
The Basic Theory of Partial g-Rccursive Operators (*) (**). 

ROBERT A. DI PAOLA (l~ew York) 

S u m m a r y .  - I n  this paper, we i~vestigate the theory o/ partial g-recursive operators and func- 

tionals, ~ an admissible ordinal, which are defined in terms of g-enumeration reducibility. 

The theory bifurcates into the study of weak operators a~d functionals, and o/operators and 

]unctionals proper. The status of the representative theorems of the classical theory (when 

-~ co) is examined relative to both kinds of operators and ]unetionals. Especial attention 

is given to the difficulties, when such exist, encountered in generalizing a classical result, 

whether simple or profound, to level ~. I n  the course of the investigation we are led to consider 

briefly topics such as the structure theory of completely recursively enumerable classes of ~-re- 

cursively enumerable sets. This is natural since this theory bears on the properties of effective 

operations at level ~. The paper provides the framework for the further ,investigation of this 
and allied topics. 

1 .  - I n t r o d u c t i o n .  

The subject  of part ial  recursive operators offers an invit ing prospect for gea- 

eralization to ~-recursion theory.  There is on hand a fairly well developed classical 

theory  with a stock of representat ive theorems,  including among others the  Firs t  

/~ecursion Theorem, the Myhill-Shepherdson Theorem, the Kreisel-Lacombe-Shoen- 

field Theorem, the  Fundamen ta l  Operator  Theorem, various theorems about  l imit 

functionals,  and, toward  the boundaries of the theory,  the impressive theorem of 

Fr iedberg on the existence of a Banach-Siazur  functional  tha t  coincides with no 

recursive functional  on the  class of recnrsive functions. Also ve ry  visible are the  

well-known ties of the theory  of operators to the ve ry  extensive theory  of relative 

reeursion. Indeed,  whole t racts  of the la t ter  topic m ay  be Cast in the guise of results 

about  part ial  recursive operators;  viz., a function ] is par t ia l  recursive in the total  

funct ion g if and only if there  is a par t ia l  recursive operator  F such tha t /~ (g)  --~ ]. 

Now the theory  of relat ive recursion at  level ~, ~ an a rb i t ra ry  admissible ordinal, 

has been vigorously developed, par t icular ly  ~-degTee theory.  On seeking to gen- 

eralize the theory  of operators to level ~, one should therefore anticipate contacts 
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Ricerche). The author wishes to express his gratitude to C.N.R., and to note the exemplary 
kindness of the Institute faculty, t)repara~ion of the paper was also supported by a grant 
from The City University of New York. 
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with the results, definitional problems, and peculiar difficulties of relat ive ~-recm'sion 

theory.  And all this refers only to those topics whose possibility for investigation 

is clear a priori. There is the fur ther  possibility tha t  as the theory  is developed at  

level ~ > co, surprises may  be encountered tha t  open up whole new vistas. For  

example, to lift the  ~{yhill-Shepherdson or Kreisel-Laeombe-Shoenfield Theorem 

(hereafter often referred to as the <~ MS theorem ~> and <~ KLS theorem ~> respectively) 

one is forced to consider effective operations at  level ~. The definition of an c~-effec- 

rive operation could not  be more straightforward:  one simply repeats the definition 

at  ~ = (o. Thus, in a t tempt ing  to generalize the MS theorem or KLS theorem at  

level ~ > (o, one's a t ten t ion  is na tura l ly  not  concentra ted on a given effective opera- 

tion, bu t  ra ther  on the part ial  e-recursive (or ct-recursive) operator  (if the effective 

operation is function-valued) or functional  (if the effective operat ion is ordinal- 

valued) alleged to be an extension of the given effective operation, and on whether,  

how~ and to what  ex ten t  the proof of the existence of such an operator  or funct ional  

differs f rom the  co-proof. We will be led to consider two types of operators and 

functionals,  a weak version and a version in a proper  sense. In  the case of operators,  

the ease and even the val idi ty  of the generalization of the (o-theorem m ay  depend 

strongly on which version is being considered; t ha t  is, on whether  the generalization 

pertains to weak (partial) e-recursive operators or to (partial) e-reeursive operators 

in the proper  sense. 

Since vir tual ly  nothing has been published about  the general theory  of par t ia l  

e-recursive operators, questions abound. Firs t  of all, which results remain valid 

at  level for all admissible e? Among these which are such tha t  their  verification at  

level e, given the (o-instance of the result, is routine,  and which, though valid for 

a l l  or many  e, require innovative methods to be proved? Once the proper  defini- 

t ion and formulation at level z have been chosen, which properties, t rue for ~ = (o, 

simply fail to hold for some admissible ~? Can the ordinals e for which the (o-result 

fails be suitably characterized? W h a t  notable differences in s t ructure are implied 

by  the divergencies f rom the co-ease? 

In this paper, we make a mere beginning towards the resolution of these ques- 

tions. In  fact we develop what  we have called the <~ basic theory  of part ial  c~-recur- 

s ire operators 5 co'neentrating on the central body of theory  and representat ive  

theorems of the subject.  Our investigation uncovers and defines various difficulties 

in the theory  of effective operations encountered at level ~. The detailed s tudy 

and solution of some of these difficulties must  be postponed to a subsequent  work. 

For  comprehensiveness we also survey several of our results about  operators or 

functionals tha t  have appeared elsewhere. 

2.  - B a c k g r o u n d .  

Our approach to the theory  is modelled o~ tha t  taken  by  Rogers for st = co in 

his well-known book [13]. This permits  a development  extrinsic in its exposition 
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to any  par t icular  formalism such as generalized Turing machines or Kripke 's  equa- 

t ion calculus (these formalisms, o5 course, retain their  importance) and ye t  at tain-  

ing an acceptable s tandard  of precision. Moreover, this pa th  parallels t ha t  most  

often taken  in the allied subject  of generalized relat ive recursion, a t  least as pre- 

sented in ordinal reeursion theory,  e.g. [14, 15]. Accordingly, our definition of a 

part ial  ~-recursive operator  will be based upon the concept of c,.-enumeration re- 

ducibility. This leads to some proliferation in our terminology, which should not  

be surprising. I t  is a fact  tha t  the theory  of relati~:e recursion can be formula ted  

in terms of operators;  for example,  a to ta l  function ] is recursive in a to ta l  func- 

t ion g if and only ii there  is a reeursive operator  F such tha t  /~(g) ~ ]. Now, it is 

an of t - repeated s tory regarding the search for a suitable analogue of Turing redu- 

cibility in 3~ tha t  the  more s traightforward and initially favored formulat ion of 

<~ ~-reeursive in ~> w~s found to be seriously defective: it is not  transit ive,  as was 

first shown by  Driscoll for the metarecursive case, g -  o~ ~ [5]. The crucial distinc- 

tion in the  subsequent version tha t  has met  with general acceptance is the fact 

tha t  the  basic units of discourse used in relative <~ computat ions ~> are not  simply 

ordinals/3 < ~, bu t  a rb i t ra ry  members of L~, tha t  is, ~-finite sets. The first version, 

now dubbed <~ weakly ~-reeursive in ~ has not  suffered to ta l  eclipse, bu t  has survived 

as a useful technical  tool, par t icular ly  in negative results: in a demonstra t ion tha t  

set A is not  ~-reeursive in a set B one often finds established the stronger result  

tha t  A is not  weakly ~-recursive in B, as the weaker reducibil i ty not ion is less cum- 

bersome ~o employ. The reader  m ay  anticipate,  then,  t ha t  this b i formity  will recur 

in our theory  of effective operators in L~; many  of ova" notions of enumerat ion 

reducibility, enumerat ion operator,  p~rtial reeursive operator  or functional  etc. will 

h~ve two versions, one labelled ~ weak ~> and a stronger version more adequate ly  

representat ive  o5 the corresponding notion in classical reeursion theory  (~ ~ o9). 

This is ~n opportune point  to introduce a distinction in terminology.  For  us, 

operators are function-vMued mappings defined on a class of functions;  functionals 

are ordinM-vMued mappings defined on a class of functions.) 

Once one has s tated a suitable formulat ion at  level ~ of a classical result, the  

fact  tha t  the formulat ion concerns the weak version of operators or functionals, 

need not  reveal  much ~bout its relat ive ease of demonstrat ion.  V~rious combina- 

tions ~re possible. A weak formulat ion (i.e. a formulat ion involving the weak notions 

of operator  or functional) may  be tr ivial ly t rue  given the  o~-case, and the  proper  

formulat ion may  be equally easy to demonstrate ,  or quite diffictflt, perhaps,  so far  

as we know, demonstrable  only under  certain added conditions. Or~ the weak for- 

mulat ion may  itself be difficult to establish, and once established the proper  for- 

mulat ion may  or may  not  be easily derivable f rom the weak. For  various ~dmis- 

sible ~, the weak formulat ion m ay  be t rue and easily demonstrable,  while the proper  

formulat ion is false, t towever ,  one more or less general rule is this: once a formula- 

t ion abou~ weak functionals has been established, the passage to a proof of the 

corresponding formulat ion about  weak operators is often trivial (as is the case when 

= ~), bu t  for ~ > c9 the passage from a result about  proper  fuactionals to the 
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corresponding result about  proper  operators m ay  well be non-trivial,  in contrast  

to the  usual si tuation when ~ ---- ~ .  

A word about  style. Since we have ant icipated a readership for this paper  t h a t  

m a y  be unacquain ted  with a-recursion theory,  we have tarr ied a bit  longer over 

some proofs than  would otherwise have been our practice, with a view toward  

pointing out, for example,  t ha t  an u t te r ly  banal  si tuation at level ~ m ay  become 

an obstacle at  level ~ > ~;  to indicate tha t  a seemingly obvious, hast i ly made for- 

mulat ion of a known result  simply m ay  not  work at  level ~; and to  note  why various 

modifications have to be made in a demonst ra t ion to guarantee success at  level ~. 

For  the  same reason, we have included in the  next  section m an y  basic definitions 

of ~-recursion theory,  though these are easily available in the l i terature,  e.g. [14, 15]. 

3. - Basic  def init ions and nota t iona l  convent ions .  

A-recursion theory  can be approached by  two paths:  via GSdel's hierarchy of 

constructible sets or by  means of Kripke 's  equat ion calculus. We shall define the  

notions of admissible ordinal and part ial  ~-recursive funct ion in terms of the  former 

approach,  bu t  first a brief word about  some notat ional  conventions. We shall write 

the bounded quantifiers (x)<~, (Ey)<~ as ( x <  e ) ( E y <  0), and similarly with their  

variants,  e.g. (x)<~ as (x ~ e) etc. I f  ] is any  mapping (function, operator,  func- 

tional), <1 dora (]) ~ designates the domain of ], and <t ran (]) ~ the range of ]. <1A c B ~> 

means A is a subset of B, and <1A c B ~> means A is a proper  subset of B. Similarly 

for functions f and g. I f  A is a set and ] a mapping ][A] is the set which is the  

image of A under  ]. We write <1 iff ~> for <1 if and only if. ~> If  ] is a funct ion with 

domain D and fl is an ordinal, ]I/~ is the restriction of ] to D (~ ft. I f  A is a set, 

A _c a, .~ is the complemen~ of A in ~., ~ = ~ - -  A. We write <t ](x)~ ~> if f is a func- 

tion, operator,  etc. and x e dora (]); <1 ](z)~ ~> means x ~ dora (]). 

In  the s ta tement  of some of our theorems about  operators or funetionals,  the 

word <1 weak ~> occurs enclosed within parentheses. By  this practice we mean to 

refer to  two theorems,  the  s ta tement  of one is to be read including the  enclosed 

word <t weak ~>, ~he s ta tement  of the  second is to be read omit t ing the enclosed 

~ weak ~. 

Presupposing familiari ty (or acquaintance) with GSdel's L~ hierarchy,  we define 

the Z~, II., A. hierarchy of formulas of set theory.  A formula ~b with parameters  

in ~ is Zo over L~(Xo/I,~) a n d / / o  over L~(IIo/L~ ) if ~b contains no unbounded  quan- 

tifiers. For  n _> 1, a formula r is Z~(H~) over Z~ (notation: Z~/I,~ and II~/L~, respec- 

t ively) if r consists of a single existential  (universal) quantifier prefixed to a formula 

tha t  is II~_~(X~_~) over L~. r is ll~ over La(A~/L~) iff it is bo th  Z .  over L~ ~ n d / / .  

(1) The KLS theorem relating effective operations and ~-recursive operators, as opposed 
to the same theorem relating effective operations and weak ~-recursive operators, is a good 
example of this situation. 
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over Z~. A relation (or predicate) P is 2~(lln, A~) if iff i t  is definablei n Z~ by  a for- 

mnla tha t  is X,/Lc,(II~/L~. A,/Z~). A function is X~(H,, An) if its graph is X,(II, ,  A,). 

The ordinal a is Xl-admissible (briefly, admissible) if the  axiom scheme of replacement  

of Z F  for formulas tha t  are' Z1/L~ is satisfied in L~. Throughout  the remainder  of 

this paper  it is assumed t ha t  a is an a rb i t ra ry  admissible ordinal. 

A part ial  funct ion ]: a -+ a is partial a-reeursive if it  has a XI/L~ definition; ] is 

a-reeursive if it  is par t ia l  a-recursive and to ta l  on a. A set S _c a is a-recursively enu- 

merable (a-re) if it is the domain of a part ial  a-recursive function.  (This is equivalent  

to saying tha t  S has a X~-definition over L~.) S is a-recttrsive if S and S, the 

complement  of S in a, are a-re. (Thus, S is A1/L~.) Let  us note  tha t  every  a-re set 

is ra, nge of a i - -  1 par t ia l  a-recursive function whose domain is an ordinal y _~ a. 

A subset K of a is a-finite if K is a-recnrsive and bounded in a. (As is well 

known this is equivalent  to K e L~.) The definition of admissible ordinal may  be 

rephrased as a basic principle of a-rectu'siou theory :  if ] is part ial  a-recursive and K 

is an a-finite subset of the  domain of ], then  ][K] is a-finite. 

We make  use of the  b inary  ct-recursive funct ion k of SACKS [14] such tha t  

(i) if k(fi, ~) ---- 0, t hen  f l <  ~; 

(ii) if K is an a-finite set, then  there  is an unique ~ < a such tha t  K = (~Ik(fl, 

~1) = 0}, and ~ is called the  canonical index of K :  K = K .  We also find it convenient  

to use Z'o, rud imen ta ry  (in the sense of JE~SE~ ~ [8]) pairing functions ~, ~ ,  z2 such 

tha t  for all fl < a, ~(z~(fl), ~2(fl)) : fi, and for all fl, 7 < a, ~ ( f i ,  7) : fl and ~2~(fi, 

y) : y ,  which a r e  uniform for all admissible a. We often write (x,  y> instead of 

~(x, y), though we also use <x, y)  as the ordered pair  of x and y. An a-finite ]unc- 

tion is one whose graph is an a-finite set; an a-finite sequence is an a-finite funct ion ] 

such tha t  dora (])-----y for some ~ < a. 

The Z~-projectum a* of a is the  least/~ such tha t  there  is a 1 - -  1 a-recursive func- 

t ion A: a --> ft. The X~-eofinality 2 of a is the least ~ such tha t  there  is a 2:~-function 

with domain ~ and range unbounded  in a. The p r imary  facts about  a* and )~, which 

are obvious from the  definitions, are these: 

(1) if f i <  a*, then  every a-re subset of /~ is a-finite; 

(2) if v < ~, then  every 2:2 func t ion  with domain ~ is bounded in a. I~ecall 

too tha t  the  27~-cofinality of a equals the  Z~-cofinality of a* [15]. Also, if I is a part ial  

function f rom a into a, then  the following are equivalent :  (i) / is 2]~; (ii) f is weakly 

a-recursive in 0 ' ;  (iii) there  is a b inary  a-recursive function g such tha t  for all fl 

f(fl) ~ l im, g(a, fl), where (~ ~ ~ denotes strong equali ty [15, p. 171]. 

As in [14, 15], we employ the funct ion k to give a uniform enumerat ion  of all 

the  a-re sets. There is an a-recursive funct ion r: a •  such tha t  

(1) Kt(~,~)r K,(~,,~)c (~ whenever  a <  a ' <  a; 

(2) m {K,~(~,~)la< a} ranges over the a-re sets as e ranges over a*. 
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We set W: = K~(~,~) and W---- m {w:]a < e}, and say that ~ is an index of 

W = W ~ .  

A par t ia l  funct ion ] is weakly e-recursive in a set B (] < ~  B) if there  is an e < :r 

s u c h  t h a t  for all y and  

I f  [ and  g are funetions~ then  we say ] _ ~  g iff ] is weakly  e-recursive in the  graph 

of g. A: set A is weakly  ~-recursive in a set B if C~ ~_~,~ B, where Ca is the  charac- 

terist ic  funct ion of A. For  e = the  first nonrecursive ordinal, e ---- oJ~ oK, the  metare-  

cursive case, it was shown b y  Driseoll t ha t  the  relat ion <(--~w~ ~> is not  t ransi t ive,  

and  in fact  not  t rans i t ive  on the  (o~-re sets [5]. DriscolFs a rgumen t  extends  to 

m a n y  admissible e. Shore character ized those admissible e for which (~ < ~ ,  ~> is not  

t rans i t ive  on the  a-re sets, n ame ly  those ~ for which there  is more  t han  one non- 

hyperregnlur  s-re  degree [17]. 

A set A is e-recursive in a set B (A ~ B) if there  is an e <; e* such t h a t  for all y 

and 

Similarly for functions J and  g, etc. A set A a e is s-regular (briefly, regular) if A n fi 

is s-finite for all fi < e. A is e-hyperregular (briefly, hyperregular) if ][/~] is bounded  

whenever  fi < e, J: fl -> e and  ] _%~ A. 

We come now to the  definitions t h a t  are especially germane  to the  subject  of 

this paper .  A set A is weakly s-enumeration reducible to a set B (A _~,~ B) iff 

(/~s < e*)(x)[x e A +-+ (Ev)[<x, V> e W e & K c B ] .  

The mapp ing  thus  defined b y  any  s < e* f rom 2 ~ into 2 ~ is said to be a weak a-enu- 

meration operator r with index e. A set A is ~-enumeration red~tcible to a set B 
C 

(A _ ~  B) iff 

(Es < e*)(~)[K0_a A +-+ (E~)[<~, ~} e W &  K a B ] .  

Thus,  A _ ~  B if there  is an enumera t ion  procedure such t h a t  (1) a listing of an  

~-finite subset  of the  oracle-set B results in a listing of an s-finite subset  of A, and  (2) 

any  s-finite subset  of A can be obta ined  via the  procedure  b y  listing some s-finite 

subset  of B. 

Le t  us define for each e < e* a mapp ing  q~ f rom 2 ~ into 2 ~ b y  
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Recall t ha t  a set A is single-valued (sv) if 

(x)(y)[(xEA&y eA&z~(x)  =z~(y)) ~ z ~ x - ~ z 2 y ] .  

We define V~= {A[A is sv and qS~(A) is sv}. 

We say the mapping r is an a-enumeration operator with index e if for all A e V~, 

For  completeness we include a definition of operators and functionals based on 

enumerat ion operators;  as already stated our exposition mainly follows tha t  of 

I~o~ERS [13], where a : oJ. 

Let  r ffffr ~6, and 2u be the classes of una ry  part ial  functions (from ~ into ~), 

part ial  a-recursive functions, total  functions, and a-recursive functions, respectively, 

l e t / / b e  the  class of all single valued sets A e 2 ~. The a-recursive p~iring function T 

provides a 1 - -  1 map of 0' onto Jr/. A functional operator/7 is mapping from u sub-_ 

set of ff into ft. Eve ry  functional  operator  F determines a m a p p i n g / ~  from a sub- 

set o f / / i n t o  / /  and viee-versa~ by  means of the equations F : ~F~ -~ and F :  
= -t '-- 1 / ' g .  

Consider a mapping r from 2 ~ into 2 t  We define q ~  as follows: (i) dora (q~n) = 

= r  (~/7;  and (ii) for each A e dom (qS), q~n(A) = q~(A). We say r de/ines 

the  functional  operator  F,  where F = ~- 'q~a, .  

F is a weak partial a-recursive operator if (i) F is a functional operator,  and (ii)~ 

for some e, q~ defines E ;  F is a partial ~-recursive operator if (i) holds and in place 

of (ii)w we have (ii): for some e, ~5~ defines F where r is an a-enumerat ion operator.  

F is a (weak) a-recursive operator if (i) F is a (weak) part ial  a-recursive operator,  

and (ii) dora (E) = g. F is a (weak) general ~.-recursive operator if (i) F is a (weak) 

part ial  a-reeursive operator,  (ii) ~ _r dora (/7), and (iii) F[~6] _r ~.  

A/unctional on ff is a single valued subset of g •  ~ 1): I f  F is a functional,  

domw (F) = the weak domain of /7 = / 7 - , ( ~  ~ 1); dora (/7) = the strong domain of 

/7 =/~-'(~). " if f e dom (/7), we put /7(i) = fl, where </, fl> e/7. 

I f  qSw is ~ weak a-enumerat ion operator,  then qSw determines a func t iona l /7  on 

as follows: 

~nd 

dom~ (F) = (1]r has at  most  one member} 

dora ( F ) =  {/tqsw(~[/J) has exact ly  one member} .  

I f  / E dom (F), then  F(/)  = the unique member  of ~bw(v[/]). Similarly, every a-enu- 

merat ion operator  q~ determines a funct ional  F on ~. 

I f  F is determined by  a (weak) a-enumerat ion operator,  then  • is a (weak) partial 

a-reeursive functional. F is a (weak) a-recursive functional if F is a (weak) part ial  

a-recursive functional  and domw (F) = r (or dora (/7) = if). /7 is a (weak) general 

a-recursive functional if F is a (weak) part ial  a-recursive functional and ~ c dom (F). 

1 1  - A n n a l i  eli Matemat ica  
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4. - Elementary propositions and simple theorems. 

The propositions listed in this section are <~ e lementary  ~ in tha t  they  are in 

character  close to the definitions, and easy consequences of the same. As such they  

are as impor tan t  as the definitions, though their  t r u th  is obvious, given the defini- 

tions. We call ~ simple theorems ~ t h o s e  assertions which have easy proofs, bu t  

contain elements a bi t  more distant  f rom the definitions. They  m ay  relate operators 

or Iunctionals to some concept t ha t  is already well established in the  l i terature.  

Their  proofs are simple in one of two respects. The demonstra t ion m ay  be just  plain 

simple, with little or no reference to prior results, or, given the ~o-case of the theo- 

rem, it may  amount  to a vir tual  copy of the o~-proof. We give the proof in one or 

two instances to il lustrate the use of the  definitions. 

P~OPOSITI0~ 1. -- Let q): be a weak ~-enumeration operator and qS~,, an ~-enq~mera- 

tion operator. Then 

(i) A _c B -~ ((q)~(A) _c q~(B)) & (q)~,(A) c r 

(if) x e q~(A) -+ (E~/)[K _c A & x e ~bw(K~)]; 

(iii) K~_c q~ ,(A) -+ (Ev)[K _c A & K~_c q) ,(K )], if A e V , .  

PROPOSITI01~ 2. -- 1/ .F iS a (weak) partial, ~-recursive operator and ~ ~ dom (/~), 

then I~ is a (weak) ~-recq~rsive operator. 

P~oo~. - The proof is as given in ROGERS [13] for ~ = o~. 

COI~0LLAt~Y 1. - -  Every  (weak) general ~-reeursive operator  is a (weak) ~-recursive 

operator. 

P~oeosiTio~ 3. - Let q5 and qS, be a-enumeration operators. Consider the com- 

posite map r = r  Then (i) q ) ( A ) ~  r /or all A e V , ,  where e(~, e') 

i s  any ~-recursive /unction s~ech that 

and (if) ~b(~,~,)is an ~-enumeration operator i f  Vc(,,~,)C V , .  

PROOF. - To justify tha t  r = q~(r  ,(A)) for all A e V , ,  one first observes 

tha t  

U {K0[(E~)[(~, ~> e Wc(~,~, )& K_c A] : 

U {K.I(EV)(~7)[/~, 7> e W~& <7, V> e W~,& K._c A] c 

U (K~](ET)[<(~, 7> e We& Kvc q~,(A)]} 
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for all sets A e 2 ~, so tha t  q)e(~,~,)(A) _c ~ ( r  ,(A)) for all A e 2 ~. Then using the hy- 

pothesis tha t  r  is an g-enumeration operator, one shows tha t  

U {~:~l(Ev)[<a, n> e wo<e,,,)a K _~ ~]} ~or all ~t + r , ,  

so tha t  r  _c ~bc(~,~,)(A ) for all A e V, .  

A ~  V , .  

Now, assume V~(~,~,)_c V~,, and suppose tha t  

= r  By our assumption, ~b,(A) e V~. 

and 

Kence (r oO, ) (A)=  r if 

A e V~(~,~,), so tha t  qi~(~,~,)(A) --- 

Hence, by  the above 

~_c r ~ (Ev)[<r, ~) e w,a~ K_c A], 

using tha t  q~ and q), are g-enumeration operators. So, 

Therefore, Oc(~,~')is an g-enumeration operator if Vc(~,~,)c_ V , .  Q.E.D. 

We remark tha t  the hypoteesis Vc(~y)_C V, of proposition 3 is satisfied whenever 

~b : l [ / / ]  c V (and hence ~- I [H~]  = Ve). 

Let  us recall tha t  if A e 2 ~, C~ is the characteristic function of A. As in R0- 

GEnS [13] when g -- co, if ] and g are functions we shall frequently write ] _<~ g and 

] _ < ~  g in place of ~[]] _<~ ~[g] and vii] _ < ~  ~[g], respectively. 

TttEO~E~ 1. -- I] A and B are sets, A <--w~ B if /  C A <_~  C~. 

P ~ o o L  - The proof is as for g----co. 

Proceding as when ~ ~ co, one proves 

COROLLAnu 2. -- I] f and g are total functions, then 

Driscoll showed tha t  for g ~- co~ ~, there are g-re sets D1, B, and D., such tha t  

D 1 g ~  B, B --<w~ D2, but  D 1 #;w~ D2" Driseoll's demonstration, though only enun- 

ciated and carried out for the metarecursive case, generalizes to many  admissible 

c~ Finally,  by  virtue of Shore's characterization of those admissible g such ~-->col �9 

tha t  --<,o~ is not  transit ive on the g-re sets [17] and Proposition 3 we deduce, 
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COI~OLLARY 3, - The relation < ~  is not transitive on the class of (graphs o]) charac- 

teristic/unctions o/o:-re sets exactly /or those g /or which there is more than one non- 

hyperregular oare degree. 

We restate this last fact in terms of enumerat ion operators. 

PROPOSITION 4. - Let ~ be as re/erred to iqz Corollary 3. Then there are weal; o~-enu- 
W 0 meration operators r  and qb ~.. such that composite map ~ q~: is not a weak g-en~- 

meration operator: there is in ]act no index s such that/or all characteristic ]unctions Ca 

o / i r e  sets ~, cy(c~) = ~/:(r 

PI~OO~. - Take g-re sets C, B, A such tha t  B < ~  A and C <,~ B, but  C ~E~ A. 

By  definition of weak g-enumeration operator, there are weak g-enumeration opera- 

tors r and Cw~ such tha t  C ~ -  ~b~(CA) and C o = ~b~(C~). Thus, C c = (~~ 

]~ut there can be no ~b: such tha t  Co---- qb:~(Cd), since if there were, then C c _ < ~  C~, 

and hence C _<~ A. Q.E.D. 

TIt~Ol~E)I 2. - For all ~, A <~ B ~ C A < C B. 

PRooF. - There are g-recursive functions h, h~, and h~ such tha t  for all ~ and 7, 

Kh(~,,,): (K~x{1}) W (K~X{0}), Kh~(~)= (/~1</~, 1} ~ K~, Khd,~)= {/~1</~, 0} ~Kv}. If 
A _<~ B via e, then from W, such tha t  

one defines 

w~(~){(~, v > I ( ~ ,  8, 2, 7)[# = h(v, 8) ~ v = h(~, 7) ~ iV, 8, 2, 7> e W,]} .  

Then C A -<~e C~ via g(e), g a suitable g-recursive function. I f  C A -<~e C~ via s so 

tha t  K c_ CAt--> (Ev)[(#, v} e W e & K c CB] , one defines Wf(~)= {<y, 8, 2, 7} I(h(Y, ~), h(~, 

7)} ~ We} where / is an g-reeursive function. Then A _<~ B via ](e). Q.E.D. 

Since for arbi t rary g Corollary 2 follows easily from Theorem I much as when 

g = co, and Theorem 2 holds, one might at  first natural ly  expect tha t  for all g the 

analogous corollary about  g-enumeration reducibility holds as well: if / and g are 

total  functions, then  ] <2 g e-~ / < g. But  we conjecture tha t  for some, or various, g, 

this is false. 

5. - The  first recurs ion theorem.  

There is no difficulty to speak of in lifting this theorem to an arbi t rary level g. 

We therefore give, beyond the s ta tement  of the theorem and several corollaries, 

but  a brief indication of the proof. 
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Tm~oR]m~ 3. - .Let qb (q)~) be a (weak) o~-enumeration operator. 

set A such that 

(i) ~b(A) = X (~b{(_4) = A ) ;  

(if) (B)[qi~(B) = B --> A _c B/  

Then there is a 

(Likewise, with r in place o/ ~)  

(iii) A is C-re. 

PRooF. - We define the  sequence of sets: A0 = r Av = qD~(A~) if ~ = fl 4- 1, 

Av = m ~(A~) if y is a l imit  ordinal, and  pu t  A = L] A, .  I t  follows easily t ha t  there 
/~<7 y 

is a b inary  ~-recursive funct ion g such tha t  for all y, x E A +-+ x E W~(~,y). Hence A 

is ~-re, and  if /3 < y, then  qi~(A~)_c ~b~(A,). F r o m  this (i) and (if) follow. 

O B S E l i V A T I O 1 N  1 .  -- The proof is the same for ~-enumerat ion operators  and  weak  

~-enumera t ion  operators.  Thus,  the  theorem holds for mappings  ~b~ defined b y  

r = U {KoI(E~]) [< 5, V> e W~ & K ,  _c B ], even if q~ is not an ~-enumerat ion operator.  

As in the  co-ease, an index of A can be obtained uni formly  f rom any  index e of q5 

as is clear f rom the above.  So, we have  the  

C01~0LL~BY 4. -- There is an ~-recursive /unction s such that ]or all s, (i) ~b (W~(,)) = 

= W~(,), and (if) (B)[~b,(B) = B -+ W,(,)_CB]. 

Fo r  (weak) ~-recursive operators  we have  

THEOREM 4. -- (The ~irst  Recursion Theorem.) There is an ~-recursive /unction t 

such that /or  all e, i /  q~ (r de/ines a (weak) ~-recursive operato% then 

(i) F(%(~)) = %(~), 

and 

(if) Op)[F(~f) = ~f -~%(~)_c y~]. 

6. - Extens ion  theorems and effective operations.  

In  classical recursion theory  (~. = ~,9), there  are two principal  extension theorems 

re la t ing par t ia l  reeursive operators  and  functionals to effective operations. These 

are the  Myhi]l-Shepherdson (MS) theorem and the  Kreisel-Lacombe-Shoenfield (KLS) 

theorem.  The former  says t ha t  every funct ion-valued (ordinal-valued) mapp ing  ~- 

on if Jr is a funct ion-valued (ordinal-valued) effective operat ion on ff2u iff ~- is the  

restr ict ion to f f~  of a recursive operator  (functional) on ft. The la t ter  asserts:  Le t  A 

be a class of recursive functions wi th  a recursively dense base and let ~- be a mapp ing  
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on A into St (into the set N of natural  members) ; 5 ~ is an effective operat ion f rom A 

to ~ (from A to N) iff ~- is the  restriction to A of a recursive operator  (functional). 

The definitions of effective operations are s tated in terms of indices of part ial  

reeursive functions, and thus generalize immediate ly  to  level ~. Bu t  there  is just  a 

bit  more to consider here th~n first meets the eye. The theory  of effective operations 

may  be regarded as a par t  of the theory  of completely ~-recursively enumerable  

classes of ~-re sets (or of part ial  ~-reeursive functions). A first inspection of the 

situation seems to indicate the presence of anomalies in the theory  of these classes. 

The proofs of certain basie~ e lementary  lemmas pertaining to the s t ructure  of these 

classes break down when naively lifted to level ~. But ,  as kindly pointed out  to 

us by  L. IIAggI~GT0~, a ve ry  simple modification of the proofs rectifies matters .  

We briefly consider the  situation. 

I~et (2 be a class of ~-re sets, or (exclusively) o~ part ial  ~-recursive functions. 

To use ~n old notat ion [2], let 00 = {~[W~e ~} ( =  {~I~oe~}). ~ is ~-rec~rsively 

enumerable if there  is an ~-re set S such tha t  (2 = {W~[s e S}; ~2 is completely o~-recur- 

sively enumerable (c~-re, or, just  ere, with ~ understood) if 0~ is ~-re; 0 is completely 

~-recursive (or ~-decidable, or decidable) if 00 is ~-recursive. A weak array is an re 

class O of ~-finite sets (functions). A strong array is a class ~ of ~-finite sets (func- 

tions) such tha t  the set of canonical indices of members of O is ~-re. The well-known 

theorem of Rice for ~ = co asserts tha t  the only decidable classes are the empty  

class 0 and 8~, the class of all re sets [12]. There are proofs of Rice's theorem tha t  

make use only of (1) the existence of a par t ia l  recursive funct ion universal for the  

binary part ial  reeursive functions, (2) a simple instance of the i terat ion theorem, 

(3) the existence of a nonrecursive, re set [2]. Thus, Rice's theorem holds for all ~. 

THE0~EM 5. -- (Rice's Theorem.) For all ~, the only decidable classes are r and 8~. 

Rice's origh~al proof of this theorem proceeded very  differently f rom tha t  men- 

t ioned above, and was impor tan t  in initiating s tudy of the s tructure of ere classe [12]. 

Subsequently,  MYH~L and Sn~pm~Dso~  [11], in proving tha t  a ere class C of 

part ial  recursive functions consists exact ly  of all part ial  recursive extensions of 

the (finite) functions belonging to some strong array used the following lemma:  if 

] e r and r is ere, then  there  is a finite subfunction g of ] such tha t  g ~ r Le t  us 

recall the proof. Suppose ] e r bu t  no finite subfunction g of I is in C. As r is ere, 

% e  r +-~ n e S, where S (--= 0r is re. Let  p be a recursive funct ion enumerat ing 

an re nonrecursive set B. Define fro(x)= f(x) if (y <_% x)[m:/=p(y)], and ]~(x)~ if 

(Ey ~_ x)[m = p(y)]. Hence, m ~ B ~ ]~ ~- ] e-~ ].~e r There is a recursive func- 

t ion e such tha t  ] ~ =  %I~. So, m ~ B  *-+ e(m)E S. This implies t h a t  B is re, and 

hence B is recursive, contrary  to the  hypothesis.  Let  us examine the equivalence, 

m ~ B +-+ ]~ = ] for a rb i t rary  ~ > co. Surely, m ~ B -+ 1~ = ], as before. Suppose 

now tha t  m e B, and no is the least ordinal x such tha t  p(x) ---- m. Then dom (1~) = 

dora (J) r~ Xo, and i] dora (J) is regular, then  dora (]~) is ~-finite, and it follows tha t  

J~ is ~n ~-finite funct ion and hence, ]~=/= ] ~nd f,~r r by  hypothesis.  :But what  
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may  we conclude if dom (]) is not regular? Only tha t  dora (]~) is bounded, and 

hence we may  not  infer tha t  ]~ is :t-finite. 

Bu t  there  is no real obstacle here. Let  e~ and e~ be indices of the g~'aph of the 

above ] and of B, respectively. We redefine the funct ion ]~ as follows 

Clearly, if m ~ B, ]~ : ] as before. Suppose m e B and let a0 be the least a such 

tha t  m e W "  Then 

]~(x) = y e-~ (Ea < ao)[(x, y} e W~"]. 

Thus, if m ~ B, ]m is :t-finite. Now, if ] e e and no finite sub]unction g of ] is in e ,  

we have m ~ B ~ ]~ --~ ] ~-+ line ~ and m e~ B ~ e(m) e S, where e is ~-recursive. 

Thus, the lemma holds at  level a. Similarly, the following lemma generalizes, more- 

over with vir tual ly  no modification of the proof given in [11]: I f  ] e ~, where ~2 

is cre, then  every  part ial  ~-recursive extension g of ] also belongs to ~. F r o m  these 

facts we deduce 

THEOXE~ 6. -- A class (~ is cre i l l  r consists precisely o] all :t-,rv s~tpersets o] the 

~-]inite sets constituting some strong array. 

6.1. De]initions and properties o] e/]ective operations. 

An ordinal-valued mapping ~- on a class Q of part ial  ~-recursive functions 

( 5 :  Q --> :t) is said to be an (ordinal-valued) e]]ective operation (brie]ly, an o.e.o.) on (~ 

if there  is a part ial  :t-recursive function ? such tha t  ( x ) [ ~ e  ~ +-+ yJ(x)~ & ~'(9~) = 

= yJ(x)]. Thus, 0. is cre. 

Suppose instead tha t  ~- is function-valued,  ~-: r -+ ~ft .  ~- is a junction-valued 

e]]ective operation on ~ (briefly, an f.e.o.) if there is a part ial  a-recursive function )~ 

such tha t  (x)[9~eO.e--~f(x)~&5(9~)=gs(~)]. Such an ] is said to be extensional 

]or ~. 

Again, the definition implies tha t  (2 is cre. I t  follows tha t  if ~ e  (2 and ~ c ~ , ,  

then  ~ , e  0., as the reader can readily check. Another  familiar assertion is: F in  ((~, 

:t) e-~ (~ is a class of part ial  :t-reeursive functions and for each ~ e  (~, there  is an 

:t-finite ~,_c ?~ in 0.. 

Closely related to Fin  ((~, :t) are the following s ta tements  about  effective opera- 

tions ~-. 

Fin~ (~-, ~) +-+ ~- is an o.e.o, and for all qJ~e (~, (2 = dom (~-), there  is an a-finite 

~,_c ~. in ~ such tha t  ~ - ( ~ , ) ~  ~-(~) ;  

Fin2 (5 ,  :t) +-~ ~- is an f.e.o, and for all (y, z) e ~-(~,), there  is an :t-finite ~ , c  ~ 

such tha t  (y, z) e 5 ( ~ , ) .  

57ow, if :Y is an effective operation with domain r then Fin ((2, :t) --> Fin~ (~-, :t) 
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if ~- is an o.e.o., and Fin (0, e) - >  Fin~ (5 r, e) if ~ is a f.e.o. Also, we note tha t  f rom 

Fin~ (~,  e) there follows, l~in~ (5 r, e) ~ 5 is  an f.e.o., and for all F ~  dom (5)  if % 

is an e-finite subfunction of ~-(%), there  is an e-finite subfunction %, of ~v~,, 

%,e dom (~-), such that %_c ~-(cp~,). 

So, if O. is ere and 5 z is an effective operation here are four assertions, t rue  for 

a rb i t rary  e >_ (o. 

Tm~o~E~ 7. - (The M S  theorem for ordinal-valued eJjective operations.) 

Zet (9 be a ere class of partial g-reeursive functions and ~ a map from ~ into o:. 

Then ~ is an o.e.o, having property Fin~ (5 ,  e) i f / 5  ~ is the restriction to ~ of a (weak) 

o:-recursive functional on ~$. 

P~oo~. - I f  ~- is the restriction to ~ of a recursive functional,  then  t h a t  ~- is 

an o.e.o, satisfying Fin,  (~-, e) is clear. So, let ~- be an o.e.o, on @ satisfying 

Fin~ (~-, e): ~-(%) = ~0(x), y part ial  e-reeursive. Imi ta t ing  [13], it is easy to show 

tha t  there  are an e-reeursive set B tha t  contains exact ly  one index for every  e-finite 

function,  and an e-reeursive funct ion g such tha t  for all y e B ,  cf~ ----~-~[K,(,)]. 

We define an re set W with index e by  

<~, ~> e W~+-+ (Ey)[y s B & g(y) = ~ & (Ex)[Ko= {x} & x = ~f(Y)]] V 

V [ K o  = 0 ,s,: K = 01. 

Consider the mapping:  

cdx) = U {Kol(~v)[<o, ~> e w~s~ K , c  A]}. 

Then it follows tha t  for all sv sets A, (1) ~Se(A) is sv, and (2) ~ ( A ) _ < ~ A  via e. 

(With respect to (1), to insure consistency one must  verify sueh things as: if A is sv, 

c f ~ C _ A , ~ C _ A , y ~ , y ~ e B  and ?(y~)4, ~0(y~)~, then  ~0(y~)=?(y~); etc.) Thus, q~ 

defines on e-recursive functional  F~. And, if % e  Cq, then  ~-(~v~) = / ~ d % ) .  (To ver- 

ify this, one must  show tha t  for % ~  r there  is an e-finite F~c ~% such tha t  ~(~v~) = 

= ~-(%). Here  one uses the condition Fin~ (~,  ~), which follows from Fin  (O, e).) 

Q.E.D. 

O~SERVATI0~ 2. -- With  regard to weak e-recursive functionals, the proof is 

even more simple. 

Tm~o~E~r 8. - (The M S  theorem /or /unction-valued effective operations.) 

Let Q be a ere class o/partial ~-recgrsive /~enctions. Then (1) any partial e-recursive 

Junction f that is extensional /or (9 determines an / . s .c .  5 satis/ying Fin2 ($-, c~) that 

is the restriction to ~ of a weak e-recursive operator F, and (2) any (weak) o~-recursive 

operator F determines an o~-recursive ] that is extensional /or ~. 

P~ooF. - Let  f be a part ial  e-reeursive function tha t  is extensional for O_. Then 

since Fin (Cq, e), J determines an f.e.o. 5 r on cq satisfying Fin2 (5 r, ~): ~-(F~) ----- Fs(~. 
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Le t  d be an ~-recursive funct ion such tha t  B ~ ran (d). Thus s all ~-finite func- 

tions ~ with graph K~, K~ = ~[~(,~)]. We define an ~-re set W~ by  

( ( y ,  z}, ~} ~ W ~ K is sv & (y, z} ~ q~(,)& d(~) ~ 0(2. 

I t  follows as in the ~o-case tha t  for all sv sets A, ~b~(A) is sv, where ~b~'~ is the weak 

~-enumeration operator  defined by  W~. Let  Fy  be the weak ~-recursive operator  

defined by  r Then it follows, again as in t h e  og-case, t ha t  for all ~ e  O, 5 ( ~ )  
W W ----F (F~). I t  is in demonstrat ing tha t  %(~) (y )~ -z -+ /~  ( ~ ) ( y ) = z  tha t  we use 

Fin  ((2, ~). 

On the other  hand, suppose/~"~ is a weak ~-recursive operator.  Then by  a corol- 

lary to the Firs t  Recursion Theorem (actually an observation on the proof of tha t  

theorem),  there  is an ~-recursive funct ion g suchthat  F ~ ( ~ )  = %(~,~) (cf. [13], p. 195). 

We take  f by  f(x) ---- g(x, e) for all x. Of course, all this holds if F~ is an ~.-recursive 

operator.  Q.E.D. 

COROLLARY 5. -- Let ~ be a ].e.o. on a cre class r o] partial ~-reerusive functions. 

(Thus, ~ satisfies Fin~ (~-, ~).) Then ~ is the restriction to (2 o/ a f.e.o. ~ '  on "$5~. 

PRoo~ ~. - Let  f be the extensional part ial  ~-reeursive function tha t  determines ~.  

Then there  is a we~k ~-recursive operator  F~ such t h a t  for all F ~  0., F"/'(%) ---- ~-(q%). 
Y$ 

F~ '~ in tu rn  determines an extensional ~-recursive f' such tha t  F (%.) ---- Fr'(~) for all 

?~. Thus, ~-(%.) = 37'(~) for all ~ in (2, where by  definition ~- ' (~)  = %,(~). 

OBS]~RVA~0~ 3. - We are not too pleased with our version of the MS theorem 

for f.e.o.%. I t  concerns only weak part ial  ~.-recursive operators, seemingly quite a 

l imitation. 

6.2. EMective operations on classes of ~-reeursive functions. 

Let  (2 be a class of ~-recursive functions. In  this section we consider effective 

operations on (2. Accordingly, we modify our earlier definition, and no longer re- 

quire t ha t  (~ be cre. 

A mapping ~ f rom (2 to g is an ordinal-valued ef]ective operation on (2 (o.e,o.) 

if there  is a part ial  ~-recursive function F such tha t  F ~  @ -+ hp(x)v~ & Y ( ~ )  --~ ?(x)]. 

A mapping ~- f rom (2 into ~:R is a funct ion-valued effective operat ion on (2 (f.e.o.) 

if there is a part ial  ~-recursive function ] such tha t  ~ (2 -~ [](x)~ & ~ ( ~ )  ---- %(~)]; 

] is said, as previously, to be extensional for (2. H (2 ---- 2~, ~- is said to be an effec- 

tive operation total on 2~. 

A principal theorem in this context  is tha t  of KREISEL, LAC0:M:BE, and SHOEN- 

FIELD [9], which answered one ease of a question posed by  ~IYm-LL and S~EP~ERI)- 

SO~ [11]. In  our terminology,  the la t ter  authors  had asked: is every effective opera- 

tion 2 r thi~t is to ta l  on ~ the restriction of a recursive operator? KREtSEL, ~LAc0YlBE, 

and S~OE~FI~LD were able to supply an affirmative answer, Mlowing in  f~ct do- 
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mains ~ of ~- other than  5l t ha t  sha, re a certain topological p roper ty  with 2~, pro- 

vided the  range of 5 is a subclass of :R. We shall obtain in this section a generaliza- 

t ion of a somewhat  weakened Kreisel, Lacombe,  Shoenfield (KLS) Theorem to 

level ~. I t  is somewhat amusing tha t  we have not, in contrast ,  obtained a com- 

parable version of the  MS Theorem relative to ~-recursive operators, though at  

= o~ the  proof of the KLS  Theorem is certainly more technical and complicated 

than  tha t  of the MS Theorem. This is a reflection of the fact  t ha t  the graphs of 

a-recursive functions, as well, of course, as the domains of these functions, are 

tr ivial ly regular sets. 

In  our paper  [3]~ we needed a version at  level ~ of the K LS  Theorem in order 

to prove the Operator  Gap Theorem. We remarked tha t  the demonst ra t ion of the 

needed version, given the o-ease, was relat ively trivial. In  terms of our present 

development  the employed instance of the K LS  Theorem was tha t  for function- 

valued effective operations and weak ~-recursive operators. Indeed,  the version 

of the KLS Theorem for ordinal valued effective operations and weak ~.-recursive 

functionals just  lifts wi thout  resistance to level =. And, the  KLS Theorem for 

f.e.o.'s and weak =-reeursive operators is easily obtained f rom tha t  for o.e.o.'s and 

weak ~.-recursive functionals. The proof of the  theorem for f.e.o.'s and ~-recursive 

operators is not  trivial, and this point  illustrates a general situation. 

As we have already remarked,  if for ~ ~ ~o one has proved a theorem about  

part ial  recursive functionals, the demonstrat ion of the analogous theorem for p~rtial 

recursive operators is often a simple matter .  In  particular,  this is typical ly  the  

case if the  domain of the  part ial  recursive functional  is a class of effectively com- 

putable  functions, such as the part ial  recursive or recursive functions, when the 

derivation of the  operator-version of the theorem in question from the proved func- 

tional-version is an almost mechanical chore, and t h u s  sometimes omit ted  in the 

l i terature,  as in [9]. For  arb i t rary  admissible = > o~, this is no longer quite the case. 

The KLS  Theorem serves a.s a convenient  i l lustration of this situation, an instance 

in which the derivation of ~he theorem even for Iimiteg ~-recursive operators f rom 

%he case for ~-recursive functionals illustrates the  obstacles, bu t  falls within manage- 

able bounds. Thus, we first indicate the proof of the theorem for a-recursive func- 

tionals, which is s traightforward f rom the proof  for a = ~, and then  derive the  

theorem for l imited ~-rectu'sive operators in more detail. 

A class ~ of ~-reeursive functions has an ~-reeursively dense base B if B is an g-re 

set such tha t  

(1) ~ ~ B  - ->%eQ,  and 

(2) for all y, 

m,e  ~ -> (E~)[~ e B ~ (x)[x < y -+ ~o(x) = my(x)]] .  

A class 0~ of a-recursive functions is a-recursive (a-re) if there  is ~n ~-recursive (a-re) 

set Q such tha t  ~ O ~-~ s e Q, whenever ~ is a-recursive. 
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Tn-EOnE~ 9. - (The KLS Theorem for ordinal-valeted e]]ective operation,s.) 

I] a class ~ o] g-rec~rsive ]unctions has an a-recursively dense base B and :~ is an 

ordinal-valued e]]ective operatio~ defined by the partial ~-recursive /unction y), such 

that dom (~) ~ ~, then there is an a-reeursive junctional F "such that F(9,) ~- 5;(q),) 

]or all ~ (~. 

PROOF. -- Let  (~, B, and F be as in the s ta tement  of the theorem. As the proof 

is largely a close imitat ion of tha t  of K~E~sE]~, L~CO)~]~E, and SH0~,~F~]~L]) in [9], 

and presents no difficulties peculiar to admissible a > co, we present only so much 

of it as is required to define the pertinent a-enumeration operator. Let  T(z, x, y) 

be an a-recursive predicate tha t  is universal for the ~-re sets. Also, we may  assume 

tha t  for all z and x, if there is a y such tha t  T(z, x, y), then  y is unique (e.g., T(z, 

�9 , �9 e w [ &  ( y ' <  r 

We define the diagonM set 1) ~- (x l (Ey)T(x , x, y)) and observe tha t  if S is ~ny 

a-re set a n d e i s  any  index o r s  ( S =  W ~ ) , t h e n e e S n D o r e ~ S U D .  Let  b b e a  

1 -  1 partiul ~-reeursive function with domain a g a tha t  enumerates B. Follow- 

ing [9], we define below a p~rtial g-recursive function t(e, 8, x) such tha t  for each 

pair $, e the partial a-reeursive function t~.,(x) -~ t(e, 8, x) has the following property:  

if ~ ~, then  t~.~ ~ ~ if e ~ D, ~nd 5(t~) ve 3;(~o) if e e D. 

We put  y(e, x ) =  minv.<xT(e , e, y), and define 

fl(8, e, x) = min~ [(z < y(s, x))[~(z) = ~b(e)(z)] & ?(b(fl)) ~ y~(8)J 

if 

(Ey < x)[T(s, s, y) & (z < y)~(z)~ & (Eft < g)(z < y)[~b~z)(z) = 

= & & 

fl(8, s, x)# otherwise. 

By  making use of the fact tha t  for all fi < o, ~b(z) is a-recursive ~nd ~p(b(fl)) is 

defined, it  is not  difficult to see thut  fl(8, e, x) is partiM a-recursive, as can be rig- 

orously demonstrated.  Also, let us notice tha t  if fi(8, s, x)~ then  fl(8, e, z)----fl(8, 

e, x) for M1 z ~ y(s, x); for if (Ey ~ x)T(s,  s, y), then  y(s, x) = y(s, x') for ~ll x ' ~  x. 

~ow we define t~,~(x) ~- t(s, 8, x): 

t~,~(x) : ~ (x )  if ~ (Ey ~ x)T(e, ~, y) 

t~,~(X) ~b(~(~,~,~))(x) if fl(8, e, x)~. 

By  definition of the function fl(8, s, x), if T(e, s, y) then if fi(8, s, x) is defined (and 

hence necessarily fl(~, s, x) = fl(8, e, z) for all z ~y(e,  x)), t~,~(z) = %(~(~.~,~))(z) for all z. 

There is a binary a-recursive function g such tha t  for all s, 8 cf~(~,~)= t~,t. For  

each ~, let C~ = (el~0(~)v[ & yJ(g(e, 8))~ & W(~) ---- y~(g(e, 8))}; so C~ is a-re. Let h be 
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an ~-recursive function such tha t  for all d, C o = Wh(~). Then as in [9] it follows 

tha t  

( , )  q~o~ O. ~ h(5) e D ,  

(**) U~f(d)~&2'(h(d),h(d),y) & v ~ B & ( x < y ) ( q ) d x  ) -~ %(x))] -+~f(6)=  ~o(v). 

I f  v ~ B, then %~ ~, and hence (Ey)T(h(v), h(v), y). We put  

F = {yISeq (y) & (Ev)(Ey)[v e B & T(h(v), h(v),y) & dora (Kv) = y & 

& (x< y)[g(x)  = %(x)]]}. 

Next, we define the partial  a-recursive function y ' :  

F'(6) = F(6) if 6 e dora (F) & (Eu)(Ey)[v e B & T(h(6), h(6), y) & 

& (x < y)[~dx) = %(x)]] & 8 ~ ran (d) 

~f'(d(y)) F(v) if 7 e I 'and ~ e B t y) i~or More precisely, = andiT(h(~), h(~), suitable ~, y. 

= i f  e L 

where d is as in Theorem 8, 

rio= min~ [T(h(ba~(fl)), h(bz~(fl)), a2(fi)) & dora (Kv) = n2(fi) & 

& (x < ~2(/3))[K (x) = %,.(~)(x)]] . 

Let  us notice tha t  by  (**), if ~'(d)~, ~f(d(y))$ and %_c~s(s) or ?d(s)_c~s, then ~'(6) = 

= ~'(d(y)). Also, if ~o~(~, then ~ ( d ) =  ~'(6). Note tha t  we do not claim tha t  

~'(6,) = V'(62) for all 6~, &_e dora (~fl) such tha t  ? ~ =  ?5" Finally, we define the 

s-re set W 

7> (7 K =  V(Ko = K =  0). 

An index e o i  W can be obtained via an a-recursive function of indices of y), d, h, 

and B. I t  is easy to see tha t  e defines an a-enumeration operator ~b~, and tha t  r 

defines an ~-recursive functionM F~. I t  follows, much as in [9], tha t  for all ~ e  Q, 

F ( % )  = 5(q~). Q.E.D. 

O:BSERVATION 4. - -  Jus t  as is done in [9] for a = ~o, one can prove tha t  every 

~-re class of ~-recursive functions has an ~-reeursively dense base. tIence, we have 

the 
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COI~0LLARu 6. -- I] (~ is a ~-re class o] ~-recursive ]unctions and ~" is an ordinal- 

valued eJfective operation with domain 0., then there is an a-recursive junctional ~ such 

that for all ~ e  O, -~(~) = 5-(q~). 

OBSERVATION 5. - -  An example  of Myhill  shows t h a t  for a ~ 09, Theorem 9 need 

no~ hold if ~ does not have  a recursively dense base. Le t  us define ~-(~) ---- 0 if 

is the  zero function, and ~-(?) = 1 if (i) ~ is ~-recursive and  (if) if ~ = ~ --~ (Ex)[x 

e & F d x )  v e 0]. Otherwise, ~-(~) is undefined. The domain r of 5 is a class of 

a-recursive functions.  

We set 

~o is par t ia l  c~-recursive and for all ~v~e ~, ~0(e)J~ and  ~-(~v~) = ~0(e). Thus, ~- is an 

effective operat ion on cq. I f  there were an a-reeursive funct ional  F t ha t  agrees 

with ~ on ~, then  as the  zero funct ion ~ e ~, there would be a #o such t ha t  if 

](x) = 0 for all x <  #o, then  F(])  = O. Now, for each #, let us define the  set S b y  

S =  {sis < # &qd#)~}.  Clearly, S,  is a-re. Consider the  funct ion ~, such t h a t  

]~ (x )=O if x ~ #  and  

]z(# ) = minz [(e)(e ~ S --> fi ~= ~,(#)) & fi ve 0 ] .  

The point  is t ha t  if lt, o is a-recursive, and f s o -  %o, then  #o< so, and  as f~o(#O) r O, 

F(fs0) = 1. But ,  also /~(f~0) = 0 since ]so(x) -= 0 for all x </~o, and  we have  a con- 

t radict ion.  Thus,  no recursive funct ional  F exists t h a t  coincides with ~- on t2. 

Now, if a = ~ or ~ * =  a, then  S~,o is a-finite and ]so is in fact  a-recursive,  so 

t h a t  Myhill 's  counterexample  applies. Bu t  if a > oJ and  a * <  a, then  Ss~ m a y  not  

be a-finite, and  ~0 not  a-recursive. Indeed,  if it should be the case t h a t  #o >-- ~* and  

~.* < a, t hen  

and  hence S,  is not  ~-reeursive, as is easily shown. In  this case, Myhill 's  example  

fails to apply.  

We show how to render Myhill 's  e x a m p l e  applicable when ~.*< a. Le t  A be a 

I - - 1  a-recursive funct ion t ha t  projects  ~. into a*. We m a y  assume t h a t  A(0) = 0. 

Observe t h a t  for all ~, ~**----- a*. Recall also t ha t  t h e  pair ing functions ~, ~1, and  

z2 are uni form for all admissible a. We m a y  assume tha t  ~(0, 0 ) ~  0, 7~1(1)r 0, 

z 2 ( 1 ) ~  0. Now, assume t h a t  a * <  a. We define 5 - ( ~ ) ~  0 if ~ is the zero func- 

t ion;  9r(F) = 1 if ~ is a-reeursive, and  ~ = F~ --~ (Ex < a*)[%(x) =/: 0]. The  par t ia l  
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a-recursive function ~0 defined by  

= 

1 if (x < ~*)[~(x) = 0] 

0 if (Ex < a*)[~(x) # o] 

otherwise 

determines Y as an effective operation on the  domain ~ of Y. 

I f  A g g, then  we define the set A{A}  in a* as follows: 

z ~ A{A}  ~ (Ex, y)[~(x, y) ~ A & ~ z  = A(x) & z~z = A(y)] .  

Also, if A g a*, we define A-~{A} c a by 

z e A-~{A} ~ (Eu)[u e A & ~1 u ~ rau  (A)  ~ ~2q~ ~ rau  (A)  & 

Similarly, if f is a funct ion in a, we define the  funct ion A{]} by:  

(u,  v) e A{f} v-~ (Ex, y)[(x,  y) e ] & u = A(x) & v = A(y)J; 

and A-~{]} analogously for ] a funct ion in a*. Le t  ~ '  be the class of all a*-recursive 

functions ] such tha t  for some g e r A{g} is a subfunction of f and for all x ~ ran  (A), 

/(x) V: 0 -~ g(x) ~ O. Thus, the zero function in a* is a member  of ~'.  We define 5 "  

by  ~*(~) = T(A(~0),  A(x20)) if ~ e O' and ~ --  F~--> (x ~ s)[~0~(x) = 0]; define 5"(~)  = 

= ~ (A(~I ) ,  A ( ~ I )  if ~o e ~ '  and ~ ~- ~ -~ (Ex _~ e)[~dx) :~ 0]. (Here e is an index 

of ~0s in a*.) This defines the domain (~*_c (2' of 5 *  as well, ~nd ~-* is an effective 

operat ion on (2*. 

Now suppose there  were an a-recursive functional  F t h a t  agrees with ~- on (~. 

Le t  /7 be defined by  the  a-enumerat ion operator  r Thus, we m ay  assume th a t  

for all <8, u) e W ~ , K ~  is a singleton or K o = 0 .  We define W .  in a* by  

(e* an index in a*). Then r  is an a*-enumeration operator  (though this is not  quite 

obvious) defining an a*-reeursive functional  17. such tha t  /7"(~) ~ ~-*(~) for all 

in 0" .  

For  each v < a* we define the a-recursive functions g~: g~(x) = 0 if x ve v, g~(v) :~ O. 

For  each # < a*, we define the a*-finite set S~ = {s ___ #l~d#)~}, s here an index 

in a*, also we set ]s,z(x) = 0 if x va/t, Ix,z(#) = fi :/: 0 for each # < a*, where fi ~: ~d#) 

for all e e S t .  For  such # ~nd fl, Js,~ is a*-recursive. Since the zero function in a* 
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is a member of (~*, we have tha t  there is a #~ such tha t  F*({) ~ 0 for all / sich tha t  

](x) =-0 for all x < #o. We may  assume tha t  #o--~ A(vo) for some ~'o< ~* and as 

the set {~(#0)Is e S,.} is a*-finite, we may  take fl = ]z.,~(#o) so tha t  f l e  ran (A). Con- 

sider the function g,~ such tha t  g~o(x)= 0 if x ve ~o, g,~ A-~(fi) �9 Then g~~ r 

and ],~ @'. Moreover, if ]~0,~-- %, e an index in a*, then #o< e. Hence, f~o.~e 

e a*, and ~-*(fm,~) ---- ~(A(st~l), A(~t~l) ve 0. But  F*(/~.,~) = 0. Consequently the 

~-reeursive functional F,  assumed to agree with ~- on t~, does not exist. 

O~SEXVATIO~ 6. -- Given the proof of Theorem 9, the proof of the theorem and 

its corollary for weak g-recursive functionals is trivial. 

Unfortunately,  a t  this writing we have not been able to obtain the wholly 

general form of the KLS theorem for function-valued effective operations and a-re- 

cursive operators. (From Theorem 9 the KLS theorem for f.e.o.'s and weak a-re- 

cursive operators follows easily). We do obtMn a version of some generality, how- 

ever. Towards proving this version, we first modify the set W, and the associated 

~-enumeration operator ~b, defined above in the case of ordinal valued effective 

operations. For  each v < a, we define an analogous W~(~) and ~(~). 

Let  us notice tha t  for each v, the function !p(5) ----?~(~)(v) is partial g-recursive 

and defines an ordinal-valued effective operation @-~ on (~. Analogous to the partial 

~-recursive functions fl(~ ~, x), t~,a(x), and g(~, 8) defined above, we have the partial 

~-recursive functions fl,(~, 6, x), t~,~.~(x), and g(e~ 8, v). In  place of the set C~, we 

have analogously defined set Ca,~. Since all these procedures are uniform in v, 

there is a binary a-recursive function h(~, v) such tha t  C~,~---- Wa(~,~). The analogues 

of properties ( . )  and (**) hold; for example, for all v, ~ % ~ - - > h ( 8 ,  v ) ~ D ;  and 

for all v, we have 

(**)~ [~f(o)(v)# & T(h(8, v), h(a, v), y) & r e B & (x < y)(?~(x) -~ 

Our definition of the set W~(~), which contains redundant  information as far as the 

KLS Theorem for ordinM-valued effective operations is concerned, is t a i l o r ed  to 

proving on" present version of the theorem for function-valued operations. The 

definition of W~(~) involves the use of a function/~ which is obtained from the f given 

with an f.e.o, much as F' was obtained from ~ earlier. 

Thus, we let n be an a-reeursive function such tha t  for all v and all v e B, n(v) 

is an index of the a-finite function Fs(,) restricted to v ~- 1: 7.(~)--~ ~s(~)I v + 1. We 

next  define for each v the partial  a-recursive function ]~. 

]~(8) -~/(~) if 6 e dom (~o~(~)(v)) & (Ev(Ey)[v e B & !T(h(8, v), h(6, v), y) & 

& (x < y)[?~(x) = ~%(x)]] & 8 ~ ran (d) 
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J,(d(y)) = n(v) for suitable v e B, if 7 e / '~ ,  where 

& (x < ~7)[%(x) -~ Kr(x)] & dora (Kr) D ~]]} ,  

where ~ = sup {yjT(h(v, u), h(f, u), y), u <_ v, v e B (~, fixed)}. 

We put  F = U {/~}. For such v,/2o, and hence F, is clearly e-re. Since the relation 

(u <_ v)(Ey)T(h(v, u), h(f, u), y) is 2:l, the <~ suitable ~ ~> in the definition of ]~(d(y)) 

can be precisely determined by a routine use of pairing functions and the enumerat- 

ing function b of B. If  ]~(~)~, J~(d(y)),~ and %_c~v~(r) or ~vd(~)_c~. then, as with ~o' 

earlier, by  use of (**) v, we have tha t  ~%(~)(v) -- 1v+,d(,)(v). Let  us notice tha t  if u <_ v, 

then  F~_c/~.. Suppose for fixed d, we have (u < v ) [ d e d o m (%(~)(u))] and (Ev)[v e 

e B & (u<_ v)(Ey)[T(h(~, ~), h(v, u), y)] & ( x <  y)[%(x) = %(x)]] ; then we further note 

tha t  

e / ~ &  (%c ~,(~) Vq)d(:,) c %) -> (u _< v)[~%,<+(u) = Cr~do/)(u)]. 

This follows by use of (**) u, for each u < v. Subsequently, since all needed con- 

sistency properties are preserved, we write simply (( J >>, suppressing the subscript 

here and in the sequels, to make the notation a bit  simpler. We define for each v, 

the ~-re set We(v) , where e is a suitable e-recursive function 

<e, y> e w,>~)~ r + r ~ a  (~ < +)[%~<,>(u)4 a K o= {~<,>(v)}]v[Ko = K , =  0]. 

One shows as before tha t  for each v, there is an e-recursive functional F~ such tha t  

for all %~  (~, ~-~(%) = F~(%). 

Consider an a-re set W~ and a mapping ~be from 2 ~ into 2 ~ as defined earlier; 

tha t  is 

+e(x) = U {K~I(E,~)[<,~, ,~> + w e  K c x } .  

Consider the property:  

(***) 

(1) For  all sv sets A, q)e(A) is sv: V~=/,7. 

(2) For  all sv sets A such tha t  dom ( r  has a largest member or 

dora (OdA)) is unbounded, for all 0, KoC_ d)e(A) ee  (Ey)[<O, y} ~ We& 

& Kvc_A], 

L e t / ~  be the functional operator defined by a mapping having the property (***).  

For convenience (ad only for convenience), we say tha t  2'e is a limited e-recursive 

operator. 
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Tn-~oI~E~ 10. - (A partial KLS theorem for function-valued effective operators.) 

Let the class ~ of ~-recursive functions have an o,~-recursively dense base B, and let f 

be a partial a-recursive ]unction that defines the effective operation ~- from (~ into 2~. 

Then there is a limited a-reeursive operator ~' that agrees with ~ on (~. 

PRoo~. - We first define the set W,  by  (0, y} e Wv+-~ (K o is sv & dom (Ko) 

contains u biggest element & (v)[v ~ dora (Ko) -+ (E~)[@, y} e W~( O & Ko~_ %a(~)]J)V 

v [ K  o = K  = 0 ] .  :Next, we define W~ by 

(0, y} ~ W~+-+ (v)[v e dora (Ko) -+ (Eo,)(Er,)[v ~ dora (Ko,) & 

& K o, c_ K o & K~, g K~ & (0', 7'} e W,]  & K o is sv & Seq (y)] .  

W~ is cleurly ~-re, and an index e of W~ can be obtuined via an ~-recursive func- 

t ion of indices of f, d, and B. Also, W,_c W .  Consider the mapping q)~ associated 

with W~. 

LE~W~ 1. - I f  A is sv, then q)~(A) is sv. 

Pxoo~. - Suppose @, z} ~ q~(A) und @, z'} e q~(A). Then for some 0~, y~, 0~, y~, 

@ , z } ~ K o & K , c _ A & ( O ~  , y~} ~ W~ and @ , z ' } e K o & K ~ c _ A & ( O ~  , y~}~ W~. Y[ence, 
I f ? ! t t 

r some O1, 71, 0~, y~, <v, z} ~ Kol &Kic_ A & <O1, y~} ~ W ,  and @, z'} ~ Ko: & K ~c_ 
f 

_c A & (0~, y~} e W , .  ~enee,  there are e~, e~ such tha t  (e l ,  Y~} e W~(~)& Kq~ = {z} & 

& z = F~g(r0(v), and <0~, Y~} e W~(~)& Ko~ = {z'} & z'---- ~g(rt)(v). Since A is sv, and 

Seq (y~) ~nd Seq (Tz), we have that K~c K,, or Kr~c_K~,. We may assume that 

K~_dK~. Thus, %~(~)(v)= 7~(r~((v); that is, z = z'. Q.E.D. 

L]~z'C~VL~ 2. - I] A is sv and dora (Ko) has a largest element then KoC_ qS,(A) 

(Er)[(O, r} e W3,~ Kc_ A]. 

PROOF. -- Let  A and K o be us in the hypothesis and suppose tha t  KoC_ q53,(A). 

Let  v be tile largest element of dom (Ko) and <v, z} e K o. Thus (EO')(Ey')[<v, z} e 

e K o , & < O ' , y ' } e W , & K , c _ A ] .  So, for suitable o~v,yv@~,y~}EW~(~)&KTc_A& 

& K o = {z} & z = q~sd(r~)(v). Consider uny u < v, u e dom (Ko). Then as above for v, 

ff (u, z'} eKo,  for suitable ~ ,  y~ we huve tha t  @~, y~} e W~(,)& K,_r A & K e =  

= {z'} &z'-----~sd(~)(u). Bu t  since u_< v, by  definition of W~(~), ~vfd(v~)(u) $. As A is 

sv, Seq (y~), and Seq (y~), we have thut  ~ ,  c K,z ~ or Kro c K ~ .  Of course if K c Kr~, then 

%ae/~)(u) = %~(vo)(u). Assume K ~ c  K .  Then ugain %d(,.)(u) = ~d(v~)(u), us %d(r~)(u)v'. 

Noting tha t  for all ~ e B und all u, h(v, u) e D, we thus see tha t  (u < v)[u e dora (Ko) -+ 

-+ (E~)[<~, y,} e W~(~)] & Koc_ ~z~(,o). Our conclusion is tha t  if A is 'sv und KoC_ q~.(A) 

and dora (K_o) has a largest member v, then  <0, Yv} e W , &  Kv_c A. Q.E.D. 

Ln~_~A 3. - I f  A is sv, and dora (qs~(A)) has a largest member or dora (q~(A)) 

is unbounded, then for all O, Ko r qS (A) ~ (Ey)[(O, y} ~ W & KoC- A]. 

1 2  - A n n a l i  di  Matemalica 
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PI~OO~. - The direction from right to left is immediate.  Now, first oi all, let us 

observe ths~t for all sets A ~ 2 ~, q)(A) = ~ ,(A). Let  A be sv and dora (q)~(A)) be 

as in the hypothesis, and let KoC_ q~ (A). I f  dora (Ko) has a largest member, then 

by Lemma 2 and the fact tha t  W , c  W ,  we deduce tha t  (Ey)[<O, y} ~ W~& K~,c_A]. 

Suppose dom (K o) does not have a largest member .  Then since by Lemraa 1 K o 

is sv, there is a v e dom (qh~(A)), v ~_ sup (dom (g0)), and (v, r e ~b~(A), 

(% ~(A)(v)} ~ K o. Consider the s-finite set Ko~ = K o w {(% ~b (A)(v)}}. KoC_ ~)~(A) 

and dora (Ko~) h~s a l~rgest member. Since q)(A) = q) ,(A), by  Lemma 2, (Ey)[(O~, 

y } e W , & K c A ] .  For  each u < v ,  we define Kou-- - - ( (w,  Ko~(w)}]wgu} .  Then 

K o u C _ K  o and by definition oi W , ,  (0~,y} e W , .  Therefore, 

(u)[u e dora (Ko) --*- (EO')(Ey')[u e dora (K0,) & Ko, c_ K o & Kr, g K & 

& (0', y'} e W,]  & K o is sv & Seq (y)] .  

That  is, <0, y) e W~. So (Ey)[(O, 7) c W~ & Kvc_ A]. Q.E.D. 

We thus see tha t  the mapping ~b~ satisfies condition (***). Let  F~ be the limited 

~-recursive operator defined by ~b~. Let  ~ e  Q. Let  (v, z} e fih~(~). Then @, z} e 

~ , ( ~ ) .  ]3y virtue of the density of B and (**)~, (v, z} e 5(~a)----~(~). Now, 

let <v,z} ~ ~-(?~). Then (u ~ v)(Ey)T(h((~, u), h(~, u) ,y) .  Thus, for suitable v e B  

and ~, using (**)~, we h~ve tha t  (% z} e Ko, (0, 7} ~ W , ,  with K o =  cf~(~)Iv ~ 1 = 

= ~0~(~)~'v ~- 1 and K v =- cf~I~ = %,~/. So, (0, y} ~ W~, and (v, z} ~ r  Q.E.D. 

O~SnRVATIO~ 7. -- One may  ask: why not define Ws in one of the more obvious 

ways which gre at  least more direct than  the definition we have chosen? For ex- 

ample, let us put  

(0, y} E W~+-~ Seq (y) & (Ev)[~ 6 B & (v)[v ~ dora (K o) --> 

-+ (Ey)[T(h(v, v), h(~, v), y) & (x<: y)[q~ (x) = K~(x)] & 

& y c dora (K/)]]] & K o is sv & Koc_ ~r~('p)" 

Suppose A is sv and K c ~b(A). With each w ~ K  there is associated a 0" and 

7 ~ such tha t  <0 ~, y ' }  e W & w e Ko~ & K~, c_ A. Even under the assumption tha t  

dora (Kz) has a largest member v, may  we conclude, as above, tha t  (#, y~o} e W~ 

with Kv~_c A, v = Jhw? If  qt e dora ( K ) ,  u < v, w'~ Kow, , and u = ~rlw', then  cer- 

ta inly Kr~,_c Kr? or Kv~c Kv~'; bu t  if the latter holds, how are we to guarantee 

tha t  7~a(rD(u)J(? Failing this, of course m {K~,~lw e K } c _ A ,  but  why need this 
W 

union be ~.-finite for arbi t rary A? These considerations justify our definition of W~ 

given in the proof. 

O~BS:EI~VATIO:N 8. - -  We may  define q~ to be an a-enumeration operator ior the s-re 

sets for every sv s-re set A, q~(A) ~ A .  Consider an sv ~-re set A and the s-re 
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sets W e, and W defined in the proof of Theorem 9. Thus, qS~(A) is sv. Given a 

typical  (% z) e q~e(A), (EO~, 7~)[(0~, 7~) e W &  K~_c A], @, z) ~ K o .  Since such a Kvo 

is an ~-finite sequence, A is sv and ~-re, it follows tha t  either A = ~ where ~e is 

~-recursive or ~b,(A)= q)~(~fi)  for some f l<~. .  Let  Koc_r ). Now, (v)[v~ 

~dom(Ko)- -~(EO~,y~)[ (O. ,y~}eW,&Kozc_A]] ,  by definition of We. Let  K =  

= U {Kro}. Clearly, we may  assume tha t  dora (K) is hounded. Since K _~ A, K is 

the restriction of F~ to some ordinal ~. Hence, K is ~-finite, K ~ K .  Let  K = 

-~ Koo ch K o. Then (#v, Y~) ~ W~. 85 K~o_c A. Therefore, since m {K~} ~ Ko, <0, 7~) ~ 

e W , &  Kr_c A. Obviously, xve(~) --~ ~-(~vo) as before, where 2~e is the operator defi- 

ned by r This proves the easy and unsurprising theorem 

COROLLARY 7. -- I] 5 is an ].e.o. on R, then there is a ]q~nctionai operator ~ de]i~ed 

by an ~-enumeration operator ]or the c~-re sets sq~eh that E~(cf~) -~ ~'(q~o) ]or all ~vo~ 0.. 

THEOnE3~ 11. -- Let ~- be a f.e.o, that is total on 2~: ~(q)~) = q)~(~), ~ ~ ~t, %(~)~ ~ft .  

Then there is a weak e~ree~rsive operator F such that 5"(~vo)(x)= F(~o; x) Jot all 

c~-reeursive q~o and x such that ~-(~o)(x)~. 

PROOF. - As when ~z : co. 

Total  effective operations on :P~ have occurred in the theory of complexity of 

computation.  The principal instance of such an occurrence is the Operator Gap 

Theorem. To render our description intel]igible~ we need several definitions. 

An ~-complexity measure ]" is an enumeration {/~ele < ~*} of the ~-step counting 

functions /'e associated with the partial  ~-recursive function ~e in a s tandard enu- 

meration { ~ [ e <  ~.*} of the partial r functions such tha t  

(1) for each e, F~ is a partial ~-recursive function and dora ( / ' e ) =  dora (~) ;  

and 

(2) for each e, the graph of _P~ is ~-recursive. 

Let  f be r The computational  complexity class for ] relative to F is 

the class C~ = (F~IFe is ~.-recursive &/ 'df i)-< ](/3) for all but  an a-finite set of fi}. 

For  ~ = co, the gap theorem of ;Borodin answers in the negative the question as 

to whether the bound ] on complexity classes C~ can always be increased in a uni- 

form effective manner  so tha t  enlarged complexity classes result. However, the 

proofs of the naming theorem of ?,'IcCreight and Meyer and the compression theorem 

of Blum define a mapping 5 r from the Class 2~ into 2~ such tha t  for all f ~ ~ ,  Cj c 

c C~-(s ). The question thus arises: can ~- be a total  effective operation on 9~? Con- 

stable answered this question in the negative in [1], with his operator gap theorem. 

JACO~S, who lifted many  of the elementary notions and results of computat ional  

complexity to level ~., including the gap, naming, and compression theorems, asked 

in [7] whether there were admissible ~, measures/~, and total  effective operations ~- 

s u c h t h a t  C F C~-(s); tha t  is, whether for suitable ~, Constables result does no~ 
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lift. This was also answered in the negative by DI PAOLA [3] and by u  D0~G- 

PInG [18], w h o  independently proved the 

T n ~ o ~ i  12. - (g-Operator Gap Theorem.) For all I ~ and all total e]#ctive opera- 

tions ~ there are arbitrarily large increasing o:-recursivc ]unctions b such that for all e 

if b(fl) ~_ I'~(fi) ~_ F(b; fi) for fl without bound, then F(b; y) < F~(~) for y without bound. 

Thus, there is no o:-recursive % in C~(b)-- C b. Here F is a weak ~-recursive operator 

that agrees with 5 on 2~. 

PRoof.  - The prooi proceeds along the main lines of Constable's, but  several 

non-trivial departures are required (el. [3], pp. 124, 128, footnotes 2 and 4). We 

refer the reader to [3] or [18]. Also, at  the t ime of the writing of [3], our present 

development of operators and functionals was not yet  formulated. This explains 

any differences in the s tatement  of the theorem in [3] and above. 

7 .  - L i m i t  f u n e t i o n a l s .  

In  this section we use the notat ion <~ []] ~> to denote the canonical index of an 

~-finite function ]. A functional 2~ is total on 2~ if $ tc  dom (F). 

Let  ~' be a functional tha t  is total  on ~ .  F is a limit functional if there is a 

partial ~-reeursive function F such tha t  

(1) ~([f]) is defned  for all ~-finite sequences J; 

(2) l im F([]~fl]) exists and equals /~(]) for all ~-reeursive functions f. 

A functional F total  on ~ is a Banaeh-Mazur functional if, for every binary ~-recur- 

sire function J, there is an ~-recursive g such tha t  for all fi, F(~yf(fi, y)) = g(fi). 

Our purpose in this section, beyond setting down the definitions, is to record 

some theorems about  limit functionals tha t  are true for arbi t rary ~, and to discuss 

the proof at  level ~ of Friedberg's theorem about Banaeh-Mazur lunctionals. This 

latter result has already been treated by us in another journal [4], bu t  we shall 

discuss it in outline fashion here because it furnishes an example, about funetionals 

to boot, of the special difficulties one encounters in lifting a really difficult theorem 

to level ~. Among other things, its proof exemplifies use of the projectum ~* and 

X~-cofinality A in a non-trivial context. 

Among the theorems establishing the more basic relationships tha t  hold among 

the classes of ~-recursive, limit, and Banaeh-Mazur functionals are theorems X X X I I I ,  

X X X I V ,  and X X X V ,  w 15.3, pp. 364-365 of ROGERS' text  [13]. They remain true 

for all ~, and their  proofs ~re virtual  carbon-copies of the ~-proof. We therefore 

collect them under one heading: 

T~EORn~ :FoR ALL ~. -- (1) the restriction to 2~ of any g-recursive f~nctional total 

on 2~ is a Banaeh-Mazur iunctioq~al; (2) every Banaeh-Mazur functional is a limit 

functional; (3) there is a limit functional which is not a Banach-Mazur junctional. 
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In  [10], footnote 4, KREISEL, LAC03IBE, and SHOES"FIELD had asked whether 

there is a Banach-Mazur functional tha t  is the restriction to 9~ of no recursive func- 

tional. F~IEI)~nna in [6] demonstrated the existence of such a B:~I (Banach-Mazur) 

functional. In  broad outline, he accomplishes this by  showing tha t  the two classes 

of functionMs in question have inequivalent defining predicates. That  is, let us 

define the sets A ~ =  {~1% defines a limit functional which is BM} and A 2 =  {~]% 

defines a limit functional which coincides on $t with a recursive functional whose 

domain includes 5~}. Friedberg proves tha t  A2 is 2:~-complete, in fact, many-one 

complete for Z~-sets, and tha t  A~ is a H4-set. 

The proof t ha t  A~ is 2:~-complete involves a priority argument.  Also, the quan- 

tificational structure of ~'~-predieates enters into the design of the construction in 

an interesting way. Given an arbi t rary 2:~-predicate P, Friedberg works with a 

derived 2:~-predicate P ' .  The priority scheme is combined with the quantifieational 

structure of i ~ in such a way as to take advantage of properties peculiar to P ' .  Im- 

plicitly defined by the entire construction is a recursive function r tha t  reduces P 

to the defining predicate of A2. 

Let  us examine Friedberg's construction and argument  more closely. Consider 

the predicates: (1) % deJines a limit junctional which coincides on 2~ with a recursive 

Junctional that is total on N; (2) ~% deJines a limit Junctional which is Banach-Mazur. 

(1) can be expressed as a X~-predicate, (2) as a/-/4-predicate. Now, consider a recur- 

sire predicate R such tha t  (2) +-. (x)(Ey)(z)(Ew)R(u, x, y, z, w). Since Friedberg 

proves tha t  (1) is many-one complete for the class of 2,~-predicates, we obtain from R 

a recursive function r snch tha t  

(Ex)(y)(Ez)(w) ~ R(u, x, ~J, z, w) 4-~ (Ex)(y)(Ez)(w)S(r(u), x, y, z, w) , 

where S is a recursive predicate such tha t  

(1) *-* (Ex)(y)(Ez)(w)S(u, x, y, z, w). 13y the recursion theorem there is a 

number  u o such tha t  ~%0---- %(uo). Consequently, (~%o defines a limit functional tha t  

coincides on J~ with a recursive functional tha t  is total  on 2~)<-/-+ (%,. defines a 

limit functional tha t  is BM). The left side of this inequivalenee implies the right, 

as it is not hard to see. Hence the left side is false and the right side is true. (We 

note in passing tha t  one could obtain the crucial inequivalence without  use of the 

recursion theorem, using the hierarchy theorem instead.) 

In establishing tha t  the predicate (1) above is many one complete for the class 

of X4-predicates, Fricdberg first trades in the recursive predicate R for a recursive M 

defined by 

M(u, e, s, n, a) +-~ ( x <  e ) ( Ey <  s ) (z<  n)(Ew < a)R(u, x, y, z, u) 

and observes that 

(x)(Ey)(z)(Ew)R(u, x, y, z, w) +-+ (e)(Es)(~)(Ea)M(u, e, s, n, a). 
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The recursive function r tha t  many-one reduces the negation of (e)(Es)(n)(Ea)M(u, 

e, s, ~, a), and hence ~ (x) (Ey)(z) (Ew)R(~,  x, y, z, w) to the predicate (1) is defined 

by specifying for each pair @, s} of natural  numbers the value of ~(~) on all finite 

extensions of (e, s}. This specification is carried out in an infinite sequence of stages 

with the help of a non-decreasing recursive function t , .  The general scheme is tha t  

just prior to execution of stage a of the construction, %(,) has been assigned the 

value 0 on all finite extensions of @, s, t}, t > t~,~(a ~ 1), provided tha t  t~,~(a ~ 1) = 

=t~,~(a') for all a ' >  a - - 1 .  In  addition, ~t stage a the a t t empt  is continued to 

define ~ recnrsive function/, ,~,twith t = t , , ~ (a -  1) such tha t  f~,~,,(0) = e, ]~,~,~(1) ---- s, 

],,~,~(2) ----- t. The construction is designed so tha t  if s is the least number  satisfying 

(n ) (Ea)M(u ,  e, s, n, a), then  for some t, ]~,s,t is total ly defined, and hence a reeursive 

function, and H~, the recursive functional with index e, is either undefined at  ]~,,,t 

or differs at  f,,~,t from the limit functional %*(~) defined by %(u)" To effect this design, 

Friedberg divides each step a > 0 of the construction into five eases, to be considered 

in order. I f  one of these, Case 3, applies at  stage a, requiring M(u,  e, s - -  1, t, a), 

t = t,,8(a - -  t ) ,  then one lets te,s(a ) ~- a, defines ]~,~,~ at 0, 1, and 2, and abandons 

the fnrther speciilca*ion of the function ],,~,tt-~ t , , , ( a -  1). To understand why, 

let us notice t ha t  for all s~, s2 if s l<  s~, then  M(u,  e, s~, t, a) --~ M(u ,  e, s~ t, a) 

Thus, the fact t ha t  M(e, u, s - -  1, t, a) holds presents us with the possibility tha t  

for some s~< s, (n ) (Ea)M(u ,  e~ s', q,, a); in this situation precedence is given to the 

pair @, s - -1}  over the p~ir <e~ s}, and thus ~o the definition of f~,~-~,t over f~,~,t" 

:For the pair <e, s} at the next  stage, the a t tempt  commences ~o define suitably the 

function fe,,,~. 

Assume tha t  (e)(Es)(q~)(Ea)~l(~t, e, s, n, a). We wish to conclude tha t  %(u) dif- 

fers from every recursive functional. Consider such a functional E~. Tske the least s 

such tha t  (n) (Ea)M(u,  e, s, n, a). Our aims could be frustrated if for this pair <e, s}, 

Case 3 were to occur infinitely often. ]3ut, for this puir~ we have ( E t ) ( a ) ~  M(u,  e, 

s - -  1, t, a) but  (u) (Ea)M(u,  e, s, n, a). Hence, by  monotonici ty properties of M and 

the growth of t as Case 3 occurs, Case 3 c~n occur but  a finite number  of times for 

<e, s}. Other consequences follow which show tha t  for suitable t, ~(f~,~,t) =~ %*(.)(]~,s,t)" 

If, on the other hand, (Ee)(s)(Eq~)(a) ,,~ M(u,  e, s, q~, a), let eo = min~ (s)(En)(a) 

,-, M(u,  e, s, n, a). For each e<: e0, let s(e) = min~(n) (Ea)M(u,  e, s, n, a). The set 

{<e, s(e)} [e < co} is finite, and using this and some additional facts, Yriedberg defines a 
* 

recursive functional /~ tha t  agrees with %(~o on every recm~sive function and tha t  

is total  on 2~. Thus, he proves tha t  the predicate (1) above is complete for the class 

of Z~-predicstes with respect to many-one reducibility. 

In  [4], we proved the following lift of Yriedberg's theorem 

T~EOnL)I 13. - I1 ,~, < ~*; the~ there is a Banach-Mazur functional that coincides 

~ there is a Banach- with no (weak) ~-reeursive functional that is tota~ o~ ~ ;  i] ~ z co 1 , 

Mazur meta]uuvtional that coincides with no (wealc) metareeursive 1unctioqcal that is 

totaZ on 2~. 
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DIsctTssIoN oP P~ooF. - Firs t  we remark  tha t  the construction in [4] also applies 

for ~ = ~o. Assume e > o9~ r Let  us suppose tha t  in lifting ~'riedberg's construction 

and argument  we have made the modifications and changes necessary to overcome 

stages of the  construction defined by  limit ordinals. Also, we are working with the 

predicate (e < e*)(E~ < e*)(n)(E/3)M(u, e, o, n,/~). Tha t  we here need consider only e 

and o less t han  e* follows easily f rom the fact that ,  as in [4], we have replaced the 

predicate (1) discussed above with (1'): if % dejines a l imit  functional, then % agrees 

on 2~ with an e-recursive Junctional that is total on 2~, a replacement  tha t  serves as a 

convenience in several respects; (1') is shown in [4] to be a X(pred iea te  tha t  is many-  

one complete for all Z'~-predicates. 

Suppose tha t  one of the conditions defining an occurrence of Case 3 relative to 

the pair s, o is now ( E o ' <  o)M(u, e, o', t, fi). Assume ( e <  e * ) ( E o <  e*)(n)(Efl)M(~, 

s, o, ~, fl). Le t  /~  be a weak e-recursive functional  with index s < e*. I f  we now 

take  the least 0 <  o* such tha t  (n)(Efl)M(u,  s, (~, n, fi), then  for all o ' <  (~(Et)(fl)~., 

,~ M(~, e, o', t, fl). Bu t  is the function t(o') = mint (fl) ~ M(~e, s, o', t, fl) bounded? 

How are we to guarantee tha t  Case 3 occurs at  only an a-finite number  of stages fi? 

I f  this set of stages is not  a-finite, the construction collapses. We overcome this 

obstacle by  a suitable par t i t ion of e* into 2 pieces or blocks~ adapt ing a technique 

used originally by  S~o~E [16], .as follows. Le t  A be a 1 -  1 e-recursive funct ion 

f rom e into e*. L e t / '  be a X~-function from 2 with range unbounded in e*. ~'or each 

~ <  A, we define A(~) = U {/ ' (#)1#< ~}; A is /:2. Observe tha t  0 < A(0) < ... < 

< A(~) _< A(~ @ 1) _< ... < e*; and for each e < e*, A(~) < e <  A(~ ~- 1) for an unique 

< )~. Using the fact  t h a t / "  is 2: 2, we Iet H be an e-recursive funct ion from e < 2 

into e* such tha t  P( , )  = lira H(/~, ~) for all ~ < i .  Define H(/~, ~) = U {H(/~,/~)l# < 

< f}. Then II(fl, ~) is e-recursive and zl(~)----li~nH(fl, ~). Also, 

( v <  i ) ( E f l ) ( f i ' > _ f i ) ( # < v ) [ I I ( f l ' , # )  = A(#)] ,  and  for each /3<  e ,  

0 = Lr(/~, 0) _< ... < H(/~, ~) _< t r (~ ,  ~ + ~) _< ... < e * .  

Among the defining conditions for an occurrence of Case 3 we now have (E#)(Eo')[# < 

< r & o' <_ H(fi,  #) & M(u,  e, o', t, fl)]. Now, assume as before tha t  (s < e*)(Eo < 

< e*)(n)(Efi)M(u,  e, 0, n, fi) and F~ is a weak e-reeursive functional.  Again take 

the least o <  e* such tha t  (n)M(Efi)(~t, e, o, n, [3). Then for all o ' <  o, (Et)(fl) ~, M(u,  

e, (r', t, fi). Let  vo be the least v < )~ such t h a t  o _< A(v). Le t  flo be so big tha t  for all 

fi > ft. and all ~ <_ ~o, H(fi,  v) = A(~), and note  t h a t / / i s  e-recursive. Consequently, 

for all v < ~o, fl --> rio and all o' such tha t  o'_< H(fi, ~), we have (Et)(fl) ,.o M(u,  e, o', 

t, fi). Next ,  define t(v) ---- mint [ ( f i )N M(u,  e,H(fio, v), t, fi)], where v <  ~0, and hence 

H(flo, v) < o. Then  t is a X2-function from v0 into e, and by  definition of 2, t is bound- 

ed in e, say by  [. F rom this it follows tha t  there  is a stage ~ beyond which Case 3 

does not  occur for the pair <e, Vo). Hence, Case 3 occurs only a-finitely often. One 

is now able to conclude tha t  for suitable t, ],.~~ is completely defined and either 
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, * ) lv~(]~ ~0.t)~ or N:~(]~,,,.t):/: q)~(~)(]~,,~ _As the reader  perhaps has observed, we are no 

longer so interested in all pairs ~e, ~) bu t  especially in pairs (s,  ~}, s < ~*~ ~ < 2. 

The function A part i t ions e* into ,~ intervals or blocks, each of size less t han  e*. 

In  our ease, the intervals of part icular  interest  arc the initial segments of e* defined 

by  each A(~), ~ <  ~. The priori ty ordering has been shifted to the v's less t han  2 

from the a's less t han  e*, all a 's  t ha t  fall in the interval  A(v) (a _< A(v)) being 

t rea ted  on a par.  );[ore speeifieMly, the construct ion is now designed with the  fol- 

lowing objective: if v. is the least v <  )~ for which there  is a ~ <  e* such tha t  

(n)(E[~)M(u, e, a, q~, fi), then  for some t, L .... ~ is an e-recursive function a n d / ~ ,  the 
�9 ) weak e-reeursive functional  with index e, is either undefined at f~ .... t ~ %(~)(]~ .... t :/: 

:/: ~(]~,~o,t)" Of course, we actually work with a suitable ~-reeursive a p p r o x i m a t i o n H  

to A, which exists by  the admissibility of e. Accordingly~ the per t inent  defining 

condition of Case 3 now reads 

( E ~ ) ( f ~ ' ) [ #  < ~ & ~ ' _ < / / ( ~ ,  ~)  & ~ ( ~ ,  e, ~', t, ~)].  

I f  this condition holds, there  is the possibility tha t  for some # < u there is a 

a ' <  A(#) such tha t  (n)(Ef i )M(u,  e, ~', t~fi). Having  received this signal, we give 

precedence to the pair @,/~} over the pair  (e, ~}, and abandon the a t t e m p t  to 

fur ther  define the  function ]~,~,t. Tha t  Case 3 can occur bu t  a-finitely often follows 

f rom the  fact  the function t(~) defined above is a Z~-funetion from ~o< ~ into ~, 

and hence is bounded in e. 

Now, suppose (Es < ~*)(~ < e*) (En) ( f i )~  M(u,  e, c~, n, fi). Let  s o :  rain (~<  ~*). 

�9 (En)(fi) ..o M(u,  e, (r, ft, fl). If  we now define a(e) ----- min~(n) (E~)M(u ,  s, a, n, ~) for 

each e < So, we certainly cannot  conclude tha t  the set {<e, a(s)) Is < So} is a-finite. 

But  suppose we instead take the set S : {~(s, ~)]s < so & ~ < 2}, where r is a rudi- 

menta ry  pairing function uniform for all admissible ordinals, so tha t  if 2 < e*, 

v(e, v) < ~*. We then  define E to be those members of S satisfying various other  

a-re conditions natura l  to the construction, as in [4]. Since by  hypothesis  2 < e*, E 

is an a-re set bounded below e*, and hence a-finite. ( I t  is here, and only here, tha t  

the special hypothesis  2 < ~.* is used in [4].) One is then  able to define a weak 

e-reeursive enumerat ion operator,  and thence a weak e-recursive functional  /~ '  

to ta l  on 2~ such tha t  F~(~v) = %(u)(~v) for all ~0 ~ ~ .  

For  the metareeursive case oi course t = e*-= co. Bu t  in this case, we are able 

to dispense with use of 2 completely. One is able to define the set B ment ioned 

above so tha t  it  constitutes a bona fide finite set of finite ordinals. Of course, in 

all eases deduction of the theorem relat ive to e-reeursive iunctionMs from the  version 

relative to weak ~-recursive functionals is a triviality.  

In  [4], there  are a number  of other  significant departures f rom the construction 

as given by  Friedberg.  For  example,  in Friedberg's  construction at  a given stage 

certain ins t ruct ions  prescribe tha t  the  function %(~) be defined on all finite exten- 

sions of some triple @, 8~ ~) while in [4] a t  a given stage the corresponding (or 

analogous) instructions require tha t  in extending ~(~) we re]rain f rom defining it 
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on some ~.-finite extensions of a triple @, v, t}. Also, in [~] each of Cases 3, 4, and 5 

undergoes some materiM change. As a result of these changes it becomes less clea, r 

than  in [6] tha t  the function %(,,), which is to define ~he limit funetionM %(~)*, is 

defined on all ~-finite sequences. Accordingly, a proof of this fact  is included in [4]. 
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