
The Basic Polynomial Algebra Subprograms

Changbo Chen1, Svyatoslav Covanov2, Farnam Mansouri2,
Marc Moreno Maza2, Ning Xie2, and Yuzhen Xie2

1 Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China

changbo.chen@hotmail.com
2 University of Western Ontario, Canada

{moreno,covanov,fmansou3,nxie6,yxie}@csd.uwo.ca

Abstract. The Basic Polynomial Algebra Subprograms (BPAS) provides
arithmetic operations (multiplication, division, root isolation, etc.) for
univariate and multivariate polynomials over prime fields or with integer
coefficients. The code is mainly written in CilkPlus [10] targeting mul-
ticore processors. The current distribution focuses on dense polynomials
and the sparse case is work in progress. A strong emphasis is put on
adaptive algorithms as the library aims at supporting a wide variety of
situations in terms of problem sizes and available computing resources.
One of the purposes of the BPAS project is to take advantage of hardware
accelerators in the development of polynomial systems solvers. The BPAS

library is publicly available in source at www.bpaslib.org.

Keywords: Polynomial arithmetic, parallel processing, multi-core pro-
cessors, Fast Fourier Transforms (FFTs).

1 Design and Specification

Inspired by the Basic Linear Algebra Subprograms (BLAS), BPAS functionalities
are organized into three levels. At Level 1, one finds basic arithmetic operations
that are specific to a polynomial representation or specific to a coefficient ring.
Examples of Level-1 operations are multi-dimensional FFTs/TFTs and univari-
ate real root isolation. At Level 2, arithmetic operations are implemented for
all types of coefficients rings that BPAS supports (prime fields, ring of integers,
field of rational numbers). Level 3 gathers advanced arithmetic operations tak-
ing as input a zero-dimensional regular chain, e.g. normal form of a polynomial,
multivariate real root isolation.



2 Chen-Covanov-Mansouri-Moreno Maza-Xie-Xie

Level 1 functions are highly optimized in terms of data locality and par-
allelism. In particular, the underlying algorithms are nearly optimal in terms
of cache complexity [5]. This is the case, for instance, for our modular multi-
dimensional FFTs/TFTs [14], modular dense polynomial arithmetic [15] and
Taylor shift [3] algorithms.

At Level 2, the user can choose between algorithms that either minimizes
work (at the possible expense of decreasing parallelism) or maximizes parallelism
(at the possible expense of increasing work). For instance, five different integer
polynomial multiplication algorithms are available, namely: Schönhage-Strassen,
8-way Toom-Cook, 4-way Toom-Cook, divide-and-conquer plain multiplication
and the two-convolution method [2].

– The first one has optimal work (i.e. algebraic complexity) but is purely serial
due to the difficulties of parallelizing 1D FFTs on multicore processors.

– The next three algorithms are parallelized but their parallelism is static,
that is, independent of the input data size; these algorithms are practically
efficient when both the input data size and the number of available cores are
small, see [12] for details.

– The fifth algorithm relies on modular 2D FFTs which are computed by means
of the row-column scheme; this algorithm delivers high scalability and can
fully utilize the hardware on fat multicore nodes.

Another example of Level 2 functionality is parallel Taylor shift computa-
tion for which four different algorithms are available: the two plain algorithms
presented in [3], Algorithm (E) of [7] and an optimized version of Algorithm (F)
of [7].

– The first two are highly effective when both the input data size and the
number of available cores are small.

– The third algorithm creates parallelism by means of a divide-and-conquer
procedure and relies on polynomial multiplication; this approach is effective
when 8-way Toom-Cook multiplication is selected.

– The fourth algorithm reduces a Taylor shift computation to a single poly-
nomial multiplication; this latter approach outperforms the other three, as
soon as the two-convolution multiplication dominates its counterparts, that
is, when either input data size and the number of available cores become
large.

This variety of parallel solutions leads, at Level 3, to adaptive algorithms
which select appropriate Level 2 functions depending on available resources
(number of cores, input data size). An example is parallel real root isolation.
Many procedures for this purpose are based on a subdivision scheme. However,
on many examples, this scheme exposes only a limited amount of opportunities
for concurrent execution, see [3]. It is, therefore, essential to extract as much as
parallelism from the underlying routines, such as Taylor shift computations.



BPAS 3

2 User Interface

Inspired by computer algebra systems like AXIOM [9] and Magma [1], the BPAS

library makes use of type constructors so as to provide genericity. For instance
SparseUnivariatePolynomial (SUP) can be instantiated over any BPAS ring.
On the other hand, for efficiency consideration, certain polynomial type construc-
tors, like DistributedDenseMultivariateModularPolynomia (DDMMP), are only
available over finite fields in order to ensure that the data encoding a DDMMP poly-
nomial consists only of consecutive memory cells.

For the same efficiency consideration, the most frequently used polynomial
rings, like DenseUnivariateIntegerPolynomial (DUZP) and DenseUnivariate-

RationalNumberPolynomial (DUQP) are primitive types. Consequently, DUZP

and SUP<Integer> implement the same functionalities; however the implemen-
tation of the former is further optimized.

Fig. 1. A snapshot of BPAS algebraic data structures.

Figure 1 shows a subset of BPAS’s tree of algebraic data structures. Dark and
blue boxes correspond respectively to abstract and concrete classes. BPAS counts
many other classes for instance Intervals and RegularChains.

Figure 2 first shows how two dense univariate polynomials are read from
a file and how their product is computed. Then, on the same code fragment, a
(zero-dimensional) regular chain is read from a file and its real roots are isolated.

3 Implementation techniques

Modular FFTs are at the core of asymptotically fast algorithms for dense poly-
nomial arithmetic operations. A substantial body of code of the BPAS library is,
therefore, devoted to the computation of one-dimensional and multi-dimensional
FFTs over finite fields. In the current release, the characteristic of those fields is
of machine word size while larger characteristics are work in progress.

The techniques used for the multi-dimensional FFTs are described in [14, 15]
while those for one-dimensional FFTs are inspired by the design of the FFTW [4].



4 Chen-Covanov-Mansouri-Moreno Maza-Xie-Xie

Fig. 2. A snapshot of BPAS code.

BPAS one-dimensional FFTs code is optimized in terms of cache complexity
and register usage. To achieve this, the FFT of a vector of size n is computed in
a divide-and-conquer manner until the vector size is smaller than a threshold,
at which point FFTs are computed using a tiling strategy. This threshold can
be specified by the user through an environment variable HTHRESHOLD or deter-
mined automatically when installing the library. At compile time, this threshold
is used to generate and optimize the code. For instance, the code of all FFTs of
size less or equal to HTHRESHOLD are decomposed into blocks (typically perform-
ing FFTs on 8 or 16 points) for which straight-line program (SLP) machine code
is generated. Instruction level parallelism (ILP) is carefully considered: vector-
ized instructions are explicitly used (SSE2, SSE4) and instruction pipeline usage
is highly optimized. Other environment variables are available for the user to
control different parameters in the code generation.

Size Modpn BPAS Speedup

16777216 6.232 1.391 4.48
33554432 12.987 2.957 4.392
67108864 26.783 6.266 4.274
134217728 55.329 13.235 4.181
268435456 113.8 27.901 4.079

Table 1. one-dimensional modular FFTs: Modpn vs BPAS.

Table 1 compares running times (in sec. on Intel Xeon 5650) of one-dimensional
modular FFTs computed by the Modpn library [11] and BPAS, both using serial C
code in this case. The first column of Table 1 gives the size of the input vector;
coefficients are in a prime field whose characteristic is a 57-bit prime.

Modular FFTs support the implementation of several algorithms performing
dense polynomial arithmetic. As an example, we consider parallel multiplication
of dense polynomials with integer coefficients by means of the two-convolution



BPAS 5

method [2] and which is illustrated on Figure 3. Given two univariate polynomials
a(y), b(y) with integer coefficients, their product c(y) is computed as follows.

(S1) Convert a(y), b(y) to bivariate integer polynomialsA(x, y),B(x, y) s.t. a(y) =
A(β, y) and b(y) = B(β, y) hold at β = 2M , K = deg(A, x) = deg(B, x),
where M is essentially the maximum bit size of a coefficient in a and b.

(S2) Consider C+(x, y) ≡ A(x, y) B(x, y) mod 〈xK + 1〉 and C−(x, y) ≡ A(x, y)
B(x, y) mod 〈xK − 1〉. Compute C+(x, y) and C−(x, y) modulo machine-
word primes so as to use modular 2D FFTs.

(S3) Consider C(x, y) = C+(x,y)
2 (xK − 1) + C−(x,y)

2 (xK + 1) and evaluate C(x, y)
at x = β, which finally gives c(y) = a(y) b(y).

Fig. 3. Multiplication scheme for dense univariate integer polynomials.

The conversions from the univariate polynomials a(y), b(y) to the bivariate
polynomials A(x, y), B(x, y) in Step (S1) as well as the conversions from the
bivariate polynomials C+(x, y) and C−(x, y) in Step (S3) require only additions
and shift operations on machine words. Moreover, the polynomials C+(x, y) and
C−(x, y) are reconstructed from their modular images (in practice two modular
images are sufficient) within Step (S3). Consequently, the data produced by
2D FFT computations is converted in a single pass into the final result c(y).
Similarly the bivariate polynomials A(x, y), B(x, y) are obtained from a(y), b(y)
(here again by means of additions and shift operations on machine words) in
a single pass. Since BPAS’ 2D FFT computations are optimal in terms of cache
complexity [15], the whole multiplication procedure is optimal for that same
complexity measure. Last, but not least, BPAS’ 2D FFTs are computed by the
row-column scheme which provides lots of parallelism with limited overheads
on multicore architectures. As a result, our multiplication code, based on this
two-convolution method scales well on multicores as illustrated hereafter.



6 Chen-Covanov-Mansouri-Moreno Maza-Xie-Xie

4 Experimental evaluation

As mentioned above, one of the main purposes of the BPAS library is to take ad-
vantage of hardware accelerators and support the implementation of polynomial
system solvers. With this goal, polynomial multiplication plays a central role.
Moreover, both sparse and dense representations are important. Indeed, input
polynomial systems are often sparse while many algebraic transactions, like sub-
stitution, tend to densify data. Parallel sparse polynomial arithmetic has been
studied by Gastineau and Laskar in [6] and by Monagan and Pearce in [13].

Fig. 4. Dense integer polynomial multiplication: BPAS vs FLINT vs Maple.

Up to our knowledge, BPAS is the first publicly available library for parallel
dense integer polynomial arithmetic. For this reason, we compare BPAS’ parallel
dense polynomial multiplication against state-of-the-art counterpart implemen-
tation in FLINT 2.4.3 and Maple 18. On Figure 4, the input of each test case is
a pair of polynomials of degree d where each coefficient has bit size N . Two plots



BPAS 7

are provided: one for which d = N holds and one for which d is much smaller
than N .

The BPAS library is implemented with the multi-threaded language CilkPlus

[10] and we compiled our code with the CilkPlus branch of GCC3. Our ex-
perimental results were obtained on an 48-core AMD Opteron 6168, running at
900Mhz with 256 GB of RAM and 512KB of L2 cache.

Table 2 shows that the work overhead (measured by Cilkview, the perfor-
mance analysis tool of CilkPlus) of the BPAS method w.r.t. to a method based on
Schönhage & Strassen algorithm (KS) is only around 2 (see Column 3), whereas
BPAS provides large amount of parallelism (see Column 2).

Size Work(KS)∗ Work(BPAS)∗ Span(BPAS)∗ Work(BPAS)
Span(BPAS)

Work(BPAS)
Work(KS)

2048 795,549,545 1,364,160,088 41,143,119 33.16 1.715
4096 4,302,927,423 5,663,423,709 96,032,325 58.97 1.316
8192 16,782,031,611 23,827,123,688 292,735,521 81.39 1.420
16384 63,573,232,166 100,688,072,711 1,017,726,160 98.93 1.584
32768 269,887,534,779 425,149,529,176 3,804,178,563 111.76 1.575

Table 2. Cilkview analysis of BPAS and KS. (∗ shows the number of instructions)

5 Application

Turning to parallel univariate real root isolation, we have integrated our parallel
integer polynomial multiplication into the algorithm proposed in [3]. To this end,
we perform the Taylor Shift operation, that is, the map f(x) 7−→ f(x + 1), by
means of Algorithm (E) in [7], which reduces calculations to integer polynomial
multiplication in large degrees and to using algorithm of [3] in small degrees. In
Tables 3, we call BPAS this adaptive algorithm combining FFT-based arithmetic
(via Algorithm (E)) and plain arithmetic (via [3]).

We run these two parallel real root algorithms, BPAS and CMY [3], which
are both implemented in CilkPlus, against Maple 18 serial realroot command,
which implements a state-of-the-art algorithm. Table 3 shows the running times
(in sec.) of well-known four test problems, including Cnd, Chebycheff, Laguerre
and Wilkinson. Moreover, for each test problem, the degree of the input poly-
nomial varies in a range. The results reported in Table 3 show that integrating
parallel integer polynomial multiplication into our real root isolation code has
substantially improved the performance of the latter.

Acknowledgments

This work was supported by the NSFC (11301524) and the CSTC (cstc2013jjys0002).

3 http://gcc.gnu.org/svn/gcc/branches/cilkplus/



8 Chen-Covanov-Mansouri-Moreno Maza-Xie-Xie

Size BPAS CMY [3] realroot #Roots

Cnd 32768 18.141 125.902 816.134 1
65536 66.436 664.438 7,526.428 1

Chebycheff 2048 608.738 594.82 1,378.444 2047
4096 8,194.06 10,014 35,880.069 4095

Laguerre 2048 1,336.14 1,324.33 3,706.749 2047
4096 20,727.9 23,605.7 91,668.577 4095

Wilkinson 2048 630.481 614.94 1,031.36 2047
4096 9,359.25 10,733.3 26,496.979 4095

Table 3. Univariate real root isolation running time for five examples.

References

1. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997.

2. C. Chen, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. Parallel Multiplication
of Dense Polynomials with Integer Coefficient. Technical report, The University of
Western Ontario, 2013.

3. C. Chen, M. Moreno Maza, and Y. Xie. Cache complexity and multicore imple-
mentation for univariate real root isolation. J. of Physics: Conf. Series, 341, 2011.

4. M. Frigo and S. G. Johnson. The design and implementation of FFTW3. 93(2):216–
231, 2005.

5. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. ACM Transactions on Algorithms, 8(1):4, 2012.

6. M. Gastineau and J. Laskar. Highly scalable multiplication for distributed sparse
multivariate polynomials on many-core systems. In CASC, pages 100–115, 2013.

7. J. von zur Gathen and J. Gerhard. Fast algorithms for taylor shifts and certain
difference equations. In ISSAC, pages 40–47, 1997.

8. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory.
V. 2.4.3, http://flintlib.org.

9. R. D. Jenks, R. S. Sutor. AXIOM, The Scientific Computation System. Springer-
Verlag, 1992.

10. C. E. Leiserson. The Cilk++ concurrency platform. The Journal of Supercomput-
ing, 51(3):244–257, 2010.

11. X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing
fast polynomial arithmetic into maple. J. Symb. Comput., 46(7):841–858, 2011.

12. F. Mansouri. On the parallelization of integer polynomial multiplication. Master’s
thesis, The University of Western Ontario, London, ON, Canada, 2014. www.csd.

uwo.ca/~moreno/Publications/farnam-thesis.pdf.
13. M. B. Monagan and R. Pearce. Parallel sparse polynomial multiplication using

heaps. In ISSAC, pages 263–270. ACM, 2009.
14. M. Moreno Maza and Y. Xie. FFT-based dense polynomial arithmetic on multi-

cores. In HPCS, volume 5976 of Lecture Notes in Computer Science, pages 378–399.
Springer, 2009.

15. M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-
cores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

16. A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing,
7(3-4):281–292, 1971.


