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Abstract: Following the events of September 11, 2001, in the United States, world public awareness for possible terrorist attacks on

water supply systems has increased dramatically. Among the different threats for a water distribution system, the most difficult to address

is a deliberate chemical or biological contaminant injection, due to both the uncertainty of the type of injected contaminant and its

consequences, and the uncertainty of the time and location of the injection. An online contaminant monitoring system is considered as a

major opportunity to protect against the impacts of a deliberate contaminant intrusion. However, although optimization models and

solution algorithms have been developed for locating sensors, little is known about how these design algorithms compare to the efforts of
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human designers, and thus, the advantages they propose for practical design of sensor networks. To explore these issues, the Battle of the

Water Sensor Networks �BWSN� was undertaken as part of the 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati,

Ohio, August 27–29, 2006. This paper summarizes the outcome of the BWSN effort and suggests future directions for water sensor

networks research and implementation.
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Introduction

Since the early days of King Hezekiah �late eighth to early sev-
enth centuries BCE�, who constructed a 533-m underground tun-
nel to channel the Gihon Spring outside Jerusalem into the city as
part of his war against Sennacherib, water resources systems were
the subject of threats and conflicts throughout history with diverse
intensities �Gleick 1998�.

Related water terrorist activities were reported in ancient
Rome, in the United States during its Civil War, in Europe and
Asia during World War II, and in 1999 in Kosovo. Hickman
�1999� and Deininger and Meier �2000� discussed the topic of
deliberate contamination of water supply systems.

For the last decade there has been increasing interest in the
development of sensor networks to cope with both deliberate and
accidental hazard’s intrusions into water distribution systems. Op-
timization models and solution algorithms have been developed
for identifying the most efficient sensor locations. These optimi-
zation models and solution algorithms have involved simplifying
assumptions about design objectives, network contaminant trans-
port, sensor response, event detection, emergency response, in-
stallation and maintenance costs, etc. Little is known about how
these design algorithms compare from one design methodology to
another, and thus, what advantages they provide for practical de-
sign of sensor networks. To explore these issues, the Battle of the
Water Sensor Networks �BWSN� was held �Ostfeld et al. 2006� as
part of the Eigth Annual Water Distribution Systems Analysis
Symposium, in Cincinnati, on August 27–29, 2006.

The BWSN was aimed at objectively comparing the perfor-
mance of contributed sensor network designs, as applied to two
water distribution systems examples. Fifteen independent re-
search groups and practicing engineers contributed their designs.
All the teams were asked to develop designs according to a set of
rules, which defined the design performance metrics and the char-
acteristics of the contamination events. Teams were free to de-
velop their designs and methodologies, yet, for comparison, all
outcome designs were evaluated using identical procedures.

The objective of this paper is to summarize the outcome of the
BWSN effort and to highlight future directions for water sensor
networks research. The following describes: �1� the BWSN de-
sign objectives; �2� design assumptions and cases; �3� a synopsis
of the teams’ design approaches; �4� a comparison of the design
results; and �5� conclusions and future research directions.

Design Objectives

Contributed sensor network designs were evaluated using the fol-
lowing four quantitative design objectives:

Expected Time of Detection „Z1…

For a particular contamination scenario, the time of detection by a
sensor is the elapsed time from the start of the contamination

event, to the first identified presence of a nonzero contaminant
concentration. The time of first detection, t j, refers to the jth sen-
sor location. The time of detection for the sensor network for a
particular contamination event, td, is the minimum among all sen-
sors present in the design

td = min
j

t j �1�

The objective function to be minimized is the expected value
computed over the assumed probability distribution of contami-
nation events

Z1 = E�td� �2�

where E�td� denotes the mathematical expectation of the mini-
mum detection time td. Since undetected events had no detection
times, they were not included in the analysis. This acknowledged
limitation pertains to all of the design objectives and is discussed
later in the paper.

Expected Population Affected prior to Detection „Z2…

For a specific contamination scenario, the population affected is a
function of the ingested contaminant mass. The ingested contami-
nant mass, in turn, depends on the time of detection for the sensor
network, as described above; two key assumptions are that no
mass is ingested after detection and that all mass ingested during
undetected events is not counted. For a particular contamination
scenario, the mass ingested—prior to detection—by any indi-
vidual at network node i is

Mi = ��t�
k=1

N

cik�ik �3�

where �=mean amount of water consumed by an individual �L/
day/person�; �t=evaluation time step �days�; cik=contaminant
concentration for node i and time step k �mg/L�; �ik

= “dose rate multiplier” �Murray et al. 2006� for node i and time
step k �unitless�; and N=number of evaluation time steps prior to
detection, i.e., the largest integer such that N�t� td. The series
�ik, k=1, . . . ,N has a mean of 1 �so, � is truly the mean volumet-
ric ingestion rate� and is intended to model the variation in inges-
tion rate throughout the day. It is assumed that the ingestion rate
varies with the water demand rate at the respective node, thus

�ik = qik/q̄i ∀ k � N �4�

where qik=water demand for time step k and node i; and

q̄i=average water demand at node i.
A dose–response model �Chick et al. 2001, 2003� is used to

express the probability that any person ingesting mass Mi will be
affected �i.e., becomes infected or symptomatic�

Ri = ��� log10��Mi/W�/D50�� �5�

where Ri=probability �0, 1� that a person who ingests contami-
nant mass Mi will become infected or symptomatic; �
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=so-called Probit slope parameter �unitless�; W=assumed �aver-
age� body mass �kg/person�; D50=dose that would result in a 0.5
probability of becoming infected or symptomatic �mg/kg�; and
�=standard normal cumulative distribution function.

The population affected, Pa, for a particular contamination
scenario is calculated as

Pa = �
i=1

V

RiPi �6�

where Pi=population assigned to node i; and V=total number of
nodes. The objective function to be minimized is the expected
value of Pa computed over the assumed probability distribution of
contamination events

Z2 = E�Pa� �7�

where E�Pa� denotes the mathematical expectation of the affected
population Pa.

Expected Consumption of Contaminated Water prior to
Detection „Z3…

Z3=expected volume of contaminated water consumed prior to
detection

Z3 = E�Vd� �8�

where Vd denotes the total volumetric water demand that exceeds
a predefined hazard concentration threshold C; and E�Vd�

=mathematical expectation of Vd. As for the expected population
affected, key assumptions are that no water is delivered after de-
tection and undetected events are not counted. Z3 �as Z2 and Z1� is
to be minimized.

Detection likelihood „Z4…

Given a sensor network design �i.e., number and locations� the
detection likelihood �i.e., the probability of detection� is estimated
by

Z4 =
1

S
�
r=1

S

dr �9�

where dr=1 if contamination scenario r is detected, and zero oth-
erwise; and S denotes the total number of the contamination sce-
narios considered. Z4 is to be maximized.

The variables that constitute the design objectives are subject
to right censoring as a result of the finite-simulation durations
used to compute their values �96 h for the small network; 48 h for
the large network�. The variable that is directly censored is the
time to detection, td, which cannot exceed the difference between
the end of the simulation period and the start of the contamination
event �that is, there are varying censoring times for td, depending
on when the event begins�. The other variables: population af-
fected prior to detection �Pa�; the demand of contaminated water
prior to detection �Vd�; and the detection indicator variable �dr�;
are all co-censored along with td, although not by an amount that
can be determined a priori by knowing the start time of the con-
tamination event and the duration of the simulation period. In
addition, as noted below, the expectations for these variables
�Z1–Z4� were computed in this study using only the events that
were detected. As such, the random variables were in fact trun-
cated �rather than censored�, introducing an even greater down-
ward bias in the computed values of their expectations. While this

truncation was viewed as the only feasible approach for imple-

menting this evaluation, approaches that explicitly recognize the

censoring caused by finite-simulation durations are considered in

the concluding section, which addresses future research needs.

Design Assumptions and Cases

Participants were asked to provide designs for locating five sen-

sors and 20 sensors for a base case �A� and three derivative cases

�B, C, and D� using EPANET Version 2.00.10 �http://www.

epa.gov/ORD/NRML/wswrd/epanet.html�. The four cases are de-

scribed below.

Base Case A

1. All quantities affecting network model water quality predic-

tions were assumed to be known and deterministic. Sensor

network designs were challenged by an ensemble of con-

tamination scenarios sampled from a statistical distribution;

the probability distribution of contamination events is de-

scribed herein. Contaminant intrusions occurred at network

nodes, with an injection flow rate of 125 L /h, contaminant

concentration of 230,000 mg /L, and injection duration of

2 h. The contaminant was assumed conservative after injec-

tion. Each contamination scenario involved a single injection

location, which may occur at any network node and begin at

any time with equal probability. For purposes of design

evaluation, contaminant concentrations were evaluated using

a 5-min time step.

2. For purposes of calculating the expected population affected

prior to detection �Z2�: �=2 L /day, �=0.34 �-�, D50

=41 mg /kg, and W=70 kg. For purposes of estimating node

population, the total per capita water demand rate was as-

sumed to be 300 L /day.

3. For purposes of calculating the expected demand of contami-

nated water prior to detection �Z3�, the hazard concentration

threshold was C=0.3 mg /L.

4. Sensors instantly detected any nonzero contaminant concen-

tration and action was taken to eliminate further exposure

without delay.

Derivative Case B

Identical to Base Case A except that the injection duration was

increased to 10 h.

Derivative Case C

Identical to Base Case A except that the response delay was 3 h,

i.e., it took 3 h after detection for emergency response to limit

contaminant exposure.

Derivative Case D

Identical to Base Case A except that all contamination scenarios

involved two injection locations, which may occur at any two

distinct nodes with equal probability. The contamination scenario

may begin at any time with equal probability, but both injections

were synchronized to begin at the same time.
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Design Approaches

Fifteen sensor designs were submitted to the BWSN. This section
gives a brief description of each contribution.

Alzamora and Ayala �2006� suggested a general framework for
sensor locations using topological algorithms. Berry et al. �2006�

proposed a p-median formulation adapted from discrete location
theory to define the sensors location problem, which was further
solved using a heuristic method. Dorini et al. �2006� suggested a
constrained multiobjective optimization framework entitled the
noisy cross-entropy sensor locator �nCESL� algorithm, which is
based on the cross-entropy methodology proposed by Rubinstein
�1999�. Eliades and Polycarpou �2006� proposed a multiobjective
solution, using an “iterative deepening of Pareto solutions” algo-
rithm. Ghimire and Barkdoll �2006a,b� suggested a heuristic
demand-based approach in which sensors were located at the
junctions with the highest demands �Ghimire and Barkdoll
2006a�, or the highest mass released �Ghimire and Barkdoll
2006b�. Guan et al. �2006� proposed a genetic algorithm
simulation–optimization methodology based on a single objective
function approach in which the four quantitative design objectives
were embedded. Gueli �2006� suggested a predator–prey model
applied to multiobjective optimization, based on an evolution pro-
cess. Huang et al. �2006� proposed a multiobjective genetic algo-
rithm framework coupled with data mining. Krause et al. �2006�

applied a greedy algorithm for the sensors locations, noting that a
limitation in the BWSN formulation was that the Zi �i=1,2 ,3�

objectives were being evaluated against only the scenarios that
were detected, thus not considering the effects of the undetected
scenarios, which might be critical. Ostfeld and Salomons �2006�

and Preis and Ostfeld �2006� used the multiobjective nondomi-
nated sorted genetic algorithm-II �NSGA-II� �Deb et al. 2000�

scheme. Propato and Piller �2006� used a mixed-integer linear
program to solve the sensors’ locations. Trachtman �2006� sug-
gested an engineering “strawman” approach for locating the sen-
sors taking into consideration factors such as population
distribution, system pressure and flow patterns, critical customer
locations, etc. Wu and Walski �2006� used a multiobjective opti-
mization formulation, which was solved using a genetic algo-
rithm, with the contamination events randomly generated using a
Monte Carlo scheme.

Case Studies

Two water distribution systems of increasing complexity were
used for the designs.

Network 1 �Fig. 1� was comprised of 126 nodes, one constant
head source, two tanks, 168 pipes, two pumps, eight valves, and
was subject to four variable demand patterns. The system was
simulated for a total extended period duration of 96 h.

Network 2 �Fig. 2� had 12,523 nodes, two constant head
sources, two tanks, 14,822 pipes, four pumps, five valves, and
was subject to five variable demand patterns. The system was
simulated for a total extended period duration of 48 h.

Both networks were real water distribution systems that were
“twisted” to preserve their anonymity. Space limitation prohibits
the description of all of their details �e.g., pipe lengths, base de-

Fig. 1. Layout of Network 1 �126 nodes, 1 source, 2 tanks, 168 pipes, 2 pumps, 8 valves�

Fig. 2. Layout of Network 2 �12,523 nodes, 2 sources, 2 tanks,

14,822 pipes, 4 pumps, 5 valves�
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mands, diameters, and elevations�. The network’s EPANET input
files can be downloaded from the Exeter Centre for Water Sys-
tems �ECWS� �http://www.exeter.ac.uk/cws/bwsn�.

Design Results

A methodology for evaluating a given sensor design should com-
ply with two basic requirements: �1� it should be objective, and
�2� it should assess a design regardless of the method used to

receive it; thus, solutions from academia, practitioners, utilities,

etc., all would be assessed on the same basis. To accomplish this

task, a utility was developed by Salomons �2006�.
The utility was comprised of two stages: �1� generation of a

matrix of contamination injection events in either of two mecha-
nisms: random, using Monte Carlo-type simulations selected by
the user; or deterministic, injection at each node each 5 min, and
�2� evaluation of Zi �i=1, . . . ,4� according to the matrix of con-
tamination injection events constructed in Stage 1.

The utility was distributed to all participants prior to the

Table 1. Network 1, Case A: Five Sensor �N1A5� Solutions

Reference

Sensor

location

�nodes�

Z1

�min�

Z1

�people�

Z1

�gal�

Z1

�detection

likelihood�

Berry et al. �2006� 17, 21, 68, 79, 122 542 140 2,459 0.609

Dorini et al. �2006� 10, 31, 45, 83, 118 1,068 258 7,983 0.801

Eliades and Polycarpou �2006� 17, 31, 45, 83, 126 912 221 7,862 0.763

Ghimire and Barkdoll �2006a� 126, 30, 118, 102, 34 432 357 4,287 0.367

Ghimire and Barkdoll �2006b� 126, 30, 102, 118, 58 424 331 3,995 0.402

Guan et al. �2006� 17, 31, 81, 98, 102 642 159 2,811 0.663

Gueli �2006� 112, 118, 109, 100, 84 794 403 10,309 0.699

Huang et al. �2006� 68, 81, 82, 97, 118 541 280 4,465 0.676

Krause et al. �2006� 17, 83, 122, 31, 45 842 181 3,992 0.756

Ostfeld and Salomons �2006� 117, 71, 98, 68, 82 461 250 4,499 0.622

Preis and Ostfeld �2006� 68, 101, 116, 22, 46 439 151 7,109 0.477

Propato and Piller �2006� 17, 22, 68, 83, 123 711 164 3,148 0.725

Trachtman �2006� 1, 29, 102, 30, 20 391 142 2,504 0.237

Wu and Walski �2006� 45, 68, 83, 100, 118 704 303 8,406 0.787

Table 2. Network 1, Case A: 20 Sensors �N1A20� Solutions

Reference

Sensor locations

�nodes�

Z1

�min�

Z1

�people�

Z1

�gal�

Z1

�detection

likelihood�

Berry et al. �2006� 3, 4, 17, 21, 25, 31, 34, 37, 46, 64, 68, 81, 82, 90, 98, 102,

116, 118, 122, 126

287 68 408 0.770

Dorini et al. �2006� 0, 10, 14, 17, 31, 34, 39, 45, 49, 68, 74, 82, 83, 90, 100,

102, 114, 122, 124, 128

408 72 642 0.855

Eliades and Polycarpou �2006� 10, 11, 14, 17, 19, 21, 31, 35, 45, 68, 74, 83, 90, 100, 102,

114, 118, 123, 124, 126

368 96 969 0.893

Ghimire and Barkdoll �2006a� 126, 30, 118, 102, 34, 17, 58, 68, 93, 27, 42, 82, 45, 35, 83,

89, 99, 70, 18, 32

377 104 750 0.792

Ghimire and Barkdoll �2006b� 126, 30, 102, 118, 58, 68, 17, 93, 82, 34, 99, 98, 89, 83,

100, 96, 70, 27, 32, 35

370 106 787 0.769

Guan et al. �2006� 4, 11, 17, 21, 27, 31, 34, 35, 46, 68, 75, 79, 82, 83, 98, 100,

102, 118, 122, 126

337 78 503 0.854

Gueli �2006� 112, 1, 103, 24, 21, 102, 35, 19, 116, 85, 61, 73, 114, 31, 7,

8, 64, 28, 93, 124

226 88 1,181 0.577

Huang et al. �2006� 8, 11, 42, 46, 52, 68, 70, 75, 76, 82, 83, 95, 97, 99, 100,

109, 111, 117, 123, 126

375 148 1,799 0.849

Krause et al. �2006� 17, 83, 122, 31, 45, 100, 11, 126, 68, 90, 21, 35, 34, 118,

123, 114, 124, 76, 10, 19

401 93 865 0.900

Ostfeld and Salomons �2006� 68, 5, 40, 65, 51, 69, 88, 89, 22, 72, 34, 71, 53, 112, 63, 78,

122, 28, 118, 97

198 115 1,039 0.647

Propato and Piller �2006� 11, 17, 34, 37, 38, 45, 49, 68, 76, 83, 90, 100, 102, 106,

114, 118, 123, 124, 125, 126

433 106 934 0.879

Trachtman �2006� 1, 29, 102, 30, 20, 18, 58, 5, 3, 76, 98, 17, 126, 68, 93, 27,

42, 82, 46, 35

325 99 862 0.739

Wu and Walski �2006� 10, 12, 19, 21, 34, 35, 40, 45, 68, 75, 80, 83, 98, 100, 102,

114, 118, 123, 124, 126

370 142 1,158 0.901
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BWSN for testing Case A of Networks 1 and 2, and is used herein
to compare the results of the contributed designs.

Although not defined explicitly in the BWSN rules �Ostfeld
et al. 2006�, it became evident during the groups’ design prepa-
rations and during the BWSN that the expected time of detection
�Z1�, the expected population affected prior to detection �Z2�, and
the expected demand of contaminated water prior to detection
�Z3�, competed against the detection likelihood �Z4�; thus, the
BWSN was inherently a multiobjective problem.

In a multiobjective context the goal is to find, from all the
possible feasible solutions, the set of nondominated solutions,
where a nondominated solution is optimal in the sense that there
is no other solution that dominates it �i.e., there is no other solu-
tion that is better than that solution with respect to all objectives�.

This leads to two observations: �1� comparisons can be made
on the Zi �i=1,2 ,3� versus Z4 domains, and �2� a unique single
optimal solution cannot be identified, thus a “winner” cannot be
declared. It should also be emphasized in this context that alter-
nate comparison methods could have been employed, thus there is
no claim that the adopted comparison approach is better in an
absolute sense than an alternative methodology.

Network 1

Tables 1 and 2 and Figs. 3–9 provide the results for Network 1 for
Cases A–D. To evaluate Network 1, Base Case A �N1A�, Network
1, Base Case B �N1B�, and Network 1, Base Case C �N1C� the
full matrices of 37,152 injection events were generated �each
node, every 5 min, for an extended period simulation time of
24 h�, and for Network 1, Base Case D �N1D�, 30,000 random

events. Each injection event simulation took about 10 s on an

IBM PC 3.2 GHz, 1 GB RAM. All matrices used for Networks 1

and 2 can be downloaded from ECWS �http://www.exeter.ac.uk/

cws/bwsn�.

Krause et al. �2006� published Node identification �ID� num-

bers for all their solutions to the BWSN networks and scenarios.

In the present work, the evaluation was based on junction ID.

Thus, Krause et al. �2006� solutions were converted from node ID

to junction ID. For Network 2, this is a simple offset of −1 to all

node numbers. For Network 1 there are no junction numbers 107

and 108; therefore, junctions were offset −1 from nodes for those

below 107 and +1 for those above 109.

Tables 1 and 2 show the participants’ detailed sensor designs

for N1A5 Network 1, Base Case A, five sensors �N1A5�, and for

Network 1, Base Case A, 20 sensors �N1A20�, respectively; Fig.

3 describes the layout of the suggested designs for N1A5; Fig. 4

presents tradeoff curves for Zi �i=1,2 ,3� versus Z4 for N1A5;

Fig. 5 shows tradeoff curves for Zi �i=1,2 ,3� versus Z4 for

N1A20.

It can be seen from Fig. 3 that most of the participant groups’

solutions chose Node 83 as a sensor location, which is a down-

stream node of the system, and Nodes 68 and 118, at the southern

and northern parts of the system, respectively. At those locations,

most of the nondominated solutions �Fig. 4� were present.

Observing Fig. 4, it can be seen that the relative locations on

the Zi �i=1,2 ,3�–Z4 plane of the different parties’ solutions are

alike and that the Zi objective functions are correlated �i.e., a

nondominated solution obtained by a specific method would

likely remain regardless of the objective function used�. This is

also evident in Fig. 5. An improvement of the results can be

Fig. 3. �Color� Network 1, Case A: 5 sensors �N1A5� solutions layout
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inspected when matching Figs. 4 and 5 �i.e., results for systems of
five versus 20 sensors, respectively�.

Fig. 6 outlines tradeoff curve results for Derivative Cases B,
C, and D for Z1 versus Z4; Fig. 7 for Derivative Cases B, C, and
D for Z2 versus Z4; and Fig. 8 for Derivative Cases B, C, and D
for Z3 versus Z4.

It can be seen from Figs. 6–8 that similar patterns of solutions
were received for Cases B and C, but significantly different for
Case D. As Case D considers two simultaneous injections begin-
ning at the same time, but at different random locations, the de-
tection likelihood increased considerably, with all solutions
having a detection likelihood of above 0.8 for 20 sensors. In most
solutions the Zi �i=1,2 ,3� values were reduced for Case D, com-
pared to Cases B and C.

In Fig. 9, Z2 versus Z4 for N1A5 and for N1C5 are plotted for
each of the group’s solutions. It can be seen from Fig. 9, as
expected, that as the detection delay increased �Derivative Case
C�, the expected population affected prior to detection �Z2� in-
creased, for all the solutions.

Network 2

Tables 3 and 4 and Figs. 10 and 11 provide results for Network 2
for Base Case A. To evaluate Network 2, Base Case A �N2A�, a
randomized matrix of 25,054 events �two injections at each node
of the system, at two random times� was generated. Each injec-
tion event simulation took about 2.1 min on an IBM PC 3.2 GHz,

1 GB RAM. Krause et al. �2006� noted that the full matrix of
simulated results for Network 2 can be computed using parallel
processing and optimized storage algorithms.

Tables 3 and 4 provide the participants detailed sensor designs
for Network 2, Base Case A, five sensors �N2A5� and for Net-
work 2, Base Case A, 20 sensors �N2A20�, respectively; Fig. 10
presents tradeoff curves for Zi �i=1,2 ,3� versus Z4 for N2A5, and
Fig. 11 shows tradeoff curves for Zi �i=1,2 ,3� versus Z4 for
N2A20. Note that for N2A5 both Berry et al. �2006� and Krause
et al. �2006� found the same solution �see Table 3 and Fig. 10�,
which is nondominated, using different approaches.

It can be seen from Figs. 10 and 11 �and for Network 1
with Figs. 4 and 5�, that the relative locations on the Zi

�i=1,2 ,3�–Z4 plane of the different solutions are similar; thus,
the Zi objective functions are correlated. Compared to Network 1,
the number of nondominated solutions was reduced considerably
in Network 2.

There are an infinite number of intrusion scenarios possible on
a water distribution system, due to varying durations, locations,
etc. The BWSN utilized Cases B, C, and D as variations on Case
A, but they were different.

Table 5 provides a summary of the nondominated solutions
received by the participant groups for all the explored cases as
presented in Figs. 4–11 �e.g., Berry et al. �2004� obtained two
nondominated solutions for N1A5, as shown in Fig. 4�. Krause et
al. �2006� received the highest total number of 26 nondominated
solutions for all the explored cases.

The BWSN results do not support the assumption that Case A

Fig. 4. Network 1, Case A: 5 sensors �N1A5� trade-off solution

curves

Fig. 5. Network 1, Case A: 20 sensors �N1A20� trade-off solution

curves
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is the most critical and a design that performs well in Case A
would also do reasonably well in other cases. However, the
BWSN results did prompt additional research, which indicated
that for the two water distribution systems used in the BWSN,
sensor networks based on Cases A, B, and C, were spatially simi-
lar. Due to this attribute, a sensor network design that performs
well in Case A will also do reasonably well in Cases B and C
�Isovitsch and VanBriesen 2008�.

Observations

Nondetect Events

The evaluation of sensor design was made in the presence of a
varied ensemble of contamination incidents. In real life, each of
these incidents would play out over many days. Therefore, it was
important that the hydraulic models be sufficiently calibrated to
support extended period simulations, and that these should be
used in the evaluation of any sensor design.

Consider one such simulation. Regardless of the objective
being evaluated, the contamination plume will propagate through
the network until the simulation has run its course. If, at the end
of the simulation, no sensor has experienced contamination, this
condition is referred to as a “nondetection.” In a large ensemble
of potential incidents in a sizable network protected by a small
number of sensors, occasions of nondetections are inevitable. A

decision should be made whether or not to include the impact of
these nondetections in the calculation of the mean impact over all
incidents. This decision is heavily influenced by the objective�s�
in question, as demonstrated below.

First, consider Z1—the time to detection. If an incident is de-
tected by a sensor, this detection will often occur within a few
hours of the injection. However, there are many injection points
on the periphery of a network that lead to small plumes that do
not permeate the network and are never detected. When the im-
pact of these nondetections are included in the calculation of the
Z1 objective, nonintuitive behavior ensues. Specifically, recalling
that the analysis depends on extended period simulations, note
that the impact of nondetections is very severe and dwarfs that of
detections. Optimizing for minimum time to detection in the pres-
ence of nondetections means avoiding nondetections at all costs,
and results in sensor placements that are directly correlated with
those optimizing the number of failed detections �Z4�. In real
terms, this means placing sensors far from the center of a network
in order to maximize detections. This is exactly opposed to an
intuitive approach for minimizing the time to detection. In order
to avoid this nonintuitive behavior, it was decided to not include
nondetections in the evaluation of objective Z1.

The situation was different for Z2, the population exposed. In
the discussion above, it was shown that nondetections in the pe-
riphery of the system with very small real impact, were penalized
severely in terms of the time to detection Z1, and could trick
optimizers into selecting nonsensical solutions. With Z2, however,

Fig. 6. Network 1: Z1 versus Z4 for Cases B, C, and D Fig. 7. Network 1: Z2 versus Z4 for Cases B, C, and D
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this pathology does not exist. A small incident that does not
spread has small impact, no matter how long the simulation is
run. Therefore, it does not disproportionately affect the solution.
It is noted that including nondetections in this case would be
desirable. In effect, doing so would improve Z4 without requiring
an explicit multiobjective solution. However, in the interest of a
“clean” design of experiments, and noting that Z1 does not make
sense in the context of nondetections, it was chosen to evaluate

Z1, Z2, and Z3 without considering nondetections, and to chal-
lenge multiple objective solvers with the addition of Z4 as a sepa-
rate objective.

System’s Properties

The experimental design in the BWSN was constrained by limi-
tations on available datasets. Despite the size of Network 2,
which is considered in this study as a complicated system, it is a
fairly simple network that has properties unlike those of more
complex networks. Some research teams on this proposal �e.g.,
Berry et al., 2006� have experience with the latter, and point
out that these can be more challenging for sensor placement
algorithms.

One example of a property that both Networks 1 and 2 share,
but more complex networks might not, is that the average plume
size over the possible set of injections was very small. This is due
to the relatively simple structure of these network models, which
have few pumps and a largely homogeneous flow pattern over a
24-h period. A simple analysis of the plume extent showed that
the average injection in Network 2 contaminated roughly 2% of
the network, and in fact, many injections contaminated closer to
0.2% of the network. Furthermore, these injections of small ex-
tent ware usually independent of the injection time since flow
patterns did not change drastically from one time to the next. In a

Table 3. Network 2, Case A: Five Sensor �N2A5� Solutions

Reference

Sensor locations

�nodes�

Z1

�min�

Z1

�people�

Z1

�gal�

Z1

�detection

likelihood�

Berry et al. �2006� 3,357; 4,684; 10,874; 11,184; 11,304 789 1,515 95,403 0.259

Dorini et al. �2006� 636; 3,585; 4,684; 9,364; 10,387 1,285 2,393 221,461 0.303

Eliades and Polycarpou �2006� 532; 1,486; 3,357; 4,359; 4,609 1,249 2,560 251,856 0.299

Ghimire and Barkdoll �2006a,b� 9,271; 1,486; 4,482; 5,585; 4,609 1,243 2,757 310,672 0.103

Guan et al. �2006� 321; 3,770; 4,084; 4,939; 7,762 795 1,731 119,219 0.227

Huang et al. �2006� 3,355; 5,088; 5,430; 9,005; 9,550 940 2,372 203,215 0.227

Krause et al. �2006� 10,874; 4,684; 11,304; 3,357; 11,184 789 1,515 95,403 0.259

Ostfeld and Salomons �2006� 5,039; 4,646; 1,515; 3,234; 5,541 1,443 2,605 270,496 0.285

Preis and Ostfeld �2006� 871; 1,917; 2,024; 4,115; 4,247 825 1,739 123,344 0.173

Trachtman �2006� 5,420; 542; 12,505; 12,514; 12,509 1,759 4,968 650,176 0.126

Wu and Walski �2006� 3,709; 4,957; 6,583; 8,357; 9,364 1,189 2,590 249,710 0.310

Fig. 8. Network 1: Z3 versus Z4 for Cases B, C, and D

Fig. 9. Network 1: Z2 versus Z4 for N1A5 and N1C5
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complex network with many pressure zones, both the expected
plume size and the behavior of injections beginning at different
times can be quite unlike those of Network 2.

Conclusions

This paper provides a summary of the BWSN �Ostfeld et al.
2006�, the goal of which was to objectively compare the solutions
obtained using different approaches to the problem of sensor
placement in water distribution systems.

Participants were requested to place five and 20 sensors for
two real water distribution systems of increasing complexity and
for four derivative cases, taking into account four design objec-
tives: �1� minimization of the expected time of detection �Z1�; �2�

minimization of the expected population affected prior to detec-
tion �Z2�; �3� minimization of the expected demand of contami-
nated water prior to detection �Z3�, and �4� maximization of the
detection likelihood �Z4�. Fifteen contributions were received
from academia and practitioners, spanning a range of approaches
and computational methods ranging from pure heuristic engi-
neering judgment to sophisticated mathematical optimization
algorithms.

As the BWSN evolved, it became clear that the problem of
sensor placements is multiobjective. As only compromised non-
dominated solutions can be defined in a multiobjective space,
determination of the “best” received solution was not possible,
but this assessment provided indications of breadth and similarity

of findings, as desired using different mathematical algorithms.
From a practical perspective, the most practical conclusion

that can be drawn is that general guidelines cannot be set. Engi-
neering judgment and intuition alone are not sufficient for effec-
tively placing sensors. Both engineering judgment and intuitive
processes need to be supported by quantitative analysis. The
analysis on both examples has shown that sensors do not need to
be clustered and that placing sensors at vertical assets �sources,
tanks, and pumps� is not a necessity. In fact, most of the designs
have not placed sensors at vertical assets. In some cases �e.g., see
Fig. 3�, there were considerable similarities where the same nodes
�or nodes at a immediate vicinity� were selected by many of the
methodologies.

Future Research Directions

The BWSN highlighted the following issues that need further
consideration and research efforts:

Contamination Warning Systems Evaluation

For Network 1 the full event matrix �i.e., all possible injection
times and locations� was utilized for one possible injection
�Derivative Cases A, B, and C�. For Network 2, the 25,054
random events matrix generated for Testing Case A was only a
small portion of the entire space of possible injection events.
Hence, generation of different event matrices will likely produce

Table 4. Network 2, Case A: 20 Sensors �N2A20� Solutions

Reference

Sensor locations

�nodes�

Z1

�min�

Z1

�people�

Z1

�gal�

Z1

�detection

likelihood�

Berry et al. �2006� 636; 1,917; 3,357; 3,573; 3,770; 4,132; 4,240; 4,594; 5,114;

6,583; 6,700; 7,652; 8,999; 9,142; 9,722; 10,614; 10,874;

11,177; 11,271; 12,258

540 548 17,456 0.366

Dorini et al. �2006� 647; 928; 1,478; 1,872; 2,223; 2,848; 3,573; 4,650; 5,076;

5,366; 6,835; 7,422; 8,336; 8,402; 9,204; 9,364; 10,874;

11,271; 11,528; 12,377

915 1,325 90,255 0.401

Eliades and Polycarpou �2006� 532; 1,426; 1,486; 1,976; 3,231; 3,679; 3,836; 4,234; 4,359;

4,609; 5,087; 5,585; 6,922; 7,670; 7,858; 8,629; 9,360;

9,787; 10,885; 12,167

1,108 1,600 121,574 0.409

Ghimire and Barkdoll �2006a,b� 9,271; 1,486; 4,482; 5,585; 4,609; 4,359; 9,787; 532; 5,953;

12,341; 4,808; 4,662; 4,638; 3,864; 1,667; 3,806; 1,590;

7,858; 9,303; 12,220

1,090 1,924 189,281 0.300

Guan et al. �2006� 174; 311; 1,486; 1,905; 2,589; 2,991; 3,548; 3,757; 3,864;

4,184; 4,238; 5,091; 6,995; 7,145; 7,689; 8,826; 9,308;

9,787; 10,614; 12,086

645 966 43,585 0.308

Huang et al. �2006� 73; 108; 1,028; 1,112; 1,437; 2,526; 3,180; 4,036; 4,648;

5,363; 5,826; 5,879; 6,581; 8,439; 8,580; 8,841; 9,363;

9,616; 10,216; 10,385

829 1,264 78,533 0.342

Krause et al. �2006� 10,874; 4,684; 11,304; 3,357; 11,184; 1,478; 9,142; 1,904;

4,032; 9,364; 4,240; 4,132; 3,635; 2,579; 3,836; 6,700;

8,999; 3,747; 8,834; 3,229

665 699 27,458 0.397

Ostfeld and Salomons �2006� 2,872; 4,319; 4,782; 3,281; 8,766; 3,712; 11,184; 4,433; 22;

11,623; 8,560; 3,129; 9,785; 8,098; 10,734; 6,738; 7,428;

611; 7,669; 7,500

1,093 1,554 109,931 0.384

Trachtman �2006� 5,420; 542; 12,505; 12,514; 12,509; 7,962, 7,469; 8,617;

3,070; 3,180; 11,314; 12,237; 6,390; 12,135; 1,795; 5,089;

4,892; 10,917; 3,817; 10,211

913 1,555 116,922 0.217

Wu and Walski �2006� 871; 1,334; 2,589; 3,115; 3,640; 3,719; 4,247; 4,990; 5,630;

6,733; 7,442; 7,714; 8,387; 8,394; 9,778; 10,290; 10,522;

10,680; 11,151; 11,519

850 1,353 77,312 0.420

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / NOVEMBER/DECEMBER 2008 / 565

Downloaded 04 Jan 2009 to 144.173.6.74. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



different solutions. For Network 2 the research challenge is to
identify procedures by which efficient sampling from the entire
set of contamination events can be computed for a rare subset
�i.e., a subset of events with a small probability to occur, but
with an extreme impact�, which will provide an “upper bound”
�i.e., worst-case estimation� for contamination warning system
evaluations.

Aggregation

Because the sensor placement problem rapidly becomes too com-
plex to explore thoroughly, there would be great merit in devel-
oping a water-quality aggregation algorithm that can construct an
“equivalent” but reduced network of a water distribution system,
containing fewer nodes and links but matching both the hydrau-
lics and the water quality of the original system.

Multiobjective Optimization

The study identified some correlations between objectives, and
these correlations should inform future studies. In particular, the
objectives Z1, Z2, and Z3 are positively correlated with one an-
other, and are negatively correlated with Z4. Stopping the damage
from the average injection more quickly tends to decrease the
population infected and the volume of contaminated water con-
sumed, while maximizing the detection probability tends to gen-
erate more conservative sensor placements that tolerate slow

detections. A greater multiobjective challenge for the future
would be to select only one of Z1, Z2, and Z3, and then to compare
the selection of representative “quick detection” to Z4, and possi-
bly with objectives not closely related to either.

Selection of Number of Sensors

Since sensors involve significant capital and operational expendi-
tures, research is needed to identify the marginal returns for ad-
ditional sensors as guidance in establishing the number of sensors
appropriate, for different water distribution networks.

Dual Use of Sensors

Sensors should comply with dual use benefits. Sensor locations
and types should be integrated not only for achieving water secu-
rity goals but also for accomplishing other water utility objec-
tives, such as satisfying regulatory monitoring requirements or
collecting information to solve water quality problems. Such an
objective would be particularly interesting and likely to be highly
correlated with security objectives.

Criteria for Identifying Areas of Higher Risk of Threat
and Protection

In assessments to date, equal likelihoods of threat and need for
protection have been employed. The reality is that particular em-

Fig. 10. Network 2, Case A: 5 sensors �N2A5� tradeoff solution

curves
Fig. 11. Network 2, Case A: 20 sensors �N2A20� tradeoff solution

curves
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phasis should be given to areas of greater threat and, equally

likely, areas of likely greater need for protection, and methods to

improve prioritization are definitely warranted.

Inclusion of Risk

In the BWSN, the assessments for the four design objectives were

completed on the basis of expected values. There is substantial

merit in considering risk inclusion as opposed to expected value.

A sensor design should comply with its associated risk.

Sensor Reliability

In reality, the correct functioning of sensors is not guaranteed;

both false positive and false negative rates need to be considered.

The challenge is to develop methodologies for incorporating the

uncertainty of sensor detections as part of the design process for

sensor layouts and the extent to which action can be taken before

there is confirmation that there is, indeed, a contaminant event.

Incorporation of Operational Conditions

Once sensors are placed they should address different operational

conditions and account for problems such as providing data for

identifying the location of the contaminant intrusion, and for

implementing a containment procedure. Methodologies should be

developed for incorporating in one framework both design and

operational objectives.
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Notation

The following symbols are used in the paper:

C � hazard concentration threshold �mg/L�;
cik � contaminant concentration for node i and time

step k �mg/L�;
D50 � dose that would result in a 0.5 probability of

becoming infected or symptomatic �mg/kg�;
dr � detection flag for the rth contamination scenario,

receiving 1 if the rth contamination scenario is
detected, and zero otherwise;

E�Pa� � mathematical expectation of the affected
population Pa;

E�td� � mathematical expectation of the minimum
detection time td;

E�Vd� � mathematical expectation of Vd;
Mi � mass ingested—prior to detection—by any

individual at network node i �mg�;
N � number of evaluation time steps prior to

detection;
Pa � population affected for a particular contamination

scenario;
Pi � population assigned to node i;

q̄i � average water demand at node i;
qik � water demand for time step k and node i;
Ri � probability �0, 1� that a person who ingests

contaminant mass Mi will become infected
or symptomatic;

S � total number of contamination scenarios
considered for computing Z4;

td � minimum sensors detection time;
t j � time of first detection at the jth sensor location;
V � total number of nodes �for calculating Z2�;

Vd � total volumetric water demand that exceeds a
predefined hazard concentration;

W � assumed �average� body mass �kg/person�;
Z1 � expected time of detection;
Z2 � expected population affected prior to detection;

Table 5. Summary of Number of Nondominated Solutions

Reference

Network 1 Network 2

TotalN1A5 N1A20 N1B5 N1B20 N1C5 N1C20 N1D5 N1D20 N2A5 N2A20

Berry et al. �2006� 2 3 2 3 2 3 3 3 21

Dorini et al. �2006� 3 2 3 2 3 2 3 2 20

Eliades and Polycarpou �2006� 1 1 1 1 1 3 3 11

Ghimire and Barkdoll �2006a� 1 1 2

Ghimire and Barkdoll �2006� 1 1 1 3

Guan et al. �2006� 2 2 4

Gueli �2006� 1 1 2

Huang et al. �2006� 1 2 1 3 7

Krause et al. �2006� 2 2 2 2 3 3 3 3 3 3 26

Ostfeld and Salomons �2006� 1 1 3 2 2 2 1 2 14

Preis and Ostfeld �2006� 1 1

Propato and Piller �2006� 2 3 3 2 2 12

Trachtman �2006� 1 1 1 3

Wu and Walski �2006� 1 3 3 1 3 1 2 3 3 20

Total 18 14 19 13 17 16 16 13 11 9 146

Note: N1=Network 1; N2=Network 2; A, B, C, and D=base case; and 5 and 20=number of sensors.
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Z3 � expected volume of consumed contaminated
water prior to detection;

Z4 � detection likelihood;
� � probit slope parameter �unitless�;

�t � evaluation time step �days�;
� � standard normal cumulative distribution function;
� � mean amount of water consumed by an individual

�L/day/person�; and
�ik � dose rate multiplier for node i and time step k

�unitless�.
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