
.,. The Batch Loading and Scheduling Problem

by

Gregory Dobson

and

Ramakrishnan S. Nambimadom

Working Paper QM 92-03

September 1992

Subject Classification:

1) Production/Scheduling: Approximationslhemistic: Batch Processors

2) Manufacturing: Automated systems: Batch Processors in semiconductor, steel and
ceramic industries.

The Batch Loading and Scheduling Problem

by

Gregory Dobson

and '"

Ramakrishnan S. Nambimadom

Abstract

This paper discusses a problem that commonly occurs in the batching and schedulingof

certainkinds of batch processors. Examplesof these processors include heat treatment facilities,

particularly in the steeland ceramicindustries as well as a varietyof operations in the manufacture

of integratedcircuits. There are a set of jobs waiting to be processed. The processing time for a

batchdependsonly on the family and not on the number or the volume of jobs in the batch. Each

job is associated with a given family. The schedule must organize jobs into batches where each

batchconsists of jobs from a single family. The batchesmust be sequencedon the facility. Each

job has a weight or delay cost and a volume. The facility can handle a set of jobs from the same

family as a batchonly if, the total volume of thejobs is less than the capacityof the facility and all

the jobs belong to the samefamily. The objective is minimizing themean weightedflow time.

The paper presents an integer programming formulation for this problem. A partial LP

relaxation provides a lower bound. In addition, we present several heuristics based on various

subproblems. These include a greedy heuristic, a successive knapsack heuristicand a generalized

assignment heuristic. The conclusions of the computational study show that the successive

knapsack and generalized assignment heuristic perform better than the greedy. The generalized

assignment heuristic does slightly better than the successive knapsackheuristic but is substantially

slower. The study also shows that the size of the job relative to the capacity of the facility affects

the performance of the heuristics. Finally a worst-case analysis of the greedy heuristic is

presented.

1 Introduction

This paperinvestigates a single machine batching andscheduling problemthatwe call the

batch loading and scheduling problem. There is a set of jobs available for a single machine to

..
process. Each job. i, has a volume Vi. Eachjob also belongs to a family. Bt- The machine can

process several jobs from the samefamily.j, simultaneously, as a batch.providedthat the total

volume of these jobs does not exceedthe capacity of the machine. V. However. jobs belonging to

different families have to be processed separately. The processing time for a batchof jobs from

family t. tj. depends only on the family and not on the numberor volume of jobs in the batch. An

example is depicted in Figure 1. It shows the families of jobs organized into batches and those

batches scheduled on the processor.

Examples of theseprocessors include heat treatment facilities. particularly in the steeland

ceramic industries as wellas a variety of operations in themanufacture of integrated circuits. such

as diffusion, oxidation. and certainchemicalvapordeposition processes. In thesecases. the

processor is capableof performing a variety of tasks. A family is the set of jobs that the facility

mustprocess in the same manner. In reality. the volumeoccupiedby the jobs wouldnot be just

the sum of the individual volumes. due to the shapeof the variousjobs. However. we assume that

the single parameter represents thevolume accurately and thus obviates the necessity of

considering the highlycomplicated two and three dimension packingproblems. Such an approach

is likely to be a good first cut In addition, the volume of a job maynot represent the size of a job,

but rather the consumption of someotherresource thatmay be in limitedquantity, such as the.
energythat a job may absorb. Glasseyand Weng [1991] and Fowleret a1 [1991] describe

processes like this for a varietyof operations, particularly, the manufacture of integratedcircuits.

1

,
5

9

10

6

2

3

t t

7

8

4

Jobs Batches

~~

::"~~~"::'?:{":~:

Processing sequence

7

Family 2

Family 3

Family'

7

8
.9 """"""""1/

10

1 ,
~~

12

13 ~~~{%~
14 '::.:.'::,:,"

15 ~~~~l
16 ~~*#~~~J--- ~~@@~~: 11

Figure 1. The batch loading problem

o ..

time

2

The objective function considered here is to minimize the mean flow time. This is a

common objectivefunction in both scheduling theoryandpractice. Flow time or lead time is a

importantmeasureof performance for severalreasons. First, it is directlyrelated to work-in

process inventory (WIP) via Little's Law. Second, longer lead times forces the firm to carry

additional safety stock when faced with uncertain demand. Finally,forecastuncertainty is likelyto ..
rise super-linearly in lead time forcing the finn to hold additional safetystock.

The literature discussing batch production of this type, is relatively scarce. Ahmadi et al.

[1992] give a numberof situations involvingbatch processors whose processing timedoes not

dependon the numberof jobs beingprocessed. They considera 2-machineproblem where one of

the two machines is a batch processor. In their formulation, however; thejobs are all of the same

size and hence the singlemachineversionof theirproblemis easy. The presentation here

generalizes their results and considersproblems where the size of the jobs is arbitrary. Lee et al

[1992] consider a different kind of batchprocessor, where the processingtime of each batch is the

maximumof of the processingtimes of thejobs in it, and obtain algorithms for a numberof

differentperformance measures. Ikura and Gimple [1986] considered the problem of determining

. whetherthere exists a schedulewhere all jobs are complete by theirdue dates, givenrelease times

and due dates. Glassey and Weng [1991] and Fowler et al. [1991] consider a dynamic version of

this problem, where the use of knowledge about future arrivalsis used to devise a control strategy.

The first paper considers the case where all jobs belong to the samefamily, while the latter

considersmultiple families. In both cases, the volumeof jobs is assumedto be the same for all

jobs. Lefrancois et al. [1991] describea studybasedon annealingfurnaces in a Canadianrolling

mill and look at a multi-objective function version of thismodelwhich integrates a simulation

model with search-based subroutines to optimize batchingand sequencing ofjobs to minimizeflow

times and latenessand maximizethe efficiency of the annealing furnaces, An averagejob size is

used for the purpose of the analysis. This paper differs from these papers from at least two

.. perspectives. First we examinea static versionof thisproblemin which all jobs are availablefor

scheduling at time O. Secondly, in om model the volumeof each job can be different. In some

3

2

cases, the volume of individual jobs is quite smallcomparedwith the capacityof the processor. In

suchcases, this may not be a crucial factor. However, in many cases this may not be so. In

particular in the steelindustry, the volume of individual metalpieces beingannealedmay vary

considerably from piece to piece. Anotherexampleis in the semi-conductor industry where each

job may itself be batches of individual chips that cannotbe split for qualitycontrol reasons. Each

of these batches couldbe quite large compared to the sizeof the processor.

Somerelated workon batching is relevanthere as the mathematical structures arefairly

similar. Dobson and Karmarkar [1986] survey various problems in the area of job shop

scheduling and discusses variousformulations and relaxations. Dobson et al. [1987] and Santos

and Magazine [1985] discuss batching to minimize flow time for the single-machine case. In these

papershowever. the size of the batchdetermines the processing time. The batch processingtime is

equal to the setup timeplus a per-unitprocessing time multipliedby the size of the batch. Such

models accurately representmetal cuttingand bending.

The remainderof this paper is organizedas follows. Section2 presents a formulation of

the problemas an integerprogram. Section3 discusses a relaxation that provides a lower bound.

Section 4 describes several heuristics and Section5 describesthe computational study we did to

evaluate the heuristics. Section6 givesa worst-caseanalysisfor the simplestof these heuristics.

Section7 concludes with a discussion of some avenuesfor future research.

Formulations of the Batch Loading Problem

This sectionformulates the batchloadingproblemas an integerprogram. The formulation

presentedmust make two types of decisions. The first involves assigningjobs to batches and the

secondinvolvessequencing those batches. Batchesare arbitrarily numberedand the setof batches

associatedwith a given family is known.

The data for the problemare:

index for jobs;

4

i

j index for families;

k index for batches;

I index for positions in the processing sequence;

m the number of jobs;

C; the holding cost or the cost per unit of time delay for job i;
'

Vi the volume of job i;

gi the family of job i;

tj the processing time for a batchof familyj;

rk the processing time for batch k,

=tj where batch k is associatedwith familyj;

I· the set of items in familyj;J

Ik the set of items that can be includedin batch k

=Ij where batch k is associated with familyj;

B· the set of batchesfor familyj;J

Bi the set of batches that can include i

=Bj where item i is a member of familyj;

V capacity of the processor.

For example in Figure 1,

B1 =... =B6 =-B1 = {t, 2. 3. 4}

B7= ... =B12=B2 = {5, 6, 7, 8}

11= ... =14=1
1 = {I•...• 6}

I- 15 =... =18 =12 = {7,...•12}

5

J9= ... =/11 = 13 = {13•...• 16}

and

t1 - _.A-t- ... -r- 1

t5 = ... = z8 = 'z

In this paper. we shall from time to time. assume that batch k will precede a batch k' if they

are associated with the same family and k < k'. We can do this without loss of generality since we

can always renumber the batches to accommodate this condition.

The integer programmingformulation that assignsjobs to batches and batches to positions

uses the variables:

Xi/C =1 if job i is assigned to batch k, 0 otherwise;

Ylei =1 if batch k is assigned to position / in the sequence. 0 otherwise;

Zil =1 if job i is assigned to a batch that is assigned to position / in the sequence.0
otherwise;

= flow time of the batch at position / of the sequence.

The formulation to minimize weightedflow time is:

z* == Min
X.Y.Z

subject to 'Vi (la)

'Vk (lb)

. ,

6

'Vk (lc)

'VI (ld)

fJ=O (le)

I~o 'VI (If)

(lg) . jl =L tkYkl +1-1 'VI

k:

'V u (lh)

'V i,k,1 (li)

Constraints (Ia) forceeach job t to be assigned to exactlyone batchk. Constraints (lb) ensure that

the volumeof jobs assignedto batchk will not exceed the capacityof the processor. Constraints

(Ic) and (ld) guarantee that each batch is assigned exactlyone position in the sequence and each

position in the sequence is assignedat most one batch. Constraints (le), (If) and (lg) computethe

flow time for each position I. Finallyconstraints (lh) define the variables, Z, that connectjobs to

sequencing positions. Note, that we definea sufficiently large numberof batchesfor each family

so that each item could, ifnecessary, be placedin a separate batch. The numberof processing

positionsmust be large enough to accommodate all the batches. The solution to the formulation

will usuallyhave a substantial numberof empty batchesassigned to positionsat the end of the

sequence. These will not affect the objectivefunction since they contain no jobs and thus Xik is 0

which forces Zil to be O.

Although the constraints in this formulation are not linear due to the non-lineardefinition of

Zi/ in constraints (lh), we can modify them so that they are linear at the expenseof adding

7

additional variables and constraints. Define the 0-1 variable ZiJd =1 if job i is assigned to batch k

and batch k is assigned to position I in the sequence, 0 otherwise. This variable is only defined for

jobs i and batches k that are from the same family. Now constraints (lh) can be replaced by

The minimization objective and the additional constraints

'Vke Bi 'Vi,1

force the variables {ZiJd} to have correct values.

The objective function can also be linearized by the following approach. First note that the flow

timeof the batch in position I, fl can be written as

We can therefore write the objective function as

I I

L, L,c; ZilL, L, tkykp =L, L, c;tk L, L,ZilYIeP
i I p=1 k i k I p=1

We can now linearize the objective function by defining a set of variables wil kp as 1, if zil and

YIcp are both 1,0 otherwise. The objective function can now be written as

L, L, c; tk L, L,
I

w« kp
i k I p=1

Note that the following constraint and the minimization objective force »u kp to have the correct

values.

8

Unfonunately these modifications increase the size of the formulation rather substantially. Despite

the non-linear nature of the original formulation there is a relatively easy way to get a good lower

bound as we show in the next section.

3 . A Lower Bound

In the formulation of the previous section if we relax the integer constraint xiJc = 0, I to 0 S xik S I,

then the solution to the resulting problem has a rather simple form which is easy to compute. We

call this relaxation the partial LP relaxation or (pLP) since we do not relax the integrality constraint

on the remaining variables. The procedure to compute the solution is as follows.

Procedure R:

C'
1. For each family, place the jobs in descending order by the index =:. and place the batches

I

associated with that family in ascending order of batch numbers.

2. For each family, assign the jobs (or fraction of jobs) to batches in this order. Fill each

batch to the capacity V. This is possible since the relaxation allows us to split jobs across

batches.

3. Sequence the batches in decreasing orderby the index ~ , where el 5 LiE~ C;Xik' andxik

is the fraction of item i placed in batch k. This delay cost for a batch, el, is simply the

delay cost of the jobs (or fractions of jobs) assigned to it.

The procedure is depicted in Figure 2.

9

1+1

1+2

. 1+3

Jobs Batches.

(Lower bound)

Figure 2 Formation of batches for the lower bound

10

We now proceed to show that procedure R solves the relaxed problem. First note that since the

decisions made in our problem essentially involve fixing the x and y variables (assigning jobs to

batches and batches to processing positions), our problem can be written as

Z =Min{ Min f(x,y J}
y x : (x,y) e S

where f(x,y) is the objective function as a function of the z, y variables and S is the set of feasible

values of (x,y).

We shall show that the x that solves the inner minimization is the same for all feasible values ofy,

that satisfy the condition that batch k will precede batch k'; if they are associated with the same

family and k < k'. As noted earlier the last condition does not in any way constrain our choices.

Furthermore, this value of z, say x*, is given by procedure R. We shall also show that the y that

solves the problem for any fixed z, (in particular for x =x*) is given by procedure R. Thus the

relaxed problem can be solved by making the two sets of decisions separately.

For the first half of the proof, suppose we are given a sequence. Our problem is to assign

jobs to batches which shall then be processed in this sequence. We obtain this subproblem from

(1) by fixing {YkJ}, and substituting (lh) to eliminate the {ZiI}. We obtain as the objective.

MinLLCI(LxikYklJ!
a i I keB;

or after rearranging and separating the sum over jobs i to one over families and then one over jobs

for that family we obtain

Note that with vu fixed,J' is also fixed; so we can replace Lz ykffl with fk. The

problem then separates by family. For a given family j we have

11

- - -

Max It It cjXiiik

x ielj keN

s.t. LXik= 1

keBi

Xik ~ O.

To complete the proof of the first half of our assertion, we need to show that the solution to

the problem above does not depend on the absolute values ofIk but ~ther on their order.

Suppose this is not the case. Assume that the batches associated with this family are

numbered from 1 through p. By our assumption regarding the processing positions of batches

within a family, the flow times of thesebatches satisfy11 <12 < ... <I ' By hypothesis there must p
c, c..

be two jobs i in batch k at position 1and i'in batch k'at position rsuch that:; <;-:, but 1<rand
I I

Xik > 0 and xn: > O.

Now adjust the x' s by 6as follows

su decreases by lilvi,

Xik' increases by 6lvi ,

Xi'k increases by 6/"i" and

Xi'k' decreases by liIvf .

Observe that the constraints on the x's are still satisfied provided 6 is sufficiently small, less than

min(Xik, l-Xik', l-Xi1::, .%i'11 which is greater than O. The change in the objective function is

12

Thus, this solutioncannot be optimal. Note that the argumentonly depends on the fact thatli' - Ii

> 0, i.e. on the order of the batches not on the magnitudeof the difference. Thus we have proved

that the solution to the inner minimization overx for any giveny is solved by the assignmentof

jobs to batches according to procedureR.

To complete our proof, observe that for any (possibly fractional) assignmentof jobs to

batches, the remaining problem of sequencing batches is a minimumweightedflow time problem

on single machine. To see this from the formulation, fix {Xik} to any feasible value, i.e. one that

satisfies (la) (lb) and 0 S Xi/c S 1. Substituting (lh) into the objective and rearranging we obtain

Min LL L Ci XilcYlcl jl
Y I t lceBi

subject to (lc), (Id), (le), (If) and (lg).

or rearranging we have

subject to (lc) (ld) (Ie), (If) and (lg).

Thisproblem is that of sequencingbatches for a given assignmentof jobs to batches. It is clearly

equivalent to the single machineminimumweightedflow timeproblem. Hence the optimal

sequence of batches is given by procedure R.

This shows that (pLP) can be solved by solving the two subproblemsseparately.

13

4 Heuristics for the Batch Loading Problem

Recall that the Batch LoadingProblem has two imbedded sub-problems; one is the

assignmentof jobs to batches and the other is the sequencingof batches. In the previous section

we showed that the latter problem is easy to solve for any given assignmentofjobs to batches;one

can use the shortest weightedprocessing time rule, where the weights are given by the total batch

cost The job assignmentproblem, for a given assignment of processing positions to families

splits into m subproblems - one for each family - each of which is a generalizedassignment

problem [Fisher et al. 1986].

This sectiondescribes three heuristics for the Batch Loading Problem. Each heuristicis

based on the decomposition describedabove that allows us to solve the batch sequencingproblem,

once the job assignments have been made. Each method solves the job assignment problem

approximately and then uses the batch sequencingrule for the given assignment. The heuristics are

called the greedy heuristic, the successive knapsack heuristic, and the generalizedassignment

heuristic. The three techniquesapply increasinglysophisticatedideas to the job assignment

problem with, as we shall see,improvements in the solution values, but at the cost of increasing

the computational effort.

4.1 A Greedy Heuristic

A procedure, that" generates a reasonable feasible solution in one pass, is given below. The

procedure involves the following steps:

Partition thejobs on the basis of their family

For each family

Sort the jobs in non-increasing order of the cost to volume ratio, ~.

For eachjob within the family

14

Add the job to the first batch of the family that has space to accommodate it.

Sequencethe batches by the weighted-processing-time rule.

4.2 A Successive Knapsack Heuristic

Another intuitivelyappealing heuristic is to maximize the cost of the first batch withineach

family and then repeatedly maximize the costof the next batch by using the remainingitems.

Although such a procedure is obviouslynot optimal, this successivesolving of knapsack problems

leads to the following heuristic.

Partition the jobs on the basis of their family.

For each family

While thereremain items not assignedto a batch

Solve the knapsackproblemto obtain the contentsof the next batch

Sequencethe batches by weighted-processing-time rule

Note, like the previous heuristic, this is a one pass procedure since, the batching is done

independently of the sequencingof the batches. The standarddynamic programmingapproachis

used to solve the knapsack problem.

4.3. The Generalized Assignment Heuristic

This sub-sectiondescribesan iterativeheuristicwhichrepeatedlyperforms the two main

tasks of sequencing and batchingone at a time, keeping the other fixed. The assignmentof jobs to

batches is done by solving the following generalizedassignmentproblem.

Suppose the assignmentof processingpositions to families is given. Then as noted before,

time of the kth batch of, say family 1, can be calculated,and the problem separatesout by family.

Assume that the batches associatedwith family 1 are numberedfrom 1 through 1/]1 and batch k

precedes k+1.

Let,

15

ik = flow time of the kth batch of family I, 'V k =1,... ,11]1;

Xik =1 if job i is assigned to the kth batch of it's family, 0, otherwise, 'V k eB] and

'Vie/].

Then the subproblem associated with family 1 is given by,

Min

'VkeB] (4a) , subject to

'Vie/] (4b)L,xik =1
k

XiJc = 0,1 'Vie/],keB] (4c)

The procedure for the generalized assignment heuristic is as follows,

1. We begin with an arbitrary assignment of processing positions to families or we obtain

the optimal processing positions for an arbitrary assignment of jobs to batches. Either

way we end up with an assignment of processing positions to families.

2. Keeping these assignments fixed we solve the resulting generalized assignment

problem to obtain the allocation ofjobs to batches. Note that we have to solve one

generalized assignment problem per family.

3. The batches of the various families are pooledtogether and the batches are ordered

based on the weighted processing time rule. This gives us a new set of allocations of

processing positions to families. Thus, we can now repeat the procedure iteratively till

a stopping condition, based on the number of iterations or the improvement over the

last few iterations, is mel

16

We solve the generalized assignment problem by dualizing constraints (4b). This procedure is

know to be very effective method for the general generalized assignment problem. The same

approach is followed here. However, in our particular generalized assignment problem, the cost of

assigning job i to batch k is a product of a factor dependent only on i (ci)' and a factor dependent

only on k (/k)' The implication of this is that all jobs would prefer to be in batch k rather than

batch k + 1. In contrast, in the general generalized assignment problem, each job has a different

preferred order of batches, and hence the assignment of some jobs becomes very easy to resolve.

Thus the performance of this approach, while good, does not quite match the results obtained for

an arbitrary generalized assignment problem by Fisher [1981]. It also makes it unlikely that the

multiplier adjustment procedure considered by Fisher et al. [1986] would be particularly

successful, as it makes use of the property that not all jobs would desire the same batch.

In this paper, a sub-gradient algorithm adjusts the multipliers until either it obtains a primal

feasible solution or it reduces the step size below a certain specified number. The following

proposition shows that the multiplier, connected with job i, Ai'can be restricted to be at least, cJ2'

If at any iteration, the calculated value of Ai is less than cih, then the procedure resets it to the

latter value

Proposition. Ai' ~ cih is a validdual constraint.

Proof. We need to show that this constraint does not affect the value of the solution to the dual

problem.

Ifwe relax constraints (4b), then we get the following problem,

where

17

Zk(A) =maxL(Ai - C;!k)Xik

i

subjectto constraints (4a).

Note that if Ai S;c;!k' then xik =O. Now, suppose we do not impose the above restriction

on the minimum valueof the multipliers. Considerany set of multipliers Aand let X(A) be the

solution to the relaxedproblem. Let,

,
Ai =max(Ai,cih)

and letrCA') be an optimalsolution to the relaxed problemcorresponding to the new valueof the

multipliers. Let A =(i : A; S; cih). Thus for all i e A,

Therefore x'ik =xik = 0 for all k ~ 2 and i e A. and hence, Zk(A) =Zk(A1for all k ~ 2

Now consider the sub-problem associatedwith the first batch. When we moved from Ato

A'we increasedthe objectivefunction coefficients for all i e A. The total increase in the optimal

value of the objectivefunction, Zj(A1- Zj(A) is at most the sum of these increases, or

Zj(A1- Zj(A) S; L (A'i - Ai)

ieA

Therefore,

ZLR(A') - ZLR(A) =L(A;- Ai) - (Zt(A') - Zt(A») ~ 0

ieA

Thus for any arbitraryset of multipliers, the solutionof the relaxed problem is improved by

ensuring that no multiplier is less than Cih.•

18

5

Finally, if the subgradient search for multipliers ends with a primal feasible solution then

clearly we have an optimal solution to the generalized assignment solution. If not, we use the

following procedure to obtain a feasible solution. We choose the Lagrangian multipliers that gave

the best lower bound and solve the relaxed problem batch by batch, with the added restriction that

if a job has been assigned in an earlier batch then it can no longer be assigned. The procedure

takes the jobs that are not assigned to any batch, and sorts them in non-increasing order of cost to

volume ratio, and assigns them in this order to the first batch that has space for them.

Computational Experiments and Results

In order to determine how well the heuristics would perform we tested them on a wide

range of problems. We generated four categories of problems. In each case the capacity of the

processor was 50. The categories differed by the size of the jobs. The first category had relatively

small jobs. We generated the volume of a job from a uniform distribution from 1 to 10. The

second category had larger jobs. Here we generated the volume froma uniform distribution from

1 to 25. The third category had still larger jobs, with volumes generated from a uniform

distribution from 1 to 50. Finally the fourth category was designed to test the heuristics when

there were no small jobs. Here the volume of a job was generated from a uniform distribution

from 13 to 38. For each of these categories we created problems with 3 families and 5 jobsl

family, with 5 families and 20 jobs/family and with 10 families and 50 jobs/family. For each of

the 12 sets, we created 20 instances and solved them using the three heuristics. We also computed

the lower bound. The distribution of costs for a job was uniform from 0 and 1. Similarly the

distribution of processing times of a family was uniform from 0 and 1.

The performance of the heuristics on these 12 data sets is given in Tables 1 through 3.

Because optimal solutions are difficult to obtain we compared the values of the solutions we

computed using the heuristics to the lower bound. In particular we report on the ratio of the greedy

heuristic's solution value to the lower bound (GR/LB), the ratio of the knapsack heuristic's

19

solution value to the lower bound (KPILB), the ratio of the generalized assignment heuristic's

solution value to the lower bound (GAILB) and also the ratio of the generalized assignment

heuristic's value to that of the knapsack heuristic's. The statistics reported are the mean of these

ratios for 20 problems as well as the standard deviation, minimum and maximum.

Several trends are quite obvious. First the knapsack heuristic is superior to the greedy

heuristic. Second, on average the generalized assignment heuristic did better than the knapsack

heuristic although this is not the case on all problems. Since the computational effort required to

use the knapsack heuristic is not substantially more than for the greedy heuristic, the knapsack

heuristic is preferred.. Since the generalized assignment heuristic took substantially longer to run

(see Table 4) the minor improvement may not be worth the effort. Third, the performance of the

heuristics did not degrade as the size of the problem increased and appears to improve slightly on

the largest of the problems tested. In particular, for a given problem type, i.e. job volumes either

1-10,1-25, 1-50 or 1~38, the average performance remained the same as the number of families

and the number of jobs within a family increased.

Volumes
of jobs

GRILB KPILB GAILB GA/KP

1-10 Mean

Std. dev.

Min.

Max.

1.03

0.01

1.01

1.05

1.02

0

1.01·

1.03

1.02

0

1.01

1.03

1

0

1

1

1-25 Mean

Std. dev.

Min.

Max.

1.08

0.03

1.03

1.13

1.05

0.01

1.02

1.08

1.08

0.03

1.01

1.12

1.02

0.02

0.98

1.06

20

1-50 Mean

Std. dey.

Min.

Max.

1.18

0.04

1.09

1.24

1.14

0.04

1.09

1.23

1.12

0.03

1.06

1.18

0.98

0.02

0.92

1.03

13-38 Mean

Std. dey.

Min.

Max.

1.21

0.05

1.13

1.29

1.16

0.05

1.08

1.26

1.15

0.03

1.1

1.19

0.99

0.04

0.91

1.04

Table 1: Results for problems with 3 families and 5 jobs per family.

21

Volumes
ofiobs

GR/LB KPILB GA/LB GAIKP

1-10 Mean

Std. dev.

Min.

Max.

1.02

0.01

1.01

1.05

1.01

0

1.01

1.03

1.03

0.02

1.01

1.08

1.01

0.01

1

1.05

1-25 Mean 1.07 1.04 1.09 1.04

Std. dev. 0.02 0.01 0.02 0.01

Min. 1.05 1.02 1.06 1.01

Max. 1.1 1.06 1.11 1.06

1-50 Mean 1.18 1.14 1.12 0.99

Std. dev. 0.03 0.02 0.02 0.02

Min. 1.12 1.1 1.08 0.96

Max. 1.24 1.12 1.17 1.02

13-38 Mean 1.22 1.16 1.15 0.99

Std. dev. 0.04 0.03 0.02 0.02

Min. 1.17 1.11 1.11 0.95

Max. 1.29 1.21 1.22 1.02

Table 2: Results for problems with 5 families and 10 jobs per family.

Volumes
of jobs

GR/LB KPILB GA/LB GAIKP

1-10 Mean

Std. dev.

Min.

Max.

1.02

0

1.01

1.02

1.01

0

1

1.01

1-25 Mean

Std. dev.

1.06

0.01

1.03

0

Min.

Max.

1.05

1.08

1.02

1.03

1-50· Mean
se, dev.

1.14

0.01

1.11

0.01

Min. 1.13 1.09

Max. 1.15 1.13

13-38 Mean

Std. dev.

1.17

0.01

1.12

0.01

Min. 1.15 1.1

Max. 1.2 1.14

Table 3: Results for problems with 10 families and 50 jobs per family.

22

6 NP-completeness and Worst-case Analysis of a Simple Heuristic.

In this section we begin by showingthat the batch loadingproblem is NP-hard. We then

give a worst-case analysis of the greedyheuristic. We actually analyze a heuristicwhich differs

from the greedy slightly and then show that its performance is worse than the greedy's. This

heuristic gives a solution whoseobjectivevaluediffers from the optimal by at most a factor of 2.

Finallywe give an example that showsthat the boundis tight. We believe that a tighterboundis
v·

possibleif the problem under consideration is one where the volumeof the items is such thatif is

l.
small say less than-k In this case, we conjecture that the bound is k+4 and in the appendix give a

k+l

set of examples which have this behaviorfor every k ~ 2.

6.1 The Batch Loading Problem is NP-hard.

The decisionproblem associated with the BatchLoadingproblemis, givena set of jobs J with

weights Cj' and volumes Vj that are organizedinto families with batchprocessing times, tk, on a

batchprocessor with capacity V, does thereexist a schedule with the weightedflow time for all

jobs less than K.

Proposition. The Batch Loading Decision problem is an NP-complete problem. Thus. the

associated optimization problem is NP-hard.

Proof. The reduction is from the NP-complete problem Partition. Partition can be stated as, given

a set S of objects with sizes {siJte S does there exist a subset U such that

The transformation is to let V =iLiES Sit and for each object i in S, create a job with ci =si and

Vi =si' All jobs belong to the same family and the processing time for a batch of jobs of this

family is 1. The claimis that a partitionexists if and only if the optimalobjectivevalue for the

23

batch loading problem is 3V. Suppose a partition exists. Let all jobs corresponding to elements in

U be in batch 1 and the remainder in batch 2. This is a feasible solution with objective value 3V.

We shall also show that 3V is a lower bound to this batch loading problem. This is the value of the

partial LP relaxation which was described earlier in the paper. The volume of the entire set of

items is 2V, the items all have the same Cj!Vj ratio, namely 1, and so one can place half the volume

in batch 1 and the other half in batch 2. This gives a weighted flow time of 3V. Thus the existence

of a partition implies that the solution to the batch loading problem is 3V. Now suppose there

exists a feasible solution (without jobs being split across batches) to this batch loading problem

with objective value 3V. Note it cannot be lower since we just observed that 3V is a lower bound.

Let aj be the cost (and volume) of batch i. We have that 0 < Cl; S V and Liaj = 2V and that L

i

iaj =3V. We merely need to show that all the items are in the first two batches; aj =oz =Vaj=

o i ~ 3. Let {3 be the cost (or volume) of all batches past the second, {3 == Lj~3 ai. The

objective value tells us that 3V= L iaj ~ 1 aj + 2a2 + 3{3= aj + 2a2 + 3(2V - aj- a2) = 6V
. j

- 2aj - 1~ or rearranging we have 2aj + ~ ~ 3V. Since 0 < Cl; S V, the only feasible solution

is aj = V, a2 = V and ai = 0 for i ~ 3. This provides us with a 2-batch solution which gives a

solution to the partitioning problem.•

6.2 Worst-case Analysis of a Simple Heuristic

In this subsection we analyze the performance of simple heuristic, we shall denote by H, for the

batch loading problem and compare that to the value of the partial LP relaxation of the problem.

The heuristic works as follows. Take the solution to the partial LP relaxation and construct a

feasible solution by creating two batches for each batch in the relaxation. In particular, the batch in

position 1in the relaxation and the batches in positions (21-1) and 21 in the heuristic shall belong to

the same family.

24

Consider the jobs in the batch assigned to processing position / in the solution to the relaxation.

They will be assigned to the batches in position 2/- 1 and 2/ in the heuristic. Figure 3 shows the

procedure associated with this heuristic.

21-1

~
:.~[:[~"::I:'J!·:I:~[·:·I!!I:I~·I·!:I. - l:l::I!I.~I:llll![:ll:·:I·lil·I:·:!·!!·!
::::::::::::::;:;:;:;:;:::;:;:::;:::::;:::::;:::::::

1+1 21

• 11111111~11111111111111111!11
~

1+Z Z{I+1}-1

VTTTTTTr ·[!I::lll:II[~II!I:II::I~:!:II.I!:Ii;!:

)1+3 2 (1+1-
"""lIIi

Jobs Batches Batches

(Lower bound) (Feasible solution)

Figure 3 Construction of heuristic for worst case analysis

25

We will use superscripts R and H to denote valuesassociated with the relaxation and heuristic

solutions respectively. For example, if and if will denote the flow timesof the batchat position

in the relaxation and the heuristic, respectively. Definerl to be the processing time of the batches

in therelaxation. Thus the flow time for batch I is if = I~I tic. In the heuristic solution the

flow time for the two batchesat positions21-1 and 21 will be f~ -I = 2I ~~ tic + tl and fit =

2Ii:i tic + 2tl. Thus it is easy to see that f~_1 = 2if - tl S 2if and fit = 2if. To generate. a

feasible solution weneed to assignjobs in the batchat position I in the relaxation to batches at

position21-1 and 21. This is straightforward. Ifjob i is entirely in the batch, place it at position

21-1. If the job i is only'partially in the batchand partially in a later batch then assignit to position

21. It is easy to see that ifJf is the set of jobs whichfirst appear in the batch at positionI in the

relaxation and this is partitioned into two sets, J~_I and J~ for the jobs placed into positions21-1

and21 in the heuristic solution then

Denoteby zH and zR the values of the heuristic and the relaxationrespectively. Summingover all

processingposition used in the lower bound yields zH S 21ft and since zR S z* we have the desired
. H

worst-case bound of 2 for this heuristic: ~* S 2.

We now wish to arguethat the greedyhemistic will alwaysproduce a better solution than the

heuristic H describedabove. Ifwe let zG denote the value of the greedy solution then we need that

zG S zH. To see this we introduce a third value, denoted zf}::::ztiODS . This is the solutionvalue

one wouldobtain by assigningitems to batchesusing the greedy heuristic and then using the

assignment of batches to positions given by the heuristicH. Since the greedy heuristicre-sorts the

26

batches at the end we conclude that zG ~ zt!t::I~~tions. Funhermore since the greedy might place

itions ~ zH.items into earlier batches if they had sufficientcapacity we conclude zG
H

POSde Thus zG. ~
or r Z

zH
z. s 2.•

6.3 Example where the bound is tight.

The example below shows that asymptotically the bound is tight for the greedy heuristic. Consider

the following problem. There are n families. The capacity of the processor, V, is 1. The

processing time for each family, tj , is 1. Each family consists of three jobs. The data is given in

the table below. Let 0 < e; 8 < 1

job cost(c;) volume(v;)
c·

ratiO<;-)
i

1
2

3

1/2

lXI-e)

1/2(1-2e)

1/2

8

112

1

1-e

1-2e

It is clear that any feasible solutionwill require 2 batchesper family since the volume ofjobs for

each family is 1 + 8. The optimal solution is to place jobs 1 and 3 in one batch and job 2 in a

second batch, and then to sequencethe batches by placing all the full batches first and all the nearly

empty batches next. The objective value is

n n

Lcd; =L (l-2e)i + L IXI - e)(n + i)
i i=1 i=1

n(n+l) (n(n 1))=(l - 2e) '2 + IXl- e) n2 + 2+

If we make 8 and e small this converges to ¥n) (n + 1). The heuristic analyzed (as well as the

greedy heuristic) wouldproduce a solution with jobs 1 and 2 in the first batch for each family and

job 3 in the second batch. This will have an objective value of

27

n n

~CJi = ~(~ + sc 1-£)) + fr (~)(1 - 2e)(n + i)

As we make 0 and e small this value converges to

n(n + 1) n(n + 1) n2 2n2 + n
4 + 4 +2= 2

Taking the ratio we see that

2n 2 + n

zH 2 2n 2 + n
-.= = 2 ~ 2 as n~oo.
z n2 + n n + n

2

Thus as the number of families grows the error increases to 2.

28

7. Summary

As we have seen this problem can be thought of making two types of decisions. First there

is the assignment of jobs to batches and second, there is the sequencing of batches. The later is

easy given the former and the former relatively easy given the later; it's a generalized assignment

problem. Given this structure there are many ways to formulate the problem rather than the

"assignment" style variables we have used here. We investigated several possibilities with the

hope of finding a formulation where Lagrangian relaxation would yield better bounds and

heuristics based on the Lagrangian multipliers. Unfortunately these formulations all resulted in

relaxations with an enormous number of multipliers and thus were not solvable for practically sized

problems.

The difficulty in this problem arises because of underlying generalized assignment

problem, i.e., the assignment of jobs to batches. To be more precise it is the "knapsack" nature of

this subproblem that makes it hard. ITall the jobs had unit volume then the problem could be

solved by a sorting procedure. Thus, in problems where the size of the items is relatively small

compared to the capacity of the processor the heuristics do quite well.

As for future work, the most obvious limitation of the model Is the lack of due dates. Thus

an important extension would be to extend, presumably by the standard Lagrangian techniques, the

problem to include release dates, due dates and tardiness penalties for the jobs. Another aspect

worth considering is how scheduling is affected when the batch processor is pan of a flow shop

and the other machines have a more standard processing time that is the sum of setup and per part

run time.

29

Appendix

In section 6. we give a proof that the worst case performance of the greedy heuristic has a ratio

zGlz* S 2 and a worst case example for the greedy with a ratio zGlz* that approaches 2. We

conjecture that if the items are all small then the bound is tighter. In panicular for a given integer k

~ 2. if all items have volumes less than or equal to t. then we conjecture that the worst case

behavior of the greedy is k+4. For k =2 this would give the bound of 2; for k =3 the bound
k+l

7 8
would be 4; for k = 4 the bound would be S. The example below shows that the greedy can do at

least this badly when restricted to problem instances where all volumes are at most i.

In this example. there are n families. Let k ~ 2. Each family has k + 1 items. Their volumes and

weights are given in table A.I.

number of
items

volume cost ratio :

k-l

1

1

.!
k

e
1
t

(1 + 6)w;

£w;k

(1- 6)w;

(1+c5)w;k

w;k

(1- c5)w;k

Table A.I: Data of items in family i.

Think of e and 8 as small. The factor W; for family i is

n(k-l) - 1 - i(k-2)
W;E .

n - 1

Observe that the (w;) are decreasing since W; - wi+1 = k - 2 ~ O. The processing time for the
n - 1

families are identical. say tk =1. In the optimal solution all the items of size l would be processed

together in a batch and the remaining item of volume e would appear in a batch by itself. The

greedy on the other hand would place the first k items in a batch and the remaining item of volume

30

i would have to be processed in another batch. For both solutions the first batches (for each

family) would be sequenced in decreasing order of the Wi followed by the second batches again in

decreasing order of the Wi. To see this for the greedy we must check that k; 1 ~ ~ t ~:.

k-1
These terms are in fact both equal to k .

The optimal value, z*, once we let £ and 0 go to 0 is Ln iwi:
i=l

11

~n(k-1) - 1 - (k-2)i .
z* = £.i I

;=1 (n - 1)

= (n(k-1)-1) (n)(n+1) _ (k-2 yn(n+1)(2n+1'»)
n-1 2 n-1)- 6

= n(n+l) [n(k-1) _ 1 _ k;2 (2n+l)]
2(n-l) .

=n(n+1)[nk + n- 1 - kJ

2(n-1) 3

n(n+l)(k+ 1)
= .6

On the other hand the greedy produces a solution whose value is, zG, once we let e and 0 go to O.

11 11

zG = L(k~
1
\";i + L(n+ i)(t)W;

i=1 r i=1

11

k- 1} 1 n~
= (T *+P*+k~w;

,=1

11

=Z*+ILw;
;=1

Now,

31

~ = ~ n(k-l) - 1 - i(k-2)
£..JWi £..J
i=1 ;=1 n-l

= n(k-l)-l _ k-2 (n(n+l»)
n

(n-l) n-l 2

= n [2nk - 2n - 2 - kn + 2n - k + 2]
2(n-l)

Thus,

1
-n2
2

= 1+.-
Z

n2 6
=1+-

2 n(n+l)(k+l)

= 1 + 3n
(n+l)(k+l)

k+4
~ k+l a s n ~ 00

Acknowledgments

The authors wish to thank Uday S. Kannarkar for introducing us to this problem and John.

W. Fowler for his helpful comments.

References

Ahmadi, J.H., Ahmadi, R.H., Dasu, Sriram and Tang, Christopher S., (1989). Batching and
Scheduling Jobs on Batch and Discrete Processors, Operations Research, 40, 750-763.

Dobson, G., Karmarkar, U.S., and Rummel, J.L.,(1987). Batehing to Minimize Flow Times on
One Machine, Management Science, 33.784-799.

32

I

Dobson, G., and Karmarkar, U.S.,(1986). Large Scale Shop Scheduling Formulations and

Decompositions, Working paper QM 86-31.

Fisher, M.L., Jaikumar, R., and Wassenhove, L.N.,(1986). A Multiplier Adjustment Procedure

for the Generalized Assignment Problem, Management Science, 32, 1095-1103.

Fisher, M.L.,(1981). The Lagrangian Relaxation Method for Solving Integer Programming

Problems, Management Science, 27, 1-18.

Fowler, J. W., Phillips, D. T., and Hogg, G. L. (1991). Strategic Control of Multiproduct Bulk
Service Diffusion/Oxidation Processes, Sematech Working Paper INENjMS/WP103/3-91

Glassey, C. R., and Weng,(1991) W. W., Dynamic Batching Heuristic for Simultaneous
Processing, IEEETransactions on Semiconductor Manufacturing, 4, 77-82

Ikura, Y., and Gimple, M., (1986) Scheduling Algorithms for a Single Batch Processing
Machine, Operations Research Letters, 5, 61-65.

Lee, C. Y., Uzsoy, R., and Martin-Vega, L. A. (1992) Efficient Algorithms for Scheduling
SemiconductorBum-in Operations, Operations Research, 40, 764-775.

Lefrancois, P., P. L'Esperance and M. Tunnel (1991) "Batching Annealing Operations to
Optimize Queueing Times and Furnace Efficiency: A Simulation Model," Working Paper
91-22, Department Operations et systemes de decision, Universite Laval, Quebec, Canada

Nemhauser, G.L., and Wolsey,(1988). L.A., Integer andCombinatorial Optimization, John
Wiley.

Santos, C. and Magazine, M. (1985) Batching in Single Operation Manufacturing Systems,
Operations Research Letters, 4, October, 99-103.

33

