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Iron is a vital nutrient for virtually all forms of life. The

requirement for iron is based on its role in cellular processes

ranging from energy generation and DNA replication to oxygen

transport and protection against oxidative stress. Bacterial

pathogens are not exempt from this iron requirement, as these

organisms must acquire iron within their vertebrate hosts in order

to replicate and cause disease.

Vertebrates Sequester Iron from Invading
Pathogens

One of the first lines of defense against bacterial infection is the

withholding of nutrients to prevent bacterial outgrowth in a process

termed nutritional immunity. The most significant form of

nutritional immunity is the sequestration of nutrient iron [1]. The

vast majority of vertebrate iron is intracellular, sequestered within

the iron storage protein ferritin or complexed within the porphyrin

ring of heme as a cofactor of hemoglobin or myoglobin. Further,

the aerobic environment and neutral pH of serum ensures that

extracellular iron is insoluble and hence difficult to access by

invading pathogens. This difficulty is enhanced by the serum

protein transferrin, which binds iron with an association constant of

approximately 1036 [2]. Taken together, these factors ensure that

the amount of free iron available to invading bacteria is vastly less

than what is required to replicate and cause disease (Figure 1A).

The importance of nutritional immunity as it pertains to iron is

exemplified by the increased susceptibility to infection of

individuals with iron overload due to thalassemia and primary

hemochromatosis, two of the most common genetic diseases of

humans [3]. The degree to which transferrin is iron saturated can

vary from 25% to 30% in a healthy individual to 100% in patients

with hemochromatosis, negating the antimicrobial properties of

transferrin-mediated iron sequestration [2]. The impact of this

iron overload is perhaps best demonstrated by the enhanced

susceptibility of hemochromatosis patients to Vibrio vulnificus

infections [4]. Whereas V. vulnificus is killed by normal blood and

rarely causes infection in healthy individuals, it grows rapidly in

blood from patients with hemochromatosis, leading to a high risk

of fatal infections in this cohort [4]. Moreover, the administration

of excess iron increases the virulence of numerous pathogens in

animal models, further highlighting the protection provided by

nutritional immunity [2,5].

Many Bacterial Pathogens Sense Iron Depletion as
a Signal That They Are within a Vertebrate Host

Vertebrates are devoid of free iron, ensuring that all bacterial

pathogens encounter a period of iron starvation upon entering their

hosts. In keeping with this, bacterial pathogens have evolved to

sense iron depletion as a marker of vertebrate tissue. This sensing

typically involves transcriptional control mediated by the iron-

dependent repressor known as Fur (ferric uptake regulator) [6]. Fur

binds to target sequences in the promoters of iron-regulated genes

and represses their expression in the presence of iron. In the absence

of iron, Fur-mediated repression is lifted and the genes are

transcribed. Fur orthologs have been identified in numerous genera

from both Gram-negative and Gram-positive bacteria and con-

tribute to the virulence of both animal and plant pathogens [7].

A number of genes encoding for proteins involved in iron

utilization have been reported to be positively regulated by Fur

during iron-replete conditions [8]. This positive regulation occurs

through Fur-mediated repression of a small RNA that represses

genes encoding iron utilization proteins. This second level of

regulation prevents the use of iron by non-essential enzymes

during times of iron starvation. RNA-dependent regulation of iron

utilization is a conserved process that has been identified in

multiple bacterial pathogens, including Vibrio sp., Pseudomonas

aeruginosa, Escherichia coli, Shigella flexneri, and Bacillus subtilis [8].

Many high G+C content Gram-positive bacteria express an

additional iron-dependent repressor belonging to the DtxR family.

The DtxR family was named for its founding member, the

diphtheria toxin repressor. In fact, one of the first iron-dependent

virulence factors described was diphtheria toxin produced by

Corynebacterium diphtheria [2]. DtxR family members negatively

regulate genes involved in processes ranging from iron acquisition

to virulence factor expression [5].

In addition to sensing alterations in iron levels, bacterial

pathogens can also sense heme as a marker of vertebrate tissue.

Heme-responsive activators have been identified in Serratia

marcescens, the pathogenic Bordetella, C. diphtheriae, Bacillus anthracis,

and Staphylococcus aureus [5,9,10,11]. Heme-sensing systems pre-

sumably alert bacterial pathogens when they are in contact with

vertebrate tissues rich in heme, triggering the expression of systems

involved in heme-iron acquisition and metabolism.

All Bacterial Pathogens Can Circumvent Iron
Withholding

In order to thrive within vertebrates, bacteria must possess

mechanisms to evade nutritional immunity. Perhaps the most
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Figure 1. A representative battle during the war for iron. (A) In a healthy individual iron is largely intracellular, sequestered within ferritin or as
a cofactor of heme complexed to hemoglobin within erythrocytes. Any extracellular free iron is rapidly bound by circulating transferrin. Hemoglobin
or heme that is released as a result of natural erythrocyte lysis is captured by haptoglobin and hemopexin, respectively. Taken together, these factors
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elegant mechanism to circumvent iron withholding is employed by

Borrelia burgdorferi, the causative agent of Lyme disease. B. burgdorferi

has evolved to not require iron for growth by substituting man-

ganese in its metal-requiring enzymes [12]. Most pathogens have

not evolved this simple defense strategy and instead circumvent

iron withholding through high-affinity iron uptake mechanisms

that compete against host-mediated sequestration. These uptake

systems can be divided into three main categories: siderophore-

based systems, heme acquisition systems, and transferrin/lactofer-

rin receptors (Figure 1C).

Siderophores are low molecular weight iron-binding complexes

that are secreted from bacteria. Siderophores bind iron with an

association constant that can exceed 1050, enabling bacteria to

compete with iron sequestration by transferrin and lactoferrin [2].

Upon removing iron from host proteins, iron-loaded siderophores

are bound by cognate receptors expressed at the bacterial surface.

The siderophore–iron complex is then internalized into the

bacterium and the iron is released for use as a nutrient source.

The importance of siderophores to bacterial virulence is demon-

strated by the decreased fitness of siderophore-defective strains in

animal models of infection [2,7].

Heme acquisition systems typically involve surface receptors

that recognize either heme or heme bound to hemoproteins such

as hemoglobin or hemopexin. Heme is then removed from

hemoproteins and transported through the envelope of bacteria

into the cytoplasm. Once inside the cytoplasm, the iron is released

from heme through the action of heme oxygenases or reverse

ferrochelatase activity [13–15]. Bacterial pathogens can also

elaborate secreted heme-scavenging molecules that remove heme

from host hemoproteins. These molecules, known as hemophores,

are functionally analogous to siderophores but are proteins that

target heme, whereas siderophores are small molecules that target

iron atoms [16]. As is the case with siderophore transport systems,

genetic defects in heme acquisition systems reduce bacterial fitness

in many animal models of infection [2,7].

In addition to acquiring iron from transferrin and lactoferrin

through siderophore-based mechanisms, some bacteria are

capable of direct recognition of these host proteins. The most

well-studied transferrin and lactoferrin receptors are present in

pathogenic members of the Neisseriaceae and Pasteurellaceae [7].

These proteins are modeled to recognize human transferrin or

lactoferrin, leading to iron removal and subsequent transport into

the bacterial cytoplasm. Human challenge models with Neisseria

gonorrhoeae suggest that gonococci expressing both lactoferrin and

transferrin receptors exhibit a selective advantage within the host,

underscoring the importance of this iron acquisition strategy to

these organisms [5,17].

Targeting Bacterial Iron Acquisition as a Second
Layer of Defense against Infection

A second layer of nutritional immunity employed by vertebrates

is to combat siderophore-mediated iron acquisition through the

production of siderocalin [18]. Siderocalin, also referred to as

lipocalin-2 or neutrophil gelatinase-associated lipocalin (NGAL), is

a protein that is secreted by neutrophils in response to infection.

Siderocalin binds enterobactin, the primary siderophore of many

enteric bacteria, and sequesters the siderophore–iron complex,

preventing bacterial uptake. Mice lacking siderocalin exhibit

increased sensitivity to enterobactin-expressing bacteria, demon-

strating the pathophysiological relevance of this anti-siderophore

defense system [19].

The requirement for iron by bacterial pathogens ensures that

iron acquisition systems are expressed and surface exposed during

infection. This fact has established surface-exposed iron receptors

as viable vaccine candidates for the prevention of bacterial

infection. The enterobactin receptor FetA from Neisseria meningitidis

[20], the siderophore receptor IroN from Escherichia coli [21], the

hemoglobin receptor HgbA from Haemophilus ducreyi [22], surface

proteins of the S. aureus Isd heme uptake machinery [23], and a

combination of E. coli iron acquisition proteins [24] are examples

of iron utilization systems that have been proposed as candidate

vaccines.

Bacterial Pathogens Are Leading the Arms Race
for Nutrient Iron

Resistance to siderocalin is a conserved strategy across multiple

pathogenic microbes. A primary bacterial defense against side-

rocalin involves the production of stealth siderophores. These

molecules represent structurally modified enterobactin-type side-

rophores that are resistant to siderocalin binding. The Gram-

positive pathogen B. anthracis produces the siderophore petrobac-

tin, which incorporates a 3,4-dihydroxybenzoyl chelating subunit

that prevents siderocalin binding [25]. Similarly, Salmonella

Typhimurium produces salmochelin, a glycoslyated derivative of

enterochelin that is not targeted by siderocalin [26]. The

production of stealth siderophores is the most recently uncovered

layer in the arms race for nutrient iron during host–pathogen

interactions. Undoubtedly, we have not yet discovered the

complete armamentarium in this battle that has tremendous

implications for the outcome of bacterial infections.
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