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Various compromises that have occurred between Bayesian and nowBayesian methods are reviewed. (A citation is provided that 
discusses the inevitability of compromises within the Bayesian approach.) One example deals with the masses of elementary particles, 
but no knowledge of physics will be assumed. 

KEY WORDS: Bayesians, animals as informal; Fine structure constant, relativistic; Hierarchical Bayes; Inexactification; Maximum 
Likelihood, type 11; P values, standardized. 

I. HISTORICAL BACKGROUND 
Some forms of compromise between Bayesian and non- 

Bayesian statistics date back perhaps to Laplace, but the 
concept of such a compromise seems to have been not fully 
explicit until much more recently. There is an analogy with 
the explicit way in which Egon Pearson introduced the non- 
null hypotheses and the earlier and less explicit use by Fisher. 
Pearson ( 1939, p. 242) acknowledged that a letter from 
"Student" had stimulated him to be more explicit about 
non-null hypotheses than was customary among P value de- 
votees, and that this suggestion "formed the basis of all the 
later joint researches of Neyman and myself." Student was 
very familiar with Bayes's theorem, which uses explicit non- 
null hypotheses. So the influence of Bayesianism on the 
Neyman-Pearson technique seems to have been fairly direct. 

An explicit mention of the compromise was published 35 
years ago, hidden in a paper on saddle-point methods (Good 
1957, pp. 862-863). The basic idea was that a Bayesian 
model not necessarily a good one, could be used to compute 
a Bayes factor F against a (sharp or point) null hypothesis, 
and that F then could be used as a significance criterion; 
that is, its distribution under the null hypothesis could be 
used for computing P values. A subsidiary suggestion was 
that F should lie in the range 

and if not we should "think again." This subsidiary sugges- 
tion has been improved. Note that computers now are pow- 
erful enough to find the distribution of F by Monte Carlo 
methods, in many circumstances down to tail probabilities 
as small as 1/ 1000 or less. 

I.I Likelihood 
An obvious example of the Bayesian influence on non- 

Bayesian statistics is the importance of the concept of like- 
lihood and of the likelihood principle, both of which are 
built into Bayes's theorem even if the priors are unknown. 
Of course Fisher made new uses of the likelihood concept. 

1.2 	 Optional Stopping and P Values 

Feller ( 1950, pp. 140, 190, 197) emphasized that as a 
consequence of the law of the iterated logarithm, P values 
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derived in the usual manner are misleading when optional 
stopping is permitted. But he didn't mention that the weight 
of evidence against the null hypothesis must depend only 
on the physical description of the observations, such as the 
numbers of trials and successes (not allowing for psychoki- 
nesis by the experimenter), and not on the experimenter's 
physically irrelevant thoughts. This fact is obvious and re- 
quires no mathematical backing. Therefore, there is some- 
thing wrong with the naive use of P values. This immediate 
consequence of the law of the iterated logarithm was made 
fully explicit by Good (1956a, p. 13) and, with more detail, 
by Lindley ( 1957). (Much of his paper didn't lean on the 
law of the iterated logarithm.) Optional stopping by itself is 
harmless, but not if it is combined with naive P values. (For 
some history of this topic, see Good 1982a, p. 322.) For 
inference problems, the pure Bayesian throws away the use 
of P values, naive or otherwise. But because clients often 
want answers having the veneer of objectivity, the use of P 
values is somewhat justifiable, especially in the planning of 
experiments (such as when deciding on a sample size). I 
believe that if something is worth doing, it is at least worth 
doing badly-the obverse to Tukey's bon mot that if some- 
thing is not worth doing, it is not worth doing well. 

Harold Jeffreys emphatically pointed out the lack of a 
good logical justification for the use of P values, but as far 
as I know he never discussed optional stopping. 

1.3 	 The Likelihood Ratio Test as an 
implicit Compromise 

When Neyman and Egon Pearson ( 1928, 1933) suggested 
the likelihood ratio test (ratio of maximum likelihoods), 
they said it was intuitively appealing. Their suggestion was 
made practical when Wilks ( 1938) found the asymptotic 
distribution given the null hypothesis. The intuitive appeal 
can be explained on the grounds that the ratio of maximum 
likelihoods can be regarded as a (very poor) approximation 
to a Bayes factor in which integrals are replaced by maximum 
values of integrands (Good 1987 190, p. 449). Thus Neyman 
and Pearson perhaps were unconscious Bayeslnon-Bayes 
compromisers. Indeed Lindley and Jimmie Savage (Savage 
et al. 1962, pp. 64-67; Savage 1964, sec. 5)  showed that the 
Neyman-Pearson " ( a ,P ) technique" is implicitly Bayesian. 
(See also Good 1980, for a relationship of that technique to 
weight of evidence.) 
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1.4 Strength of a Test, a Bayes/N-P Compromise 

When there are more than two parameters, the power 
functions of tests of hypotheses can be difficult to apprehend 
intuitively. Good and Crook ( 1974,p. 711,col. ii) proposed 
that a strength (a weighted average of powers, the weights 
being functions of the parameters) might then be used and 
could constitute a prior density. Crook and Good (1982) 
applied the method to tests for multinomials and contingency 
tables. The method is a compromise between Neyman-
Pearsonian and Bayesian methods. An ordinary average had 
been proposed by West and Kempthorne ( 1972, p. 19)but 
not pursued. The use of an ordinary average strikes me as a 
kind of covert Bayesianism. 

1.5 The Fiducial Argument 

In his fiducial argument, Fisher seemed to obtain posterior 
distributions for some problems without assuming priors. 
The fallacy in his argument was pinpointed in Good ( 1971, 
p. 139). Harold Jeffreys ( 1939, p. 311) pointed out which 
priors, usually improper, would lead to Fisher's fiducial pos-
teriors. This was another relationshipbetween Bayesian and 
seemingly non-Bayesian ideas. 

2. THE HIERARCHICAL BAYES APPROACH 
TO STATISTICS 

For discussing the B/nB compromise in more detail, a 
logical place to start is with the hierarchical Bayes (HB) ap-
proach to statistical theory. I have been interested in this 
topic for at least 40 years, but I'll be brief because I have 
reviewed the topic before for categorical data (Good 1979; 
Good and Crook 1987). The 1979 review covered much of 
my work or joint work on the topic but not enough of Tom 
Leonard's valuable contributions. For continuous data see, 
for example, Lindley and Smith ( 1972). 

In the HB method, methodology, technique, or philoso-
phy, one has a parameter 0 with a prior, as in the usual 
Bayesian method, but the prior contains a hyperparameter 
that might have a hyperprior, and so on. In Good ( 1952, p. 
114) I said that "the higher the type, the woollier the prob-
abilities e e e [but] that the higher the type, the less the wool-
liness matters." Goel and deGroot ( 1981) showed that this 
is not always true, but I think it usually is; otherwise, as 
Stephen Feinberg once remarked in conversation, "science 
would be impossible." At any type, level, or stage, one can 
either assume values for the (hyper)"-parameters or else es-
timate them by type-(n + 1) maximum likelihood (ML). 
One can terminate the hierarchy by a judgment of dimin-
ishing returns (a  form of "type I1 rationality" in which in-
tuitive allowance is made for the "cost" of thinking or cal-
culating). The methods can be denoted by E (empirical;e.g., 
ML estimation of d), B (Bayes, a specific prior assumed for 
d), EB (pseudo-Bayes or parametric Empirical Bayes and 
earlier called type I1ML estimation of the hyperparameter), 
BB (Bayes-Bayes, a specific prior assumed for the hyper-
parameter), EBB (type I11 ML estimation, for the hyper-
hyperparameter), and so on (Good 1987, 1991a). These 
notations are to be interpreted from right to left. 

The term parametric empirical Bayes is well entrenched 
but is misleading historically and from the point of view of 
information retrieval. It really is two-stage HB. Empirical 
Bayes, in its original meaning, assumes hardly more about 
the prior than its existenceand doesn't belong to the Bayesian 
hierarchy. 

2.1 Climbing the Hierarchy 

I believe that type I1ML estimation usually is much better 
than ordinary ML. This certainly is true when estimating 
the parameters of a multinomial. Other techniques of non-
Bayesian statistics can be adapted to the various levels. For 
example, there is a type I1likelihood ratio statistic for testing 
equiprobability of a multinomial and "independence" in a 
contingencytable (Crookand Good, 1980;Good 1976;Good 
and Crook, 1974). Its asymptotic distribution turns out to 
be fairly accurate down to extraordinarily small P values 
such as lo-", a fact that never has been explained. 

Another technique-the simplebut useful idea of graphing 
a likelihood function long advocated by G. A. Barnard-
has been adapted to a higher level. (See, for example, the 
graph of F( k) in Good 1975.) When the likelihood, or type 
n likelihood, depends on two parameters or (hyper)"-pa-
rameters (n = 1, 2,. ), then a table might be better than 
a graph. 

The notions of power and strength also can be promoted 
up the Bayesian hierarchy, as discussed by Crook and Good 
(1982, p. 794). Type I1 minimax was suggested by Good 
( 1951-52) and independently by Hurwicz ( 1951). 

2.2 Testing of Models 

HB sheds light on a suggestion by Box ( 1979-80) that 
statistical models should be Bayesian but should be tested 
by significance tests (e.g., P values, sampling theory). The 
pure Bayesian replies that the model should be embedded 
in a wider model so that it could be tested Bayesianwise. To 
this, Box could reply that the wider model needs to be tested 
by a Pvalue. This alternationbetween augmentingthe model 
and testing the augmented model can be continued, and it 
is unclear whether the Bayesian or the non-Bayesian should 
have the last word (Good 1987-90, p. 452). It is like a game 
in which the aim is to state a larger number than your op-
ponent. 

3. BAYESIANS ALL 

All animals act as if they can make decisions. Most must 
be fairly good at it; otherwise, they wouldn't live as long as 
they do. They must allow, at least implicitly, for the probable 
outcomes of their actions and for the utilities of those out-
comes. In short all animals, including non-Bayesian statis-
ticians, are at least informal Bayesians. There probably are 
no perfectly rational people, and conceivably no perfectly 
rational dogs. General Patton could have called his dog an 
informal Bayesian instead of calling it, not too informatively, 
a son of a bitch. But Bayesianism is a matter of degree and 
of kind, and much depends on how explicit you are about 
the (epistemic)probabilities of hypotheses or, perhaps more 
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often, the ratios of such probabilities. Probabilities of hy- 
potheses are not officially used by non-Bayesians, nor by 
strict followers of de Finetti. In the Neyman-Pearson tech-
nique you are supposed to be explicit about what the hy- 
potheses are, but not about their probabilities. This matter 
of explicitness concerning the nonnull hypothesis is relevant 
to the interpretation of P values or tail area probabilities. 

4. P VALUES: THE STATISTICIAN AND HIS CLlENl 

Imagine a statistician and a client who would like to know 
whether some null hypothesis H i s  true or useful. An exper- 
iment is performed and the P value, or tail probability, of 
some criterion is calculated. There are at least two ways of 
using the P value. 

4.1 The Statistician's Rear End 

The P value can be used in a Neymanian manner for 
making nonprobabilistic statements that are correct in the 
long run in a certain proportion of cases, thus protecting the 
statistician's rear end ( a  card-carrying Neymanian has no 
posterior) to some extent, but the client's less so. I shall ignore 
this usage in this article, although it is useful in planning 
experiments and is convenient in routine applications for 
quality control. Neyman never claimed that his concept of 
"inductive behavior" was always appropriate, and Egon 
Pearson never independently advocated the concept as far 
as I know. 

4.2 P Values and Weights of Evidence 

The P value can be used for obtaining some weight of 
evidence for or against H .  This is what the client usually 
would like and often believes he is getting. I regard this usage 
as partially Bayesian; it is by no means entirely Bayesian, 
because a given P value, say .037, conveys very different 
weights of evidence on different occasions. For the partially 
Bayesian usage I cite Fisher ( 1938, p. 83) : 

If it [a  Pvalue] is below .02 it strongly indicates that the hypothesis 
fails to account for the whole of the facts. 

On the next page, Fisher implied that a P value of .001 can 
be regarded as definite disproof of the hypothesis. In a later 
book ( 1956, pp. 98, loo), he actually used the expression 
"weight of evidence" in an informal manner in connection 
with P values. From these quotations it seems that his in- 
terpretation of this expression would be some decreasing 
function of P, whatever the application. 

To say that an event E is evidence against a hypothesis H 
can only mean that the event has decreased the epistemic 
probability (i.e., the logical or subjective probability) of H. 
Having thus allowed the Bayesian to put one foot in the 
door, one might as well define the expression "weight of 
evidence" in its most reasonable formal sense, namely the 
logarithm of the Bayes factor. (For an easy and convincing 
non-Bayesian proof of this remark, see Good 1989a,c; for a 
survey, see Good 1983c.) Of course one might describe the 
Bayes factor itself as a multiplicative weight of evidence. It 
is defined as the ratio of the posterior odds (not probability) 

of the hypothesis to its prior odds, and in the simplest case 
(and only then) it is equal to a likelihood ratio. 

Fisher ( 1956, p. 39)-perhaps to discourage anyone from 
asking "are you some kind of a Bayesian?'-says, in relation 
to small P values, 

Either an exceptionally rare chance has occurred, or the theory 
of random distributions (of stars on the celestial sphere in the 
specific context) is not true. 

This remark is uncontroversial, but it verges on tautology. 
Consider the following extreme example: Suppose that you 
superstitiously test hypotheses by tossing a coin ten times 
and computing a P value according to the number of heads 
obtained, and that on one occasion you get ten heads. Then 
Fisher's remark would be valid but unhelpful. The question 
that this superstitious procedure suggests is how much of a 
small probability, or its reciprocal, is due to a mere coinci- 
dence and how much of it provides evidence against the 
hypothesis? The amount can even be negative. 

In view of what I have said, you might suppose that I'm 
wholly against he use of P values. Many Bayesians are, but 
I'm not. That is largely because I don't think epistemic prob- 
abilities have sharp values. When they are very vague, you 
might have to fall back either on P values, with some mod- 
ification, or on surprise indexes. (See, for example, the in- 
dexes of Good 1983a.) Certainly the P value must be based 
on a sensible criterion, related to the important non-null 
hypotheses. Further, the sample size N should be taken into 
account. One way to do this is by using the concept of stan- 
dardized P values, which I'll now explain. 

4.3 The l% Rule and Standardized P Values 

Suppose that a random number X has the distribution 
N ( p ,  a 2 )  where a is known, and let Hodenote the null hy- 
pothesis p = 0 ( a  "sharp" or "point" hypothesis) and Ho 
denote the composite hypothesis p # 0. Assume that, given 
Ho, the mean p has a continuous prior density 4(p), which 
might be JV (0, 72) .  We regard this prior as "existing" even 
if it is unknown. We wish to test Howithin (or against) Ho. 
Take a large number N of observations of 1and write 2 for 
their mean. The standard deviation of 2, under Ho, is 
a /  fi;the "sigmage" s, here forced to be nonnegative, is 

(The sigmage [which rhymes with "porridge"] is the ratio 
of the bulge to the standard deviation.) 

We shall consider various experiments with various values 
of N but with an assigned (fixed) double-tail P value, P. Of 
course, 

This P value is in one-to-one correspondence with s, so s 
too is regarded as assigned. 

If N is large enough, we know that 2 is small if Ho is true. 
So the probability density of 2 ,  given Ho, is close to 4(O); 
that is, 

4( 2 ) /$(O) is close to 1. (2a) 



(The validity of this condition should be judged separately 
for each application.) But the probability density of 2,given 
Ho, is 

Therefore, the Bayes factor against Ho is approximately 

and this is proportional to 1 / fiwhen Pis regarded as fixed. 
Thus when N is large enough, we need to know or to judge 
the value of @ only at or near the "origin." 

Formula (4) explains why the factor fioccurs in each 
table of Bayes factors in Appendix B of Jeffreys ( 196 1 ). 
Table 1 exemplifies the near constancy of ~ ~ f ifor binomial 
sampling if p has a uniform prior in (0, 1 ) given Ho.A 
similar result was found by Good and Crook ( 1974, p. 7 15 ) 
for multinomial sampling. Thus we have empirical evidence 
that sensible P values are related to weights of evidence and, 
therefore, that P values are not entirely without merit. The 
real objection to P values is not that they usually are utter 
nonsense, but rather that they can be highly misleading, es- 
pecially if the value of N is not also taken into account and 
is large. 

Arising from these results is the following rule of thumb 
for standardizing a P value to sample size 100: Replace P by 
the standardized value 

(For references see Berger and Sellke 1987; Good 1988b, p. 
391; and Jefferys 1990.) But this is only a rule of thumb, 
because it depends on the assumption (2a). The point of 
introducing P,, is to bring P values into closer relationship 
with weights of evidence while also preserving the appearance 
of objectivity. 

Incidentally, this standardization prevents the statistician 
from sampling to a foregone conclusion by optional stop- 
ping. Optional stopping makes available a sigmage s close 
to ENfor an infinite sequence of values of N (but 
I don't know how large N has to be for this to be a practical 
rule). Then the factor exp(s2/2) in (4) reduces to log N; 
this is more than cancelled by the fi in the denominator. 
(Our logarithms are entirely natural.) As implied earlier, op- 

Table 1. The Near Constancy of F P for Binomial Sampling ~ 

N r P F F P ~ 

NOTE: P = Double tail if p = f (hypothesis H,). F = Bayes factor against H,(assuming a uniform 
prior for p under the non-null hypothesis). 
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tional stopping has no effect on the Bayes factor, except that 
knowing the sampler was trying to cheat casts doubt on his 
honesty. But of course a dishonest sampler can cheat in other 
ways. (See Good 1991b for a further discussion.) 

5. PSYCHOKINESIS 

Jahn, Dunne, and Nelson ( 1987) carried out extensive 
automated experiments on psychokinesis for over a decade. 
They performed N = 104,490,000 Bernoulli trials, according 
to W. Jefferys ( 1990). (One of Jefferys's purposes was to 
draw attention of parapsychologists to the discrepancies be- 
tween P values and Bayes factors; compare Good 1982b, 
which was concerned with neoastrology.) The null hypo- 
thesis Ho is taken asp = $, where p is the parameter in each 
trial. We have a = 4 fi= 5,111, the standard deviation of 
the number of successes. The bulge of successes was 18,47 1 
above N/2, a sigmage s of 3.614 corresponding to a two- 
tailed P value of 

2 " e-u2/2
P = - du = .000300. (6)G s 

According to Fisher ( 1938, p. 84), we are entitled to reject 
the null hypothesis because P < .OO 1. (Though if faced with 
this situation, Fisher probably would have included "no ar- 
tifact" as part of the definition of Ho.) One obvious reason 
why many would regard this P value as not small enough is 
that we regard the prior probability of the existence of psy- 
chokinesis as exceedingly small (perhaps increased a little 
by the mysteries of quantum mechanics). Another, less ob- 
vious reason is that P values are especially misleading when 
the sample size is very large. If we standardize the P value 
to sample size 100, by the rule of thumb just given, we get 
P,,, = .3 1; this is too harsh on psychokinesis, however. In 
fairness I should add that at a meeting of the Society for 
Scientific Exploration in Charlottesville, Virginia in 199 1, 
Jahn said the P value was now approaching His work 
is continuing, and an updated evaluation would necessitate 
a very careful investigation of the experimental conditions 
to look for artifacts. My purpose here is not to decide whether 
psychokinesis is possible, but to use the example to illustrate 
the relationship between P values, sigmages, and Bayes fac- 
tors. 

This Bernoulli sampling is the binomial case of testing a 
multinomial for equiprobability. A hierarchical Bayesian 
approach to this problem was considered by Good ( 1965, 
1967, 1975, 1979, 1981-83, 1983d, 1988b) and by Good 
and Crook ( 1974). In this work the hyperparameter of a 
symmetric Dirichlet is assigned a hyperprior. For extensions 
to contingency tables see Crook and Good (1980), Good 
( 1965,1976,198 1-83,1983b), and Good and Crook ( 1987). 

5.1 Max Factor 

For the psychokinetic data we make the simplifying as- 
sumption that all subjects have the same parameter p and 
that the prior for p - i ,  given Ho, is symmetrical about 0 
and is sharply peaked at 0. More precisely, we assume that 
the variance 7;of the prior ofp - 4 does not exceed (.05)2, 
because otherwise we would be confident that psychokinesis 
had been established decades ago. The condition of symmetry 
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Table 2. Relationship Between the Hyperparameter X and the Bayes Factor F When The Observed Sigmage = 3.614 

about 0, or eveness, is equivalent to taking the prior prob- 
ability of "psi-missing" (conditional on Ho) as equal to that 
of positive psi, but this assumption could be dropped at the 
price of additional complexity of the analysis. 

In a Bernoulli sequence of N "trials" the variance of the 
number r of "successes," for any given p ,  is p(  1 -P ) ~ .This 
is close to 02= N (i.e., o = 5,111, as mentioned previously ), 
because I p - i 1 is small (with overwhelming subjective 
probability). 

We could adopt the hierarchical Bayesian model, men- 
tioned earlier, based on a 0prior containing a hyperpara- 
meter. But instead because 1 p - 4 / is small, we can adopt 
a hierarchical Gaussian model in which the number r of 
"successes" has the distribution N ( 1  N, 02),  given Ho, 
whereas the distribution of r given a typical rival hypothesis 
Hi is N(1N, X202), where X is a hyperparameter. Here, 

For this and other details see Good (1991d). A uniform 
prior for p ,  in the unit interval, would have corresponded 
very roughly to taking X in the region of 10,000, but the 
normal model would be unsatisfactory if I p - 1 1 were not 
small. Then (again see Good, 1991d) the Bayes factor F 
against the null hypothesis p = i ,provided by an observed 
sigmage s ,  is 

1 s2X2 
(7 )F = -fmexp[2(1 + A')] ' 

if is regarded as known for the time being. The value of 
that maximizes F is ( s 2  - 1) 112 if S 2  2 1, and 0 if s2 I1. 
F,,,, the maximum value of F ,  is given by 

1 
F,,, = s-'exp - ( s2- 1) ( s22 1)

2 

= 1 (s25 1). (8)  

Formulas equivalent to (7 )  and (8 )  appeared in Edwards, 
Lindman, and Savage ( 1963, p. 231 ). The notation F,,, 
corresponds to that used by Good ( 1967) and Good and 
Crook ( 1974) and to L;;drmi,in Edwards et al. ( 1963, p. 
241 ). When s = 3.6 14, we have F,,, = 1 15.08, which agrees 
with Table 2, and the corresponding value of X is 3.47. 

In the psychokinetic example we had s = 3.614, so (7 )  
gives rise to the relationships between the hyperparameter X 
and the Bayes Factor F shown in Table 2. Thus the maxi- 
mum Bayes factor against the null hypothesis with this model 
is 1 15, which is only about & of 1/ P .  It is the maximum 
factor of type I1 (i.e., one level up from the case where no 

prior is assumed for p) ,  in which case the "max factor" would 
be exp(4 s2 )  = 686. If X is assumed to have a hyperprior 
density $(A), then the Bayes factor against Howould be 

For example, with $(A) taken as log-uniform from 1 to 1,024 
we have F = 5 5. If 1,024 is changed to 5 12, then F is changed 
to 59. The distinction between Bayes factors of 55 and 59 is 
utterly negligible; this exemplifies my 195 1 comment about 
the unimportance of woolliness at the higher levels. 

It is of some interest to note that if we had s = 0, then we 
would have obtained a Bayes factor of 

d m in favor of Ho. (10) 

Some non-Bayesians say that you can't get evidence in 
favor of a sharp null hypothesis. But it is easily proved from 
a Bayesian perspective that if an experiment is capable of 
supplying evidence against a hypothesis, then it also is capable 
of supplying evidence in favor of that hypothesis (and con- 
versely), provided that all outcomes of the experiment are 
observable-the "theorem of corroboration and undermin- 
ing" (Good 1989b). 

5.2 The Break-Even Sigmage 

Let the value of s that would convey zero weight of evi- 
dence, the evidential break-even sigmage, be denoted by s*. 
This interesting concept occurred in Lindley ( 1957), but I 
think that giving it a name will help to focus attention On 
it. It is obtained by equating the expression (7 )  to 1, SO 

s* = \i[(l + r 2 ) l o g ( l  + X2)], (11) 

and the corresponding P value (with s* replacing s in (6 ) )  
is called P*. The relationship between A, s*, and P* is ex- 
hibited numerically in Table 3. This table might be helpful 
for a Bayesian wishing to make coherent judgments for the 
quantiles of A, s*, and P*. 

An elegant but dubious conjecture is that s* is at least 
equal to Khintchine's sigmage (see, for example, Feller 1950- 
1968) d(2 log log N) = 2.4 1, which would give F 5 37. This 
conjecture is based on the equally dubious assumption that 
Khintchine's sigmage often would be closely attained in 
100,000,000 Bernoulli trials when Hois true. (George Terrell 
and I have begun to examine this matter.) 

I think that this example requires the use of subjectivistic 
Bayesianism. Yet objectivistic Bayesianism is a desirable 
ideal. For a discussion of compromises between these forms 
of Bayesianism, see Good ( 1962, 1990b). 

Table 3. The Relationship Between A, s' ,  and P * 



6. P VALUES "IN PARALLEL" 

Suppose that two or more P values, P , ,  P2, . . . ,P,,, are 
obtained from a single set of observations by various criteria; 
for example, a parametric and a nonparametric test. The n 
tests were called "tests in parallel" (Good 1958), and a pro- 
posed rule of thumb for combining them was to compute 
their harmonic mean. (This should not be confused with 
the method of Fisher [1938, pp. 104-1061 for combining 
independent tests, or tests "in series;" but in fact his method 
also can be regarded as a B/nB compromise.) The informal 
Bayesian justification was that Bayes factors against a point 
null hypothesis are very roughly inversely proportional to 
the reciprocals of the P values. 

In this example of a B/nB compromise, the standardiza- 
tion mentioned earlier can be applied before the harmonic 
mean is computed. For various applications see Good 
( 1983e, 1984a, 1984b, 1984c, 199 lc) and Good and Gaskins 
( 1980, p. 47). 

Sometimes Bayesian and non-Bayesian arguments give 
similar results. For example, Thatcher ( 1964) discussed cases 
in which confidence intervals coincide with Bayesian esti- 
mation intervals, and Pratt ( 1965) emphasized that the P 
value when testing the null hypothesis p 5 0 against p > 0 
often is approximately equal to the posterior probability of 
the null hypothesis (when the prior probability is 4). 

7. MAXIMUM ENTROPY 

The principle of maximum entropy was used in statistical 
mechanics by Boltzmann and by Gibbs. Shannon (1948) 
mentioned that the univariate distribution of given variance 
and maximum entropy is normal. Jaynes ( 1957) introduced 
the principle into Bayesian statistics in the production of 
"objectivistic priors." Good (1963) returned to the non- 
Bayesian interpretation as a method for generating hy- 
potheses in continuous and discrete problems. For example, 
in multidimensional contingency tables the principle of 
maximum entropy generates loglinear models. These models 
already had been formulated for intuitive reasons, but those 
who regard statistics as a science and not just a bag of tricks 
might find it interesting to see this further relationship be- 
tween Bayesian and non-Bayesian methods. There also is an 
earlier pseudo-Bayesian log-linear model, but that's another 
story (Good 1956b). 

In my 1963 paper (p. 93 1 ) I made the natural suggestion 
that maximization of a linear combination of log-likelihood 
and entropy might be entertained for estimating physical 
probabilities in the cells of a contingency table. I think that 
this works best for sparse tables. The point is that ML is 
sensible if the observed frequencies are large and ME is sen- 
sible in the opposite case, where only the marginal totals are 
known. The method was developed by Pelz ( 1977), who has 
not yet written up his program in a form suitable for pub- 
lication. One can think of this as a Bayesian method with a 
prior proportional to exp( -X X entropy) or else as a natural 
non-Bayesian method. This "double" point of view also ap- 
plies to the method of maximum penalized likelihood for 
estimating probability densities (Good and Gaskins 197 1, 
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1972, 1980; Tapia and Thompson 1978). For some further 
discussions of the B/nB compromise, see the two indexes of 
Good ( 1983a) and the 27 papers listed by Good ( 199 1 d, 
p. 20). 

8. INEXACTIFICATION OF HYPOTHESES 

Scientific hypotheses and theories often are shown to be 
inexact rather than refuted. The statistician's term rejected 
often should be replaced by a more precise, albeit unpoetic, 
word such as inexactijied. Instead of saying that the New- 
tonian theory has been refuted, it would be better to say that 
special relativity explains why the Newtonian theory is so 
good! We need methods for estimating the probability that 
a hypothesis contains some truth, or is "causal," or that it 
is accurate enough to be "more than just a coincidence." I'll 
illustrate this matter by considering a case study on "physical 
numerology." 

9. PHYSICAL NUMEROLOGY 

A piece of nonoccult numerology is an unexplained nu- 
merical statement related to physics or to some other natural 
science or to mathematics. Like quality, numerology can be 
good, bad, or indifferent. 

Let us consider a piece of good numerology, discovered 
by hand, concerning "elementary particles." (This discussion 
is condensed from that in Good 1988c and 1990a, but con- 
tains several corrections and new points.) These remarks 
should be fairly intelligible even to those who know nothing 
about such matters; the words in quotes have meaning at 
least for particle physicists. I am discussing this topic to il- 
lustrate the use of both Bayesian and non-Bayesian thinking 
in the same scientific context. I believe that the piece of nu- 
merology presented is probably not just a coincidence, but 
this opinion is controversial. 

There are three kinds of light (not heavy) "quarks" known 
as u ,  d ,  and s.  Each "ordinary baryon" contains just three 
of these light quarks; for example, a proton "is" a uud (Par-
ticle Data Group 1990, p. I11 65 ). Two particles can have 
the same quark composition and "spin" but can have dif- 
ferent "isospins." A "meson" consists of a quark and an 
"antiquark," for example, a K+ particle "is" a uF, where f 
denotes the antiquark corresponding to the quark called s, 
but uzi is not a particle. Now consider a pair of particles (X, 
Y), both with the same "spin" and such that if one d quark 
in Y is replaced by a u quark, then we obtain X. (See also 
Note c to Table 4.) Then form the ratio R(X, Y) defined by 

R(X, Y) = m(Y) - m(X) 
(12)min [m(Y), m(X)] ' 

where m(X) and m(Y) denote the rest masses of X and Y. 
(This is a slight modification of the definition in Good 
1990a.) If not for the electromagnetic forces, X and Y would 
exhibit similar behavior (cf. Sudbury 1986, p. 228), so the 
numerator probably depends only on the electromagnetic 
forces (Rowlatt 1966, p. viii). Thus R(X, Y) can be regarded 
as a measure of the ratio of electromagnetic forces to "strong" 
forces (those that bind quarks together). 
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Next let a denote the "fine structure constant" defined, 
in electrostatic units, by 

where e denotes the charge on an electron; h = h / ( 2 ~ ) ,  
where h denotes Planck's constant; and c denotes the velocity 
of light. (These are all the standard notations.) This is a 
measure of the electromagnetic force. It is dimensionless and 
its measured value, independent of the units used, is 

Note that e2/ h is a simply defined velocity and, therefore, 
has a reasonable chance of occumng in a fundamental the- 
ory. The corresponding "rapidity" is 

a' = tanh- ' (a)  = 1 /  137.0335570(1 + 4.5 X (15) 

which may be regarded as the "relativistic fine-structure 
constant" (not yet a standard definition). Rapidities are di- 
mensionless. They were introduced into the special theory 
of relativity partly so as to obtain additivity, a property not 
shared by ordinary velocities in the same direction. (For 
references to rapidities see, for example, Eddington 1930, p. 
22 and the index of Particle Data Group 1990.) 

In Eddington's Fundamental Theory ( 1946), the integer 
136 was absolutely basic and called the "basal multiplicity." 
(See Note i to Table 4 and see also McCrea [1991] for a 
eulogy for Eddington.) Moreover, 1/a  was experimentally 
indistinguishable from 137, so it was natural to guess that 
the closeness of these two integers was not coincidental. Ed- 
dington formulated the hypothesis that associated with the 
proton is a bare particle, called a "hydrocule," of mass 110 
times that of the "fully dressed" proton complete with its 
own energy field, where 0 = 1371 136; he termed this the 
Bond factor. The concept of a bare particle is current in 
modern quantum electrodynamics (see, for example, Quigg 
1985, p. 88), but I don't know whether anyone relates the 
concept to Eddington's hydrocules. I write 0' = 1 /( 136a) 
for the corrected Bond factor and 7 = 1/( 1 3 6 ~ ' )  for the 
relativistic Bond factor. Although 1 /a is not an integer, I 
believe (almost following Eddington's lead) that it is rea- 
sonable to infer that one of these two ratios-p' or y-has 
a fundamental significance; otherwise the closeness of 1/a  
to 136 would have to be considered a coincidence. (See also 
Note m to Table 4.) We may regard m(p) /y  as a relativisti- 
cally revised mass of the hydrocule of the proton; it then is 

natural enough to replace R(p,  n) by yR(p,  n) .  Note now 
that 

This strongly suggests the hypothesis, which the non-Bayesian 
certainly cannot reject, that 

or at least that there is a reason or explanation (unknown) 
of why the left side is so close to 1. What's special about 6! 
or 720? It has more factors than any smaller number; that 
is, it is a highly composite number in the sense.of Ramanujan 
( 19 15 ) and so has many opportunities of an explanation. It 
is the largest highly composite number having only three 
prime factors and also is a multiple of every smaller highly 
composite number. (The highly composite numbers below 
1,000 are 2,4,6,  12, 24, 36,48,60, 120, 180,240, 360, 720, 
and 840; probably the only highly composite numbers that 
are multiples of all smaller highly composite numbers are 4, 
12, 24, 720, and 5,040.) Also, 720 is the order of the sym- 
metric group of degree 6 and is 6 times 120, where 6 and 
120 are two of the numbers (i.e., 4, 6, 10, 16, 120, 136, and 
256) that are highly conspicuous in Eddington's fundamental 
theory. Finite groups are basic to current theories of the el- 
ementary particles. (See also Good 1990a, app. E.) 

Because 720 is highly composite, that it has geometrical 
interpretations is not surprising. Indeed, of the 16 regular 
polytopes in four dimensions, 10 have NI = 720 or N2 = 720 
or both, and seven have N3 = 120, where N l ,  N2, and N3 
denote the numbers of edges, two-dimensional faces, and 
three-dimensional faces. (See Coxeter 1963- 1973, pp. 292- 
294, and Good 1990a, pp. 132- 133.) Furthermore, 120 is 
the order, g, of the "extended polyhedral group" (including 
reflections as well as rotations) of six of the nine regular 
polyhedra in ordinary space. (The other three polyhedra have 
g = 24 or 48.) These facts, combined with Note h to Table 
4, suggest (but of course do not prove) that a geometrical 
explanation of our numerology might be found. 

Now look at Table 4, where only the light quarks are used. 
Also note the following remarks about the table: 

a. 	I = Isospin, J = spin. The masses of the A particles 
are not yet known accurately enough to be used in 
this table. 

b. In Good ( 1990a) .33 was misprinted as .033, which, 
if correct, would have forced the omission of the pair 

-0 	 3-(s,fi  ).Also, the reciprocal of 1.00000 19 was entered 
in error, but that affects only Note f i n  this list. (An- 

Table 4. Experimental Values of 6!rR(X, Y )  

Quark compositions J I X Y 
-

NOTE 

(uud, udd) 1 (i I) P n 
(uus, uds) fz 6)  A(i,' C+ 
(uus, uds) (1,1) C' C" 
(uds, dds) f (1, 1) C" C-

(US, dS) 6 2 KO(I2 ,  I)  K + 
M -

-7(uss, dss) 1 (4,f) 7 0  -
Values are based on those ~nCohen (1989) and Particle Data Group (1990) 

G!rR(X, Y) Close integer Bayes factor 

1.000001 9 + .0000044 
-47.95 + ,085 

1 
-48 

83,000 
3.947 

1.94 + .07 
2.974 + ,048 
5.91 4 + ,046 

3.53 + .33 

2 
3 
6 

3 or 4 

3.950 
7.177 
1.51 1 
0.771 
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other misprint occurred on page 137 line 1 1, where 
"-48 as a" should read "-48. Note the occurrence 
of -48 as a.") 

c. A pair (X, Y) appears in the table if X and Y have 
the same spin and Xi s  obtained from Y by replacing 
one d by a u. Also, apart from the maverick (I:', A), 
X and Y have the same isospin. When the isospins are 
different, a constraint is assumed; namely, that the X 
particle is the one with the larger isospin. The effect 
of this slight adhockery is to select the pair (I:', A) 
but not (A, I:-).I believe that this piece of adhockery 
is more,than compensated for by the niceness of the 
number 48, but some readers might prefer the cleaner 
numerology with the maverick deleted. 

d. I presented an earlier form of the result for R(p ,  n)  
in Good ( 1970). When later observations gave im- 
proved numerical results, I computed the values of 
R(X, Y) for the other specified pairs (X, Y). The 
hypothesis that 6!yR(X, Y) is close to an integer was 
formulated after the calculations were done, violating 
a principle sometimes stated as dogma in elementary 
non-Bayesian textbooks whose authors worship at the 
shrine of objectivity. Nevertheless, many scientific 
theories violate that dogma, as does exploratory data 
analysis. The reason for the dogma is, of course, that 
its violation enables one to achieve high "significance" 
by inventing complicated hypotheses. But the intel- 
ligent scientist informally balances complexity against 
goodness of fit, or adds the prior log-odds to the weight 
of evidence. If, in our example, the numbers 136 and 
720 had not been special, the numerology could be 
confidently rejected as being too complex and having 
too small a prior probability. In fact, both of these 
numbers are very special indeed. 

e. Each Bayes factor in the last column of the table is a 
factor in favor of the corresponding number being an 
integer or close to an integer. (For the theory see Good 
1990a, p. 159.) The product of the six Bayes factors 
is about 11,000,000. This doesn't allow for the "nice- 
ness" of those integers. 

f. The values of 6!yR(X, Y) don't need to be exact in- 
tegers for the numerology to be regarded as probably 
"causal." Indeed the absolute values of these numbers, 
taken as a group, seem to have a tendency to fall short 
of the "close integers," though none of the shortfalls 
is "statistically significant at the 5% level," (in the usual 
jargon). But if we combine the shortfalls for all six 
pairs, each divided by its standard error, we get -'9 

+ $ + $ + + $ + = 5.17. Because5.171 y6 
= 2.11, the null hypothesis that all six ratios are in- 
tegers might be weakly "inexactified" with a P value 
of .035 (the double tail) if the non-null hypothesis 
asserts that the true shortfalls are all positive or all 
negative. That part of my argument is non-Bayesian; 
it could be made Bayesian, but I don't think the effort 
would be justified. 

g. If the very heavy b quark were introduced, the nu- 
merology would be inexactified by the pair (B', BO) 
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(see Good 1990a, p. 135), again in a non-Bayesian 
manner. 

h. The set of numbers 1, 2, 3, 4, and 6 is familiar in 
crystallography. These numbers are the only possible 
orders for the symmetry rotation axes of a simple 
crystal. In this context the number 1 indicates no ro- 
tational symmetry. Because the number 48 is again 
"highly composite" (in fact the largest highly com- 
posite number having only two prime factors), that 
it occurs in several geometrical contexts is not sur- 
prising; for example, it is the order of the automorph- 
ism group of the simple three-dimensional cubic lattice 
(Boisen and Gibbs 1990, p. 123; Conway and Sloane 
1988, p. 91; Lovett 1989, p. 10; Good 1990~) .  The 
number -48 is mentioned as a "Pontryagin number" 
in a paper on superstring theory by Green, Schwarz, 
and West ( 1985, p. 338). I mention this for the benefit 
of those few people who understand the theory of su- 
perstrings, of whom I am not one. 

i. I believe that the main part of the evaluation of this 
numerology is necessarily subjective, but I also have 
used a few P values. Here I'll mention only how I 
started the argument in Good ( 1990a). I said that 
allowing for Eddington's reputation as a physicist, the 
probability that his Fundamental Theory contains a 
little sense is at least . l ,  and if so the number 136 has 
an essential part to play in the foundation of physics. 
For example, according to Slater ( 1957, p. 5 ) 136 is 
the number of mechanical degrees of freedom of a 
two-particle system. (For other properties of 136, see 
Eddington 1946 and Good 1990.) Kilmister ( 1966, p. 
271) implied that such numbers as l2  + 32 and 62 
+ lo2 must occur in any theory that separates space- 
time into space and time. Thus an explanation of our 
numerology might emerge from a theory that overlaps 
only slightly with Eddington's speculations. 

When making a disinterested interested judgment, 
I hope the reader will take into account Good ( 1990a). 
I'd be grateful to receive any new arguments, pro or 
con, together with overall judgments. I estimated the 
prior probability that the numerology is causal as be- 
tween 1/36,000 and 1/ 1,800 and thus posited that 
the posterior probability is substantial (not allowing 
for competition from other sources). 

j. If we had not replaced a by a', the entry 1.0000019 
would have been 1.0000 194 (with only four 0s fol- 
lowing the 1), which still is strikingly close to 1 al-
though statistically significantly above l. The numer- 
ology in that form cannot be exact, but might very 
well be causal even if the introduction of the relativistic 
fine structure constant turned out to be a bad move. 
One can invert the argument and say that the nu- 
merology strengthens the case for regarding the rela- 
tivistic fine structure constant as fundamental. 

k. The following simple rule seems to give the "close 
integers" for the pairs of ordinary baryons with equal 
spins and equal isospins: Consider the X particle; score 
0 for each u, 1 for each d,  and 2 for each s, then add 
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the scores. This formula predicts the close integer 4 
for the pair ( Z O ,  Z- ) .  

1. The methods I have used to try to evaluate whether 
my numerology is "causal" don't allow for any com- 
petitive theory or numerology. But according to Cheng 
and O'Neill ( 1979, p. 3 16) ,  ". . . neither their values 
[ m ( n )and m ( p ) ]nor their ratio can be predicted by 
SU3." I will be grateful to any reader who can supply 
a reference to any fairly accurate prediction that has 
been made, based on a fairly widely accepted and in- 
telligible theory or else on good numerology. 

m. 	As a pure speculation, an explanation of our numer- 
ology might be found in terms of the "law of equi- 
partition of energy in statistical equilibrium" among 
degrees of freedom; see Kilmister ( 1966, p. 225),  in 
which a 1935 paper of Eddington's is quoted. 
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