The Basic Theory of Partial «-Recursive Operators (¥) (**).
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Summary. — In this paper, we investigate the theory of partial x-recursive operators and func-
tionals, « an admissible ordinal, which are defined in terms of o-enumeration reducibility.
The theory bifurcates into the study of weak operaiors and functionals, and of operators and
functionals proper. The status of the representative theorems of the classical theory (when
« = w) 1§ examined relative to both kinds of operators and functionals. Hspecial atiention
is given to the difficullies, when such exist, encountered in generalizing a classical result,
whether simple or profound, to level a. In the course of the investigation we are led to consider
briefly topics such as the structure theory of completely recursively enumerable classes of o-re-
cursively enumerable sets. This is natural since this theory bears on the properties of effective
operations at level o. The paper provides the framework for the further investigation of this
and allied topics.

1. - Introduction.

The subject of partial recursive operators offers an inviting prospect for gen-
eralization to «-recursion theory. There is on hand a fairly well developed classical
theory with a stock of representative theorems, including among others the First
Recursion Theorem, the Myhill-Shepherdson Theorem, the Kreisel-Lacombe-Shoen-
field Theorem, the Fundamental Operator Theorem, various theorems about Jimit
funetionals, and, toward the boundaries of the theory, the impressive theorem of
Friedberg on the existence of a Banach-Mazur funetional that coincides with no
recursive functional on the class of recursive funections. Also very visible are the
well-known ties of the theory of operators to the very extensive theory of relative
recursion. Indeed, whole tracts of the latter topic may be cast in the guise of results
about partial recursive operators; viz., a function f is partial recursive in the total
funection g if and only if there is a partial recursive operator F such that F(g) = f.
Now the theory of relative recursion at level o, « an arbitrary admissible ordinal,
has been vigorously developed, particularly «-degree theory. On seeking to gen-
eralize the theory of operators to level «, one should therefore anticipate contacts
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with the results, definitional problems, and peculiar difficulties of relative «-recursion
theory. And all this refers only to those topics whose possibility for investigation
is clear a priori. There is the further possibility that as the theory is developed at
level o > w, surprises may be encountered that open up whole new vistas, For
example, to lift the Myhill-Shepherdson or Kreisel-Lacombe-Shoenfield Theorem
(hereafter often referred to as the « MS theorem » and « KLS theorem » respectively)
one is forced to consider effective operations at level «. The definition of an «-effec-
tive operation could not be more straightforward: one simply repeats the definition
at « = w. Thus, in attempting to generalize the MS theorem or KLS theorem at
level « > w, one’s attention is naturally not concentrated on a given effective opera-
tion, but rather on the partial a-recursive (or o-recursive) operator (if the effective
operation is function-valued) or functional (if the effective operation is ordinal-
valued) alleged to be an extension of the given effective operation, and on whether,
how, and to what extent the proof of the existence of such an operator or funetional
differs from the w-proof. We will be led to consider two types of operators and
functionals, a weak version and a version in a proper sense. In the case of operators,
the ease and even the validity of the generalization of the w-theorem may depend
gtrongly on which version is being eonsidered; that is, on whether the generalization
pertains to weak (partial) ¢-recursive operators or to (partial) e-recursive operators
in the proper sense.

Since virtually nothing has been published about the general theory of partial
a-recursive operators, questions abound. First of all, which results remain valid
at level for all admissible x? Among these which are such that their verification at
level o, given the w-instance of the result, is routine, and which, though wvalid for
all or many «, require innovative methods to be proved? Once the proper defini-
tion and formulation at level « have been chosen, which properties, true for « = w,
simply fail to hold for some admissible «? Can the ordinals « for which the w-result
fails be suitably characterized? What notable differences in structure are implied
by the divergencies from the w-case?

In this paper, we make & mere beginning towards the resolution of these ques-
tions. In fact we develop what we have called the « basic theory of partial a-recur-
sive operators» concentrating on the central body of theory and representative
theorems of the subject. Our investigation uncovers and defines various difficulties
in the theory of effective operations encountered at level «. The detailed study
and solution of some of these difficulties must be postponed to a subsequent work,
For comprehensiveness we also survey several of our results about operators or
functionals that have appeared elsewhere.

2. — Background.

Our approach to the theory is modelled on that taken by Rogers for « = w in
hig well-known book [13]. This permits a development extrinsic in its exposition
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to any particnlar formalism such as generalized Turing machines or Kripke’s equa-
tion calculus (these formalisms, of course, retain their importance) and yet attain-
ing an acceptable standard of precision. Moreover, this path parallels that most
often taken in the allied subject of generalized relative recursion, at least as pre-
sented in ordinal recursion theory, e.g. [14, 15]. Accordingly, our definition of a
partial «-recursive operator will be based upon the concept of o-enumeration re-
ducibility. This leads to some proliferation in our terminology, which should not
be surprising, It is a fact that the theory of relative recursion can be formulated
in terms of operators; for example, a total funetion f is reeursive in a total func-
tion g if and only if there is a recursive operator F such that F(g) = f. Now, it is
an oft-repeated story regarding the search for a suitable analogue of Turing redu-
cibility in L, that the more straightforward and initially favored formulation of
« a-recursive in» was found to be seriously defective: it is not transitive, as was
first shown by Driscoll for the metarecursive case, o = % [5]. The crucial distine-
tion in the subsequent version that has met with general acceptance is the fact
that the basic units of discourse used in relative ¢« computations» are not simply
ordinals f < &, but arbitrary members of L, that is, o-finite sets. The first version,
now dubbed « weakly a-recursive in » has not suffered total eclipse, but has survived
as & useful technical tool, particularly in negative results: in a demonstration that a
set A is not a-recursive in a set B one often finds established the stronger result
that 4 is not weakly «-recursive in B, as the weaker reducibility notion is less cum-
bersome to employ. The reader may anticipate, then, that this biformity will recur
in our theory of effective operators in L.; many of our notions of enumeration
reducibility, enumeration operator, partial recursive operator or functional ete. will
have two versions, one labelled « weak » and a stronger version more adequately
representative of the corresponding notion in elassical recursion theory (x = ).
This is an opportune point to introduce a distinction in terminology. For us,
operators are function-valued mappings defined on a class of functions; functionals
are ordinal-valued mappings defined on a class of functions.)

Once one has stated a suitable formulation at level ¢ of a classical result, the
fact that the formulation concerns the weak version of operators or functionals,
need not reveal much about its relative ease of demonstration. Various eombina-
tions are possible. A weak formulation (i.e. a formulation involving the weak notions
of operator or functional) may be trivially true given the w-case, and the proper
formulation may be equally eagy to demonstrate, or quite difficult, perhaps, so far
as we know, demonstrable only under certain added cenditions. Or, the weak for-
mulation may itself be difficult to establish, and once established the proper for-
mulation may or may not be easily derivable from the weak. For various admis-
sible o, the weak formulation may be true and easily demongtrable, while the proper
formulation is false. However, one more or less general rule is this: once a formula-
tion about weak functionals has been established, the passage to a proof of the
corresponding formulation about weak operators is often trivial (as is the case when
o = w), but for « > w the passage from a result about proper functionals to the
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corresponding result about proper operators may well be non-trivial, in contrast
to the usual situation when a = oo
A word about style. Since we have anticipated a readership for this paper that
“may be unacquainted with «-recursion theory, we have tarried a bit longer over
some proofs than would otherwise have been our practice, with a view toward
pointing out, for example, that an utterly banal situation at level w may become
an obstacle at level « > w; to indicate that a seemingly obvious, hastily made for-
mulation of a known result simply may not work at level o; and to note why various
modifications have to be made in a demonstration to guarantee success at level «.
For the same reason, we have included in the next seetion many basic definitions
of «-recursion theory, though these are easily available in the literature, e.g. [14, 15].

3. — Basic definitions and notational conventions.

A-recursion theory can be approached by two paths: via Gdodel's hierarchy of
congtructible sets or by means of Kripke’s equation ealculus. We shall define the
notions of admissible ordinal and partial ¢-recursive function in terms of the former
approach, but first a brief word about some notational conventions. We shall write
the bounded quantifiers (z)_,, (Ey).; a8 (#<¢) (By < o), and similarly with their
variants, e.g. (#)., as (v <e) ete. If f is any mapping (function, operator, func-
tional), « dom (f) » designates the domain of f, and «ran (f) » the range of f. « A< B»
means 4 is a subset of B, and « 4 c B» means A is a proper subget of B. Similarly
for funetions f and ¢g. If 4 is a set and f a mapping f[4] is the set which is the
image of A under f. We write «iff » for «if and only if.» If f is a function with
domain D and § is an ordinal, f[§ is the restriction of f to DN G If Ais a set,
A Ca, 4 is the complement of A in o, 4 = « — A. We write «f(z)| » if f is a fune-
tion, operator, ete. and x € dom (f); «f(#)4 » means @ ¢ dom (f).

In the statement of some of our theorems about operators or functionals, the
word «weak » occurs encloged within parentheses. By this practice we mean to
refer to two theorems, the statement of one iy to be read including the enclosed
word « weak », the statement of the second is to be read omitting the enclosed
« weak »,

Presupposing familiarity (or acquaintance) with Godel’s L, hierarchy, we define
the X, IT,, A, hierarchy of formulas of set theory. A formula @ with parameters
in Ly is 2, over Ln(Zy/Ls) and I1, over La(f1,/Ls) if @ contains no unbounded gquan-
tifiers. For #n > 1, a formula @ is X, (II,) over L, (notation: X, /L and IT,/Ls, respec-
tively) if @ consists of a single existential (universal) quantifier prefixed to a formula,
that is 77, (X, ) over L,. @ is A, over Ls(A,/Ls) iff it is both X, over L, andIl,

(1) The KLS theorem relating effective operations and «-recursive operators, as opposed
to the same theorem relating effective operations and weak o-recursive operators, is a good
example of this situation.
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over Ly. A relation (or predicate) P is X, (I1,, 4,) if iff it is definablei n L, by a for-
mula that is 2, Le(ll,/Ls. A,]/Ls). A function is X,(I1,, A,) if its graph is 2, (I1,, 4,).
The ordinal « is 2;-admissible (briefly, admissible) if the axiom scheme of replacement
of ZF for formulas that are 2\/L, is satisfied in L,. Throughout the remainder of
this paper it is assumed that « is an arbitrary admissible ordinal.

A partial function f: « —> «.is partial a-recursive if it has a 2,/L, definition; f is
a-recursive if it is partial a-recursive and total on «. A set 8 C o« is a-recursively enu-
merable {o-re) if it is the domain of a partial a-recursive function. (This is equivalent
to saying that S has a X,-definition over L,.) 8 is a-recursive if § and S, the
complement of § in «, are x-re. (Thus, 8 is 4,/Ls.) Let us note that every «-re set
is range of a 1 — 1 partial a-recursive function whose domain is an ordinal y < «.

A subset K of « is a-finite if K is a-recursive and bounded in «. (As is well
known this is equivalent to K € L,.) The definition of admissible ordinal may be
rephrased as a basic principle of a-recursion theory: if f is partial a-recursive and K
is an o-finite subset of the domain of f, then f[K] is «-finite.

We make use of the binary «-recursive function & of Sacks [14] such that

(i) it k(p,n) = 0, then f<u;

(ii) if K is an o-finite set, then there is an unique 5 << « such that K = {[k(6,
n) = 0}, and 7 is called the canonical indew of K: K = K _. We also find it convenient
to uge 2y, rudimentary (in the sense of JENSEN [8]) pairing functions t, m;, z, such
that for all < a, 7(m(B), m(f)) = p, and for all 8, y < «, m 7(f, y) = £ and =,7(B,
v} =y, which are uniform for all admissible «. We often write {z, y> instead of
7(z, ¥), though we also use {x, y) as the ordered pair of x and y. An a-finite func-
tion is one whose graph is an a-finite set; an o-finife sequence is an «-finite function /
such that dom (f) = y for some y < a.

The 2i-projectum «* of « is the least § such that there is a 1 — 1 «-recursive func-
tion A: « — B. The X,-cofinality A of « is the least » such that there is a 2,-function
with domain » and range unbounded in . The primary facts about «* and A, which
are obvious from the definitions, are these:

(1) if << a*, then every «-re subset of § is a-finite;

(2) if » << A, then every 2, function with domain v is bounded in «. Recall
too that the 2,-cofinality of « equals the 2,-cofinality of «* [15]. Also, if f is a partial
function from o into o, then the following are equivalent: (i) f is X,; (ii) f is weakly
a-recursive in O'; (iii) there is a binary «-recursive function g such that for all
f(B) = lim_g(o, f), where « =~ » denotes strong equality [15, p. 171].

As in [14, 15], we employ the funection k to give a uniform enumeration of all

the «-re sets. There is an a-recursive function r: « Xa* sueh that
(1) K, ,C K, . C o' whenever o< ¢'< a;

1(0,8)~ T

(2) U{E,;lo < «} ranges over the a-re sets as ¢ ranges over o*,
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We set W= K, ,, and W,=U {Wo< o}, and say that e is an index of
W= W,.

A partial function f is weakly o-recursive in a set B (f <, B) if there iy an ¢ < o*
such that for all y and 4

fiy) = 0 > (BEEN[y, 0, &) e W, & ng B & Kﬁ(_i B].

If f and g are functions, then we say f <, g iff f is weakly «-recursive in the graph
of g. A set A is weakly a-recursive in a set B if ¢, <. B, where C, is the charac-
teristic function of A. For « = the first nonrecursive ordinal, & = (", the metare-
cursive ecase, it was shown by Driscoll that the relation « <  » is not transitive,
and in fact not transitive on the w;,-re sets [b]. Driscoll’'s argument extends to
many admissible «. Shore characterized those admissible o for which « <, » is not
transitive on the o-re sets, namely those o for which there is more than one non-
hyperregular o-re degree [17].

A set A is a-recursive in a set B (A <4 B) if there is an ¢ < o* guch that for all ¢
and ¢

(EyC A & KoC A) > (BEBy)[(y, 6, &) e W & KCB&K CBJ.

Similarly for funections f and g, ete. A set A C o is a-regular (briefly, regular) if A N
is o-finite for all << o. A is a-hyperregular (briefly, hyperregular) it f{§] is bounded
whenever f<<a, f: f —o and f< A,

We come now to the definitions that are especially germane to the subject of
this paper. A set A is weakly x-enumeration reducible to a set B (A <, B) ift

(He < o*)(@)[@ € A > (En)[{w,n> € W, & K C B].

The mapping thus defined by any ¢ < o™ from 2 into 2% is said to be a weak x-enu-
meration operator @Y with index s. A set A iy oc-enumeration reducible to a set B

(4<,,B) iff

(Be < a*)(0)[KsC A <> (Em)[(B,n) € W & Kng B].
Thus, A <, B if there is an enumeration procedure sueh that (1) a listing of an
o-finite subset of the oracle-set B results in a listing of an «-finite subset of 4, and (2)
any o-finite subset of 4 can be obtained via the procedure by listing some «-finite
subset of B.
Let us define for each &< o* a mapping @, from 2* into 2% by

Du(4) = U (Ko|(Bn)[(3, m) € W,& K, C AT} .
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Recall that a set 4 is single-valued (sv) if
@) Y[(recd&yed&m@) =my)) > m2 =my].

We define V.= {4|4 is sv and D.(4) is sv}.

We say the mapping D. is an a-enumeration operator with index ¢ if for all 4 € V,,
D(A) <,, 4.

For completeness we include a definition of operators and functionals based on
enumeration operators; as already stated our exposition mainly follows that of
RoGERs [13], where o = w.

Let T, TR, G, and R be the clagses of unary partial functions (from « into «),
partial e-recursive funetions, total functions, and «-recursive functions, respectively,
let II be the class of all single valued sets A € 2% The «-recursive pairing funection
provides a 1 — 1 map of § onto /1. A functional operator F is mapping from a sub-
set of § into 9. Every functional operator F determines a mapping I from a sub-
set of I into /7 and viee-versa, by means of the equations I' = 7Fr1 and ¥ =
= 7.

Consider a mapping @ from 2% into 2% We define @,; as follows: (i) dom (D) =
= @YIIINII; and (ii) for each 4 € dom (B,), P (A) = D(A). We say D defines
the functional operator F, where ¥ = 1-'®, 7.

F is a weak partial c-recursive operator if (i) F is a functional operator, and (ii),,
for some ¢, @Y defines F'; F is a partial o-recursive operator if (i) holds and in place
of (il),, we have (ii): for some &, @. defines F where @, is an x-enumeration operator.
F is a (weak) a-recursive operator it (i) F is a (weak) partial «-recursive operator,
and (ii) dom (F) = ¥. F is a (weak) general c-recursive operator if (i) F is a (weak)
partial «-recursive operator, (ii) G C dom (F), and (iii) F[G]C G.

A functional on § is a single valued subset of X (¢ + 1). If F is a functional,
dom,, (F) = the weak domain of ¥ = F-1{« -+ 1); dom (F) = the strong domain of
F = F-Ya). If fedom (F), we put F(f) = f, where <{f, > e F.

It &% ig a weak a-enumeration operator, then @ determines a functional F on &
as follows:

dom,, (F') = {f|®"([f]) has at most one member}

and

dom (F) = {f|{®@"(v[f]) has exactly one member}.

If { € dom (F), then F(f) = the unique member of @“(z[f]). Similarly, every «-enu-
meration operator @ determines a functional F on 7.

If F is determined by a (weak) ¢-enumeration operator, then F is a {weak) partial
a-recursive fumctional. F is a (weak) o-recursive functional if F is a (weak) partial
a-recursive functional and dom, (F) = T (or dom (F) = F). F is a (weak) general
a-recursive functional if F is a (weak) partial o-recursive functional and G C dom (F).

11 - dnnali di Maiematica
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4. — Elementary propositions and simple theorems.

The propositions listed in this section are « elementary » in that they are in
character close to the definitions, and easy consequences of the same. As such they
are as important as the definitions, though their truth is obvious, given the defini-
tions. We call «simple theorems» those assertions which have easy proofs, but
contain elements a bit more distant from the definitions. They may relate operators
or functionals to some concept that is already well established in the literature,
Their proofs are simple in one of two respects. The demonstration may be just plain
simple, with little or no reference to prior results, or, given the w-case of the theo-
rem, it may amount to a virtual copy of the w-proof. We give the proof in one or
two instances to illustrate the use of the definitions.

PROPOSITION 1. — Let DY be a weak a-enumeration operator and De., an x-enumera-
tion operator. Then

(i) ACB —((®°(4)C P*(B)) & (D:(4) C Pe(B));
(i) we @A) > (EpK,CA&se (K,)];
(i) K,CP,(4) - (Hyn)K,CA&K,CP(K)], it AeV,.

ProposITION 2. — If I is a (weak) partial c-recursive operator and F C dom (F),
then F is a (weak) a-recursive operator.

Proor. — The proof is as given in RoGERS [13] for « = w.

CorOLLARY 1. — Every (weak) general a-recursive operator is a (weak) «-recursive
operator.

PROPOSITION 3. —~ Let @, and D, be a-enumeration operators. Consider the com-
posite map @ = Do® .. Then (i) P(A) = D, . (A) for all AcV,, where c(c,¢)
48 any a-recursive function such that

cle,e")

0, m) € Wy oy (By)[8, ¥> € We& (y, > € Wes

and (i) P

o(e,e0) U8 an a-enumeration operator if V., SV,

ProOF. — To justify that @,, .,(4) = D(D,.(4)) for all A € V., one first observes
that

U {Ko|(Bn)CS, 7> € Wy, & K C A] =
U {Ks|(En)(Ey)[(0, 7> € We& <y, n) € Wee& K€ A]C
U {Eo|(B)[<8, y> € We& Ky C Pur(A)]}
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for all sets 4 €2% so that @, (4)C P (D,(4)) for all A 2% Then using the hy-
pothesis that @, is an «-enumeration operator, one shows that

U {E,|(By)[S, p> e W, &K Ch.(A)]}C
U{E,|(ENIS, 1) € W, & B, C AT} forall A€V,

so that @D, (4)) < Dy, .(4) for all 4eV,. Hence (Do®,)(4) =D,
AdeV,.

Now, assume V., ..CV,, and suppose that A€V, so that D, . (4)=
= @ (D.(4)). By our assumptlon, ®_.(A)e V.. Hence, by the above

(4) if

K C Py, (A) > (B[S, y> € W, & K C D (4)]
and

K CD.(A) e (Eny,n € W, &K CA],
using that &, and D, are z-enumeration operators. So,

K,C By, (4) > (By)(En[, > e W&y, e W, & K, C Al
> (E)[0, 1) € Wy on& K, CA].

Therefore, @

s(s,6) 18 Al o-enumeration operator if V,, ,C V.. Q.E.D.

We remark that the hypoteesis V,, ...C V.. of Proposition 3 is satisfied whenever
QI 1CV, (and hence O [II 1= V).

Let us recall that if 4 2% €, is the characteristic funetion of A. As in Ro-
GERS [13] when « = w, if f and g are functions we shall frequently write f <_, ¢ and
| <use 9 in place of [f]1 < , 7[g] and [f] <, 7lg], respectively.

THEOREM 1. — If A and B are seis, A <, B iff O, Cp.

"— woe

Proor. — The proof is as for « = w.
Proceding as when o = w, one proves

COROLLARY 2. — If f and g are total functions, then

f——wang<waeg

Driscoll showed that for « = w{¥, there are a-re sets D;, B, and D, such that
D <,.B B<, D, but D, £ D,. Driscoll’'s demonstration, though only enun-
mated and carried out for the metarecursive case, generalizes to many admissible
o > wi*. Finally, by virtue of Shore’s characterization of those admissible & such
that <, i8 not transitive on the «-re sets [17] and Proposition 3 we deduce,

— W«
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CorOLLARY 3. = The relation <, . ¢s not transitive on the class of (graphs of) charac-
teristic functions of o-re sets exactly for those « for which there is more than one non-

hyperregular o-re degree.

We restate this last fact in terms of enumeration operators.

PROPOSITION 4. — Let a be as referred to in Corollary 3. Then there are weak o-enu-
meration operators D, and DY such that composite map PLo®y is not a weak o-enu-
meration operator: theve is in fact no index ¢ such that for all characteristic functions O,
of a-re sets A, D*(0,) = P2(PX(C,)).

PRoOF. — Take «-re sets C, B, A such that B <, A and C<, B, but C £ A.
By definition of weak a-enumeration operator, there are weak x-enumeration opera-
tors @Y and @Y such that = (0 ,) and C,= DL(0y). Thus, O, = (Do P)(0 ).
But there can be no @Y such that C,= @¥(C,), since if there were, then ¢, <, C,,
and hence ¢ < _A. Q.E.D.

— W

THEOREM 2. — For all a, A< B« (0, <, 0.

Proor. — There are z-recursive funections h, h,, and &, such that for all £ and 7,

Ky m= (K x{1}) U (K, x{0}), Km(s): {Bl<B, 1) € Ko, Ky o= 1{Bl<B, 0> e K,}. I
A <4 B via ¢, then from W, such that

K,C A & KoC A > (BE)(En)[{y, b, &n) e W& K.C B & K, C B]
one defines

Wa(e){<1u7 1’>I(E7/7 9, &, Mg = hiy, 0) &v = k&, n) & {y, 6, &, Ny € Wﬂ:l} .

Then C, <,, Oy via g(e), g a suitable x-recursive function. If C, < _, €, via ¢ so
that K,C C > (Ev)[{u,v) € W, & K C 0p], one defines W, ,,= {{y, 9, & n>|<h(y, 6), h(E,
n)> € W} where f is an o-recursive function. Then 4 <, B via f(¢). Q.E.D.

Since for arbitrary o Corollary 2 follows easily from Theorem 1 much as when
o == w, and Theorem 2 holds, one might at firgt naturally expect that for all o the
analogous corollary about «-enumeration reducibility holds as well: if f and ¢ are
total functions, then f <) g «>f <, ¢. But we conjecture that for some, or various, o,
this is false.

5. — The first recursion theorem.
There is no difficulty to speak of in lifting this theorem to an arbitrary level «.

We therefore give, beyond the statement of the theorem and several corollaries,
but a brief indication of the proof.
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THEOREM 3. — Let @ (DY) be a (weak) o-enumeration operator, Then there is a
set A such that

(i) D,(4)=A (P"4) = A);
(ii) (B)[®<(B) = B —+ A C B]

(Likewise, with @Y in place of D)

(iii) A is «-re.

PRrROOF. — We define the sequence of sets: A,= ¢, dy= P:(dp) if v =10 + 1,
Ay = U D(4y) if y is a limit ordinal, and put 4 = (J 4,. It follows easily that there

B<y

Y
is a binary e-recursive function g such that for all y, ze 4 <> we W, ,. Hence A

is o-re, and if <<y, then @Pe(ds) C De(dy). From this (i) and (ii) follow.

OBSERVATION 1. — The proof is the same for «-enumeration operators and weak
xz-enumeration operators. Thus, the theorem holds for mappings @. defined by
Do(p) = U {Ko| (B8, n) € We& K,C B], even if @, is not an a-enumeration operator.

As in the w-case, an index of A can be obtained uniformly from any index ¢ of @,
as is clear from the above. So, we have the

COROLLARY 4. — There is an a-recursive function s such that for all &, (i) @ (W) =
weyy and (il) (B)[Pe(B) = B — W, ,C B].

For (weak) a-recursive operators we have

THEOREM 4. — (The First Recursion Theorem.) There is an a-recursive function t
such that for all e, if @ (DY) defines a (weak) a-recursive operator, then

(1) F((pt(a)) = Py s

and

(il) (WIF(Y) =y =@yl

6. — Extension theorems and effective operations.

In classical recursion theory (« = ), there are two principal extension theorems
relating partial recursive operators and functionals to effective operations. These
are the Myhill-Shepherdson (MS) theorem and the Kreisel-Lacombe-Shoenfield (KLS)
theorem. The former says that every function-valued (ordinal-valued) mapping &
on TR is a function-valued (ordinal-valued) effective operation on TR iff & is the
restriction to R of a recursive operator (functional) on §. The latter asserts: Let A
be a class of recursive functions with a recursively dense base and let F be & mapping
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on A into R (into the set N of natural members); & is an effective operation from 4
to R (from & to N) iff F is the restriction to 4 of a recursive operator (funetional).

The definitions of effective operations are stated in terms of indices of partial
recursive functions, and thus generalize immediately to level «. But there is just a
bit more to consider here than first meets the eye. The theory of effective operations
may be regarded as & part of the theory of completely «-recursively enumerable
classes of «-re sets (or of partial «-recursive functions). A first ingpection of the
situation seems to indicate the presence of anomalies in the theory of these classes.
The proofy of certain basie, elementary lemmas pertaining to the structure of these
classes break down when naively lifted to level «. But, as kindly pointed out to
us by L. HARRINGTION, & very simple modification of the proofs rectifies matters.
We briefly consider the situation.

Let Q be a class of «-re sets, or (exclusively) of partial a-recursive functions.
To use an old notation [2], let 6Q = {¢|W.c Q} (= {e|lp.€ Q}). Q is w-recursively
enumerable if there is an a-re set 8 such that Q = {W|e € 8}; Q is completely o-recur-
sively enumerable (co-re, or, just cre, with o understood) if 0Q is a-re; Q is completely
a-recursive (or o-decidable, or decidable) if 6Q is a-recursive. A weak array is an re
class Q of «-finite sets (functions). A strong array is a class @ of «-finite sets (fune-
tions) such that the set of canonical indices of members of Q is a-re. The well-known
theorem of Rice for « == o asserts that the only decidable classes are the empty
class 0 and &, the class of all re sets [12]. There are proofs of Rice’s theorem that
make use only of (1) the existence of a partial recursive function universal for the
binary partial recursive funections, (2) a simple instance of the iteration theorem,
(3) the existence of a nonvecursive, re set [2]. Thus, Rice’s theorem holds for all «.

THEOREM 5. — (Rice’s Theorem.) For oll o, the only decidable classes are ¢ and &,.

Rice’s original proof of this theorem proceeded very differently from that men-
tioned above, and was important in initiating study of the structure of cre clasgse [12].
Subsequently, MyHILL and SHEPHERDSON [11], in proving that a cre class C of
partial recursive functions consists exactly of all partial recursive extensions of
the (finite) functions belonging to some strong array used the following lemma: if
f€ C and C is cre, then there iy a finite subfunction g of f such that g C. Let us
recall the proof. Suppose f € € but no finite subfunction ¢ of fis in C. As Cis cre,
po€ C>nel, where § (= 0C) is re. Let p be a recursive funetion enumerating
an re nonrecursive set B, Define f.(z) = f{») if (y < 2)[m s~ ply)], and f.(2)4 if
(By < x)[m = p(y)]. Hence, m ¢ B <> f,,= f«> f,€ C. There iz a recursive funec-
tion ¢ such that f,= @um. S0, m¢ B<>e(m)e 8. This implies that B is re, and
hence B is recursgive, contrary to the hypothesis. Let us examine the equivalence,
mé¢ B <> f,=1{ for arbitrary « > w. Surely, m¢ B —f, = f, as before. Suppose
now that m € B, and x, is the least ordinal z such that p(2) = m. Then dom (f.) =
= dom (f) N z,, and if dom (f) is regular, then dom (f,,) is «-finite, and it follows that
fn i8 an o-finite function and hence, f,=f and f,.¢ C by hypothesis. But what
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may we conclude if dom (f) is not regular? Only that dom (f,) is bounded, and
hence we may not infer that f, is o-finite.

But there is no real obstacle here. Let ¢ and e, be indices of the graph of the
above f and of B, respectively. We redefine the function f,, as follows

fm(®) =y <> (Ho)[{2,y> € W &m¢ W, ].

Clearly, if m ¢ B, f, = f as before. Suppose m € B and let ¢, be the least ¢ such
that m e W7 . Then

ful®) =y > (Bo < 00)[<{z, y> € W7 1.

Thus, if m € B, f, is a-finite. Now, if f€ C and no finite subfunetion ¢ of f is in C,
we have m¢ B+« f,=f«>f,cC and megB«>e(m)ec 8, where ¢ is o-recursive.
Thus, the lemma holds at level x. Similarly, the following lemma generalizes, more-
over with virtually no modification of the proof given in [11]: If feQ, where @
is cre, then every partial «-recursive extension g of f also belongs to Q. From these
facts we deduce

THEOREM 6. — A class Q is cre iff Q consists precisely of all a-re supersets of the
o-finite sets constituting some strong array.

6.1. Definitions and properties of effective operations.

An ordinal-valued mapping F on a class Q of partial a-recursive functions
(F: Q —> ) i$ said to be an (crdinal-valued) effective operation (briefly, an o.e.0.) on Q
if there is a partial a-recursive function ¢ such that (»)[p.€ Q <> ()| & Flp.) =
= p(x)]. Thus, Q is cre.

Suppose instead that & is function-valued, F: Q — §R. F is a function-valued
effective operation on Q (briefly, an f.e.0.) if there is a partial e-recursive function f
such that (v)[g.€Q > f(®)| & F(p.) = @;»]. Such an f is said to be extensional
for Q.

Again, the definition implies that Q is cre. It follows that if ¢.€ Q and ¢,C¢,,
then ¢, @, as the reader can readily check. Another familiar assertion is: Fin (Q,
o) <> Q is a class of partial a-recursive functions and for each ¢, Q, there is an
o-finite @,.C e, in Q.

Closely related to Fin (Q, «) are the following statements about effective opera-
tions F.

Fin, (¥, &) <> & is an o.e.0. and for all ¢, Q, Q = dom (¥), there i3 an «-finite
9.C @, in Q such that F(g,) = Fle.);

Fin, (F, «) <> & is an f.e.o. and for all {y, 2> € F(g,), there is an «-finite ¢, < @,
such that (y,2> € F(@a).

Now, if F is an effective operation with domain @, then Fin (Q, «) — Fin, (¥, «)
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if & is an o.e.0., and Fin {Q, o) — Fin, (F, o) if F is a f.e.0. Also, we note that from
Fin, (¥, «) there follows, Fin, (F, ) <> & is an f.e.0., and for all ¢, € dom (F) if ¢,
is an o-finite subfunction of F(g,), there is an o-finite subfunction ¢, of ¢,
@€ dom (F), such that ¢,C F(¢.).

So, if @ is ere and F is an effective operation here are four assertions, true for
arbitrary o« > w.

THEOREM 7. — (The MS theorem for ordinal-valued effective operations.)

Let Q be a cre class of partial a-recursive functions and F a map from Q into «.
Then F is an o.e.0. having property Fin, (F, «) iff F is the vestriction to Q of a (weak)
a-recursive functional on 7.

ProoF. — If & is the restriction to Q of a recursive functional, then that & is
an o.e.0, satisfying Fin, (¥, «) is clear. So, let & be an o.e.0. on Q satisfying
Fin, (F, o): Fle,) = p(®), v partial «-recursive. Imitating [13], it is easy to show
that there are an x-recursive set B that contains exactly one index for every o-finite
function, and an c-recursive function g such that for all ye B, ¢, = 77 [K ]
We define an re set W with index ¢ by

Oymy e Wees (By)[y e B & g(y) = 1 & (Bo)[Ko= {2} &z = y(y)]]V
VIEs = Q&Kﬂz 01.
Congider the mapping:

Do(4) = U {Io|(Bn)(0, 7)) € Wt Ko AT}

Then it follows that for all sv sets A, (1) D(4) is sv, and (2) P (4)<,, 4 via e.
(With respect to (1), to insure consistency one must verify such things as: if 4 is sv,
PS4y 9, C A, ¥y, €8 and Py Y)Y, then w(y) = y(y.); ete.) Thus, D.
defines on a-recursive functional F,. And, if ¢,€ @, then F(p,) = Fe(p,). (To ver-
ify this, one must show that for ¢,c Q, there is an o-finite ¢,C ¢, such that F(¢,) =
= F(p,). Here one uses the condition Fin, (¥, «), which follows from Fin (Q, «).)

Q.E.D.

OBSERVATION 2. — With regard to weak «-recursive functionals, the proof is
even more simple.

THEOREM 8. — (The M8 theorem for function-valued effective operations.)

Let Q be a cre class of partial e-recursive functions. Then (1) any partial e-recursive
function f that is extensional for Q determines an f.e.o. F satisfying Fin, (F, o) that
is the restriction to Q of a weak o-recursive operator F, and (2) any (weak) o-recursive
operator F determines an c-recursive | that is extensional for Q.

Proor. — Let f be a partial a-recursive function that is extensional for @. Then
since Fin (Q, «), f determines an f.e.o. F on Q satisfying Fin, (F, «): F(@.) = @ra-
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Let d be an «-recursive funetion such that B = ran (d). Thus for all «-finite func-
tions ¢ with graph K, , K, = 1{p,, 1. We define an o-re set W. by

Ly € W K is 8v & {yy 2D € g,y & d(n) €6Q.

16 follows as in the w-case that for all sv sets 4, @¥(4) is sv, where @V is the weak
a-enumeration operator defined by W.. Let F? be the weak «-recursive operator
defined by @Y. Then it follows, again as in the w-case, that for all g,eQ, F(g,) =
= IY(g,). It is in demonstrating that g¢,,,(y) =2 — F/(p,)(y) =z that we use
Fin (Q, «).

On the other hand, suppose F” is a weak a-recursive operator. Then by a corol-
lary to the First Recursion Theorem (actually an observation on the proof of that
theorem), there is an a-recursive function g suchthat F(¢,) = ¢, (ef. [13], p. 195).
We take f by f(z) = g(x, ¢) for all z. Of course, all this holds if . is an o-recursive
operator. Q.E.D.

COROLLARY 5. — Let F be a f.e.0. on a cre class Q of partial a-recrusive functions,
(Thus, & satisfies Fin, (F, «).) Then F is the restriction to Q of a f.e.o. F' on TR.

Proo¥. — Let f be the extensional partial a-recursive function that determines F.
Then there is a weak a-recursive operator F such that for all 9 €Q, F(¢,) = F(g,).
F? in turn determines an extensional z-recursive /' such that F(¢,) = ¢, for all
@ Thus, F(g,) = F'(g,) for all ¢, in Q, where by definition F'(¢,) = ¢, -

OBSERVATION 3. — We are not too pleased with our version of the MS theorem
for f.e.0.’s. It concerns only weak partial «-recursive operators, seemingly quite a
limitation.

6.2, Effective operations on classes of w-rvecursive functions.

Let Q be a class of x-recursive functions. In this section we consider effective
operations on Q. Accordingly, we modify our earlier definition, and no longer re-
quire that Q be cre.

A mapping F from Q to « is an ordinal-valued effective operation on Q (o0.e.0.)
if there is a partial a-recursive funetion y such that ¢, Q > [ip(x)\l, & F(p,) = v(w)].
A mapping F from Q into TR is a function-valued effective operation on Q (f.e.0.)
if there is a partial a-recursive function f such that g, Q@ — [f(){ & F(p,) = @15
f is said, as previously, to be extensional for Q. If @ = R, & is said to be an effec-
tive operation total on R.

A principal theorem in this context is that of KREISEL, LACOMBE, and SHOEN-
FIELD [9], which answered one case of a question posed by MyYHILL and SHEPHERD-
SON [11]. In our terminology, the latter authors had asked: is every effective opera-
tion F that is total on R the restriction of a recursive operator? KREISEL, LACOMRBE,
and SHOENFIELD were able to supply an affirmative answer, allowing in fact do-
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mains @ of ¥ other than R that share a certain topological property with R, pro-
vided the range of F is a subclags of R. We shall obtain in this section a generaliza-
tion of a somewhat weakened Kreisel, Lacombe, Shoenfield (KILS) Theorem to
level «. It is somewhat amusing that we have not, in contrast, obtained a com-
parable version of the MS Theorem relative to «-recursive operators, though at
o = ¢ the proof of the KLS Theorem ig certainly more technical and complicated
than that of the MS Theorem. This is a reflection of the fact that the graphs of
a-recursive funetions, as well, of course, as the domains of these functions, are
trivially regular sets.

In our paper [3], we needed a version at level « of the KIS Theorem in order
to prove the Operator Gap Theorem. We remarked that the demonstration of the
needed version, given the w-case, was relatively trivial. In terms of our present
development the employed instance of the KLS Theorem was that for function-
valued effective operations and weak c-recursive operators. Indeed, the vergion
of the KLS Theorem for ordinal valued effective operations and weak w«-recursive
functionals just lifts without resistance to level ¢. And, the KLS Theorem for
f.e.0.’s and weak «-recursive operators is easily obtained from that for o.e.0.’s and
weak «-recursive functionals. The proof of the theorem for f.e.0.’s and «-recursive
operators is not trivial, and this point illustrates a general situation.

As we have already remarked, if for « == w one hag proved a theorem about
partial recursive functionals, the demonstration of the analogous theorem for partial
recursive operators is often a simple matter. In partieular, this is typically the
case if the domain of the partial recursive functional is a class of effectively com-
putable functions, such as the partial recursive or recursive funetions, when the
derivation of the operator-version of the theorem in question from the proved funec-
tional-version is an almost mechanical chore, and thus sometimes omitted in the
literature, as in [9]. For arbitrary admissible « > , this is no longer quite the case.
The KLS Theorem serves as a convenient illustration of this situation, an instance
in which the derivation of the theorem even for limited «-recursive operators from
the case for a-recursive funectionals illustrates the obstacles, but falls within manage-
able bounds. Thus, we first indiecate the proof of the theorem for «-recursive fune-
tionals, which is straightforward from the proof for « = w, and then derive the
theorem for limited o-recursive operators in more detail.,

A class Q of a-recursive funections has an «-recursively dense base B if B is an «-re
set such that

(1) veB —¢,€Q, and
(2) for all v,

@€ Q > (Ev)[ve B & (0)[r < y — s(2) = ¢,(@)]] .

A class Q of a-recursive functions is «-recursive («-re) if there is an «-recursive («-re)
set ¢ such that g.€ Q<> ee @, whenever ¢. is a-recursive.



RoBERT A. D1 Paora: The basic theory of partial, etc. 185

THEEOREM 9. — (The KLS Theorem for ordinal-valued effective operations.)

If @ class Q of a~recursive functions has an o-recursively dense base B and F is an
ordinal-valued effective operation defined by the partial o-recursive fumction v, such
that dom (F) = Q, then there is an a-recursive functional F 3uch thot F(p:) = F(p.)
for all @€ Q.

Proor. — Let @, B, and y be as in the statement of the theorem. As the proof
is largely a close imitation of that of KrEISEL, LACOMBE, and SHOENFIELD in [9],
and presents no difficulties peculiar to admissible « > w, we present only so much
of it as is required to define the pertinent x-enumeration operator. Let T'(z, x, y)
be an a-recursive predicate that is universal for the a-re sets. Also, we may assume
that for all 2z and =, if there is a y such that T(z, 2, y), then y is unique (e.g., T(z,
z,y) >we W& (y'< y)lw ¢ W)

We define the diagonal set D = {w|(By)T(x, z,y)} and observe that if § is any
a-re set and ¢ is any index of § (S = W:), theneeSNDore¢ SU D, Let b be a
1 —1 partial a-recursive function with domain ¢ < « that enumerates B. Follow-
ing [9], we define below a partial «-recursive function #(e, d, #) sueh that for each
pair 6, & the partial a-recursive function i, ;(z) = (e, d, ») has the following property:
if s Q, then les=qs if ¢ D, and (&) # F(pe) if € D.

We put y(e, «) = min, _ T(¢, &, ), and define '

3, &, x) = minp [(z < yle, 90))[%(2) = (pb(ﬁ)(z)] & q)(b(ﬂ)) 7 1/)(5)]
if

(By < 0)[T(e, &, 9) & (< 9)g,() & (HB < 0)(2 < ¥)lpysy(0) =
= )] & (0] & (b(B)) # p(9)]

B(6, &, w)} otherwise.

By making use of the fact that for all 5 < 0, Py 18 a-recursive and (b(B)) is
defined, it is not difficult to see that §(d, ¢, #) is partial «-recursive, as can be rig-
orously demonstrated. Also, let us notice that if f(d, ¢, #)| then B(d, e, 2) = B(9,
g, @) for all 2 > y(e, x); for if (By < x)T(e, &, y), then y(e, ) = y(e, ') for all #'> .

Now we define i, s(x) = i(e, d, »):

t,6(®) = @,() it ~ (By <a)T(e, & y)

ts,a(@ = ‘Pb(ﬁ(a,s,m))(“) it B(9, &, @) .

By definition of the function §(3, ¢, #), if T(e, ¢, y) then if B(5, ¢, ) is defined (and
hence necessarily (9, ¢, #) = f(9, ¢, #) for all & >y(e, #)), 1, 5(2) = Po(p(8,5,))(#) Tor all 2.

There is a binary «-recursive function q such that for all &, dg,, ;=1 ;. For
each 4, let Cs= {e|p(0)| & p(g(e, 0)) & () = w(g(e, 0))}; so Cs is x-re. Let h be
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an a-recursive function such that for all 4, C; = Wyes- Then as in [9] it follows
that

(%) , pseQ —h(d)eD,
(%) [p(6)) & T(h(d), h(0), y) &v e B & (< y)(psl) = ¢,(x))] —p(0) = p(v).
If v € B, then ¢, @, and hence (Ey)T(h(»), h(v),y). We put
I' = {y|Seq (y) & (Ev)(Ey)[v € B & T(h(v), h(»),y) & dom (K,) = y &

& (v < YK (2) = ¢,(2)]]} .
Next, we define the partial «-recursive funetion 3":

P(0) =) if 0edom (y) & (Ev)(Hy)[veB & T(h(d),h(d),y) &
& (2 < y)lgolw) = ¢,(#)]] & 0 ¢ ran (d)

y'(d(y)) = p(v)it y € 'and » € B and §T(h(v), W), y) ;for suitable v, y. More precisely,

/‘/’/(d(?’)) = w(bm(ﬁo)) it y el

where d is as in Theorem 8,

fo= ming [T(h(bmy(B)), W(bm(B)), 7a(f)) & dom (K;) = my(B) &
& (2 < 7(B)) K (%) = @y 5)(@)] -

Let us notice that by (%), if 9'()y, v'(d(y)){ and ¢,;C ¢, OF @4,,C@s, then y'(d) =
= y'(d(y)). Also, if s Q, then y(6) = ¢'(5). Note that we do not claim that
¥(0:) = y'(d,) for all 4,, d,€ dom (y) such that @s = ¢s . Finally, we define the
a-re set W

losyy e W (ye I & K, = {y/(dy)}) V(K,= K, = 0).
An index ¢ of W can be obtained via an «-recursive function of indices of w, d, &,
and B. Tt is easy to see that ¢ defines an «x-enumeration operator @., and that .
defines an «-recursive functional F;. It follows, much as in [9], that for all gse Q,
F(g,) = Flo,). Q.E.D.

OBSERVATION 4, — Just as is done in [9] for « == w, one can prove that every
a-re class of a-recursive functions has an x-recursively dense base. Hence, we have
the : ' : '
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COROLLARY 6. — If Q 8 a o-re class of a-recursive functions and F s an ordinal-
valued effective operation with domain Q, then there is an a-recursive functional F' such
that for all pee Q, F(p:) = F(ge).

OBSERVATION 5. — An example of Myhill shows that for « = w, Theorem 9 need
not hold if Q does not have a recursively dense base. Let us define F(¢) =0 if ¢
i3 the zero function, and F(¢) = 1 if (i) ¢ is a-recursive and (ii) if g. = ¢ — (Hx)[z <
< & & @e(x) 7= 0]. Otherwise, F(¢) is undefined. The domain Q of F is a class of
a-recursive functions.

We set

y is partial a-recursive and for all g.e Q, y(e)| and F(p:) = y(¢). Thus, F is an
effective operation on Q. If there were an «-recursive functional F that agrees
with & on Q, then as the zero function ¢ € Q, there would be a y, such that if
flz) = 0 for all < y,, then F(f) = 0. Now, for each u, let us define the set S, by
8, = {ele < u & @e(u)y}. Clearly, 8, is a-re. Consider the function f, such that
f(2) =0 if »5 g and

fp) = min, [(e)(e e 8,—>p#* @ (p) &B#0].

The point is that if f, is «-recursive, and f, = ¢, , then u,<<e, and as f, (4,) # 0,
F(f,) = 1. But, also F(f, ) = 0 since f, () = 0 for all # < u,, and we have a con-
tradiction. Thus, no recursive functional F' exists that coincides with § on Q.

Now, if &« = or a*=«, then 8, Is «-finite and f, is in fact a-recursive, so
that Myhill's counterexample applies. But if « > @ and o«*< ¢, then §, may not
be o-finite, and f, not a-recursive. Indeed, if it should be the case that p,> o* and
o< «, then

8,,= {& < to@e(po)V} = {elgelimn)V}

and hence S, is not a-recursive, as is easily shown. In this case, Myhill's example
fails to apply.

We show how to render Myhill’s example applicable when o*<< «. Let A be a
1 —1 a-recursive function that projects « into o*. We may assume that A(0) == 0.
Observe that for all «, o** = o* Recall also that the pairing functions 7, &,, and
m, are uniform for all admissible «. We may assume that 7(0,0) = 0, m,(1) # 0,
7,(1) % 0. Now, assume that «*<o. We define 5(¢) =0 if ¢ is the zero fune-
tion; F(p) =1 if ¢ is a-recursive, and ¢ = @ —~ (Br << o*)[@:(x) = 0]. The partial
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a-recursive function y defined by

i (< o*)@s(or) = 0]
if

1
ple) =4 0 (Bo < o) [pe(@) # 0]
)

otherwise

determines F as an effective operation on the domain Q of F.
If ACo, then we define the set A{A} in «* as follows:

z€ A{A} <> (B, y)[t(®, 9) € A & m2 = Alw) & m,2 = A(y)].

Also, if A Cou* we define A1 {A}Ca by

ze A1 {4} o (Bw)[we A & myu € ran (A) & m,u eran (A) &
& 2 = (A (mu), A Ymyu))] .

Similarly, if f is a function in «, we define the function A{f} by:
{uy vy € A{f} < (Ba, y)[<w, > € f & u = A@) &v = A(y)];

and A-l{f} analogously for f a funetion in «*, Let @ be the class of all a*-recursive
functions f such that for some g € Q, A{g} is a subfunction of f and for all ¢ ran (4),
flz) #% 0 — g(z) = 0. Thus, the zero function in «* is a member of @'. We define F*
by F*(p) = ©(A(n,0), A(7,0)) if p € Q" and ¢ = @.— (2 < &)[ps(x) = 0]; define F*(p) =
= 7(A(m1), Alm,1) if peQ and ¢ = @s—> (Er < &)[ps(x) # 0]. (Here ¢ is an index
of @s in o*.) This defines the domain Q*C Q' of F* as well, and F* is an effective
operation on Q¥

Now suppose there were an o-recursive functional F that agrees with & on Q.
Let F be defined by the z-enumeration operator @.. Thus, we may assume that
for all (4,7> € We, Ko is a singleton or Ky;= 0. We define W, in «* by

0%, 0*> € W (BS, [0, n> € W, & Kjo= MK} & K,. = A{K,}]

(¢* an index in o*). Then @, is an «*-enumeration operator (though this is not quite
obvious) defining an o*-recursive funetional F* such that F¥(¢) = F*(¢) for all ¢
in Q*, '

For each v < o* we define the x-recursive functions g,: g,(z) = 0 if x 7 », g,(v) 7 0.
For each u < o¥* we define the o*finite set §,= {e¢ < p|ps(u){}, ¢ here an index
in o*, also we set f, 5(x) = 0 if % p, f, s(u) = B 0 for each u < «*, where § 7 @o(u)
for all e€ 8,. For such u and B, f, ; is a*-recursive. Since the zero function in o*
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is a member of Q% we have that there is a g, such that F*(f) = 0 for all f sich that
f(#) =0 for all << py,. We may assume that u,= A(»,) for some »,<< o* and as
the set {p,(u,)|c € 8,,} is a*-finite, we may take f =f, () so that f eran (4). Con-
sider the function g, such that g, (2) =0 if zs£v,g, () = A-1(B). Then 9,€Q
and f, ;€Q'. Moreover, if f, ;= ¢, ¢ an index in «*, then u,<e. Hence, f, ;€
€ Q¥ and F¥f, ;) = 7(A{m1), A(w,1) # 0. But F*(f, ;) = 0. Consequently the

0>

a-recursive functional ¥, assumed to agree with & on Q, does not exist.

OBSERVATION 6. — Given the proof of Theorem 9, the proof of the theorem and
its corollary for weak o-recursive funectionals is trivial.

Unfortunately, at this writing we have not been able to obtain the wholly
general form of the KIS theorem for funetion-valued effective operations and o-re-
cursive operators. (From Theorem 9 the KIS theorem for f.e.0.’s and weak «-re-
cursive operators follows easily). We do obtain a version of some generality, how-
ever. Towards proving this version, we first modify the set W, and the associated .
a-enumeration operator @. defined above in the case of ordinal valued effective
operations. For each »<C«, we define an analogous W,,, and &D,,,.

Let us notice that for each v, the function y(d) = ¢y, (v) is partial «-recursive
and defines an ordinal-valued effective operation F, on Q. Analogous to the partial
a-recursive functions (9, ¢, ), t, 5(x), and g(e, ) defined above, we have the partial
a-recursive functions B.(e, 6, #), 1, . 5(#), and gle, 6, v). In place of the set Oy, we
have analogously defined set Cs,. Since all these procedures are uniform in v,
there is a binary a-recursive function (4, v) such that 0, .= W,, ,. The analogues
of properties (%) and (%%) hold; for example, for all v, ¢,€ Q@ — k(d, v) € D; and
for all v, we have

(**)1} [(pf(d)(/u)‘ll & T(h(67 v), h(67 v}, y} &veB&(r< y)(‘Pd(w) =

= ¢,(#))] = Pra)(V) = Pry(0) .

Our definition of the set W,,,, which contains redundant information as far as the
KLS Theorem for ordinal-valued effective operations is concerned, is tailored  to
proving our present version of the theorem for function-valued operations. The
definition of W, involves the use of a function f, which is obtained from the f given
with an f.e.o. much as 9’ was obtained from w earlier.

Thus, we let # be an «-recursive function such that for all » and all v € B, n(v)
is an index of the «-finite function ¢, restricted to v + 1: ¢,,,= @;,,[v + 1. We
next define for each v the partial a-recursive function f,.

fu(8) = f(8) if e dom (@ ,(v) & (Bv(By)[ve B & T(h(5, v), k{5, v), y) &

& (z < y)lg,(x) = ¢,(@)]] & 6 ¢ ran (d)
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fo{d(y)) = n(v) for suitable » € B, if y e I',, where

= {ylSeq(’y) & (Ev)[v eB&(u< 'U)(Ey)[T(h('Vy %)y h{(v, u), f'/) &
& (< Plo,(®) = K ()] & dom (K,) 27},

where § = sup {y|T(h(v, u), h(v, u), ¥), w < v, v€ B (v fixed)}.

We put I' = U {I',}. For such v, I',, and hence I, is clearly o-re. Since the relation
(w < 0)(By) T(h(v, u), by, w),y) is Z;, the «suitable »» in the definition of f,(d(y))
can be precisely defermined by a routine use of pairing functions and the enumerat-
ing function b of B. If f,(0){, f.(d(y))} and ¢,C @, OF @4, C@,s then, as with ¢’
earlier, by use of (&%) v, we have that ¢y, ,(¢) = @;4,,(¥). Let us notice that if v < o,
then I.CT,. Suppose for fixed J, we have (u < v)[dedom (¢, (w))] and (Ew)[v €
eB&(u< v)(Ey)[T(h(v, u), h(v, u), y)] & (z<y)lp,(z) = ‘Py(”)]] ; then we further note
that

yel, & (g, Pay Vi) € @5 = (18 < )@ 5) (%) = @pp0,0(0)]

This follows by use of (%) u, for each 4 < ». Subsequently, since all needed con-
sistency properties are preserved, we write sitaply «f», suppressing the subscript
here and in the sequels, to make the notation a bit simpler., We define for each v,
the o-re set W,,,, where ¢ is a suitable a-recursive function

Koy 7> € Wy e I & (u < o), () & Ky = {0, (0)IVIK, = K, = 0].

One shows as before that for each v, there is an a-recursive functional F, such that
for all ¢,eQ, F (¢,) = F,(g;).

Consider an «-re set W. and a mapping @ from 2% into 2% as defined earlier;
that is

D(4) = U {K,|(Bn)[<d, ) € W& K C 4}
Congider the property:

(1) For all sv sets A, @A) is sv: Vo= IL

(s %) (2) For all gv sets A such that dom (®s(4)) has a largest member or
dom (D.(A)) is unbounded, for all 6, K, C @ (A) «> (Ep)[0,y> € W&
& K,C 4],

Let F: be the functional operator defined by a mapping having the property (s::).
For convenience (ad only for convenience), we say that F. is a limited c-recursive
operator.
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THEOREM 10. — (4 partial KLS theorem for function-valued effective operators.)

Let the class Q of a-recursive functions have an «-recursively dense base B, and let f
be a partial c«-recursive function that defines the effective operation F from Q info R.
Then there is a limited a-recursive operator I that agrees with F on Q.

ProoF. ~ We first define the set W, by <0,y> € W > (K, is sv & dom (K,)
containg a biggest element & (v)[v € dom (K,) — (o), > € W,y & KoC sy 1)V
V[Ey= K, = @]. Next, we define W, by

{0, 7> € Wes— (v)[v € dom (K) — (Hy )(E,)[v e dom (K,) &
SEK CK &K, CK &<O,y>eW, 1&K, is sv&Seq(y)].

W, is clearly a-re, and an index ¢ of W, can be obtained via an o-recursive func-
tion of indices of f, d, and B. Also, W_C W,. Consider the mapping @. associated
with Ws.

LEMMA 1. = If A s sv, then D:(4) is sv.

PrOOF. — Suppose <2, 2> € De(4) and (v, 2’y € P:(4). Then for some 0y, ., 0z, 3,
(v, 2> EKel& KhQA &<b;, vy e W, and {(v,2' )€ Kez& KVBQ A& <B,,y,> € Ws. Hence,
for some 0y, yy, 65, 75, <0, 2> € Ky & K € A &0y, yp € W, and <v,2") € Ky & K 1:C
C A & <0, y,» € W,.. Hence, there are g,, o, such that {o,,y;> € W,, & K, = {¢} &
& 2 = @py,)(0), and oy, y5> € W,y & K, = {2’} & &' = @y, (v). Since A is sy, and
Seq (y;) and Seq (y,), we have that K,CK. or K ,CK; We may assume that
K, CK . Thus, ¢uq,®) = @y, (©); that is, 2 =2. Q.E.D.

LEMMA 2. — If A is sv and dom (K,) has a largest element then K ,C D (A) <>
(YO, 7> € W, & K, A].

Proor. — Let A and K, be as in the hypothesis and suppose that K,C @..(4).
Let » be the largest element of dom (K,) and (v, 2) € K,. Thus (E0')(Ey")[{v, 2> €
eK, &0,y e W, &K CAl So, for suitable o,,7,<0, ¥,y € W, & K, CA&
& K, = {2} &2 = @yy,,y(v). Consider any v < v, w € dom (K;). Then as above for v,
it {u,2')eK,, for suitable g,,y, we have that {g,y >eW, &K CA&K, =
= {¢'} & &' = @y, (). Butb sinece w < v, by definition of W,y, @y, (w)]. As 4 is
sv, Seq (y,), and Seq (y,), we have that X, C K or K, CK, .Of courseif £, C K, then
Pray)(¥) = Pragyo(w). Assume I, c K, . Then again g, () = @) (©); 25 Py -
Noting that for all » € B and all w, h(v, #) € D, we thus see that (v < v)[» € dom (K,) —
— (Bo)[{os v,> € Wyy] & EyC @y, Our conclusion is that if 4 is sv and K,C @,.(4)
and dom (K,) has a largest member », then <6,y>e W, & K, CA.  QED.

LEmya 3. — If A is sv, and dom (Ds(A)) has & largest member or dom {Dy(4))
is unbounded, then for all 0, K ,C @ (A) <> (Ey)[<0,y> € W & K,C Al

12 = dnnali di Matematica
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PRroor. — The direction from right to left is immediate. Now, first of all, let us
observe that for all sets A e2% @ (4) = ®_(4). Let A be sv and dom ((Zig(A)) be
as in the hypothesis, and let K,C @ (A). If dom (K,) has a largest member, then
by Lemma 2 and the fact that W_.c W_, we deduce that (#y)[<0, y> € W.& K,C 4].
Suppose dom (K,) does not have a largest member. Then since by Lemma 1 K,
is sv, there is a vedom (De(4)), » = sup (dom (Ky)), and (v, D:(4)(v)) € De(4),
(v, De(A)(v)> ¢ K,. Consider the a-finite set K, = K, U {(v, D (4)(v)>}. K, C D(A)
and dom (K, ) has a largest member. Since @ (4) = @,.(4), by Lemma 2, (Ey)i<6,,
y>eW, &K CA]l For each u<v, we define K, u = {<w, K, (w))w < %} Then
K, uc K and by definition of W, (07,y> € W_. Therefme

(u)[u € dom (K ) — (EO')(Ey')[w € dom (K,) & K, C K, & Ky,i_? K? &
&, y>eW, &K, is sv &Seq (y)].

That is, <0, > € We. So (By)[<6, 7> € W.& K, A]. Q.E.D.

We thus see that the mapping @, satisfies condition (x#%). Let F. be the limited
a-recursive operator defined by @.. Let pse Q. Let (v,2) € Pe(ps). Then (v,2> €
€ D.(ps). By virtue of the density of B and (#%),, {v,2) € F(g;) = ¢y Now,
let <v, %) € F(ps). Then (u < v)(Ey)T(h(d, w), h(d, w),y). Thus, for suitable »v& B
and Yy using (#x),, we have that (v, z} eKe, O,y e W,, with K, = ¢;,[v+1=
= qaf(v)\‘v 4+ 1 and K,= @s|§ = @,[7. So, b, y> e We, and (v, 2y € Pe(@o). Q.ED.

OBSERVATION 7. — One may ask: why not define W, in one of the more obvious
ways which are at least more direct than the definition we have chosen? For ex-
ample, let us put

0, v> € Wes Seq (y) & (Ev)[v € B & (0)[ve dom (K,) -
— (Ey)[T(h(v, ), h(v, v), ¥) & (v < y)lg,(#) = K ()] &
&y < dom (K)]|| & K, is sv & K,C gy, -

Suppose A is sv and K C @ (4). With each w e K, there is associated a 6 and
y* such that (6%, y*) e W &we K, & K,,C A. Even under the assumption that
dom (KM) has a largest member v, may we conclude, as above, that {u,yy> € W
with KpC A, v =mw? If uedom (K), u<<v weKy, and u=mw’, then cer-
tainly Ko C K or K,wc Kpw'; but if the latter holds, how are we to guarantee
that @g,.)(©)|? Failing this, of course U{K, Jwe K, }C A, but why need this

w

union be o-finite for arbitrary 4% These considerations justify our definition of W,
given in the proof.

OBSERVATION 8. — We may define @, to be an a-enumeration operator for the o-re
sets for every sv a-re set A, @A) < , A. Consider an sv o-re set A and the o-re

e
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sets W_, and W, defined in the proocf of Theorem 9. Thus, D.(A) is sv. Given a
typical (v, 2y € De(A), (EO,, y,)[{0,, yoy € W, & K, C A], (v, %) € K, . Since such a K,
is an o-finite sequence, A is sv and «-re, it follows that either A = ¢s where g5 is
a-recursive or Do(A) = De(@sfp) for some f< o Let K,CP(4). Now, (v)[ve
e dom (K,) —> (Hy, yo)[{Osy yoy € W, & K, C AJ], by definition of W.. Let K =
=U{K,}. Clearly, we may assume that dom (X) is bounded. Since KCA K is
the restriction of @o to some ordinal A. Hence, K is «-finite, K = K . Let K =
= K, N K,. Then {u,, v,y € W& K, C A. Therefore, since U {K,} = K,, <0,y €
eW.& KVQ A. Obviously, Fs(ps) = F(pe) as before, where F. is the operator defi-
ned by @,. This proves the easy and unsurprising theorem

COROLLARY 7. — If & is an f.e.0. on R, then there is o functional operator ¥, defined
by an o-enumeration operator for the w-re sets such that Flps) = F(ps) for all pse Q.

THEOREM 11. — Let F be a f.e.0. that is total on R: F(p,) = @) 0,€ Ry @4,y€ TR.
Then there is a weak o-recursive operator F such that F(ps)(x) = F(ps; x) for all
a-recursive gs and © such that F(@s)()|.

ProOOF. — As when « = o.

Total effective operations on R have oeccurred in the theory of complexity of
computation, The principal instance of such an oceurrence is the Operator Gap
Theorem. To render our deseription intelligible, we need several definitions.

An g-complexity measure I' is an enumeration {Is|e << «*} of the «-step counting
functions [ associated with the partial «-recursive function ¢. in a standard enu-
meration {gele< o*} of the partial e-recursive functions such that

(1) for each ¢, I'; is a partial x-recursive function and dom (I%) = dom (ge);
and ’

(2) for each e, the graph of I is a-recursive.

Let f be a-recursive. The computational complexity class for f relative to I' is
the class €, = {g.|p. is a-recursive & [:(8)< f(f) for all but an «-finite set of f}.
For « = w, the gap theorem of Borodin answers in the negative the question as
to whether the bound f on complexity classes O, ean always be increased in a uni-
form effective manner so that enlarged complexity classes result. However, the
proofs of the naming theorem of McCreight and Meyer and the compression theorem
of Blum define a mapping & from the class R into R such that for all fe R, 0,c
¢ Ug()- The question thus arises: can 5 be a total effective operation on R? Con-
stable answered this question in the negative in [1], with his operator gap theorem.
JacoBs, who lifted many of the elementary notions and results of computational
complexity to level «, including the gap, naming, and compression theorems, asked
in [7] whether there were admissible «, measures I', and total effective operations F
such that 0,C Og,; that is, whether for suitable «, Constables result does not
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lift, This was also answered in the negative by D1 Paora [3] and by Yane DoNg-
Ping [18], who independently proved the

THEOREM 12. — (x-Operator Gap Theorem.) For oll I' and all total effective opera-
tions F there are arbitrarily large increasing o-recursive functions b such that for all &
if b(B) < I's(B) < F(b; ) for f without bound, then F(b;y) << I':(y) for v without bound.
Thus, there is no o-recursive @, in Cpy— Oy, Here F is a weak o-recursive operator
that agrees with - & on R.

Proor. — The proof proceeds along the main lines of Constable’s, but several
non-trivial departures are required (ef. [3], pp. 124, 128, footnotes 2 and 4). We
refer the reader to [3] or [18]. Also, at the time of the writing of [3], our present
development of operators and functionals was not yet formulated. This explains
any differences in the statement of the theorem in [3] and above.

7. — Limit functionals.

In this section we use the notation «[f]» to denote the canonical index of an
o-finite function f. A functional F is total on R if R Cdom (F).

Let F Dbe a functional that is total on R. F is a limit functional if there is a
partial o-recursive function ¢ such that

(1) @([f]) is defined for all «-finite sequences f;

(2) }91_)1% @([f1B]) exists and equals F(f) for all o-recursive functions f.

A functional F total on R is a Banach- Mazur functional if, for every binary o-recur-
sive function f, there iy an o-recursive g such that for all 8, F(Ayf(B,y)) = g(p).

Our purpose in this section, beyond setting down the definitions, is to record
some theorems about limit funetionals that are true for arbitrary «, and to discuss
the proof at level « of Friedberg's theorem about Banach-Mazur functionals, This
latter result has already been treated by us in another journal [4], but we shall
discuss it in outline fashion here because it furnishes an example, about functionals
to boot, of the special difficulties one encounters in lifting a really difficult theorem
to level . Among other things, its proof exernplifies use of the projectum «* and
2y-eofinality / in a non-trivial context.

Among the theorems egtablishing the more basic relationships that hold among
the classes of a-recursive, limit, and Banach-Mazur functionals are theorems X XXTIT,
XXXIV, and XXXV, § 15.3, pp. 364-365 of RoGERS’ text [13]. They remain true
for all «, and their proofs are virtual carbon-copies of the w-proof. We therefore
collect them under one heading:

THEOREM FOR ALL «. — (1) the restriction to R of any c-recursive functional total
on R is a Banach-Mazur functional; (2) every Banach- Mazur functional is a limit
functional; (3) there is a limit functional which is not a Banach-Mazur functional.
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In {10], footnote 4, KREISEL, LACOMBE, and SHOENFIELD had asked whether
there is a Banach-Mazur functional that is the restriction to R of no recursive funec-
tional. FRIEDBERG in [6] demonstrated the existence of such a BM (Banach-Mazur)
funetional. In broad outline, he accomplishes this by showing that the two classes
of functionals in question have inequivalent defining predicates. That is, let us
define the sets A, = {u|p, defines a limit functional which is BM} and 4,= {u|p,
defines a limit functional which coincides on R with a recursive functional whose
domain includes R}. Friedberg proves that A4, is X,-complete, in fact, many-one
complete for X,-sets, and that A, is a II,-set.

The proof that A, is 2,-complete involves a priority argument. Also, the quan-
tificational structure of X,-predicates enters into the design of the construction in
an interesting way. Given an arbitrary Z,-predicate P, Friedberg works with a
derived X,-predicate P’. The priority scheme is combined with the quantificational
strueture of P’ in such a way as to take advantage of properties peculiar to P'. Im-
plicitly defined by the entire construction is a recursive function # that reduces P
to the defining predicate of A,.

Let us examine Friedberg’s construction and argument more closely. Consider
the predicates: (1) ¢, defines a limit funclional which coincides on R with a recursive
functional that is total on R; (2) @, defines a limit functional which is Banach- Mazur.
(1) can be expressed as a X,-predicate, (2) as a I/,-predicate. Now, consider a recur-
sive predicate R such that (2) <« (x)(Hy)(=)(Ew)LB (4, z, 4, 2z, w). Since Friedberg
proves that (1) is many-one complete for the class of 2;-predicates, we obtain from R
a recursive function » such that

(Be) (y) (Be) (w) ~ Blw, @, y, 2, w) <> (Ba)(y)(He) (w)S(r(u), , y, 2, w)

where § is a recursive predicate such that

(1) > (Bx)(y)(E2)(w)S(u, 2, y, 2, w). By the recursion theorem there is a
number u, such that ¢, = ¢,,,. Consequently, (g, defines a limit functional that
coincides on R with a recursive functional that is total on R)< /- (¢, defines a
limit functional that is BM). The left side of this inequivalence implies the right,
as it is not hard to see. Hence the left side is false and the right side is true. (We
note in passing that one could obtain the crucial inequivalence without use of the
recursion theorem, using the hierarchy theorem instead.)

In establishing that the predicate (1) above is many one complete for the class
of 2,-predicates, Friedberg first trades in the recursive predicate R for a recursive M
defined by

Mu, e, s, n, a) <> (z<< e)(By < s)(# << n)(Bw < a)B(u, 2, ¥, &, u)
and observes that

(%) (Ey)(2)(Ew) B(u, 2, y, 2, w) <> (¢)(Es)(n)(Ea) M(u, ¢, 5, n, 0).
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The recursive function » that many-one reduces the negation of (¢)(Es){n)(Ea).M (u,
¢, 8, %, a), and hence ~ (x)(Ey)(2)(Ew)E(%, , y, 2, w) to the predicate (1) is defined
by specifying for each pair {e,s) of natural numbers the value of ¢, on all finite
extensions of {e¢, s). This specification is carried out in an infinite sequence of stages
with the help of a non-decreasing recursive function ¢, .. The general scheme is that
just prior to execution of stage a of the construction, ¢,,, has been assigned the
value 0 on all finite extensions of <{¢, 5,1, ¢ >1, (a —1), provided that ¢, (o —1) =
=1,y for all ¢'>a—1. In addition, at stage a the attempt is continued to
define a recursive function f, , , with ¢ =1, (¢ —1) such that f, (0) =¢,f, (1) =35,
f,,;s,(2) = 1. The construction is designed so that if s is the least number satisfying
(n)(Ea) M (u, ¢, s, n, a), then for some {, f, . is totally defined, and hence a recursive
function, and ¥., the recursive functional with index e, is either undefined at f, ,
or differs at f, , ,from the limit functional (p’:m defined by ¢,.,,. To effect this design,
Friedberg divides each step ¢ > 0 of the construction into five cages, to be considered
in order. If one of these, Case 3, applies at stage «, requiring M(u,e, s —1, 1, a),
t =1, (6 —1), then one lets 7, (a) == a, defines 7, , at 0,1, and 2, and abandons
the further specification of the funection f ., #=1, (¢ —1). To understand why,
let us notice that for all s, s, if &,<<s,, then M(w,e,s;, 1, a) > M(u,e,s,,t,a)
Thus, the fact that M(e, s, s—1,7, &) holds presents us with the possibility that
for some §'<C s, (n)(Ha)M(u, ¢, s',n, a); in this situation precedence iy given to the
pair {¢, s —1) over the pair {¢, s>, and thus to the definition of f, ., , overf, .
For the pair (¢, s) at the next stage, the attempt commences to define suitably the
function f, , .

Assume that (e)(Es)(n)(Ea)M (¢, €, 8, n, a). We wish to conclude that (p:‘(u) dif-
fers from every recursive functional. Consider such a funetional F,. Take the least s
such that (n)(Ba)M(u, e, s, n, a). Our aims could be frustrated if for this pair (e, ),
Case 3 were to occur infinitely often. But, for this pair, we have (Ef)(a) ~ M(u, ¢,
s—1,1 a) but (n)(Ha)M(u, e, s, n, ). Hence, by monotonicity properties of M and
the growth of ¢ as Case 3 oceurs, Case 3 can occur but a finite number of times for
<¢, 8>. Other consequences follow which show that for suitable ¢, F(f, . ) ## fPf(u)(fe,s,t)-

If, on the other hand, (He)(s)(En)(a)~ M(u, e, s, n, ), let ¢,= min, (s)(En)(a) ~
~ M(u,e,s,n,a). For each ¢< ¢, let s(¢) = min, (n){Ha)M(u, e, s, n,a). The set
{<e, s(e)y|e << 6,} is finite, and using this and some additional facts, Friedberg defines a
recursive functional ¥ that agrees with qaf(u) on every recursive function and that
is total on R. Thus, he proves that the predicate (1) above is complete for the class
of X,-predicates with respect to many-one reducibility.

In [4], we proved the following lift of Friedberg’'s theorem

THEOREM 13. — If A <C o™; then there is a Banach-Mazur functional that coincides
with no (weak) c-recursive functional that is total on R; if ¢ = 0¥, there is a Banach-
Mazur metafunctional that coincides with no (weak) metarecursive functional that is
total on R.
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DISCUSSION OF PROOF, — Firgt we remark that the construetion in [4] also applies
for o = w. Assume o > w?*. Let us suppose that in lifting Friedberg’s construction
and argument we have made the modifications and changes necessary to overcome
stages of the construction defined by limit ordinals. Also, we are working with the
predicate (& << o*)(Ho < o*)(n)(ES) M(u, ¢, 0, n, §). That we here need eonsider only ¢
and o less than o* follows easily from the fact that, as in [4], we have replaced the
predicate (1) discussed above with (1'): if ¢, defines a limit functional, then @, agrees
on R with an o-recursive functional that is total on R, a replacement that serves as a
convenience in several respects; (1) is shown in [4] to be a 2 ,-predicate that is many-
one complete for all X,-predieates.

Suppose that one of the conditions defining an occurrence of Case 3 relative to
the pair ¢, o is now (Ho'<< o) M(u, ¢, 0',t, B). Assume (e < o*)(Ho < o*)(n)(BS) M (u,
g 0,m, ). Let F_be a weak a-recursive functional with index &< a*. If we now
take the least ¢ < ¢* such that (n)(Ef)M(w, e, o, n, ), then for all ¢'<< o(Et)(f) ~
~ M(u, & 0',t, ). But is the funetion #(¢’) = min, (f) ~ M(u, ¢, o', t, f) bounded?
How are we to guarantee that Case 3 occurs at only an «-finite number of stages §?
If this set of stages is not «-finite, the construction collapses. We overcome this
obstacle by a suitable partition of «* into A pieces or blocks, adapting a technique
used originally by SzorEe [16], -as follows. Let A be a 1 —1 «-recursive function
from o into «*. Let I be a X,-function from A with range unbounded in o*. For each
v< 1, we define A(y)=U {I'(u)jp<+}; 4 is Z,. Observe that 0 < 4(0) < ... <
< Aw) < Aw -+ 1) < ... < oF; and for each ¢ << o*, A(») < e << A(v -+ 1) for an unique
v << A. Using the fact that I" is X,, we let H be an c-recursive function from o << A
into o* such that I'(») = li/]g:n H(B,») for all v<< A. Define JI(,») = U {H(B, p)|u <

< #»}. Then I1(f,v) is a-recursive and A(y) = lilxsxlﬂ(ﬂ, v}. Also,

(v< WEB B =) < v)III(F'y ) = A(u)], and for each f< a,

0 =TIIB,0) < .. <IB,v) <Py v+ 1) < ... < o*.

Among the defining conditions for an occurrence of Case 3 we now have (Hu)(Ho')[u <
<v&o' <II(B, u) & M(u,e o,t 8)]. Now, assume as before that (s<C o*)(Ho <
< &*)(n)(EB)M(u, &, o, n, f) and F” is a weak a-recursive functional. Again take
the least o < o* such that (n) M(EB)(u, &, o, n, f). Then for all ¢'<< o, (H#)(8) ~ M{u,
&, 0’y 1, B). Let vy be the least » << A such that o < A(»). Let f, be so big that for ail
B = Bo and all v < v, IT(8, v) = A(v), and note that I is e-recursive. Consequently,
for all v << v, § > B, and all ¢’ such that o' < II{B, v), we have (Et)(f)~ M(u, e, o,
t,B). Next, define t(v) = min, [(8) ~ M(u, &, 11(B,, ), t, f)], where »<v,, and hence
II(B,, v) << 0. Then tis a X,-function from », into «, and by definition of 4, ¢ is bound-
ed in «, say by £. From this it follows that there is a stage 8 beyond which Case 3
does not occur for the pair <e, v,>. Hence, Case 3 occurs only «-finitely often. One
is now able to conclude that for suitable ¢, f, , ,is completely defined and either
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Poff,, )t or FY(f, ) 7 ‘P:Eu)(fe,vo,t}' Ag the reader perhaps has observed, we are no
longer so interested in all pairs <{e, o> but especially in pairs {e,»>, e < 0¥, » << L.

The function A partitions o* into 4 intervals or bloeks, each of size less than o*.
In our case, the intervals of particular interest are the initial segments of o* defined
by each A(»), v<< A. The priority ordering has been shifted to the »’s less than 7
from the o’s less than o all o's that fall in the interval A(v) (¢ < A(v)) being
treated on a par. More specifically, the congtruction is now designed with the fol-
lowing objective: if », is the least » << A for which there is a ¢<Co* such that
(n)(BEB) M (u, &, 0, 1, §), then for some ?, f, ,  is an a-recursive function and FY, the
weak o-recursive functional with index e, is either undefined at f,, ,or (p;’zu)(y‘s’v“t) #
+#~ F(f, 1) Of course, we actually work with a suitable x-recursive approximation f7
to A, which exists by the admissibility of «. Accordingly, the pertinent defining
condition of Case 3 now reads

(Bp)(Bo")u<v&o'<I(f, u) & M(u, &, ', 1, f)].

Tf this condition holds, there is the possibility that for some g << there is a
o'< A(p) such that (n)(EF)M(u, e, ¢',%,p). Having received this signal, we give
precedence to the pair (e, y) over the pair (e, »), and abandon the attempt to
further define the function f, , ,. That Case 3 can occur but a-finitely often follows
from the fact the function #(») defined above is a 2,-function from »,<< A into «,
and hence is bounded in «.

Now, suppose (Be < a*)(c < o*)(En)(f) ~ M(u, ¢, 0, %, f). Let gg= min,_ (o< a*)
(En)(B) ~ M(u, &, 0,m, ). If we now define o(¢) = min_(n)(ES) M (u, ¢, o, n, p) for
each &< g, we certainly cannot conclude that the set {(e, o(e)>|e < &} is a-finite.
But suppose we instead take the set 8 = {z(e, v)|e < & & » < 1}, where 7 is a rudi-
mentary pairing function uniform for all admissible ordinals, so that if A< a¥,
v(e, v) < o*. We then define E to be those members of § satisfying various other
a-re conditions natural to the consfruction, as in [4]. Since by hypothesis 1 < o*, B
is an a-re set bounded below «*, and hence «-finite. (It is here, and only here, that
the special hypothesis A< o* is used in [4].) One is then able to define a weak
a-recursive enumeration operator, and thence a weak w«-recursive functional F
total on R such that F¥(g) = gy,(@) for all e R.

For the metarecursive case of course A = o™ = . But in this case, we are able
to dispense with use of 1 completely. One is able to define the set B mentioned
above so that it constitutes a bona fide finite set of finite ordinals. Of course, in
all cases deduction of the theorem relative to «-recursive funetionals from the version
relative to weak c-recursive functionals is a triviality.

In [4], there are a number of other significant departures from the construction
as given by Friedberg. For example, in Friedberg’s construction at a given stage
certain instructions preseribe that the function ¢, be defined on all finite exten-
sions of some triple (e, s,t> while in [4] at a given stage the corresponding (or
analogous) instructions require that in extending g, We refrain from defining it
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on some o-finite extensions of a triple (e, »,t>. Also, in [4] each of Cases 3, 4, and 5
undergoes some material change. As a result of these changes it becomes less clear
than in [6] that the function g¢,,, which is to define the limit functional (p:(u), is
defined on all a-finite sequences., Accordingly, a proof of this fact is included in [4].
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