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A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV),
and the endogenous expression of HCMV genes and their products are found in these
tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as
a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma
multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments
lack efficient anti-tumor immune response due to the immunosuppressive nature of
glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells
employing immunodominant HCMV antigens. Given the fact that several hurdles remain to
be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior
to tumor recurrence with minimal adverse effects and a substantial improvement in
median overall survival and progression-free survival. This review discusses the role of
HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing
HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective
CMV-specific ACT.

Keywords: immunotherapy, adoptive cellular therapy (ACT), CMV-specific T cell, cytomegalovirus (CMV), herpes
virus, glioblastoma multiforme, glioma, brain tumor
INTRODUCTION

Glioblastoma multiforme (GB), also known as WHO‐grade IV glioma, is the most prevalent and lethal
primary malignant tumor of the central nervous system (CNS), with a dismal prognosis despite
substantial breakthroughs in disease treatment and the introduction of multimodal strategies combining
surgery and chemoradiation (1–3). The limited efficacy of current therapeutic schemes is a cause of
concern in the therapy of patients. The suboptimal “standard of care” comprises microsurgical tumor
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debulking, concomitant radiochemotherapy with temozolomide
(TMZ), and consolidation TMZ chemotherapy, with a median
survival of 15 months and a 5-year survival rate of less than 5%,
underlining the imperative need for alternative therapies (4, 5).

Several immunosuppressive mechanisms that characterize the
immunological milieu of GB have been investigated in an effort
to improve GB treatment strategies. Nevertheless, emerging
immunotherapeutic interventions aimed at stimulating specific
immune responses targeting solid tumors have provided patients
with GB a glimpse of hope over the last decade. At present,
cancer immunotherapy may be broadly classified into four
categories: i. monoclonal antibodies (mAb) against inhibitory
immune checkpoint molecules, ii. oncolytic virotherapy, iii.
adoptive cellular therapy (ACT), and iv. cellular vaccine
therapy (6). ACT is a highly personalized therapeutic approach
that involves a patient’s T cells to deliberately redirect them to
induce anti-tumor immune responses, rather than relying on the
cytotoxic processes of conventional therapies, over which GB
cells are refractory (7). However, the primary issue in this process
is to overcome dysfunctional T cells, which are characterized by a
loss of effector function, notably impaired cytotoxicity, and
reduced secretion of inflammatory cytokines such as
interleukin-2 (IL-2), tumor necrosis factor-a (TNF-a), and/or
interferon-g (IFN-g) (8, 9).

Virus-associated malignancies are viable targets for the ACT,
which leverage viral antigens expressed by cancer cells to redirect
virus-specific T lymphocytes to eradicate tumor cells. There is a
plethora of evidence that human cytomegalovirus (HCMV)
antigens are abundantly expressed in GB tissue but not in
normal brain tissue and potentially contribute to gliomagenesis
(10). However, since the 80-90% prevalence of HCMV in healthy
adults does not correspond to the prevalence of GB (1 out of
30,000), HCMV is not labeled as a classic oncogenic virus (11,
12). Thereby, HCMV does not directly induce malignant cellular
transformation, but rather contributes to GB pathogenesis via
“oncomodulation” of host cellular pathways (13). In this context,
HCMV is not eliminated from the host body after primary
infection, and any potential immunosuppressive condition,
notably GB-associated immunodeficiency, reactivates this virus,
leading to the activation of oncogenic pathways (14). These
insights open up a prospective avenue for stimulating
dysfunctional CMV-specific T cells to elicit competent
anti-tumor immune responses in order to overcome the
heterogeneous and antigen-escaping nature of GB. In this
review, we will discuss the implications of HCMV in GB
pathogenesis and prognosis, as well as recent advances of
CMV-specific T cell therapy in GB patients.
HCMV GLIOMAGENESIS

HCMV has been implicated in gliomagenesis through a variety
of distinctive mechanisms, which are classified into six major
hallmarks of cancer, including tumor proliferation and invasion,
inhibition of tumor cell apoptosis, autophagy, promotion of
angiogenesis, tumor-associated immunodeficiency, and
stemness induction (15) (Figure 1).
Frontiers in Oncology | www.frontiersin.org 2
Tumor Proliferation and Invasion
Cell proliferation and invasion in human cancers are among the
major areas of concern, leading to uncontrolled disease activity
and fatal tumor cell invasion to the surrounding brain tissues,
rendering it unresponsive to treatment interventions such as
complete surgical resection. Hence explicating the mechanisms
associated with tumor cell proliferation and invasion is critical in
order to develop effective treatment approaches. HCMV
generates oncomodulatory proteins that interact with tumor
cell pathways, promoting tumorigenesis and tumor invasion.
In this regard, the HCMV immediate-early (IE) proteins, which
include IE1-72 or IE2-86, are an essential viral transcriptional
activators that have been discovered to be expressed in more than
90% of glioma tumors (16). In particular, the HCMV-IE1-72
protein along with IE2-86 influences human glioblastoma
growth by inactivating the p53 and the retinoblastoma (Rb)
family of tumor suppressor proteins, resulting in cell cycle
progression and apoptosis blockade while also actively
engaging in cell cycle arrest to facilitate viral replication (17–20).
However, it has been shown that these paradoxical cell cycle
transformation mechanisms may enhance cellular proliferation,
DNA synthesis, and entry into the cell cycle (21, 22).
Furthermore, HCMV glycoprotein B (gB) is the viral abundant
envelope glycoprotein that functions in the same way as the
genuine ligand, platelet-derived growth factor (PDGF), by
binding to the receptor tyrosine kinase (RTK)PDGFR-alpha
(PDGFRa) to promote viral cellular entry (23). It has been
demonstrated that gB is endogenously overexpressed in GB
samples and contributes to the persistent phosphorylation of
PDGFRa, protein kinase B (Akt), and Src. As a result, it triggers
downstream RTK signaling of an essential oncogenic
phosphatidylinositol-3-kinase (PI3K)-Akt axis, which is
sufficient to enhance glial precursor proliferation and drive
gliomagenesis (24, 25). Another HCMV-encoded protein that
contributes to virus latency, cell-to-cell dissemination, immune
evasion, and angioproliferative signaling is the chemokine
receptor US28, which is extensively expressed in GB samples
(26, 27). It has been proposed that US28 activates the hypoxia-
inducible factor-1/pyruvate kinase M2 (HIF-1/PKM2)
feedforward loop via Gaq-, CaMKII-, and Akt/mTOR-
dependent pathways, directing proliferation, angiogenesis, and
metabolic reprogramming in GB cells, and that US28
knockdown reverses proliferation in these cells (28). In
agreement with these findings, in vivo animal studies
established that nanobody-mediated US28 silencing restricts
the tumor development of oncogenic glioma cells (29). These
findings substantiate the notion that US28 is implicated
in HCMV-mediated oncomodulation. Furthermore,
immunofluorescence studies suggest that US28 upregulates
phosphorylated signal transducer and activator of transcription
3 (p-STAT3) and endothelial nitric oxide synthase (e-NOS) that
contribute to invasion of GB cells by upregulating pro-invasive
factors including extracellular-signal-regulated kinase 1/2
(ERK1/2), focal adhesion kinase (FAK), and Src (30–32). FAK
is an important player of integrin-dependent cell signaling that
controls cell adhesion and migration, which are essential for
metastasis. US28 constitutively activates FAK via phospholipase
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FIGURE 1 | HCMV contributes to gliomagenesis and promotes six oncogenic pathways including: (A) tumor proliferation and invasion, (B) inhibition of tumor cell
apoptosis, (C) autophagy, (D) promotion of angiogenesis, (E) tumor-associated immunodeficiency, and (F) stemness induction. Akt, Protein kinase B; CCL5,
Chemokine (C-C motif) ligand 5; DC, Dendritic cell; HCMV, Human cytomegalovirus; IE, Immediate-early protein; I-IFN, type I interferon (I-IFN); IL, Interleukin; JNK, c-
Jun N-terminal kinase; LC3, Light chain 3; MHC, Major histocompatibility complex; NF-kB, Nuclear factor-kappa B; NK, Natural killer; PDGFRa, Platelet-derived
growth factor receptor alpha; PI3K, Phosphatidylinositol-3-kinase; Rb, Retinoblastoma; SOX2, SRY-Box 2; STAT3, Signal transducer and activator of transcription 3;
TLRs, Toll-like receptors; TRAF3, TNF receptor-associated factor; Treg, Regulatory T cell; VEGF, Vascular endothelial growth factor; vMIA, viral mitochondria-
localized inhibitor of apoptosis.
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C- (PLC-), reducing cell adhesion and hence enhancing GB
migration (33, 34).

Inhibition of Tumor Cell Apoptosis
Upon infection, one of the most important underlying
mechanisms of viral persistence and replication in cells is the
expression of proteins that restrict virus-mediated apoptosis.
Studies have shown that HCMV enhances the expression of
anti-apoptotic activating transcription factor 5 (ATF5), which is
extensively upregulated in glioma cells and contributes to their
survival (35). ATF5 tends to bind to an ATF5-specific regulatory
element in the B-cell lymphoma/leukemia-2 (Bcl-2) P2 promoter
to enhance Bcl-2 expression (36). This enhances anti-apoptotic
Bcl-2 expression while decreasing apoptotic Bcl-2-associated X
(Bax) protein expression, indicating that HCMV has an anti-
apoptotic effect on glioma cells (37). Likewise, HCMV IE86 has
been shown to impede apoptotic pathways in glioma cells
through promoting heterogeneous nuclear ribonucleoprotein
A2/B1 (hnRNP A2/B1)-mediated alternative splicing of Bcl-x,
resulting in reduced Bcl-xS/Bcl-xL ratio (38). As well, HCMV-
driven Bcl-2 and viral mitochondria-localized inhibitor of
apoptosis (vMIA) are endowed with the ability to impede
mitochondrial outer membrane permeabilization via
interaction with Bax and adenine nucleotide translocase, as
well as redirection of these proteins to other subcellular
locations. As a result, infected cells’ proapoptotic potential is
drastically reduced (39, 40). On the other hand, the vMIA
interferes with the enzymatic activity of the inner membrane
mitochondrial protein ATP synthasome, resulting in impaired
phosphate transport and hence decreased mitochondrial ATP
synthesis (41). As a consequence, since apoptosis is an energy-
requiring process, bioenergy depletion inhibits it.

Furthermore, the HCMV IE1 and IE2 proteins are both
mutagenic, intervene with the function of the p53 and Rb
tumor suppressors, foster the S-phase, and suppress apoptosis
in infected cells (42, 43). In this respect, IE1 expression was
shown to significantly downregulate p53 mRNA transcription in
a human glioma cell line (44). These viral proteins also hinder
apoptosis via the PI3K cellular pathway (45). Additionally,
HCMV deubiquitinase suppresses the generation of anti-cancer
type I interferons (I-IFNs), which contributes to the upregulation
of anti-apoptotic genes and down-regulation of apoptosis-
inducing genes, encouraging cells to surpass the G1-phase
rapidly (46).

Autophagy
The catabolic program of autophagy is a self-defense mechanism
that entails the provision of cellular material for lysosomal
degradation to supply energy and macromolecules. This
mechanism protects tumor cells from nutrient deprivation,
provides the substrates essential for cell survival, and
modulates apoptosis (47–49). Evidence suggests that several
autophagy-related proteins display a proviral function,
implying that HCMV is privileged to utilize components of
the autophagic machinery for its advantage. In this context, the
cross-talk between autophagy-initiating kinase ULK1 and the
HCMV tegument protein pp28 during viral replication has been
Frontiers in Oncology | www.frontiersin.org 4
shown necessary for effective virus release (50). On the other
hand, studies on human fibroblasts infected with HCMV have
revealed that the virus can induce autophagy by lipidation of
microtubule-associated protein 1 light chain 3 (LC3), a hallmark
of autophagy (51). In addition, HCMV envelope glycoprotein
stimulates toll-like receptor 2 (TLR2) that may contribute to
autophagy induction (52).

During the infection of human fibroblasts, HCMV regulates
autophagy in two opposed directions. In the early stages of
infection, HCMV induces autophagy independent of de novo
viral protein synthesis, as evidenced by an increment in the
number of autophagosomes and autophagic influx, while in the
late stages of infection (18-24h post-infection), HCMV
suppresses autophagy via mechanisms reliant on de novo viral
protein synthesis (53). TRS1 and IRS1, for example, are two anti-
autophagic proteins encoded by HCMV that have been found to
act as antagonists for the eukaryotic initiation factor 2a/protein
kinase R (eIF2a/PKR) signaling pathway by binding to PKR and
thus blocking eIF2a phosphorylation, which has a central role in
autophagy induction. However, it has been suggested that the
interplay between TRS1 and Beclin 1 is the dominant contributor
in this anti-autophagic procedure (53–55).

Overall, HCMV infection necessitates a baseline level of
autophagy as well as specific autophagic proteins in order to
maintain effective viral morphogenesis. Thus, autophagy in
HCMV-infected cells is characterized as an oncomodulator
mechanism that enhances tumor cell viability while restricting
viral infection in the late stages of infection.

Promotion of Angiogenesis
HCMV-infected tumor cells may rewire signals to adjacent
neoplastic and endothelial cells, perpetuating autocrine and
paracrine signaling that fosters tumor cell motility. Endothelial
cell invasion and tumor cell neovascularization are involved in
the malignant progression of glioma, and the HCMV is a central
player in these pathways (56). In support of this notion, studies
on a GB mouse model have suggested that murine CMV
(MCMV) infection enhances intratumoral blood flow and
angiogenesis, which has been linked to platelet-derived growth
factor-D (PDGF-D) mediated pericyte recruitment (57). The
expression of PDGF-D is further upregulated by nuclear factor-
kappa B (NF-kB) signaling, which is mediated by CMV
glycoprotein-induced phosphorylation of p56 (58, 59).

Furthermore, research has revealed that HCMV encodes UL7
protein, which serves homology to the N-terminal V-like domain
of carcinoembryonic antigen-related cell adhesion molecule 1
(CEA-CAM1), a pro-angiogenic factor involved in signal
transduction and cellular adhesion. Experiments on HCMV-
in f e c t ed endo the l i a l c e l l s e v i d enc ed th a t CEA-
CAM1phosphorylates STAT3 and ERK1/2 MAP kinases and
contributes to the secretion of pro-angiogenic factors such as IL-
6. Thus, it provokes angiogenesis under physiological and
pathological conditions and enhances the viability of
endothelial cells by upregulating the anti-apoptotic factor
survivin (60–62). Likewise, HCMV-infected cells are found to
express the HCMV-driven US28 protein on their surface, which
triggers the NF-kB pathway, directing the production of IL-6 and
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cyclooxygenase-2 (COX-2). Following that, IL-6 and COX-2
bind to their cognate receptors and induce STAT3-dependent
VEGF and Cyclin D1 transcription, hence enhancing
angiogenesis (26, 63, 64). Similarly, UL33 is another HCMV-
encoded protein linked to an oncogenic signature that overlaps
with US28-mediated signaling to some extent. It activates GB
angiogenic pathways, including the IL-6-STAT3 axis, VEGF and
COX-2 promoters, and hypoxia-induced factor-1 (HIF-1) (65).
HIF-1 has been discovered to regulate anterior gradient protein 2
(AGR2) expression, which is involved in the adaptive hypoxia
response to stimulate angiogenesis and tumor development in
GB (66). Furthermore, HCMV-infected glioma stem cells (GSCs)
release CMV IL-10, which interacts with monocytes to enhance
CMV transcriptional activity and subverts them to a tumor-
supportive M2 macrophage/microglia phenotype. As a result, it
initiates a feed-forward loop toward glioma cells by boosting
angiogenic VEGF production (30).

Another HCMV-encoded protein that st imulates
angiogenesis in GB is phosphoprotein 71 (pp71), which is
implicated in the activation of early viral gene expression (67).
It has been suggested that pp71 is abundantly expressed in stem-
like (CD133+) primary GB cells, especially in high-grade
gliomas, and promotes stem cell factor expression via an NF-
kB-dependent pathway (68, 69). In this way, stem cell factor
binds to the c-kit receptor tyrosine kinase, triggering
upregulation of endothelial progenitor cell migration and
thereby accelerating angiogenesis in hypoxic settings (70).
Additionally, the HCMV phosphoprotein65 (pp65) is
ubiquitously expressed in 91% of GB tissues and has been
observed to colocalize with endocan in the tumor cell
cytoplasm (71). Endothelial cell-specific molecule-1 (ESM-1) or
endocan is a proteoglycan biomarker of neoangiogenesis whose
expression is regulated by VEGF in endothelial cells. The HCMV
pp65 protein indirectly enhances endocan expression by
modulating VEGF and cytokines such as TNF-a and IL-6,
thereby enhancing glioma neovasculature (72).

Importantly, microRNA (miR)-217 and miR-199a-5p
expressions are upregulated in HCMV-infected endothelial
cells, which can suppress sirtuin 1 (SIRT1) and forkhead box
O3 (FOXO3a) endogenously. This culminates in reinforced
migration and tube formation of infected endothelial cells (73,
74). Similarly, miR-138 upregulates p-STAT3 protein expression
through downregulating SIRT1 expression in HCMV-infected
human umbilical vein endothelial cells (HUVECs), stimulating
them to migrate and form tubes (75).

Taken together, HCMV promotes angiogenesis through
multilateral interactions with stem cells and endothelial cells,
resulting in upregulation of angiogenic factors, increased
endothelial cell viability, and recruitment to form vessels
required to supply tumor cells with adequate amounts of
nutrients and oxygen.

Tumor-Associated Immunodeficiency
Infection with HCMV and its interplay with immune system
components disrupt innate and adaptive immune pathways to
evade viral elimination, resulting in compromised anti-tumor
responses and antigen presentation. HCMV pp71 restrains the
Frontiers in Oncology | www.frontiersin.org 5
accumulation of major histocompatibility complex (MHC) class
I in order to regulate protein trafficking and evade virus-specific
CD8+ T cell recognition (76). Likewise, this viral tegument
protein augments C-C motif chemokine ligand (CCL) 2/
monocyte chemoattractant protein 1 (MCP1) through
transcriptional upregulation, which has been attributed to
glioma tumor grade and recurrence (77, 78). Also, HCMV
infection tends to increase CCL5 expression, and since this
ligand binds to and triggers the US28 pathway, it amplifies
US28-induced GB invasiveness (31). On the other hand, US28-
mediated recruitment of monocyte and macrophage increases in
response to C-X3-C motif chemokine ligand (CX3CL)1/
fractalkine elicited by GSC and tumor-associated macrophage
(TAM) in the GB niche (34).

Along with monocyte chemotaxis to the tumor niche,
HCMV-encoded IL-10, which appears to mimic the
immunomodulatory effects of human IL-10, shifts monocyte
polarization toward a deactivated pro-tumoral M2c phenotype,
limiting CD4+ T cell activation and proliferation substantially
(79). It hinders MHC class II and the co-stimulatory protein
CD86 while raising the co-stimulatory inhibitory molecule B7-
H1 (30). Additionally, this viral homolog amplifies its
immunosuppressive effects in myeloid cells by upregulating
human IL-10 and its positive regulator, tumor progression
locus 2 (TPL2), as well as interacting with its receptor. This
leads to an increase in heme oxygenase 1 (HO-1) expression,
which is associated with immunosuppression (80).

The HCMV-induced immunosuppressive state in GB is
exacerbated by additional mechanisms. In this context,
research on CMV-infected mouse models has shown that
CD4+Foxp3-IL-10+ Tregs contribute to an effective antiviral T
cell response and viral clearance, whilst IL-10- and TGF-ß-
dependent pathways have been shown to boost anti-
inflammatory pathways in GB (81, 82). Thus, Treg-induced
TGF-ß-mediated inactivation of the NKG2D receptor might
enable tumor cells in GB patients to evade recognition by
immune system cytolytic effector cells, resulting in tumor
progression (83). Similarly, HCMV-encoded UL18, UL40, and
UL142 are viral MHC class I homologs that enhance surface
human leukocyte antigen (HLA)-E expression, which binds to
the NK cell inhibitory receptor NKG2A/CD94 to resist NK lysis
(84–86).

Taken together, HCMV triggers pathways that enable tumor
cells to evade immune recognition while also interacting with
immune cells, boosting immunosuppressive characteristics and
compromising anti-tumor immune responses.

Stemness Induction
GSCs are neoplastic units with a high potential for unlimited self-
renewal, multipotency, and tumor initiation, and they are
appropriate hosts for persistent neurotropic HCMV infection
as they lack DNA repair mechanisms, facilitate viral immune
evasion, and have an extended life span (87). These stem cells
endow GB tumors with chemoradioresistance and drive tumor
recurrence (88).

Several preclinical studies have shed light on the cross-talk
between HCMV infection and stemness induction in GB tumors.
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HCMV has shown strong tropism to GSCs with high expression of
CD133 (30). Similarly, studies have shown that GSCs infected with
HCMV outlive and contain greater amounts of viral DNA
compared to glioma cell lines, which coincides with
upregulation of stemness markers in GSCs (89). Of note, the
stemness markers are expressed in GB tumors with
interdependence on HCMV IE expression, rendering tumor-
derived GSCs unable to differentiate into astrocytic or neuronal
phenotypes, promoting GSCs features and therefore increasing
tumor aggressiveness (90). It was suggested that HCMV IE1/IE2 is
co-expressed with stemness markers including CD133, Nestin,
and SRY-box 2 (Sox2) and is implicated in the miR-45-Sox2 axis,
resulting in enhanced self-renewal of GSCs. Accordingly, IE1/IE2
knockdown by an RNA-i-based strategy limits Sox2 expression,
tumorsphere formation, and induces apoptosis in HCMV positive
GSCs (43). These findings provide credence to the notion that
HCMV IE protein expression has a significant detrimental
predictive role in GB tumors through induction of stemness
properties (91).

Moreover, the HCMV-encoded CMV70-3P miRNA is
expressed in GB tissues and upregulates Sox2 expression,
which is linked to stemness induction. In this respect, studies
have demonstrated that suppression of CMV70-3P impedes
tumor migration and invasion, indicating that it is a promising
target for GB therapy (92).
EXPRESSION OF HCMV IN GB

Beyond the proposed oncomodulatory mechanisms of HCMV
implicated in gliomagenesis, the detection of HCMV in GB tissue
has emerged as a debate with many incongruous and
contradictory results since 2002. These are primarily attributed
to methodological discrepancies; yet, these findings offer a viable
path for translating these viral protein expressions into promising
anti-HCMV therapies to approach GB (10). To this end, several
studies have employed immunohistochemistry and in situ
hybridization techniques to detect HCMV, which are capable of
illuminating the site of virus particles and RNA accumulated
within cancer tissues but are predisposed to user errors. Others
have employed a sensitive nested polymerase chain reaction (PCR)
approach that is sensitive enough to detect extremely low
concentrations of viral DNA utilizing robust amplifying
strategies (93–95). Despite this, recent PCR assays failed to
identify CMV pp65, gB, and IE in GB patients’ peripheral blood
or tumor samples (93, 96, 97). Other investigations, on the other
hand, highlighted the significance of time in the test’s sensitivity.
Herpesviral genomes inside cells become resistant to PCR
amplification over time as a consequence of physical
deterioration, reflecting that the most recent samples can be
detected to express HCMV genes much more abundantly (98,
99). However, HCMV nucleic acid and immunodominant
proteins such as pp65 and IE1-72 have been detected in a
significant proportion of GB samples through in situ
hybridization techniques (10, 16, 100–102). Others, using
sensitive PCR, immunohistochemistry, and in situ hybridization,
Frontiers in Oncology | www.frontiersin.org 6
discovered that a significant proportion of GB samples contained
HCMV antigen and DNA and that the expression rate may vary
depending on glioma grade, with high-grade gliomas expressing
viral antigens more than low-grade gliomas (95, 100, 103). In
another study, researchers employed all three techniques to
analyze HCMV expression in high-grade gliomas both
retrospectively and prospectively, and though they found no
significant expression of HCMV regardless of the approach
except in low levels in three out of 18 plasma samples at
baseline and only one in follow-up (104). In line with these
studies, others in various investigations attempted alternative
approaches like droplet digital PCR (ddPCR) and next-
generation sequencing (NGS) technologies but were still unable
to detect HCMV in GB samples (105, 106). The studies also
provided insight on the possibility of false-positive results
attributable to unidentified cross-reactivity among HCMV
antibodies that bind to non-viral human proteins, as well as
how varying concentrations of HCMV monoclonal antibodies
might contribute to false-positive staining (104, 107). Taking all of
the controversies into account, a recent systematic review of 81
studies recruiting 7024 GB samples and 2420 blood samples
revealed that HCMV is expressed in 36% and 45.2% of samples,
respectively (108). Importantly, none of the healthy surrounding
brain tissues employed as a control counterpart were detected to
express HCMV genes or their products, indicating a high level of
protection against off-tumor cytotoxicity for potential CMV-based
immunotherapeutics for GB patients (72, 109–112).

Although the detection of HCMV in GB samples has remained
controversial, the inevitability of HCMV oncomodulatory
pathways in gliomagenesis has raised the topic of the
implications of HCMV infection for disease prognosis. A case-
control study revealed that low-grade HCMV infection in GB
patients is linked to prolonged survival, and HCMV infection was
determined to be a negative prognostic indicator in GB patients
(113). Further, the same author conducted a retrospective study
and indicated that HCMV infection is a predictive marker and
that the low-grade infection coincided with a median 20-month
longer survival compared to high-grade infected GB patients (91).
These findings, however, appear to be achieved in the exclusion of
considering additional prognosticators, such as isocitrate
dehydrogenase 1 (IDH-1) mutational status, O6-methylguanine
methyltransferase (MGMT) methylation status, TMZ medication
status, and so on. On the contrary, the majority of evaluations
found no predictive significance for HCMV infection in GB
patients (110, 114–116). Nonetheless, a recent meta-analysis of 7
studies and around 500 patients found no statistically significant
impact of HCMV infection on GB prognosis (117).
CMV-SPECIFIC ADOPTIVE T CELL
THERAPY

The expression of HCMV antigens in GB tissues but not in
healthy brain tissues primes an intriguing avenue to exploit viral
antigens to extend pre-existing antiviral immunity for GB
therapy. It has led to a rigorous clinical evaluation of the safety
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and prospective therapeutic value of autologous CMV-specific T
cell administration as a consolidative therapy for recurrent GB.
To that aim, researchers employ in vitro stimulation to redirect
polyfunctional CMV-specific CD8+ T cells to target
immunodominant HCMV antigens and elicit an effective anti-
tumor immune response (118).

Characteristics of CMV-Specific T Cells
Derived From GB Patients
In healthy individuals, CMV-specific CD8+ and CD4+ T cells
account for 10% and 9% of blood CD8+ and CD4+ T cells,
respectively (119). Aside from the intact large T-cell response,
the phenotype of CMV-specific T cells appears to be distinctive,
as evidenced by their terminal differentiation state. In terminally
differentiated CMV-specific CD8+ T cells, there is a high
expression of NK receptor CD57, which is associated with
immunosenescence, as well as cytokines IFNg and TNF-a, and
the cytotoxic molecules granzyme B and perforin. Additionally,
these cells lack expression of co-stimulatory CD27 and CD28
molecules that contribute to expansion and activation of T cell
receptor (TCR)-stimulated T cells (120).

Preoperative and postoperative flow cytometry analysis of
blood from CMV-seropositive GB patients showed that
CD4+CD57+ and CD4+CD28- T cells were more abundant
than their control counterparts, which were found to have a
negative impact on survival in these patients (121). Since the
CD4+CD28- phenotype is specific to HCMV infection, it is
postulated that HCMV antigens expressed in GB tissues
persistently stimulate TCRs and drive the expansion of CD4+

T cells that express CD57 and subsequently lose the activation
marker CD28, indicating defect proliferative capacity and
senescence of these cells (121, 122). However, further analysis
revealed that the precursor frequency of CMV-specific CD8+ T
cells was within the range typically observed in healthy virus
carriers, and a significant fraction of these cells were positive for
the CD57 with CD27-CD57+ CMV-specific T cells being more
frequent in GB patients compared to healthy virus carriers (123).

The CMV-specific T cells lack optimal cytotoxicity in the GB
tumor microenvironment due to hypofunctionality in the
production of multiple cytokines. In this respect, investigations
have shown that exposure of GB patients’ peripheral blood to
CMV-pp65 antigen does not lead to a substantial rise in IFNg
production (124). In the context of hypo/dysfunctionality of
CMV-specific T cells in GB patients, it was suggested that the
large proportion of CMV-specific T cells (60-70%) had
attenuated polyfunctionality in expressing TNF-a, IFNg,
macrophage inflammatory protein-1b (MIP-1b), or CD107a (a
marker for CD8+T-cell degranulation), which may be
reconstituted to some extent with in vitro stimulation (123).
Furthermore, CMV-specific CD8+ T cells isolated from resected
GB tumor tissue disclosed the same disabilities in expressing
IFNg, TNF, IL-2, or CD107a and lacking expression of the
marker for tissue-resident T cells, CD103. Likewise, tumor-
infiltrating CMV-specific T cells express augmented levels of
inhibitory receptors programmed cell death protein 1 (PD-1), T
cell immunoglobulin and mucin-domain containing molecule-3
(TIM-3), and cytotoxic T-lymphocyte-associated antigen 4
Frontiers in Oncology | www.frontiersin.org 7
(CTLA-4) and lower levels of transcription factors T-bet,
eomesodermin (EOMES), and lymphoid enhancer-binding
factor 1 (LEF-1), while having a 4-fold lower frequency in
tumor tissue compared to T cells circulating in peripheral
blood (125). The overexpression of inhibitory receptors in
CMV-specific T cells is potentially the basis for the inefficiency
of these cells to respond to persistent antigen exposure, which is
commonly referred to as immunological exhaustion (126).

CMV-Specific T Cell Manufacture for ACT
To begin the process of manufacturing polyfunctional CMV-
specific T cells for the ACT, peripheral blood mononuclear cells
(PBMCs) are harvested from peripheral blood through
leukapheresis, resuspended in the growth medium, and
subsequently stimulated with specified HLA class I and II-
restricted peptide epitopes from HCMV antigens, including pp65.
However, other approaches comprising CMV-pp65 alone, CMV-
pp65 coupled with tumor-associated antigens (TAA), or even no
antigen are applicable in this procedure. Thereafter, the peptide-
pulsed cells are incubated and supplied with recombinant cytokines,
including IL-2, which is introduced on day 0 and continued every 2
to 3 days. After 14 days of expansion, the sterility and
microbiological tests, as well as the intracellular cytokine assays,
are undertaken to qualify them for cryopreservation until future use.
For adoptive transfer, T cells are thawed into clinical-grade normal
saline and reinfused intravenously (123, 125, 127–129) (Figure 2).

Although the proposed procedure varies across trials, the key
objective is to reconstitute polyfunctional CMV-specific T cells
with adequate quantity, functional quality, high affinity,
maturation, differentiation, and homing potential to elicit the
desired clinical response in GB patients. In this respect, Luo et al.
suggested an alternate cytokine cocktail consisting of IL-2, IL-15,
and IL-21 to promote the expansion of high-affinity CMV-
specific T cells with a homing phenotype (CCR6+ CXCR3+)
and Th1 polarization (130). To elaborate, IL-2 is a commonly
employed cytokine for T cell expansion that has concentration-
dependent effects with some counter-productive consequences in
the ACT setting (131, 132). IL-2 favors activation-induced cell
death (AICD) and stimulates a variety of short-lived effector and
long-lived memory T cell responses; however, it also
contributes to the development, maintenance, and activity of
Tregs, particularly the immunosuppressive phenotype,
CD4+CD25+FOXP3+, which limits effector T cell response and
proliferation (133, 134). To compensate for the negative impacts,
the addition of IL-15 inhibits AICD and contributes to the
development and persistence of long-lived memory CD8+ T
cells. While the addition of IL-21 suppresses Tregs expansion
and cooperates synergistically with IL-15 to boost antigen-
specific CD8+ T cells expansion and IFNg production, and
both, unlike IL-2, induce suitable early-differentiated antigen-
specific CD8+ T cells for immunotherapeutic applications (135–
141). As well, the critical challenge in manufacturing methods is
the migratory features and competency of CMV-specific T cells
trafficking to the target region. Since healthy virus-naive
individuals’ CMV-specific CD8+ T cells lack expression of
CCR6, CXCR3, and CCR4, enhanced expression of CCR6 and
CXCR3 via IL-2/IL-15/IL-21 conditioning might be a feasible
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FIGURE 2 | For CMV-specific ACT, PBMCs from GB patients’ peripheral blood are harvested, stimulated with CMV peptides, expanded in vitro by conditioning with
multiple cytokines such as IL-2/IL-15/IL-21, and afterward reinfused intravenously. Following administration, CMV-specific CD8+ T cells traffic to tumor sites and
recognize CMV antigens expressed on GB tumor cells, whilst interactions between CMV-specific CD4+ T cells and dendritic cells (DC) maintain its activation via IFN-g
release. CD8+ T cells release granzymes and perforin, which contribute to tumor cytolysis, and IFN-g, which indirectly provokes other immune cells to elicit the
desired anti-tumor immune response. It induces tumoricidal M1 polarization in macrophages, T helper1 (Th1) polarization, and inhibits regulatory T cells (Tregs) in the
tumor microenvironment, which is associated with immunosuppression. Upon tumor cytolysis, tumor antigens are released, which are taken up by DCs and
presented to cytotoxic T lymphocytes (CTLs), activating them and triggering a multi-antigen directed anti-tumor response.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8184478

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Daei Sorkhabi et al. CMV-Specific ACT for Glioblastoma Multiforme
approach to enhance CMV-specific CD8+ T cell trafficking to
infection sites and eliciting anti-tumor secretions such as IFNg
and TNF-a (130).

Proposed Mechanism of CMV-Specific ACT
The purpose of contemporary immunotherapy is to enhance the
function of cytotoxic T lymphocytes (CTLs) within the tumor
microenvironment, boost CTL priming, and develop a long-term
and effective anti-tumor immune response. To that aim, it is
anticipated that after administration of CMV-specific T cells, these
cells will traffic to tumor sites and interact with CMV-positive
tumor cells to trigger cytolysis, therefore limiting tumor
proliferation and progression. However, there are certain CMV-
negative cells in the tumor tissue that may be targeted to some
extent by ACT products. CD8+ T cells are a subset of lymphocytes
that are specialized to recognize antigenic peptides presented by
MHC class I molecules expressed by all tumor cell types; however,
since persistent antigen exposure contributes to irreversible
commitment to immunological exhaustion, CD4+ T cells are
required to maintain the CD8+ T cell response and prevent
exhaustion (142–145). CD4+ T cells interact with antigens and
enable DCs to optimize antigen presentation and to deliver specific
cytokines and co-stimulatory signals to encourage clonal
expansion and differentiation of CD8+ T cells into an effector or
memory T cell (146). Further, some DCs efficiently induce antigen
cross-presentation of exogenous antigens on MHC class I
molecules to activate CD8+ T cells through secretion of IFNg
(147). Following in vitro stimulation with immunodominant
peptides, the CMV-specific CD8+ T cells reverse their
competent cytolytic function to release several cytokines,
including TNF-a and IFNg that are involved in several anti-
tumor immune responses. Upon antigen recognition, CTLs target
tumor cells either directly through triggering synaptic exocytosis
of cytotoxic granules comprising perforin and granzymes or
indirectly through directing other immune components of
tumor microenvironments toward tumor cells via secretion of
cytokines, including IFNg and TNF-a (148). IFNg stimulates
tumoricidal M1 macrophage polarization while also upregulating
antigen-presenting machinery components such as MHC class I
and II, and its synthesis and activities are amplified further by a
positive feedback loop arising from inducing Th1 polarization. As
well, increased IFNg secretion suppresses Tregs in the tumor
microenvironment (149). Of note, the potential role of CMV-
specific ACT on T cell responses to other TAAs expressed in GB
has been demonstrated (118). Following tumor cytolysis, CMV-
specific ACT might have a bystander effect that extends T cell
responses via epitope spreading. The antigen-presenting cells,
including macrophages and DCs, engulf released antigens and
cross-present them to T cells in order to prime CTLs, culminating
in a multi-antigen directed immune response that targets a wide
range of tumor cells (150) (Figure 2).

Preclinical and Clinical Findings of CMV-
Specific ACT
In certain clinical settings, ACT employing genetically modified
or unmodified antigen-specific T cells has resulted in long-term
Frontiers in Oncology | www.frontiersin.org 9
and promising clinical outcomes (151). Recent clinical trials have
outlined the significance of CMV-specific ACT preceding GB
tumor recurrence in being low-risk and offering enhanced
progression-free survival and overall survival with compelling
effective CMV-specific T cell response (Table 1).

Ghazi et al. discovered that in the peripheral blood of CMV-
seropositive GB patients, the frequency of CMV-specific T cells,
particularly those specific for the immunodominant pp65
antigen, was considerably lower than in healthy controls,
implying the viability of polyclonal CMV-specific T cell
generation via antigen-presenting cells (APCs) transduced with
an adenoviral vector encoding IE1 and pp65 to kill CMV-
positive target tissue (127). Further, Crough et al. administered
four intravenous infusions of 40×106 CMV-specific CD8+ T cells
to TMZ-treated patients at 14-28-day intervals in order to
evaluate the polyfunctionality of these cells in vivo. It was
found that in vitro stimulation of autologous CMV-specific
CD8+ T cells induces a more than 20% rise in the proportion
of polyfunctional virus-specific T cells, as well as a decrease in
CD57+ antigen-specific T cells and an increase in CD27+

antigen-specific T cells. These led to a substantial decrease in
the degree of enhancing tissue as evidenced by magnetic
resonance imaging (MRI) scans and a marked improvement in
other clinical parameters such as motor-neuron function (123).

For the first time in 2014, Schuessler et al. completed a phase
1 clinical trial in which they administered 3 to 4 infusions of 25 to
40×106 autologous CMV-specific T cells to 13 patients with
recurrent GB, yielding the following findings: i, the clinical
outcomes in these patients were found to be dose-independent
of CMV-specific T cell infusion; ii, the clinical outcomes were
unaffected by the detrimental consequences of concurrent
standard therapeutic approaches; iii, CMV-specific ACT
enhanced the median overall survival (>57 weeks), median
progression-free survival (>35 weeks), and progression-free
rate by 40% since the first recurrence, with only mild to
moderate complications such as headaches or fatigue, none of
which were serious (125). Conversely, Weathers et al. suggested
that CMV-specific T cells, unlike CMV-negative T cells, exhibit
anti-GB activity; despite the fact that seropositivity to CMV does
not ensure tumor sensitivity to CMV-specific T cells, and failure
in ex vivo expansion of CMV-specific T cells is highly
attributable to the prior application of TMZ and other
cytotoxic chemotherapies. Besides, they found that in spite of
favorable enhancements in expressions of CD107a, TNF-a,
IFNg, IL-2, or effector memory markers (CD3+/CD8+/CCR7-/
CD45RA-) during ex vivo expansions, there were no considerable
alterations upon adoptive CMV-specific T cell transfer (129).
Likewise, the stage of the disease impacts clinical responsiveness
to ACT. In this regard, Smith et al. found that initiating adoptive
CMV-specific T cell transfers prior to tumor recurrence, rather
than thereafter, is associated with a 2.5 and 1.6-fold higher
median progression-free survival (10 months vs 4 months) and
median overall survival (23 months vs 14 months) since
diagnosis, respectively (118).

Moreover, Nair et al. suggested in a preclinical study that
autologous T cells stimulated with autologous DCs that were
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pulsed with CMV pp65 RNA could expand CMV pp65-specific
T cells up to 10- to 20-fold, with a substantial rise in IFNg+/CD4+

and IFNg+/CD8+ cells (154). In line with these findings, Reap
et al. performed a randomized clinical trial to assess the efficacy
of combining DCs pulsed with CMV pp65 RNA with CMV
pp65-specific T cells. They discovered that a single intravenous
dose of 3×107 CMV pp65-specific T cells/kg in conjunction with
three separate intradermal infusions of 2×107 DCs, as compared
to a control group, had a significant influence on the frequency
of polyfunctional CMV pp65-specific CD8+ T cells with
Frontiers in Oncology | www.frontiersin.org 10
enhanced capacity of simultaneous IFNg, TNF-a, and CCL3
expression (153).

Since the heterogeneity of CMV pp65 antigen expressionmight
be a major constraint in this therapeutic approach, some clinical
trials have used genetically engineered CMV-specific T cells that
express chimeric antigen receptors (CARs) to target GB-related
surface proteins. Since GB tissues exhibit ineffective antigen
presentation for T cell activation and express inhibitory surface
ligands including PD-L1 and CTLA-4, the CAR construct
incorporates co-stimulatory domains and the extracellular
TABLE 1 | Summary of clinical evidence on CMV-specific ACT.

Tumor Sample
size

Intervention Results Reference

Recurrent
GB

1 4 IV infusions of 4×106CMV-
specific CTLs, 14-28 days apart
+ TMZ every 28 days for 5 days

Following in vitro stimulation, the rate of polyfunctional CMV-specific CTLs was greater than
30%. MRI scans confirmed considerable improvement in appearance one month following the
final fusion, and clinically stable condition continued for 17 months.

(123)

Recurrent
GB

13 3 to 4 IV infusions of 25 to
40×106CMV-specific CTLs, 14
days apart

CMV-specific ACT in combination with chemotherapy was well tolerated, with minimal side
effects, of which none were severe. The median overall survival since the first recurrence was
403 days, with 4 out of 10 patients completing therapy progression-free. These therapeutic
approaches have been shown to be safe and to induce long-term clinical stability.

(125)

HER2+

recurrent
GB

17 A single or more IV infusion of
1×106/m2 -1×108/m2 HER2 CAR
CMV pp65-bispecific CTLs
without prior lymphodepletion

Seven of the 16 evaluable patients had stable disease for 8 weeks to 29 months, one patient
had a significant reduction in tumor volume that lasted for more than 9 months, and 8 patients
progressed. The median survival time from diagnosis and ACT was 24.5 and 11.1 months,
respectively. Further, patients who didn’t receive alvage therapy prior to ACT exhibited
significantly higher median overall survival than those who received salvage therapy prior to ACT
(27.2 months VS 6.7 months)

(152)

Primary
GB

22 Arm I (n=8): A single intradermal
infusion of 3 × 107/Kg CMV
pp65-specific CTLs with 2 ×107

pp65-DCs (CMV-ATCT-DC) + 2
intradermal vaccines with 2 ×107

pp65-DCs

In contrast to the control arm, patients who received CMV-ATCT-DC had significantly higher
overall frequencies of IFNg+, TNF-a+, and CCL3+ polyfunctional, CMV-specific CD8+ CTLs.

(153)

Arm II (n=7): A single intradermal
infusion of 3 × 107/Kg CMV
pp65-specific CTLs with saline
(CMV-ATCT-Saline) + 2
intradermal infusions of saline

Recurrent
and
primary
GB

65 Arm I (recurrent GB): TMZ PO
QD, on days 1-21 + 1 to 4 IV
infusions of 5×106-108CMV-
specific CTLs, on day 22 +
Surgery, on day 30

Despite a 26% failure rate in T cell expansions, repeated infusions led to an increase in CMV-
specific CTLs with no dose-limiting toxicities. The median progression-free survival and overall
survival were 1.3 and 12 months, respectively. The clinical responsiveness was found to be
significantly confounded by MGMT methylation status.

(129)

(Repeated up to 4 cycles every
42 days and continued with TMZ
PO QD, on days 1-21, up to 12
cycles every 42 days)
Arm II (primary GB): TMZ PO
QD, on days 1-21 + 1 to 4 IV
infusions of 1×108 CMV-specific
CTLs, on day 22
(Repeated up to 4 cycles every
42 days and continued with TMZ
PO QD, on days 1-5, up to 12
cycles every 28 days)

Primary
GB

28 Up to 6 IV infusions of 2 ×
107CMV-specific CTLs/m2 body
surface area every 2-4 weeks

CMV-specific ACT was shown to elicit a bystander effect on nonviral tumor-associated antigens
via antigen spreading.

(118)

It was discovered that commencing ACT before recurrence had a significantly better influence
on median overall survival than commencing it after recurrence (23 months VS 14 months).
Overall survival was found to be impacted by many variations in T cell transcriptional patterns at
the gene and pathway levels.
There was no indication of toxicity associated with CMV-specific ACT.
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ligand-binding domain to bind the immunosuppressive signal and
therefore decouple this binding from any immunosuppressive
effects (155–157). To that aim, Ahmed et al. conducted a phase
1 clinical trial where they infused 1×106/m2-1×108/m2 pp65-
specific T cells grafted with a second-generation human
epidermal growth factor receptor 2 (HER2) CAR with a
CD28.zeta signaling domain to 17 CMV seropositive patients
with HER2+ recurrent GB who hadn’t undergone prior
lymphodepletion. It resulted in partial clinical response and
long-term disease stability in 1and 7 patients, respectively, as
well as an increase in median overall survival (27 months since
the first infusion). These findings pave the way for the
development of CAR CMV bispecific immunotherapy in GB
patients (152). However, further large-scale trials are warranted
to develop an optimal protocol for incorporating adoptive transfer
of CMV-specific T cells with appropriate genetic modifications, as
well as DC vaccinations, to approach the GB patients’ treatment.

Influential Factors in Clinical
Responsiveness to CMV-Specific ACT
Several cellular compositions and molecular characteristics of the
tumor tissue have been established as having a substantial impact
on clinical response to CMV-specific ACT in GB patients. As an
instance, excessive PD-L1 expression in GB tissues has been
identified as a significant pre-therapy marker that plays an
essential part in ACT failure. According to Walker et al., long-
term follow-up of patients who received CMV-specific ACT
demonstrated that the frequency of PD-L1+ cells in tumor
tissue prior to therapy correlated adversely with patient
survival (158). It has been shown that the PD-1/PD-L1 axis
contributes to CTL exhaustion and Treg augmentation, which
protects tumor cells from CTL-mediated lysis (159). These
findings call for more research into integrating anti-PD-L1 or
genetically engineered T cells with PD-1 receptor blockade with
CMV-specific ACT to maximize the clinical response of GB
patients with predominant PD-L1 expression (160).

Furthermore, despite a paucity of evidence to indicate
statistical relevance, additional cellular compositions such as
CD3 and Sox2 have been linked to clinicopathological
characteristics (158). Sox2 is a stemness marker involved in a
variety of cellular activities, associated with maintaining the
embryonic and pluripotent stem cell properties. It has been
found to be overexpressed in high-grade gliomas, where it is
linked to GSC generation and, therefore, poor prognosis (161–
163). Sox2 expression is inversely correlated with CD3+ T cell
infiltration, and patients with long-term survival had a relatively
greater number of tumor-infiltrating CD3+ T cells (164).

MGMT, a cellular DNA repair enzyme that neutralizes the
cytotoxic effects of alkylating drugs like TMZ, is another
important biological component related to clinical response in
GB patients (165). It has been demonstrated that MGMT
promoter methylation is a mechanism of MGMT regulation in
gliomas, which is a favorable predictor of progression-free
survival and overall survival in TMZ-treated patients (166). In
this respect, Weathers et al. revealed that GB patients with
MGMT promoter-methylated tumors responded better to a
Frontiers in Oncology | www.frontiersin.org 11
combination of lymphodepleting dose-dense TMZ and CMV-
specific ACT and that MGMT methylation status was a
determining factor in radiographic outcomes (129). TMZ-
induced lymphodepletion prior to ACT commencement exerts
multilateral impact on the efficacy of ACT. Eliminating
lymphocytes in the tumor microenvironment facilitates infused
cells’ trafficking to the tumor site and their accessibility to various
homeostatic cytokines, including IL-2, IL-7, and IL-15, while also
reducing immunosuppressive cells that impair antigen-
presentation. However, these outcomes are transient and will
necessitate compensatory actions (167). Conversely, if
immunotherapy is delivered shortly after or even during TMZ
treatment, the immunosuppressive consequences will restrict
immune cells from eliciting a robust anti-tumor response,
signifying the timing of TMZ application for these patients.
Nonetheless, large-scale immunological surveillance and clinical
trials are warranted in order to optimize TMZ combination with
CMV-based immunotherapeutic strategies (168).

Aside from MGMT promoter methylation and TMZ
treatment, Walker et al. suggested that the presence of an IDH
mutation is associated with a considerably better overall survival
in GB patients (158). It was discovered that in IDH-mutated GB
tumors, PD-L1 expression is downregulated relative to its IDH-
wild-type counterpart, which correlated with greater T cell
activation (169–171). On the other hand, IDH mutations were
speculated to have immunomodulatory effects on both the
natural course of disease and response to therapy, since IDH-
mutated GB tumors exhibit low infiltration of TAMs,
neutrophils, and myeloid cells, which is consistent with a
survival benefit (172).

Moreover, Schuessler et al. and Smith et al. established that a
signature of several genes in ACT products determines
prolonged progression-free survival in patients with recurrent
GB, including genes associated with T cell transcription factors,
cytotoxic factors, checkpoint markers, and homing markers, as
summarized in Table 2. The expression profile of these genes in
ACT products contributes to CTL proliferation, cytotoxicity,
chemotaxis, and interactions with multiple immunosuppressive
and oncogenic pathways associated with tumor progression
(118, 125).

Taken together, there is still a significant necessity to elucidate
key factors in clinical responsiveness to CMV-specific ACT,
which is acknowledged as an essential milestone toward
developing more effective therapeutic approaches and
eliminating the obstacles that contribute to treatment failure.
CONCLUSION

The most demanding aspect of developing immunotherapeutic
approaches for solid tumors is identifying ideal tumor-specific
antigens that can be targeted by immunotherapy while avoiding
off-tumor toxicities and adverse effects. Like many difficult to treat
solid cancers, GB tumors lack expression of antigenic epitopes and
induce immunological exhaustion, both of which contribute to the
tumor’s low immunogenicity and failure in immunotherapies.
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Hence, evenminor evidence of tumor-specific antigen represents a
ray of light for the development of effective antigen-directed
immunotherapies. In this way, despite its controversial aspect,
the concept of HCMV genes and their products expressions in GB
tissues has attracted the interest of researchers seeking to translate
it into an effective immunotherapeutic method for GB therapy.
Particularly, studies have emphasized the exclusive expression of
these antigens in GB tissues rather than adjacent healthy non-
tumor tissues, indicating that CMV-specific immunotherapies
outperform other methods owing to the lack of off-tumor CNS
toxicities in this strategy. Several strategies, including antivirals,
CMV antigen-pulsed DC vaccination, and CMV-specific ACT,
have been evaluated in clinical trials, with encouraging indications
of improved overall survival and progression-free survival in GB
patients with minimal adverse effects.

In this review, we discussed HCMV implications for
gliomagenesis and outlined various oncogenic pathways that
HCMV modulates. Afterward, we discussed various studies
with contradictory findings that have established HCMV
expression in gliomas and its linkage with disease prognosis.
Finally, the features of pre-existing anti-HCMV immunity were
Frontiers in Oncology | www.frontiersin.org 12
described, as well as their stimulation to efficiently target GB
tumors. In summary, CMV-specific lymphocytes in the tumor
microenvironment exhibit evidence of immunological
exhaustion and senescence, making them unable to elicit the
desired anti-tumor response, due in part to their specific nature
to terminally differentiate and in part to the immunosuppressive
nature of GB. As a result, employing immunodominant antigens
of HCMV and ex vivo pre-conditioning with cytokines to
reconstitute their cytotoxic activity is an essential step forward
in this therapy. Although early phase studies of CMV-specific
ACT have demonstrated substantial improvements in the
appearance of MRI scans and patients’ survival, these findings
are still preliminary, and research is required to broaden the
application of this strategy in clinical settings. Additionally,
determining the appropriate target group of patients for this
approach based on influential markers in clinical responsiveness
and, on the other hand, combining CMV-specific ACT with DC-
vaccination, CAR T cell therapy, and immune checkpoint
inhibitors are of interest to investigate in future studies to
develop an efficacious multi-antigen directed approach with
minimal side effects.
TABLE 2 | The genetic profile of ACT products and their association with antitumor immune response.

Gene ACT’s preferred
expression

Function Reference

T cell transcription
factors

EOMES High • Full effector development of anti-tumor CTLs (173)
BCL6 High • Memory T cell differentiation

• CD8+ T cells proliferation
• Enhancement of IFNg production in CD8+ T cells

(174, 175)

FOXP3 Low • Immunosuppressive Treg-specific biomarker
• HO-1 upregulation
• Impairment of T cell proliferation

(176, 177)

Cytotoxic factors IFNG High • Inhibition of glioma growth
• Restriction of glioma neovascularization
• Induction of apoptosis
• Promotion of tumor immunogenicity

(178)

CST7 Low • Inhibition of granzymes activators including the major pro-granzyme convertases,
cathepsins C and H

• Impairment of T cell cytotoxicity

(179)

KLRD1/
CD94

Low • Immunosuppression through upregulation of TGF-b (180)

KLRG1 Low • Impairment of T cell proliferation
• Impairment of effector cytokines production
• Immunosuppression
• Enhancement of proinflammatory cytokines production

(181, 182)

GZMH High • Induction of apoptosis (183)
PTPN6 Low • Negative regulation of TCR signaling (184)

Checkpoint markers CTLA-4 Low • Negative regulation of T cell activation
• Disruption of the co-stimulatory signaling and function

(185)

XAF1 High • Positive regulation of IFN-induced apoptosis
• Promotion of p53-mediated apoptosis
• Promotion of caspase-mediated apoptosis

(186, 187)

Homing markers CCL5 Low • Promotion of glioma growth
• Enhancement of cancer motility
• Attraction of anti-inflammatory, pro-tumor effector cells

(188, 189)

ITGAL/
CD11a

High • Initiation of immunological synapse between CTL and tumor (190)(191)(192)
(193)
April 2022 | Volume 12
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EOMES, Eomesodermin; FOXP3, Forkhead box P3; GZMB, Granzyme B; IFNG, Interferon gamma; ITGAL, Integrin Subunit Alpha L; KLRD, Killer Cell Lectin Like Receptor D1; PTPN6,
Protein tyrosine phosphatase non-receptor type 6; XAF, XIAP Associated Factor 1.
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