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Review

The Basolateral Amygdala c-Aminobutyric
Acidergic System in Health and Disease

Eric M. Prager,1 Hadley C. Bergstrom,2 Gary H. Wynn,3,4,5 and
Maria F.M. Braga1,3,4,5*
1Department of Anatomy, Physiology, and Genetics, F. Edward H�ebert School of Medicine,
Uniformed Services, University of the Health Sciences, Bethesda, Maryland
2Psychology Department, Vassar College, Poughkeepsie, New York
3Center for the Study of Traumatic Stress, F. Edward H�ebert School of Medicine,
Uniformed Services University of the Health Sciences, Bethesda, Maryland
4Department of Psychiatry, F. Edward H�ebert School of Medicine, Uniformed Services
University of the Health Sciences, Bethesda, Maryland
5Program in Neuroscience, F. Edward H�ebert School of Medicine, Uniformed Services
University of the Health Sciences, Bethesda, Maryland

The brain comprises an excitatory/inhibitory neuronal net-
work that maintains a finely tuned balance of activity critical
for normal functioning. Excitatory activity in the basolateral
amygdala (BLA), a brain region that plays a central role in
emotion and motivational processing, is tightly regulated
by a relatively small population of g-aminobutyric acid
(GABA) inhibitory neurons. Disruption in GABAergic inhibi-
tion in the BLA can occur when there is a loss of local
GABAergic interneurons, an alteration in GABAA receptor
activation, or a dysregulation of mechanisms that modulate
BLA GABAergic inhibition. Disruptions in GABAergic
control of the BLA emerge during development, in aging
populations, or after trauma, ultimately resulting in hyperex-
citability. BLA hyperexcitability manifests behaviorally as an
increase in anxiety, emotional dysregulation, or develop-
ment of seizure activity. This Review discusses the anat-
omy, development, and physiology of the GABAergic
system in the BLA and circuits that modulate GABAergic
inhibition, including the dopaminergic, serotonergic, norad-
renergic, and cholinergic systems. We highlight how altera-
tions in various neurotransmitter receptors, including the
acid-sensing ion channel 1a, cannabinoid receptor 1, and
glutamate receptor subtypes, expressed on BLA interneur-
ons, modulate GABAergic transmission and how defects of
these systems affect inhibitory tonus within the BLA.
Finally, we discuss alterations in the BLA GABAergic sys-
tem in neurodevelopmental (autism/fragile X syndrome)
and neurodegenerative (Alzheimer’s disease) diseases and
after the development of epilepsy, anxiety, and trau-
matic brain injury. A more complete understanding of
the intrinsic excitatory/inhibitory circuit balance of
the amygdala and how imbalances in inhibitory control
contribute to excessive BLA excitability will guide
the development of novel therapeutic approaches in
neuropsychiatric diseases. VC 2015 Wiley Periodicals, Inc.

Key words: basolateral amygdala; GABA; autism; Alzhei-
mer’s disease; anxiety; epilepsy

The brain comprises a highly complex network of
excitatory and inhibitory circuits that maintains exquisite
balance in network activity. Hyperexcitability arises when
there is an imbalance between excitation and inhibition
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(E/I), often as a result of deficiencies or disruption in
g-aminobutyric acid (GABA) inhibitory system control.
Hyperexcitability of the amygdala, in particular, can be
strongly associated with anxiety, hypervigilance, and an
inability to regulate emotions. Acquired deficiencies in
the GABAergic inhibitory system have been observed after
traumatic brain injury (TBI; Reger et al., 2012; Almeida-
Suhett et al., 2014; Depue et al., 2014; Guerriero et al.,
2015) and status epilepticus (SE; Gean et al., 1989; Fritsch
et al., 2009; Prager et al., 2014b). In addition, amygdala
hyperexcitability resulting in anxiety has been observed in
neuropsychiatric disorders, such as posttraumatic stress dis-
order (PTSD; Nuss, 2015; Truitt et al., 2009), as well as in
neurodevelopmental disorders, including autism/fragile
X syndrome (Olmos-Serrano et al., 2010; El-Ansary and
Al-Ayadhi, 2014; Martin et al., 2014), and in neurodege-
nerative disorders, such as Alzheimer’s disease (AD; Klein
et al., 2014; Palop and Mucke, 2010).

Hyperexcitability of the basolateral nucleus of the
amygdala (BLA) is associated with increased anxiety and
often occurs in parallel with various neurodevelopmental,
neurodegenerative, and neuropsychiatric disorders. The
GABAergic inhibitory system is one target of therapeutic
treatments to reduce anxiety and maintain homeostasis. For
example, benzodiazepines, which allosterically enhance post-
synaptic actions of GABA at the inhibitory type A GABA
receptor (GABAA receptor), are one first-line treatment for
anxiety (Farb and Ratner, 2014) and seizure disorders.
However, in many cases, benzodiazepines are ineffective
and/or exacerbate symptoms, as has been observed in seizure
models when, for example, administration of diazepam ini-
tially suppresses seizures but leads to rebound seizures that
are similar to or longer in duration than those of animals
that do not receive the anticonvulsant (Apland et al., 2014).
Thus, the efficacy of current treatments targeting the
GABAergic system has been called into question, and new
therapeutic targets merit preclinical investigation.

This Review discusses the BLA GABAergic system
in health and disease, focusing on five diseases, autism/
fragile X, AD, epilepsy, TBI, and anxiety and trauma- or
stressor-related disorders (such as PTSD) because these
disorders are prime examples of acquired amygdala dys-
functions that occur during development, during aging,
or after injury. First, we review the anatomy and develop-
ment of the GABAergic system in the BLA and the differ-
ent ways in which GABAergic inhibitory synaptic
transmission is modulated. Second, we review how local
GABAergic inhibitory neurotransmission in the BLA is
altered in disease. Through the study of how deficiencies
in the GABAergic inhibitory system in the amygdala con-
tribute to disease outcomes, future research may be
directed at developing new therapies to reduce excitabil-
ity or to increase inhibition.

THE GABAERGIC SYSTEM IN THE BLA

GABAergic Interneurons

The amygdala is located in the medial temporal lobe
and is made up of 13 subnuclei (for a comprehensive

review of the anatomical connections of the rat and human
amygdala see Pitkanen, 2000; Sah et al., 2003; Whalen and
Phelps, 2009). The BLA makes up a large component of
this network, receiving input from cortical and subcortical
structures. The BLA, which generally comprises the lateral
and basal portions, contains two main types of neurons,
glutamatergic (pyramidal) principal neurons and GABAer-
gic interneurons (McDonald, 1992; Pare and Smith, 1998).
Principal neurons constitute the majority of the neurons in
the BLA (80–85%), whereas GABAergic interneurons
form �15–20% of the neuronal population (Sah et al.,
2003; Spampanato et al., 2011). GABAergic interneurons
can be subdivided into those that express calbindin (CB) or
calretinin (CR) and can be further subdivided into groups
by neuropeptide expression (i.e., vasoactive intestinal pep-
tide [VIP] and/or cholecystokinin [CCK]) or by the
expression of the calcium-binding protein parvalbumin
(PV; Kemppainen and Pitkanen, 2000; McDonald and
Mascagni, 2001a, 2002; Mascagni and McDonald, 2003;
Davila et al., 2008; Table I). PV-immunopositive neurons
make up about 40% of GABAergic interneurons and are
the main source of the perisomatic innervation of principal
cells, suggesting that their primary role is in feedback
inhibition. CR interneurons make up about 25–30% of
BLA GABAergic interneurons and innervate primarily
other interneurons (McDonald and Mascagni, 2001a; Mul-
ler et al., 2003, 2006; Capogna, 2014).

GABAA Receptor Structure and Function

GABAergic inhibitory synaptic transmission plays a
central role in the regulation of amygdala excitability.
Pathological disruption of GABAA receptors causes a dis-
ruption of the E/I balance and has been increasingly
implicated in neurological and neurodegenerative diseases
(Deidda et al., 2014). Fast inhibitory synaptic transmission
within the central nervous system is mediated by the
GABAA receptor, a heteropentameric chloride-
permeable, GABA-gated member of the cys-loop super-
family of ligand-gated ion channels. GABAA receptors are
formed from limited combinations of subunits that have
diverse structural and functional properties (a1–6, ß1–3,
g1–3, d, E, u, and p; Olsen and Sieghart, 2009).

Proper maturation of the GABAergic system in the
BLA is essential in neurodevelopment. Dysfunction in the
development of the GABAergic inhibitory system within
the BLA may be associated with neurodevelopmental dis-
eases, such as autism or fragile X. In rat, the development
of the mature GABAergic system in the BLA takes place
between postnatal day (P) 14 and P30 with the emergence
of PV interneurons (Berdel and Morys, 2000; Davila
et al., 2008), an increase in the density of GABAergic
fibers, and a decrease in the density of GABAergic cell
bodies (Brummelte et al., 2007). Concurrently, GABAA

receptor-mediated inhibitory postsynaptic currents
(IPSCs) reach maturity between P21 and P28. Simultane-
ously, the reversal potential of GABAA receptors
expressed in principal neurons shifts from –55 mV at P7
to –70 mV by P21. This increase in hyperpolarization
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may be due, in part, to a switch from a greater expression
of sodium-potassium-chloride cotransporter 1, which
accumulates intracellular chloride and renders GABAA

receptors excitatory, or to an increase in the potassium-
chloride cotransporter 2, which extrudes chloride from
the cell, rendering GABAA receptors inhibitory (Ben-Ari
et al., 2012; Ehrlich et al., 2013). In addition, a decrease
in rise-time and decay-time constant occurs because of a
change in the GABAA receptor subunit composition
(from primarily the a2 subunit to the a1 subunit; Ehrlich
et al., 2013). This shift results in a GABAergic shunt that
limits the extent of BLA activation (see below; Rainnie
et al., 1991b).

The composition of GABAA receptors has been
found to be quite diverse because their subunit assembly
makes their roles significantly different, depending on the
timing of activation and subcellular localization (Pouille
and Scanziani, 2001; Marowsky et al., 2004). The BLA of
mature animals contains a1 and a2 subunits of the
GABAA receptor; a1 subunit-containing GABAA recep-
tors are expressed primarily at the somal level of PV
GABAergic interneurons but also exhibit coimmunoreac-
tivity with the ß2/3 subunits (McDonald and Mascagni,
2004). Alternatively, GABAA receptors on principal neu-

rons contain primarily the a2 subunit, which is predomi-
nantly responsible for the benzodiazepine allosteric
potentiation of inhibitory currents (Marowsky et al.,
2004). In addition, principal neurons in the BLA contain
g2 subunits, which likely contribute to the formation of
a2ßxg2 pentameric GABAA receptors, which contribute
to fast inhibitory synaptic transmission (Esmaeili et al.,
2009). Extrasynaptically, the GABAA receptor in the BLA
is made up primarily of the a3 subunit, which strongly
mediates tonic GABAergic currents (Marowsky et al.,
2012). However, the a5 subunit, which is diazepam sen-
sitive and shapes the decay phase of the inhibitory postsy-
naptic currents (Marowsky et al., 2004), and the d
subunit, both of which are hallmark subunits that contrib-
ute to tonic inhibition (Farrant and Nusser, 2005), are
also expressed in the BLA, though not as strongly as the
a3 subunit (Marowsky et al., 2012).

Temporal Dynamics and Intra-Amygdala
Regulation of Excitatory Activity

GABAergic interneurons can be differentiated by
their firing properties. PV interneurons fire primarily
short duration, nonadapting action potentials (Rainnie
et al., 2006; Woodruff and Sah, 2007b), whereas CB-

TABLE I. Summary of Systems Modulating BLA GABAergic Inhibition*

Immunohistochemistry

General Specific Firing patterns

Innervation of GABAergic

interneurons

Receptor subtypes and roles in

modulating GABAergic

transmission

CB PV Fast spiking, stuttering,

nonadapting, adapting

�50% Cortical,< 1% thalamic

to CB interneurons, VTA, SN,

DRN, SI, VP of basal forebrain

(cholinergic and GABAergic)

D1, " firing, induces rhythmic

oscillations; D2, # presynaptic

GABA release; 5-HT2A, "
excitability; GABAB, #
excitability

CCK (VIP–) Nonadapting, burst adapting 5-HT3A, " excitability but rapidly

desensitizing; a1 AR and a2

AR, " AP firing and IPSCs;

CB1, # excitability; GABAB, #
excitability

SOM/NPY/NK1r DRN 5-HT1A (NPY, NK1r), # presyn-

aptic GABA release; 5-HT2C

(NPY), " excitability; a1 AR

and a2 AR, " AP firing and

IPSCs; GABAB, # excitability

CR CCK (VIP1) Adapting VTA and SN

(<PV interneurons)

5-HT3A, " excitability but rapidly

desensitizing; a1 AR and a2

AR, " AP firing and IPSCs;

GABAB, # excitability

Not localized to specific GABAergic interneuronal subpopulations LC, NTS M1 mAChR, " excitability; M2

mAChR, # excitability; a7 and

a4ß2 nAChR, " excitability;

ASIC1A, " excitability; AMPA

lacking GluR2 and NMDA, "
excitability; GluK1,

" presynaptic GABA release

(dose dependent)

*Note that no study has differentiated receptor localization to VIP1 orVIP–. Therefore, we have placed the receptor modulating VIP1 or VIP– in

each category. For citations see text.

550 Prager et al.

Journal of Neuroscience Research



expressing GABAergic interneurons fire broad action
potentials, display firing adaptation, and synapse primarily
with somata (Jasnow et al., 2009; see Table I). Other
interneurons expressing somatostatin (SOM), VIP, CR,
and CCK also target dendrites or somata (Mascagni and
McDonald, 2003; Muller et al., 2007a). Although
GABAergic interneurons constitute only a fraction of the
total neuronal population, they tightly regulate network
excitability and lead to a low resting firing rate of princi-
pal neurons (Pare and Gaudreau, 1996; Lang and Pare,
1997; Woodruff and Sah, 2007a).

The regulation of excitatory activity by local
GABAergic interneurons is influenced by the firing prop-
erties (Rainnie et al., 1991b; Lang and Pare, 1997). Most
BLA GABAergic interneurons fire short-duration action
potentials with small spike frequency adaptation in
response to prolonged depolarization, although specific
subpopulations of GABAergic interneurons have different
firing patterns (see Table I). Principal neurons, by com-
parison, show spike frequency adaptation and prolonged
afterhyperpolarization in response to prolonged depolariz-
ing currents (Rainnie et al., 1991a,b; Pare et al., 1995;
Sah et al., 2003). The axonal morphology of BLA
GABAergic interneurons also allows for tight inhibitory
control over principal neurons. GABAergic interneuron
axons branch, on average, two to six times, forming rela-
tively dense terminal and collateral fields with principal
neurons (Millhouse and DeOlmos, 1983; Smith et al.,
1998). BLA GABAergic projections participate in either
feedback inhibition or transient disinhibition of principal
neurons. Indeed, PV interneurons receiving strong excita-
tory local inputs from BLA projection neurons appear to
be involved in feedback inhibition (Smith et al., 2000;
Unal et al., 2014), whereas intercalated interneurons,
which have recently been found to project to the BLA
(Manko et al., 2011), appear to target PV- and CB-
immunoreactive GABAergic interneurons and are likely to
disinhibit principal cells transiently (Bienvenu et al., 2015).

The regulation of the firing rate by GABAergic
interneurons controls the flow of information from the
BLA, and evidence indicates that local inhibitory circuits
in the amygdala mediate its functioning. Activation of the
GABAergic system appears to play a central role in the
synchronization of spiking activity. This synchronization
can coordinate and enhance the effects of input signals,
which precisely allows the activation of glutamatergic
activity to drive behavioral responses (Courtin et al.,
2014; Herry and Johansen, 2014). For example, the initia-
tion and expression of fear requires synchronization of
amygdala activity, among other regions (Stujenske et al.,
2014). Ongoing research has revealed that the u and the
faster g oscillations may be fundamental to circuits under-
lying sensory processing and cognitive functions and that
changes in emotional states may be mediated by altera-
tions in BLA g coupling to u frequency inputs (Fries,
2009; Stujenske et al., 2014). The activity of PV inter-
neurons has been implicated in u synchrony within the
medial prefrontal cortex (PFC; Courtin et al., 2014)
because suppression of PV interneuronal activity in the

PFC is necessary to disinhibit prefrontal projection neu-
rons to the BLA, thereby synchronizing their firing by
resetting local u oscillations. Although this work has not
yet been confirmed in the amygdala it has been hypothe-
sized that inhibiting PV interneurons in the BLA might
also synchronize activity and enhance fear responses (Stu-
jenske et al., 2014).

MODULATION OF GABAA RECEPTOR-
MEDIATED INHIBITORY SYNAPTIC TRANS-

MISSION IN THE BLA

GABAergic inhibition in the BLA is modulated by affer-
ents from both cortical and subcortical brain regions (Fig.
1A). In most cases, afferents from these regions project to
both principal neurons and GABAergic interneurons. In
some cases, it has been determined that projections are
directed to particular subpopulations of neurons. This sec-
tion reviews the afferent projections that modulate and
facilitate GABAergic inhibitory synaptic transmission in
the BLA. More specifically, we discuss how activation of
different receptor types modulates the release of GABA
from the presynaptic terminal or alters the excitation of
GABAergic interneurons (Fig. 1B).

Cortical and Thalamic Regulation of BLA
GABAergic Interneurons

The BLA receives extensive cortical and thalamic
projections, which synapse onto both principal neurons
and GABAergic interneurons. Stimulating afferents from
either the cortical or the thalamic pathways have been
found to monosynaptically activate BLA and lateral amyg-
dala (LA) GABAergic interneurons, primarily in a feed-
forward manner (Rainnie et al., 1991b; Washburn and
Moises, 1992; Lang and Pare, 1998; Szinyei et al., 2000).
Recent studies have identified to which type of inter-
neuron cortical and thalamic inputs project. Unal and col-
leagues (2014) found that BLA interneurons expressing
CB receive about half of the cortical inputs to local-
circuit cells of the BLA and constitute a major source of
feedforward inhibition, whereas thalamic inputs form less
than 1% of synapses on interneurons (Carlsen and
Heimer, 1988; LeDoux et al., 1991). There appears to be
a possible discrepancy in the regulation of GABAergic
interneurons in the LA vs. the BLA. Cortical inputs to
the BLA regulate primarily CB-expressing interneurons,
whereas GABAergic interneurons in the LA respond
equally to both cortical and thalamic pathways (Szinyei
et al., 2000; Unal et al., 2014).

Dopaminergic Afferents

The BLA receives dense dopaminergic innervation
from the ventral tegmental area (VTA) and the substantia
nigra (SN; Fallon and Ciofi, 1992; Asan, 1997). VTA and
SN projections synapse on BLA principal (projection) neu-
rons and PV- and CR-immunopositive GABAergic inter-
neurons (Brinley-Reed and McDonald, 1999; Pinard et al.,
2008). However, compared with CR-immunopositive
interneurons, PV interneurons appear to be the preferential

BLA GABAergic System in Health and Disease 551

Journal of Neuroscience Research



Fig. 1.



target of dopaminergic synapses in the BLA (Pinard et al.,
2008). By projecting to principal neurons and GABAergic
interneurons, dopamine (DA) influences the activity of
both excitatory and inhibitory cell types within the BLA
(Rosenkranz and Grace, 1999; Kroner et al., 2005). Via
activation of D1 receptors, DA increases excitability and
evoked firing of principal neurons by reducing slowly inac-
tivating K1 currents, whereas activation of D2 receptors
increases input resistance. Moreover, D1 receptor activa-
tion increases evoked firing in fast-spiking BLA interneur-
ons and the frequency of spontaneous IPSCs (sIPSCs;
Kroner et al., 2005). Activation of DA receptors has also
been found to induce rhythmic inhibitory oscillations (Lor-
etan et al., 2004; Ohshiro et al., 2011), although increases
in excitatory transmission are required to precede
GABAergic interneuronal burst firing (Ohshiro et al.,
2011). Although DA fibers synapse onto both GABAergic
interneurons and principal neurons, there appears to be a
net increase in excitatory activity within the BLA in
response to DA application. This increase in excitatory
activity may be the result of 1) reduced activation of
GABAergic interneurons, which occurs when activation of
D2 receptors on GABAergic interneurons causes a reduc-
tion in the probability of presynaptic quantal release (Sea-
mans et al., 2001); 2) amygdala disinhibition and the
subsequent increase in excitatory activity, which may occur
when DA suppresses GABA release from PV interneurons
onto principal neurons but not interneurons (Chu et al.,
2012); or 3) DA increasing the excitatory drive onto disin-
hibitory interneurons, which would subsequently increase
excitatory activity (Kemppainen and Pitkanen, 2000; Bis-
siere et al., 2003).

Serotonergic Afferents

Serotonergic projections originating from the dorsal
raph�e nucleus (DRN) innervate primarily BLA principal
neurons, PV interneurons, and interneurons containing
neuropeptide Y (NPY), a subgroup of CB and SOM inter-
neurons (Ma et al., 1991; Muller et al., 2007b). Postsynap-
tically, serotonin (5-HT) neurotransmission leads to the

activation of 5-HT receptors, which are grouped into
seven families (5-HT1–7). 5-HT1A receptors, which are
Gi/o protein coupled, have been localized to principal
neurons (Stein et al., 2000) and the presynaptic terminal of
GABAergic interneurons within the BLA (Kishimoto
et al., 2000). 5-HT1A receptor activation inhibits the dis-
charge rate of principal neurons by inducing hyperpolariza-
tion and reduces GABA release from presynaptic terminals
by activating potassium channels (Kishimoto et al., 2000;
Stein et al., 2000). Alternatively, 5-HT2 receptors, and
more specifically the 5-HT2A and the 5-HT2C receptors,
are Gq/11-coupled membrane receptors that increase intra-
cellular Ca21 levels and increase interneuronal excitability
(Jiang et al., 2009; Bonn et al., 2012). The 5-HT3A recep-
tor is a ligand-gated sodium, potassium, and calcium chan-
nel that also increases interneuronal excitability but leads to
a rapidly desensitizing depolarization (Rainnie, 1999; Mas-
cagni and McDonald, 2007; Gharedaghi et al., 2014).

Although all 5-HT receptors have been documented
in the amygdala, most (�65–70%) GABA-immunoreactive
neurons in the BLA exhibit 5-HT2A immunoreactivity;
fewer 5-HT2A receptors are present on principal neurons
(Bombardi, 2011). 5-HT2A and 5-HT3A receptors have
been localized to specific interneuronal types in the BLA.
5-HT2A receptors are found primarily on PV interneurons
within the BLA (McDonald and Mascagni, 2007; Bom-
bardi, 2011) and tightly control glutamatergic output by
perisomatic inhibition (Muller et al., 2005; Holmes, 2008),
whereas 5-HT3A receptors are expressed primarily on the
CCK interneuronal subpopulation (Mascagni and McDo-
nald, 2007), which constitutes only a small proportion of
GABAergic interneurons in the BLA (Mascagni and
McDonald, 2003). In contrast, 5-HT1A, which is expressed
in low to moderate concentrations in the BLA (Asan et al.,
2013), coexpresses with �50% of NPY interneurons
(Bonn et al., 2013) and about one-third of neurokinin-1
receptor (NK1r) interneurons (Hafizi et al., 2012), whereas
�30–40% of NPY interneurons express the excitatory
5-HT2C receptor subtype (Bonn et al., 2012, 2013).
5-HT1A and 5-HT3 receptors have been localized on

Fig. 1. Modulation of GABAergic inhibitory synaptic transmission in
the BLA. A: Schematic representation of GABAergic projections from
the PFC and glutamatergic projections from the thalamus. In addition,
GABAergic interneurons in the BLA receive cholinergic projections
from the SI and the VP, dopaminergic projections from the VTA and
the SN, noradrenergic projections from the LC and the NTS, and sero-
tonergic projections from the DRN. B: Schematic representation of
receptors modulating GABAergic inhibitory synaptic transmission in the
BLA. Postsynaptic M2 mAChRs (1A) and GABAB receptors (2A)
hyperpolarize GABAergic interneurons by reducing voltage-gated Ca21

channels and increasing K1 channel conductance. M1 mAChRs (1B)
increase excitability (though primarily expressed on principal neurons)
by suppressing several K1 currents and increasing voltage-gated Ca21

conductance. Activation of presynaptic GABAB receptors (2B) inhibits
neurotransmitter release on both excitatory and inhibitory synapses by
inhibiting voltage-gated Ca21 channels and, possibly, by interacting
with vesicular release machinery. Activation of postsynaptic NMDARs
or AMPARs (3A) on interneurons increases excitability. Activation of

GluK1-containing kainate receptors (3B) depolarizes interneurons by
increasing the presynaptic release of GABA or increasing excitability via
activation of postsynaptic GluK1 receptors. Activation of a7 nAChRs
and/or a4ß2 nAChRs (4) presynaptically modulates GABA release or
regulates neuronal activity by the position on interneurons. Dopaminer-
gic projections (5A) activate postsynaptic D1 receptors, which increases
excitability by reducing slowly inactivating K1 currents, whereas D2
receptors (5B) reduce presynaptic release of GABA. Activation of
ASIC1A receptors (6) increases interneuronal excitability. Postsynapti-
cally, activation of 5-HT2 (7A) and 5-HT3A (7B) receptors increases
interneuronal excitability via an increase in intracellular Ca21 concentra-
tions or increasing the interneuronal excitability, respectively. Activation
of presynaptic 5-HT1A receptors (7C) reduces quantal release and
increases hyperpolarization. Activation of a1 and a2 receptors (8) depo-
larize interneurons, subsequently increasing action potential firing and
enhancing inhibitory synaptic transmission. Activation of CB1 receptors
(9) on CCK interneurons reduces presynaptic release by inhibiting
voltage-gated Ca21 channels and activating voltage-gated K1 channels.

BLA GABAergic System in Health and Disease 553

Journal of Neuroscience Research



GABAergic nerve terminals in the BLA (Koyama et al.,
1999, 2000), where activation of these receptors inhibits or
facilitates miniature IPSC (mIPSC) frequency without
effects on mIPSC amplitude, respectively (Koyama et al.,
2002).

Noradrenergic Afferents

The BLA receives extensive noradrenergic (NA;
norepinephrine) innervation from the locus coeruleus
(LC) and nucleus of the solitary tract (NTS; Pitkanen,
2000; Williams et al., 2000), which synapse onto
GABAergic interneurons (Li et al., 2002). NA released
from LC terminals activates three distinct classes of adre-
noreceptors (AR; a1, a2, and ß AR) that have multiple
subtypes and appear to be more potent modulators of
GABAergic inhibitory synaptic transmission than DA
(Miyajima et al., 2010). Although no study has yet ana-
tomically identified the type of interneuron to which the
receptor subunits are localized in the BLA, electrophysio-
logical evidence indicates that a1 and a2 AR activation
depolarizes SOM- and CCK-positive interneurons,
resulting in action potential firing and enhanced inhibi-
tory synaptic transmission (Braga et al., 2004b; Buffalari
and Grace, 2007; Kaneko et al., 2008). In addition to
direct enhancement of inhibitory activity by LC afferents,
NA enhancement of inhibitory activity in the BLA occurs
indirectly. Indeed, activation of ß1 and ß3 ARs in lateral
paracapsular (LPCS) interneurons, which are a distinct
class of GABAergic interneurons bordering the BLA and
external capsule and are thought to provide cortical feed-
forward inhibition to the BLA (Marowsky et al., 2005),
enhances LPCS GABAergic inhibition of the BLA
(Silberman et al., 2010, 2012).

Cholinergic Afferents

The BLA is extensively innervated by fibers from
the substantia innominata (SI; nucleus basalis magnocellu-
laris) and ventral pallidum (VP) of the basal forebrain
(Emson et al., 1979; Woolf et al., 1984; Carlsen et al.,
1985; Zaborszky et al., 1986). The extensive innervation
leads to some of the highest levels of choline acetyltrans-
ferase, the synthesizing enzyme for acetylcholine (ACh),
and acetylcholinesterase (AChE), the hydrolyzing enzyme
for ACh, in the BLA compared with other brain regions
(Ben-Ari et al., 1977; Prager et al., 2013). The basal fore-
brain projects both cholinergic and noncholinergic neu-
rons to the BLA. Recent evidence indicates that �10–
15% of basal forebrain neurons projecting to the BLA are
PV-immunopositive GABAergic interneurons (Mascagni
and McDonald, 2009), which target primarily PV inter-
neurons in the BLA but also target principal neurons
(McDonald et al., 2011). In comparison, �75–80% of the
basal forebrain projection neurons are cholinergic (Carl-
sen et al., 1985; Zaborszky et al., 1986; Mascagni and
McDonald, 2009), project primarily to dendritic shafts
and spines of BLA principal neurons, and innervate PV
GABAergic interneurons to a small extent (�7% of post-
synaptic targets; Muller et al., 2011).

Stimulation of afferents from basal forebrain cholin-
ergic neurons leads to the release of ACh, which exten-
sively regulates neuronal excitability by acting on
muscarinic (mAChR) and nicotinic (nAChR) acetylcho-
line receptors, both of which are abundant in the BLA
(Mash and Potter, 1986; Swanson et al., 1987; Hill et al.,
1993; Zhu et al., 2005; Pidoplichko et al., 2013).
mAChRs are G-protein-coupled receptors that have five
subtypes, designated M1–5. M1, M3, and M5 receptors
couple preferentially to Gq/11 proteins, which subse-
quently initiate signaling cascades that mobilize intracellu-
lar Ca21, whereas M2 and M4 receptors couple to Gi/o

proteins, which subsequently hyperpolarize neurons or
inhibit neurotransmitter release (for review see Alger et al.,
2014). Although the BLA expresses M1–M4 mAChRs
(Mash and Potter, 1986; Cortes et al., 1987; McDonald
and Mascagni, 2010), M1 mAChR appears to be the pre-
dominant mAChR subtype in the amygdala. M1 mAChRs
are localized primarily to principal neurons and appear to
increase excitability of BLA principal cells resulting from
the suppression of several potassium currents, whereas M1
immunoreactivity has been observed at low levels on
GABAergic interneurons (McDonald and Mascagni, 2010;
Muller et al., 2013). In contrast, M2 mAChRs are
expressed on interneurons within the BLA and lead pre-
dominantly to hyperpolarization of GABAergic interneur-
ons (McDonald and Mascagni, 2011).

In the brain, nAChRs are ligand-gated ion channels
permeable to cations, including Ca21, that produce mem-
brane depolarization and postsynaptic excitation or stimu-
lation of neurotransmitter release (Dani and Bertrand,
2007). nAChRs comprise nine different subunits (a2–7

and ß2–4) that combine as either homomeric or hetero-
meric pentameric receptors (Dani and Bertrand, 2007;
Yakel, 2013). The homomeric a7 and the heteromeric
a4ß2 are the two major subtypes of nAChRs found in the
mammalian brain (Gotti et al., 2009); they have previ-
ously been found to be expressed in the BLA (Hill et al.,
1993; Seguela et al., 1993) and appear to regulate neuro-
nal excitability by presynaptically modulating neurotrans-
mitter release or directly regulating neuronal activity by
their position on somatodendritic sites of interneurons or
principal neurons (Klein and Yakel, 2006; Pidoplichko
et al., 2013). In addition, a3ß4 nAChRs are also present
on GABAergic interneurons and enhance GABAergic
inhibitory synaptic transmission (Zhu et al., 2005).

The functional activity and subsequent modulation
of either inhibition or excitation by mAChRs and
nAChRs in the BLA appear to diverge from anatomical
evidence. Indeed, although a7 nAChRs are present on
GABAergic interneurons and principal neurons and
enhance both excitatory and inhibitory synaptic transmis-
sion, their activation powerfully modulates GABAergic
inhibition, resulting in a net reduction in BLA excitability
(Pidoplichko et al., 2013). Moreover, optogenetic activa-
tion of basal forebrain inputs to the BLA during periods of
neuronal quiescence does not trigger excitatory responses;
rather, muscarinic activation increases the inhibitory
response, which may be a result of the contrasting
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spatiotemporal profile of cholinergic receptor activation
(Unal et al., 2015). Light-induced activation of basal fore-
brain inputs transiently silences cells, which is followed by
a longer-duration inhibitory postsynaptic potential (IPSP;
Unal et al., 2015). This suggests that the early IPSP is due
to activation of nicotinic receptors and, from the results of
Pidoplichko and colleagues (2013), presumptively a7

nAChR activation, although the subunit configuration
was not tested by Unal and colleagues (2015). In contrast,
the late IPSP was mediated by M1 and not by M2
mAChR activation. It is important to emphasize that this
inhibitory effect occurred only in quiescent principal neu-
rons. During periods of strong activation, mAChR inhibi-
tion appeared to be overwhelmed, and M1-mediated
excitation predominated (Unal et al., 2015).

Glutamate Receptors

GABAergic interneuronal excitability in the BLA is
regulated, in part, by principal neurons within the BLA.
Glutamatergic inputs make dual-component synapses
with both fast a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) and slower
N-methyl-D-aspartate receptors (NMDARs), which are
present on the postsynaptic membrane of interneurons
and principal neurons (McDonald, 1992; Mahanty and
Sah, 1998; Smith et al., 1998; Weisskopf and LeDoux,
1999; Sah et al., 2003). Glutamatergic inputs to interneur-
ons express AMPARs that have rapid kinetics and strong
inward rectification, indicating calcium permeability and
a lack of the GluA2 subunit (Mahanty and Sah, 1998;
Polepalli et al., 2010). Interneurons also express a hetero-
geneous population of NMDARs. These cells can be sep-
arated into groups that lack NR2B NMDAR subunits
(Mahanty and Sah, 1998; Polepalli et al., 2010), express
NMDARs that contain mostly NR2B subunits, and have
fast decay kinetics (Williams, 1993; Polepalli et al., 2010)
or express NMDARs that have slow kinetics and contain
mostly GluN1/GluN2B heterodimers (Szinyei et al.,
2003; Polepalli et al., 2010; Spampanato et al., 2011).

The heterogeneity of the subunits of AMPARs and
NMDARs within specific populations of interneurons is
essential for the regulation of feedforward inhibition to
principal cells. Polepalli and colleagues (2010) demon-
strated, for example, that long-term potentiation to inter-
neurons is restricted to interneurons that contain GluR2-
lacking AMPAR at the postsynaptic membrane. Only
these neurons provided feedforward inhibition to princi-
pal cells, and, although this has not been specifically tested,
it is likely that the CB-immunopositive interneurons are
the subpopulation of interneurons that provides the feed-
forward inhibition to principal cells (Unal et al., 2014).

In addition to AMPARs and NMDARs, kainate
receptors represent a distinct class of ionotropic glutamate
receptors that are preferentially activated by kainic acid.
Kainate receptors consist of five different subunits,
GluK1–3 and KA1–2 (Chittajallu et al., 1999). GluK1–3

subunits form functional homomeric and heteromeric
channels, whereas the KA subunits generate only func-

tional receptors with distinct physiological properties
when combined with the GluK1–3 subunits (Herb et al.,
1992; Schiffer et al., 1997). Although kainate receptors
are not widely distributed in the brain, the BLA has a
markedly high expression of GluK1R subunit (Braga
et al., 2003). Kainate receptors, and in particular the
GluK1 subunit-containing kainate receptor, have been
found to enhance excitatory synaptic transmission in the
BLA (Li and Rogawski, 1998) by modulating pre- and
postsynaptic release of glutamate (Jiang et al., 2001; Braga
et al., 2004a). Moreover, presynaptic GluK1-containing
kainate receptors have also been found to modulate
GABA release in the BLA in a bidirectional manner. At
low concentrations, activation of high-affinity GluK1-
containing kainate receptors depolarizes both principal
neurons and GABAergic interneurons, which leads to a
substantial increase in GABA release. However, high con-
centrations of agonists activate low-affinity presynaptic
GluK1-containing kainate receptors, which again depolar-
ize both GABAergic interneurons and principal neurons
but suppress evoked GABA release, leading to an
enhancement in BLA network excitability (Braga et al.,
2003; Aroniadou-Anderjaska et al., 2007, 2012).

GABAB Receptors

The late or slow component of inhibitory synaptic
transmission is mediated by activation of GABAB recep-
tors, which comprise the GABAB1 and GABAB2 subunits
(Craig and McBain, 2014). Both GABAB1 and GABAB2

mRNA are expressed in the BLA (Bischoff et al., 1999;
Durkin et al., 1999; Clark et al., 2000). Postsynaptically,
the Gi/o-protein-coupled GABAB receptors (primarily the
GABAB1B isoform) mediate hyperpolarization of postsy-
naptic membranes by inhibiting voltage-gated Ca21 acti-
vation and activating inwardly rectifying potassium
channels (Rainnie et al., 1991b; Sugita et al., 1993;
Couve et al., 2000). Presynaptic GABAB receptors, pri-
marily the GABAB1A isoform, on the other hand, have
been found to inhibit neurotransmitter release on both
excitatory and inhibitory synapses by inhibiting voltage-
gated Ca21 channels and, possibly, by interacting with
vesicular release machinery (Yamada et al., 1999; Szinyei
et al., 2000; Gassmann and Bettler, 2012).

Anatomically, GABAB1 receptors are found in many
amygdala nuclei. However, in the BLA, GABAB receptor
immunoreactivity is found primarily on GABAergic
interneurons; very few principal neuronal somata in the
BLA exhibit immunoreactivity for GABAB1 receptors
(McDonald et al., 2004). However, the light staining
found in the neuropil likely is due to the staining of den-
dritic shafts and spines belonging to pyramidal cells
(McDonald et al., 2004). Among the subpopulations of
GABAergic interneurons, GABAB1 receptor immunore-
activity is found primarily on large CCK1 neurons but is
also found to a lesser extent on small CCK1 interneurons.
In addition, GABAB1 receptor immunoreactivity is found
on the remaining subpopulations of GABAergic inter-
neurons in the BLA (e.g., SOM, PV, and VIP neurons;
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McDonald et al., 2004). More recently, GABAB1 immu-
noreactivity has been examined at the synapse in the LA.
Evidence indicates that GABAB1 receptors are localized
to the extrasynaptic terminal of both interneurons and
principal neurons. Although most receptors are found in
the sensory afferent terminals of principal neurons (Pan
et al., 2009), where they act to reduce glutamate release,
GABAB receptors are also present on inhibitory inputs to
principal neurons, where they act as autoreceptors (Szi-
nyei et al., 2000).

Alterations in the modulation of inhibitory and
excitatory synaptic transmission during development
might be due, in part, to the activation of GABAB recep-
tors, which are functionally expressed early in develop-
ment (Bosch and Ehrlich, 2015). Indeed, the GABAB

receptor, which mediates paired-pulse depression (PPD)
of sensory evoked IPSCs (Szinyei et al., 2000), is differen-
tially regulated during development; intra-BLA inhibitory
synapses show pronounced PPD in the first 2 weeks of
development, but this is reduced by the third week (Ehr-
lich et al., 2013). In other words, the contribution of
PPD by GABAB receptors may be due primarily to acti-
vation of GABAB receptors in infancy, whereas PPD in
older animals is only partially controlled by GABAB

receptors. Moreover, Bosch and Ehrlich (2015) found
that presynaptic GABAB receptors, which are present on
sensory inputs to LA principal neurons, are activated as
early as P8. Finally, tonic presynaptic control of IPSCs
and excitatory postsynaptic currents (EPSCs) in the LA
appears to be mediated by GABAB receptors and is likely
permitted by ambient GABA that also emerge in adoles-
cence (Bosch and Ehrlich, 2015).

Acid-Sensing Ion Channels

Acid-sensing ion channels (ASICs), in particular the
ASIC1a splice variant, are highly expressed in the BLA
(Waldmann et al., 1997; Biagini et al., 2001). ASICs are
heterotrimeric or homotrimeric proton-gated channels
activated by extracellular acidosis, intracellular pH, and
other factors (Wemmie et al., 2013). Until recently, the
precise role of ASIC1a activation in the BLA remained
unknown. ASIC1a was thought to promote hyperexcit-
ability because it was found to reduce fear and to have
antidepressant and anxiolytic effects (Coryell et al., 2007,
2009; Dwyer et al., 2009; Ziemann et al., 2009). Indeed,
electrophysiological evidence indicates that ASIC1a chan-
nels are present on principal neurons within the BLA and
are activated by ammonium or by lowering extracellular
pH, which increases glutamatergic activity (Pidoplichko
et al., 2014). However, ASIC1a is also found on
GABAergic interneurons within the BLA, and its activa-
tion increases GABAergic activity. The increase in
GABAA receptor-mediated inhibitory synaptic transmis-
sion seems to predominate, suppressing overall excitability
(Pidoplichko et al., 2014), which may be a result of the
intrinsic organization of the BLA. Much of the excitatory
input within the BLA is directed onto interneurons,T
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which subsequently project back onto principal cells
(Lang and Pare, 1997; Smith et al., 1998).

Cannabinoid Receptors

Cannabinoids exert their effects by the activation of
two known cannabinoid receptor subtypes, the cannabi-
noid type 1 (CB1) receptor and the cannabinoid type 2
receptor (CB2). The CB1 receptor, which is expressed
primarily presynaptically and is activated by retrograde
transmission of endogenous cannabinoids, is coupled to
Gi/o proteins. Activation of CB1 receptors decreases
excitability of the presynaptic terminal by closing calcium
(n and P/Q type) channels, increasing G-protein-coupled
inwardly rectifying potassium channels, and decreasing
cyclic adenosine monophosphate-dependent sodium con-
ductance (Pertwee, 1997; Schlicker and Kathmann,
2001). The CB2 receptor is also coupled to Gi/o proteins,
but its expression is restricted primarily to immunological
tissues peripherally, and is implicated in immunological
functions (Schatz et al., 1997).

CB1 receptors are widely distributed in the brain
but are present in relatively high concentrations in the
BLA and, in particular, are present on the presynaptic ter-
minal of CCK interneurons (Katona et al., 2001; McDo-
nald and Mascagni, 2001b), which densely innervate
principal neurons (McDonald and Pearson, 1989). Activa-
tion of the presynaptic CB1 receptors on CCK GABAer-
gic interneurons reduces the amplitude of sIPSCs but
does not affect mIPSCs (Katona et al., 2001) because CB1
receptors reduce GABA release via blockade of presynap-
tic N-type Ca21 channels (Wilson et al., 2001). Activa-
tion of CB1 receptors has also been found to reduce
excitatory synaptic transmission in the LA and decrease
basal synaptic transmission, indicating that, in the LA,
CB1 modulation of neuronal activity is determined by
CB1 receptors expressed on principal neurons (Azad
et al., 2003). In addition to regulating GABA release,
CB1 receptor activation appears to be essential for the
expression of postsynaptic GABAA receptors. Expression
of a1 and a2 subunits of the GABAA receptor is reduced
in the amygdala of CB1–/– mice. This reduction in subu-
nit expression may be the result of a developmental neu-
roadaptation that compensates for the overstimulation of
postsynaptic receptors resulting from the lack of inhibi-
tory presynaptic activity exerted by CB1 receptors (Diana
and Bregestovski, 2005; Uriguen et al., 2011).

GABAERGIC CIRCUIT DYSFUNCTION
WITHIN THE BLA

A functional BLA GABAergic system is essential through-
out one’s life. Deficiencies in GABAergic inhibitory syn-
aptic transmission are associated with neurodevelopmental
diseases, such as autism or fragile X syndrome, and also
appear in neurodegenerative diseases, such as Alzheimer’s
disease. In addition, deficiencies in the GABAergic system
can appear as a result of brain trauma, such as after TBI,
or may be acquired after SE. In this section, we first pro-
vide an overview with respect to how a reduction in

GABAergic inhibitory synaptic transmission within the
BLA is associated with the development of anxiety. We
then provide an example of a neurodevelopmental and
neurodegenerative disorder that results in deficiencies in
the GABAergic system within the BLA (see Table II). In
addition, we provide two examples of acquired GABAer-
gic deficiencies. It must be noted that genetic variations
may be an underlying factor in deficiencies of GABAergic
inhibitory synaptic transmission. Unless genetic variations
are directly involved in changing GABAergic function
within the amygdala, we do not address these variations.

Anxiety and PTSD

Anxiety and stress-related disorders, such as PTSD,
develop when individuals are exposed to situations elicit-
ing extreme stress or fear (Heim and Nemeroff, 2001; van
der Kolk, 2003). These disorders are commonly associated
with amygdala hyperactivity (Terburg et al., 2012; Nuss,
2015) and are often treated by administering benzodiaze-
pines, which mediate their actions via GABAA receptors
(Smith, 2001). However, in many cases, the treatment of
anxiety disorders with benzodiazepine-like compounds
may be ineffective, potentially because of deficits in
GABA release, GABAergic interneuronal loss in the BLA,
or alterations in GABAA receptor functionality (Farb and
Ratner, 2014).

The loss of GABAergic interneurons or reductions
in glutamate decarboxylase (GAD), an enzyme that cata-
lyzes the decarboxylation of glutamate into GABA, may
lead to deficits in the presynaptic release of GABA and
contribute to increased anxiety and associated BLA hyper-
excitability. Indeed, excess reductions in GAD, such as
occur when knocking out one of the GAD isoforms
(GAD65), lead to reduced phasic and tonic inhibition and
subsequently result in BLA hyperexcitability, increased
anxiety, and pathological fear memory reminiscent of
PTSD (Walls et al., 2010; Lange et al., 2014; Muller
et al., 2015).

Selectively targeting GABAergic interneurons in the
BLA has recently been investigated for the development
of anxiety-like behavior as well as fear learning. Lesions
to GABAergic interneurons that contain NK1r, which
colocalize with interneurons containing NPY, SOM, and
CB, have been found to increase anxiety-like behaviors
in rats (Truitt et al., 2007, 2009). It is notable that NK1r-
containing interneurons account for only �3% of the
total population of GABAergic interneurons in the BLA.
The loss of NK1r-containing interneurons does not result
in a significant reduction in the total number of inter-
neurons (Truitt et al., 2009). However, selective ablation
of these interneurons and in particular the SOM
GABAergic interneurons, which include approximately
half of the NK1r-immunoreactive interneurons, likely dis-
inhibits the synchronizing activity of projection neurons
and may impair feedforward inhibition (Truitt et al.,
2009). By comparison, increasing the number of
GABAergic interneurons in the BLA will reduce anxiety,
and animals that had increased inhibitory neurons were
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less sensitive to unlearned fear, although they could still
acquire conditioned fear responses (Cunningham et al.,
2009). Although anxiety appears to be regulated in part
by NK1r-containing interneurons, PV and SOM
GABAergic interneurons bidirectionally regulate the
acquisition of a fear memory through two distinct mecha-
nisms. During an auditory cue, PV interneurons are
excited through direct sensory input from the auditory
thalamus and cortex and indirectly disinhibit principal
neurons via inhibition of SOM neurons. However, dur-
ing an aversive footshock, both PV and SOM interneur-
ons are inhibited, most likely via the activation of other
interneuron subtypes that contact both PV and SOM
interneurons, suggesting that the interneurons exhibit dis-
tinct temporal dynamics that correlate with specific
behavioral differences (Wolff et al., 2014).

Impaired GABA release, disinhibition of GABAer-
gic interneurons, or deficiences in the activation of post-
synaptic GABAA receptors may result in anxiety-like
behavior and increased fear responses. Pharmacological
alterations of GABAA receptor activity by microinjection
of GABAA receptor agonists or antagonists induce anxio-
lytic or anxiogenic-like effects, respectively (Da Cunha
et al., 1992; Sanders and Shekhar, 1995; Zangrossi et al.,
1999; Barbalho et al., 2009). Moreover, highly anxious
rats exhibit an increase in the expression of the a2 subunit
of the GABAA receptor in the BLA (Lehner et al., 2010;
Skorzewska et al., 2014). However, it remains unknown
whether alterations in the expression of other GABAA

subunits also contribute to increased anxiety. In all, these
results indicate that deficiencies in GABAergic inhibitory
synaptic transmission within the BLA contribute to BLA
hyperexcitability and the subsequent development of anx-
iety- and trauma-related disorders.

Autism Spectrum Disorders and Fragile X
Syndrome

Autism spectrum disorders (ASDs), which include
fragile X syndrome, are a group of neurodevelopmental
syndromes that are often associated with aggression, anxi-
ety, and epilepsy (Parikh et al., 2008; Tuchman and Cuc-
caro, 2011). Emerging evidence indicates a
glutamatergic/GABAergic imbalance in multiple brain
regions, including the amygdala, with greater levels of
glutamatergic and reduced GABAergic activity, which
results in the manifestation of symptoms associated with
ASD (Coghlan et al., 2012; El-Ansary and Al-Ayadhi,
2014). The amygdala has recently been implicated in
ASD, including fragile X (Suvrathan and Chattarji, 2011),
because increased activation of the left amygdala has been
reported in functional magnetic resonance imaging studies
of fragile X patients (Watson et al., 2008).

Environmental models of autism or fragile X knock-
out (KO) mice revealed deficiencies in the GABAergic
system within the BLA. The reduced GABAergic inhibi-
tion appears to be a result of deficits in synaptic transmis-
sion and GABA metabolism and not the result of a loss of
GABAergic interneurons (Kim et al., 2014). Indeed, in a

fragile X mental retardation 1 (FMR1) gene KO model of
fragile X syndrome, the total number of neurons, includ-
ing GABA-immunopositive interneurons in the BLA,
was unaffected. Similarly, human studies of autistic chil-
dren have shown little morphological alterations in the
BLA compared with developmentally typical children (for
review see Blatt, 2012). However, there appears to be a
significant decrease in the total number of BLA inhibitory
synaptic connections, indicating aberrant circuit develop-
ment (Olmos-Serrano et al., 2010). Moreover, in the
BLA of FMR1 KO mice, reductions in GAD1 mRNA
and protein expression for GAD65/67 were observed and
were associated with reduced presynaptic GABA release
(Olmos-Serrano et al., 2010).

Although the overall number of amygdala GABAer-
gic interneurons remains stable, mechanisms that modu-
late the activation of GABAergic interneurons may be
impaired in ASD and fragile X models. For example,
FMR1 KO mice have reduced activation of SOM-
expressing low-threshold spiking interneurons in layers II
and III of the somatosensory cortex, causing reduced
spike synchronization of BLA principal neurons (Palusz-
kiewicz et al., 2011b); reductions in spike synchronization
from the cortex could subsequently impair neuronal
activity in the BLA required in the expression of fear
(Courtin et al., 2014) and also lead to hyperresponsivity
within the amygdala (Rauch et al., 2006). In addition, in
a rat model of ASD, reductions in dendritic morphology,
including spine density, or distal connectivity between
the PFC and the BLA may lead to impaired cortical BLA
regulation (Bringas et al., 2013).

Deficits in GABAergic inhibitory synaptic transmis-
sion in ASD and fragile X appear to be also a result of
genetic variations in genes coding for particular subunits
of the GABAA receptor, as has been documented
throughout multiple brain regions in ASD (Fatemi et al.,
2010; Coghlan et al., 2012) and in fragile X (Deidda
et al., 2014). In the amygdala of ASD and fragile X mod-
els, delays in the maturation of postsynaptic GABAA

receptors (Vislay et al., 2013) may lead to reductions in
phasic and tonic GABAergic inhibitory synaptic transmis-
sion (D’Hulst et al., 2006; Olmos-Serrano et al., 2010). In
the fragile X model, the timing of the developmental
expression of the a1 and the a2 GABAA receptor subu-
nits was delayed, which in turn may have impaired the
switch in GABA polarity (He et al., 2014) and proper
neuronal connections in wiring of local neuron networks
in the BLA (Cossart, 2011; Paluszkiewicz et al., 2011a).

In addition to the deficits in phasic (synaptic) inhibi-
tion, tonic inhibition, which is mediated by extrasynaptic
GABAA receptors containing either the a5 or the d subu-
nit, is also compromised in the BLA of FMR1 KO mice
(Martin et al., 2014) and in related ASDs (Zhang et al.,
2008). Tonic inhibition, maintained by low levels of
ambient GABA in the extrasynaptic space (Farrant and
Nusser, 2005), provides a persistent inhibitory conduct-
ance that regulates the E/I balance (Semyanov et al.,
2004). The reduction in the expression of the a5 subunit
of the GABAA receptor narrows the integration window
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necessary for feedforward inhibition. Moreover, because
of the reduced GABA release, more synchronized afferent
inputs must be generated to result in an action potential
and to modulate the integration of postsynaptic excitatory
and inhibitory potentials (Pouille and Scanziani, 2001;
Gabernet et al., 2005).

Alzheimer’s Disease

AD is associated with severe neuronal loss, with a
predilection for brain regions within the medial temporal
lobe, including the amygdala (Arnold et al., 1991; Braak
and Braak, 1991). Recent studies have shown that, in
symptomatic AD patients, the basomedial and lateral
nuclei of the amygdala, display between 14% and 60%
volumetric loss compared with controls as well as nonuni-
form shape changes (Cavedo et al., 2011, 2014; Poulin
et al., 2011; Miller et al., 2015). In addition, postmortem
studies have revealed that, although there is damage
throughout the amygdala, the degree of atrophy and neu-
rofibrillary tangles of amygdala nuclei is greater in the cor-
ticomedial group than in the BLA, suggesting that
perhaps there is a selective loss of neurons that contributes
to the loss in amygdala volume (Tsuchiya and Kosaka,
1990).

Although the overall loss of neurons, contributing
to volumetric changes, has been observed in the amyg-
dala, it remains unknown whether GABAergic inter-
neuronal subpopulations or specific subunits of the
GABAA receptor are targeted in the BLA and contribute
to the observed deficits in fear learning and increased anx-
iety. Indeed, a loss of GABAergic interneurons or altera-
tions in the expression of GABAA receptor subunits in
the amygdala is possible, given that it has been observed
that in the canine PFC PV- or CR-immunoreactive
interneurons are resistant to neuronal death, whereas CB-
positive interneurons are depleted (Pugliese et al., 2004);
in the mouse dentate gyrus, significantly fewer SOM-
immunopositive neurons are observed, whereas in the
cornus ammonis 1 hippocampal region there is a signifi-
cant loss of PV and SOM interneurons (Levenga et al.,
2013). In addition, as observed in the hippocampus (see
Mizukami et al., 1998; Armstrong et al., 2003; Iwakiri
et al., 2009), GABAA receptor subunit expression might
also be reduced in the BLA, which could contribute to
amygdala hyperactivity.

Although it may be hypothesized that there are
alterations to the expression of GABAA receptors and the
interneuronal population in the BLA, only one study has
examined alterations to the E/I balance in an AD model
and focused this examination on the LA. In a study using
the apolipoprotein E4 (apoE4)-targeted replacement
mouse to model AD (Wang et al., 2005), 1- or 7-
month-old mice expressing apoE4 displayed reduced
excitatory synaptic transmission in the LA but no changes
in inhibitory synaptic transmission (Klein et al., 2010).
However, aged (18–20 months) apoE4 animals displayed
significant increases in both inhibitory and excitatory syn-
aptic transmission and an increased seizure phenotype

(Hunter et al., 2012; Klein et al., 2014), suggesting that
increased excitatory synaptic transmission predominates.
The results indicate that it is unlikely that, in the LA,
there are alterations in the subunit composition of the
GABAA receptor; rather, increased excitatory transmission
may be the result of alterations in the presynaptic release
of GABA. Although it remains unknown why animals
display increased excitatory activity in addition to the
increased inhibitory activity, one hypothesis is that the
increased excitatory activity seen in apoE4 mice may be
the result of a loss of inhibition from extrinsic afferent
cortical inputs (Swanson and Petrovich, 1998; Klein
et al., 2014) or deficiencies in neuromodulatory mecha-
nisms such as the loss of GABAergic interneurons but not
cholinergic neurons in the basal forebrain (Loreth et al.,
2012).

Epilepsy and Seizures

As a principal circuit projecting to many brain regions,
hyperexcitability within the amygdala may be one source of
seizure generation (Prager et al., 2013). For instance, sponta-
neous bursting activity has been found to appear first in the
BLA of kindled animals (White and Price, 1993; Smith and
Dudek, 1997), and seizure generation after a nerve agent
exposure occurs only if AChE activity is significantly
impaired in the amygdala compared with other seizurogenic
brain regions (McDonough et al., 1987; Prager et al., 2013).
The amygdala receives monosynaptic inputs from many
frontal and temporal cortical areas that are known to gener-
ate and propagate seizure activity (Pitkanen et al., 1998).
The convergence of input onto specific nuclei can then
recruit a large number of neurons from interdivisional net-
work connections, which may contribute to ictal-like activ-
ity within different amygdala nuclei. Efferents from
amygdala nuclei may subsequently provide routes by which
the amygdala can recruit other brain regions and lead to sei-
zure propagation (Hirsch et al., 1997; Pitkanen et al., 1998;
Pitkanen, 2000).

The loss of neurons in the amygdala and subsequent
reductions in amygdalar volume further indicate the
amygdala’s role in the generation and propagation of seiz-
ures. The amygdala has previously been found to be
severely damaged in patients with temporal lobe epilepsy
and in both adults and children who experience SE (Pit-
kanen et al., 1998). Although often occurring in combi-
nation with hippocampal damage, neuronal loss has been
observed in the amygdala without any apparent damage
to the hippocampus (Hudson et al., 1993; Miller et al.,
1994; Pitkanen et al., 1998). The loss of neurons in the
amygdala has also been observed in animal models, the
BLA being among the most damaged nuclei (Tuunanen
et al., 1996; Apland et al., 2010; Figueiredo et al., 2011;
Prager et al., 2013, 2014a). The loss of GABAergic inter-
neurons in the amygdala in different seizure models has
also been examined. Seizures or SE causes between 37%
and 64% of GABAergic interneurons in the BLA to die,
irrespective of the seizure model, although the loss of
GABAergic interneurons was delayed by 7 days in animals
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that developed SE after a nerve agent exposure (Callahan
et al., 1991; Figueiredo et al., 2011; Prager et al., 2014a).
Tunnanen and colleagues (1997) found a 35% decrease in
the density of SOM-immunoreactive neurons in a kin-
dling model.

Kindling- or nerve agent-induced SE causes long-
lasting changes in synaptic transmission in the BLA,
including impaired feedforward GABAergic inhibition
and disinhibition of excitatory circuits (Rainnie et al.,
1991a, 1992) and network reorganization resulting in
BLA hyperexcitability (Smith and Dudek, 1997; Prager
et al., 2014a). The loss of feedforward inhibition has been
observed indirectly as a significant increase in paired-pulse
facilitation beginning 24 hr after SE and continuing up to
30 days after nerve agent exposure (Zinebi et al., 2001;
Prager et al., 2014a) and directly as a prolonged reduction
in GABAA receptor-mediated inhibitory synaptic trans-
mission, which likely was due to the loss of GABAergic
interneurons in the BLA (Prager et al., 2014b). The loss
of inhibitory synaptic transmission has been found to
cause a concomitant increase in excitatory synaptic trans-
mission (Prager et al., 2014b), which is associated with an
increase in both NMDAR- and non-NMDAR-mediated
glutamatergic transmission (Gean et al., 1989; Rainnie
et al., 1992; Shoji et al., 1998).

Although alterations in GABAergic synaptic trans-
mission have been observed in the amygdala after nerve
agent-induced SE, reductions in GABAA receptor-
mediated IPSCs appear to be model specific. After nerve
agent-induced SE, there was a significant reduction in the
frequency but not the amplitude of GABAA receptor-
mediated mIPSCs (Prager et al., 2014b), indicating that
the deficits in inhibitory synaptic transmission resulted
from the loss of GABAergic interneurons. However, 7–
10 days after kainate acid-induced SE, there was an
increase in a1 subunit and GAD expression but a reduc-
tion in tonic inhibition (Fritsch et al., 2009). Although
few studies have addressed how the stoichiometry of
GABAA receptor subunits changes in the BLA after pro-
longed SE, it is well known that the expression of
GABAA subunits is altered in other brain regions, such as
the hippocampus (Mohler, 2006; Ferando and Mody,
2012). Thus, perhaps in some cases of epilepsy, alterations
in the stoichiometry of GABAA receptor subunits may
contribute to impaired inhibition in the BLA, whereas in
other cases the loss of GABAergic inhibition may be the
result of the death of interneurons.

Traumatic Brain Injury

Similarly to many other disorders, TBI can affect
many brain regions, including the amygdala, and the dis-
ruption in neuronal excitability in surrounding regions
may ultimately alter the homeostasis of the amygdala. The
disruption in the E/I balance stems from an initial rise in
glutamate release, which is responsible for excitotoxicity,
and also from a delayed disruption of excitatory glutamate
circuits, which may underlie the cognitive and motor def-
icits observed after TBI (Guerriero et al., 2015). Altera-

tions in both glutamatergic and GABAergic synaptic
transmission and the expression of their corresponding
receptors have been observed after TBI in many brain
regions, including the BLA (Almeida-Suhett et al., 2014;
Guerriero et al., 2015), although this work is in its infant
stages. An increase in the NR1 subunit of the NMDAR
has been observed in the amygdala 2 weeks after injury
(Reger et al., 2012), and reductions in the a1, ß2, and g2
subunits of the GABAA receptor were observed 7 days
after a mild TBI (Almeida-Suhett et al., 2014). Moreover,
even when there is no overt neuronal death in the BLA, a
delayed loss of GABAergic interneurons is observed after
a mild TBI, which may contribute to increased anxiety-
like behavior (Almeida-Suhett et al., 2014) and enhanced
fear conditioning (Reger et al., 2012).

CONCLUSIONS AND FUTURE DIRECTIONS

Although alterations in GABAergic inhibitory synaptic
transmission in different diseases have been reviewed sep-
arately, it cannot go unstated that, in many cases, comor-
bidity occurs within many of these diseases. For example,
estimates of comorbidity between PTSD and some types
of TBI, including combat-related TBI, are as high as 73%
(Hoge et al., 2008; Taylor et al., 2012). Moreover, epi-
lepsy is often found to occur with diseases, including
autism/fragile X (Berry-Kravis et al., 2010; Khetrapal,
2010), schizophrenia (Kandratavicius et al., 2012), AD
(Palop et al., 2007; Chan et al., 2015), and anxiety disor-
ders (Trimble and Van Elst, 2003; Vazquez and Devinsky,
2003). Indeed, many of these disorders have comorbid-
ities, and often these comorbidities involve deficiencies
within the BLA GABAergic system.

We are not arguing in this Review that amygdala
hyperactivity results in the development of symptoms
associated with the diseases discussed above. Rather, this
Review seeks to provide evidence that reduced GABAer-
gic inhibition and alterations in the mechanisms that
modulate GABAergic inhibition contribute, in part, to
amygdalar hyperexcitability; BLA hyperexcitability is
common among these disorders and may lead to comor-
bid behavioral deficits. The extensive innervation of the
amygdala by multiple brain regions has revealed that spe-
cific pathways modulate GABAergic inhibitory synaptic
transmission and that these pathways may be disrupted in
different diseases.

GABAergic activity in the BLA is modulated by
dopaminergic, serotonergic, noradrenergic, and choliner-
gic activation as well as by the activation of various gluta-
mate receptor subtypes and the CB1 and ASIC1a
receptors. For the diseases discussed, deficiencies in the
release of monoamines or ACh or alterations in glutama-
tergic receptor activity can lead to reduced modulation of
GABAergic inhibition and, more locally, greater excita-
tion via deficiencies in either feedforward or feedback
inhibitory mechanisms. Moreover, because many of these
systems are interconnected, deficiencies in one system
may result in a cascading effect, which could contribute
to disinhibition of excitatory neurons in the BLA and,
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subsequently, increased anxiety-like behavior or increased
seizure activity. However, the data in many cases are not
conclusive. Much remains unknown with respect to how
alterations in neurotransmitter release, receptor activation,
and stoichiometry contribute to the behavioral deficits
and increased anxiety often associated with these
disorders.

E/I balance in the amygdala is dependent on func-
tional neuromodulatory mechanisms and local inter-
neuronal regulation. Neuromodulation is ineffective
when there is a substantial loss of GABAergic interneur-
ons, as has been observed in the amygdala in various neu-
rological and neuropsychiatric disorders. In some cases, it
is known that a specific class of interneurons is differen-
tially affected, but in most cases it remains unknown what
type of interneuron is most susceptible to cell death.
Moreover, the loss of GABAergic interneurons may be
delayed compared with the death of principal neurons.
The immediate death may be due to the excitotoxic
effects that occur with glutamatergic excitotoxicity (Zhou
et al., 2013); however, one hypothesis is that the delayed
loss of GABAergic interneurons is due to an upregulation
of D-serine, an endogenous coagonist for NMDARs (Liu
et al., 2009). Alternatively, even if there is no interneuro-
nal degeneration, deficits in GAD may reduce the synthe-
sis of GABA, which could subsequently reduce the
concentration of GABA released in the synapse and
impair inhibitory synaptic transmission. Alternatively, in
many of the diseases discussed, alterations in expression of
GABAA receptor subunits have been observed in the
BLA. Although it is unknown whether these changes are
transient or permanent, it can be assumed that alterations
in the subunit stoichiometry may lead to reduced tonic
and phasic inhibitory synaptic transmission.

This Review has two major themes. First, we have
summarized the neuromodulatory systems that modulate
GABAA receptor-mediated inhibitory synaptic transmis-
sion. Second, we have discussed how reduced GABAergic
inhibition in the BLA throughout the life span can con-
tribute to the behavioral manifestation of symptoms asso-
ciated with autism and fragile X, AD, epilepsy, TBI, and
anxiety- or stress-related disorders. In each case, results
indicate that BLA hyperexcitability is associated with defi-
cits in mechanisms that modulate GABAergic inhibitory
synaptic transmission, loss of GABAergic interneurons, or
alterations in GABAA receptor subunit expression. How-
ever, in many of the diseases discussed above, much
remains unknown with respect to why the amygdala is
hyperexcitable. By understanding how the GABAergic
system is impaired, future research can target the func-
tional aspects of the GABAA receptor for potential thera-
peutic options. Future research might also develop new
therapies that induce the growth of interneurons in spe-
cific brain regions or target and reduce excitation of the
glutamatergic system. The latter option has been imple-
mented after a nerve agent-induced seizure, for example,
in which administering a GluK1 antagonist prevented
neurodegeneration and associated increases in anxiety or
seizure activity (Figueiredo et al., 2011; Prager et al.,

2015). Overall, identifying the alterations to the inhibi-
tory system and the mechanisms that modulate inhibitory
synaptic transmission is a fundamental prerequisite for the
design of effective and well-tolerated therapeutic treat-
ments for these and other neurological and neuropsychiat-
ric disorders.
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