKke∆�(t, x, y),�(y)

�
y

dVy by Proposition 1.10.

Applying Px to both sides of the above equation, we obtain

�(x) = lim
t!0+

Z
My

Px

�
PyKke∆�(t, x, y),�(y)

�
y

dVy

= lim
t!0+

Z
My

�
PxPyKke∆�(t, x, y),�(y)

�
y

dVy

= lim
t!0+

Z
My

PxPyKke∆�(t, x, y) ^ ��(y).

In the above calculation, we used the fact that � is basic. Fubini’s Theorem
allows us to move Px inside the integral, since we are integrating over a compact
set and the functions involved are all bounded. Thus PxPyKke∆�(t, x, y) satisfies
the definition of the basic heat kernel. Since Px and Py map smooth forms to
smooth forms, the smoothness of PxPyKke∆�(t, x, y) follows from the smoothness

of Kke∆�(t, x, y).

We now rewrite the heat kernel. Let K(t, x, y) =
P
1

j=1 e��jt�j(x)
�j(y), where
�j and �j are defined as in the statement of the theorem. Given a nonnegative
integer m, choose a positive integer s so that 2s > m+ n

2 . The Sobolev embedding
theorem implies that there is a constant C so that

k�jkCm � C
�
ke∆�jk2 + k�jk2

�
= C

�
�s

j + 1
�

.
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(Recall that by Theorem 2.6, e∆�j = ∆B�j.) Hence for some positive constants C2

and C3,

kK(t, x, y)kCm �

1X
j=1

e��jtC2
�
�s

j + 1
�2
�

1X
j=1

e��jt=2C2C2ts

� C2C2t�s
1X
j=1

e�C3j2=nt=2 <1

for t > 0. Thus K(t, x, y) is well-defined and smooth for t > 0. Next, it is easy to
check that K(t, x, y) satisfies the definition of the basic heat kernel, using the fact
that f�jg forms a complete orthonormal basis of L2

�
Ωk

B

�
.

To complete the proof, it suffices to show that the basic heat kernel is unique.
Let KB(t, x, y) be any basic heat kernel. We may write KB(t, x, y) in the formP

i,j Cij(t)�i(x) 
 �j(y) for some functions Cij(t), again using the fact that f�jg

forms a complete orthonormal basis of L2
�

Ωk
B

�
. Next, consider the initial value

problem
�
@

@t
+ ∆B

�
�(t, x) = 0, lim

t!0+
�(t, x) = �j(x).

Using the existence of KB(t, x, y), we can write down the solution:

�(t, x) =
Z

My

Kk
B(t, x, y) ^ ��j(y) =

X
i

Cij(t)�i(x).

Using Theorem 2.6, we note that �(t, x) is also a solution to the initial value
problem

�
@

@t
+ e∆

�
�(t, x) = 0, lim

t!0+
�(t, x) = �j(x).

Since this problem has a unique solution in L2(R ) 
 L2(Ωk) ([9]), we conclude
that the coefficients Cij(t) are uniquely determined. Thus, the basic heat kernel is
unique.

Define the basic heat operator e�t∆k
B on basic k-forms by

e�t∆k
B� =

Z
My

Kk
B(t, x, y) ^ ��(y).

We now state some results that follow from the existence and uniqueness of
the basic heat kernel. The proofs of these results are identical to the proofs in
[10], where they were shown for the case in which the mean curvature form is
basic.
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COROLLARY 3.6. Let � be a basic k-form. As t ! 1, e�t∆k
B� converges uni-

formly to a form HB� that is ∆B-harmonic.

COROLLARY 3.7. The operator GB: Ωk
B(M) ! Ωk

B(M) given by

GB � =
Z
1

0

�
e�t∆k

B�� HB �
�

dt for � 2 Ωk
B(M)

is well defined and satisfies

∆BGB = I � HB, GBjker ∆B
= 0.

The equations above uniquely define GB on Ωk
B(M).

We call GB the basic Green’s operator. Using the basic projection, we derive
an alternate expression for the basic Green’s operator. Define a Green’s operatoreG: Ωk(M) ! Ωk(M) for e∆� in the following way. Given � 2 Ωk(M), write

� = �1 + �2, where �1 2 ker e∆ and �2 2

�
ker e∆�?; note that these forms are

smooth by elliptic regularity. By [18], Theorem 4.11, p. 140, there is a unique
form � orthogonal to ker e∆� such that e∆�� = �2. Define eG� = �.

PROPOSITION 3.8. GB = PeG.

Proof. By definition, for all � 2 Ωk
B(M),

e∆� eG� = �� HB�.

(The orthogonal projection of � onto the ker e∆ is HB�, because Ωk
B(M)\ ker e∆ =

ker ∆B by Proposition 3.3.) Then

�� HB� = P(�� HB�) = Pe∆� eG� = ∆BPeG�,

where the first equality is true because � � HB� is basic and the last equality
follows from Theorem 2.7. By definition, PeG is the basic Green’s operator.

4. Applications and special cases. In this section, we prove some results
about the basic Laplacian on functions and the basic Laplacian for foliations with
basic mean curvature form.

First consider ∆B on functions. The operator � = (P���)y+(�1)p('0y) (�F^)
is zero on functions, and the second term is zero on basic 1-forms. Using Theo-
rem 2.7, we immediately obtain the following:

PROPOSITION 4.1. The operators ∆B, e∆, e∆�, and ∆ have the following expressions
as operators on C1B (M):

∆B = e∆ = ∆ + �d = ∆ + ((P�� �)y) � d
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e∆� = ∆ + ��� = ∆ + � � ((P�� �)^)

∆ = ∆.

Let f�B
j g, respectively f�∆

j g, be the (nondecreasing) sequence of eigenvalues
of ∆B on C1B (M), respectively ∆ on C1(M). Proposition 3.4 immediately yields

PROPOSITION 4.2. If C1B (M) is infinite-dimensional, then �B
j � �∆

j for all j.

Thus, for all t > 0, trL2
B

�
e�t∆B

�
� trL2

�
e�t∆

�
.

We now apply our results to Riemannian foliations for which the mean cur-
vature form � is basic. Then P� = �, so � = ( � 1)p('0y) (�F^), which is zero
on all functions and on basic 1-forms. Proposition 4.1 implies

PROPOSITION 4.3. If � is basic, ∆B = e∆ = e∆� = ∆ = ∆ as operators on C1B (M).

By this Proposition and Theorem 3.5, we have

COROLLARY 4.4. Suppose � is basic, and consider ∆B and ∆ as operators on
L2

B(M) and L2(M), respectively, with heat kernels KB(t, x, y) and K∆(t, x, y), respec-
tively. Then

spec(∆B) � spec(∆)

KB(t, x, y) = PxPyK∆(t, x, y).

Let f�B,1
j g, respectively f�∆,1

j g, be the nondecreasing sequence of eigenvalues
of ∆B on Ω1

B(M), respectively ∆ on Ω1(M). Because � = 0 on basic 1-forms, we
have

PROPOSITION 4.5. If � is basic, ∆ = ∆ on basic 1-forms, and �B,1
j � �∆,1

j

if Ω1
B(M) is infinite-dimensional. In addition, for all t > 0, trL2

�
Ω1

B

� �e�t∆B
�
�

trL2(Ω1)
�

e�t∆
�

.

Consider the operator ��� when the mean curvature is a basic form. Then
��� = (�Fy) ('0^) ('0y) (�F^). A calculation shows that for any 
 2 Ωl and
! 2 Ωm, (
y
 ^ !,!) � (
, 
) (!,!) and (
 ^ 
y!,!) � (
, 
) (!,!). Thus, for
any basic k-form �,

h����,�i � h(�F ,�F ) ('0,'0)�,�i = h('0,'0)�,�i � max
x2M

f('0,'0)xg h�,�i ;

we have used the fact that the pointwise inner product (�F ,�F ) is identically
1. Therefore, ∆ � maxx2Mf('0,'0)xg � ∆B as operators on Ω�B(M). Let f�B,k

j g,

respectively f�∆,k
j g, be the (nondecreasing) sequence of eigenvalues of ∆B on

Ωk
B(M), respectively ∆ on Ωk(M). Using Proposition 3.4, we obtain the following:



1274 EFTON PARK AND KEN RICHARDSON

PROPOSITION 4.6. Suppose � is a basic form. If Ωk
B(M) is infinite-dimensional,

�B,k
j � �∆,k

j � max
x2M

f('0,'0)xg.

Observe that for codimension 1 foliations the form '0 is zero, even when
the mean curvature form is not basic. Thus � simplifies to � = (P�� �)y. By an
analysis similar to that used for Proposition 4.6, we obtain:

PROPOSITION 4.7. For any codimension 1 Riemannian foliation such thatΩ1
B(M)

is infinite-dimensional,

�B,1
j � �∆,1

j � max
x2M

f(P�� �, P�� �)xg.
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