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ABSTRACT

This paper discusses several topics that arise in applying Bayesian

ideas to inference problems. The Bayesian paradigm is first described

as an appreciation of the world through probability: probability

being expressed in terms of gambles. Various justifications for this

view are outlined. The role of models in the specification of prob-

abilities is considered; together with related problems of the size

and complexity of the model, robustness and goodness of fit. Some

attempt is made to clarify the concept of conditioning in probability

statements. The role of the second argument in a probability function

is emphasized again in discussion of the likelihood principle. The

relationshiip between the probability specification and real-world

experiences is explored and a suggestion is made that zero probabili-

ties are, in a sense, unreasonable. It is pointed out that it is

unrealistic to think of probablity as necessarily being defined over

a q-field. The paper concludes with some remarks on two common

objections to the Bayesian view.,

/ AL
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THE BAYESIAN APPROACH TO STATISTICS

by

Dennis V. Lindley

0. INTRODUCTION

The Bayesian approach to statistics is a complete, logical framework

for the discussion and solution of problems of inference and of non-

competitive decision-making. It has many facets, from axiomatic founda-

tions of probability to sophisticated technical manipulations needed to

solve practical problems. The present paper deals only with inference

and is devoted to some questions of Bayesian philosophy. We explore some

of the points that arise when the mathematics is related to the real world,

avoiding both the completely logical questions within the mathematics and

the technicalities of real-world situations, and concentrating on our

ways of thinking within the paradigm. A wider view is given in Lindley

(1971) with some additional comments in Lindley (1978).

In Section 1 the Bayesian paradigm is defined: essentially as a

probabilistic view of the scientific world. The meaning of probability

is explained. Practical difficulties in so appreciating the whole of

our environment are formidable and we naturally need to view parts in

isolation: how this can be done is considered in Section 2. The important

role of conditioning, especially on new information, is the topic of

Section 3. All statistics, and much of science, uses models to describe

phenomena. The meaning and role of models in Bayesian statistics is

discussed in Section 4, and continued in Section 5 where the problem of

the fit of a model is considered. In Section 6 the relationship of a

Bayesian view of the world to the reality of that world is investigated

and a suggested strengthening of the paradigm to exclude certain



2

undesirable behaviour is introduced. In Section 7 replies are offered

to two of the most oft-repeated criticisms of the Bayesian attitude.

There is no pretense to completeness in the range of topics dis-

cussed: they are points that seem to me to be of some importance and

on which I may have a little that is new to say. My debt to de Finetti

is considerable. Often, when I feel I have something new to say, I

realize that all I am really doing is appreciating the significance

of some of his writings. Sometimes, unfortunately, I may have mis-

interpreted some of his views. The potential reader of this paper

might better spend his time with de Finetti (1972, 1974/5).
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1. THE BAYESIAN PARADIGM

The scientist's appreciation of the world--and I use the possessive

to remind us that poets, musicians, artists and others see the world

differently--the scientist's appreciation is of a collection of quantities,

of things that can be described by numbers. For a scientist to understand

and manipulate things, he must measure them, or at least think of them as

things that, indirectly or directly, might be measurable. For example,

humnan preferences are studied by measuring them in terms of quantities

called utilities. Without this quantification the scientist cannot proceed:

with it, he has at his disposal the full force of logic and the mathematical

argument. The success of the scientific approach depends, in part, on how

well this quantification encapsulates the situation under study. At the

moment it does rather well in mechanics; less well in psychological studies

of preference.

These quantities are of two types: those whose numerical value is

known to the scientist, and those which are unknown. The members of the

first group are familiar to us as known, real numbers. The unknown quantities

are more mysterious. We shall refer to them as random quantities (r.q.),

though the term, uncertain quantity, is often used. A random quantity

will be denoted by a capital letter, say X ; its numerical value by the

corresponding lower-case letter, x . Collections of random quantities

will not be distinguished notationally from single quantities. When X

becomes known then x will be replaced by the revealed number. Thus X

may be the breadth of the desk on which I write: x its numerical value

in feet. When the desk is measured it may be found that x - 4 and X

as a random quantity, becomes known to be 4 feet. An important sub-class

of random quantities refer to events, where X -1 if the event is true,

and X -0 if it is false.



4

At any point in time the scientist contemplates a set of quantities

some of which are known, some unknown. The values of those in the first

set describe part of what he knows at the moment. He will also know about

some logical relations that exist between the quantities, both known

and unknown: for example, the area of the desk is the product of its length

and breadth. This knowledge of logic will not appear explicitly in our

notation but its presence must not be forgotten; a point we will return

to in Section 2. The set of known quantities will be denoted by H and

their values by h . Similarly the set of random quantities will be

written, X . Whilst it is easy to describe H , namely as h , more

elaborate description is needed for random quantities. Although a random

quantity is, by its nature, unknown, it is never completely unknown, in

the sense that the scientist knows nothing about it. In the example of X

the breadth of the desk, in feet, one would think 2 or 3 much more reasonable

values than 500, or 0.002; and -5 is illogical. It is possible to study

random quantities such as X , the desk's breadth, almost as though they

were merely letters that the mathematician can so powerfully and profitably

manipulate, and forget that X is the representation of a real thing. This

forgetfulness leads to difficulties in describing the uncertainty which are

substantially diminished as soon as the reality behind the letter is remembered.

The scientist's problem is to describe this partial knowledge that he has

of the random quantities that interest him.

The Bayesian position is that this uncertainty, or partial knowledge,

is to be described in terms of probability. Thus the value of 3 feet is

more probable for my desk than is that of 500 feet. In general, with X

the set of random quantities and H the set of known ones; the Bayesian,

scientific description of the world is a probability distribution of X
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given H : this is written p(X I H) and read "the probability of X

given H". It is most important to recognize that when it is claimed

that the description is in terms of probability it is not merely meant

that the description is by means of a number lying between 0 and 1.

Much more is intended: namely that different uncertainties are related

by the rules of probability. We remind the reader of these rules in the

case of random events.

Convexity:

0 < p(X I H) <1l and p(H I H) = 1

Addition:

If X1 and X2 are exclusive, meaning the event, X and X2 both

true, is logically impossible, then

p(x1 or X2 I H) = p(Xl I H) +p(X 2 I H)

Multiplication:

p(X1 and X2 I H) - p(X1 I H)p(X 2 I X1  and H)

Thus a geneticist who knows that a cross-fertilized plant must be red, pink

or white and expresses his uncertainty by saying that the probability of

red is 0.4, of pink 0.2, is committed to a probability of 0.6 that the plant

will be colored. The addition and multiplication rules describe how un-

certainties combine, or cohere, and a set of uncertainty statements obeying

the probability rules is often said to be coherent. The Bayesian position

is that uncertainties should cohere in this technical sense. Before pro-

ceeding further, we digress in the next paragraph to discuss a few points

of notation.
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In general X and H will be multidimensional and continuous so that

p(X jH) will be a probability density for X with respect to some

dominating measure. To avoid technical problems that are not much the concern

of this paper we shall often think in terms of discrete random quantities

and use summation in place of the more general integration with respect

to the dominating measure. The reader may object that since H is known,

as h , it is unnecessary to consider p(X IH) and that p(X I h) would

suffice. There are two reasons for preferring the extended form. Firstly

we often need to consider several possible values of H . Thus suppose

a scientist is designing a space craft to visit Venus. He is uncertain

about the temperature Y on the surface and needs to contemplate the per-

formance X of an instrument in various temperature conditions: thus he

contemplates p(X I Y) for all temperatures. This point will recur again

when we consider in Section 3 more precisely what is meant by "given H"

in the probability of X , given H

The second reason for using H instead of h is technical. If, as

in the Venus example, Y is continuous, it transpires that a satisfactory

definition of conditional probability is only possible for a random quantity

Y and not for a single measurement where the quantity is unspecified.

This is usually known as Borel's paradox. To illustrate, let a point,

described by its random coordinates X and Y , be uniformly distributed

in the unit square. It is meaningless to consider the uncertainty in X

given that the point lies on the diagonal through the origin. For if the

diagonal is described by Z =XIY = 1 and measurements are of Z ,the

situation is quite different from when it is described by W - X - Y M 0

This can be seen by considering values of Z near 1 and W near 0:

Z near 1 (Figure la) means X is more likely to be near 1 than near 0;

whereas W near 0 (Figure lb) means all values are equally likely.
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Still on notation, we shall sometimes write pxH I ") instead of

the shorter p(X I H) to emphasize that we are dealing with functions,

in this case of two variables, X and H . For example, pX,H (2 1 3)

in the case of one random quantity, X and one known, H , means the

probability that x = 2 , given that h = 3 : here the variables have

taken the numerical values 2 and 3.

To return to the Bayesian paradigm, asserting that uncertainties

about quantities should cohere according to the rules of probability, we

need to ask why they should combine this way. There are two answers,

axiomatic and pragmatic. In outline, the axiomatic approach proceeds by

searching for simple, self-obvious truths about uncertainty, taking these

as axioms and developing a mathematical system of theorems and proofs from

them. As an example of such a truth, consider three uncertain events

A, B and C for which a scientist thinks that A is more likely than B and

B more likely than C. Then it seems self-evident that he should think A

more likely than C. From a set of such axioms it is possible to prove

that the relationship "more likely than" just mentioned corresponds to an

ordering by means of probability, obeying the three rules described above.

The first person to attempt such a development successfully was Ramsey (1964)--

the original publication was 1931. The first detailed discussion was by

Savage (1954). A good, modern exposition is by DeGroot (1970). Many

scientific studies use the axiomatic approach, Euclidean geometry and

Newtonian mechanics are good examples, because if the axioms encapsulate

the real-world situation accurately the theorems will prove useful guides

to action. Modern statistical inference outside the Bayesian paradigm

lacks such an axiomatic structure.
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The above approach is essentially within the field of pure mathematics;

in order to use it, to pass to applied mathematics, it is necessary to have

an operational meaning for the terms that occur in the mathematics. What

do we mean when we say that the probability that X = 2 , given h = 3 ,

is 0.4? How can we operate with such a number? The concept of probability

has been much discussed with frequentist, logical and subjective inter-

pretations. Here the subjectivist view will be adopted. Consider an

urn containing a white and b black balls and a gamble in which a

prize will be won if, on drawing a ball at random from the urn, it is

white. Contrast this with a gamble in which the same prize will be won

if a random event A is true. If the scientist is indifferent between

the two gambles we say the probability for A is a/(a + b) . Any

increase (decrease) in a will make the urn gamble more (less) attractive.

Notice that this interpretation can be tested, to see if the scientist

is so indifferent. We do not suggest it is necessarily the best test.

Ways of testing, using coherence, have been considered by Lindley et al.,

(1979).

(Notice that in the interpretation the phrase "drawing a ball at random"

has been used. This means that were a prize to be given if a particular

ball was drawn, it would not matter which ball was selected to decide

the prize. Loosely, all balls are equally likely. The interpretation

is not circular.)

The gambling interpretation leads to the pragmatic justification

for the Bayesian view: simply 'hat it works. The axioms are prescrip-

tions for one's attitude to uncertainty and they lead to the general,

Bayesian prescription or recipe. Let X denote the random quantities

of interest: let H denote the known quantities. Then the Bayesian

recipe is to calculate p(X I H) , the calculation to proceed using the
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calculus of probabilities: nothing more, nothing less. My claim is that

the recipe works: try it for yourselves and see.

An alternative approach which is, in some ways, intermediate between

the axiomatic and pragmatic ones, is due to de Finetti (1974/5). Suppose,

on considering an uncertain event E , a scientist describes his un-

certainty by a number x , knowing that if E subsequently turns out to

2
be true he will receive a penalty score (x - 1) ,whereas if it is

2
false he will receive x . Then from the single principle, that if the

scientist gives x,y, ... for EF, ... , the scores being additive,

he will not choose values that are such that other values exist for which,

whatever is true, the score is reduced, de Finetti shows that the given

values must be probabilities. This approach has the merits of the axiomatic

approach in being developed from few principles and yet also, in the

score, gives an operational interpretation for the value.

According to Popper, a requirement of a good theory is that it should

be possible to make predictions which can be tested in practice. If the

test succeeds, the theory is enhanced; any failure, and the theory is

damaged. Our experience with the probability calculus is extensive and

many predictions can be made and tested: there is no case known to me

where they fail. This is not to say that the predictions can be evaluated

in all cases: on the contrary, there are many situations where the tech-

nical difficulties are formidable and unsolved. But this does not in-

validate the coherent approach any more than did the initial failure to

solve the three-body problem invalidate Newtonian mechanics. In this

essay I want to concentrate on the recipe inherent in the Bayesian approach:

on the constructive methodology produced by the description of random

quantities in terms of probability.



2. LARGE AND SMALL WORLDS

In principle X and H could embrace all that we do not and do know:

in practice we confine ourselves to relatively few quantities. It is

therefore important to see how contraction can occur. In the case of

the random quantities the situation is straightforward. Let X be

decomposed into (X1,x ) and suppose that only X1 is of interest.

Then by the addition rule

p(Xl H) = p(XlX 2 jH)
X 2

to obtain the marginal distribution of X .This summation or, in

general, integration is basic to the Bayesian recipe and is essentially

the addition rule. An important example of its use is in the elimination

of nuisance parameters to concentrate on the parameters of interest. Thus

in a large agricultural experiment with many varieties and treatments,

we can investigate a pair of varieties by integration over treatments

and plot constants that appear in the design. Lest this remark appear

trivial, let us point out an important practical application. Consider

an experiment to compare several treatments and let X denote the un-

certain yield from treatment i . Then, after experimentation, one has

p(XlPX * ... Xk H) for data H , but one may be interested in comparing

a treatment that seems to have done rather well with one that has done

badly. From the probability just cited one can calculate p(X . - X H)

to effect the comparison. Such techniques are not available in sampling-

theory statistics and a body of knowledge has been developed, called

multiple comparisons, to deal with the problem. In the Bayesian view,

no special techniques are needed and the solution is a straightforward

use of the addition rule.
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If we need to pass from X back to X we can do this by

p(xlx 2 I H) - p(X1 I H)p(X 2 I X1,H)

combining the original marginal for X with p(X2 i XI,H) . This is

the multiplication rule.

Comparable changes in the known quantities are not so transparent.

Let H be decomposed into H1 , H2 . Then

p(X I HI) = p P(X I H1,H2)p(H2 I Hl)
H2

which involves the previously unconsidered p(H2 I Hl) , a number that

may be hard to assess since it involves forgetting the known quantities,

H2 . There is one case where the reduction is simple, namely when

p(X H1 ,H 2 ) = p(X I H1 )

or X is independent of H2 , given H1 . The assumption of independence

is often made because it obviates the need to consider p(H2 1 Hl) ,

or even H2 , at all. Often it is made without the scientist consciously

thinking about it, as when he ignores information in a colleague's paper,

H2 , when considering his own. One of the most attractive features

of the Bayesian recipe is its ability to put all information together

coherently, rather than consider it piecemeal, so that all assumptions

of independence need to be considered carefully.

An expansion from H1 to H = (HI,H2) usually arises in studying

the most important tool of science, experimentation or observation.

The basic idea behind observation is that a previously unknown, or

random, quantity becomes known. In our term, it passes from the first
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argument of a probability function to the second argument. Let (X,X 2)

be random quantities and suppose X2 is observed, then

P(X 1 I X2 ,H) -p(XlX 2 I H)/ I p(XI,X 2 IH)

X1

provided a rule for the passage from the original uncertainty of both

X1 and X2  to that of X1 given X2 ' Notice that no new uncertainties

are required, only the calculation of the margin for X2  This result is

more often used by applying the product rule to the numerator to give

p(X 1 1 X 2,H) = p(X2 I Xl,H)p(X1 I H)/ I P(XlX 2 I H)
X1

This is Bayes rule. It is perhaps the most important rule for human

understanding of the real world, for it tells us exactly how we should

incorporate the observation of X2 into our scientific appreciation of

that world. Our fuller notation, with X1 as the variable, expresses

it more clearly

PX (" I x2,H) - p (x 2  I ,H)px 1 H)

the omitted constant of proportionality not involving the variable. The

fundamental role played by Bayes result gives the recipe its name: it

might be more sensible to term it the coherent recipe since Bayes was

only the first of many who played a role in its development.

We have seen how X and H can be changed. Let us now consider

how extensive to make the sets of random and known quantities: how big

should we make our scientific world? In an idealization of scientific

behaviour, the world could be chosen to embrace everything, known and unknown.
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Such a scientist would never need to rethink his understanding of the world,

for as soon as X2 , part of X - (X1,X2 ) , becomes known he could calculate

p(X1 1 X2,H) by Bayes rule. Such a situation is rarely practicable though

it does reasonably arise in one problem of some importance, namely the

study of a finite population, where X - X(n ) _ (XI,X2, ... , Xn) , Xi

th
being the random quantity for the i member of the population. Obser-

vation of a sample from the population changes p(X(n ) I H) into

P(X m+1 . ***, Xn x(m),H) where X(i) is the sample.

That situation is unusual in that initial specification of all

probabilities is a practical possibility. Usually the scientist prefers

to specify such probabilities as seen to him at the time to be relevant

and only consider others when the need arises. Let us take a simple case

of this and explore it in some detail, since that will reveal other im-

portant features of the probabilistic understanding of the world.

Suppose that a scientist considers two events A and B . He

attaches probabilities to these, given H , a - p(A I H) and B - p(B I H)

The only constraints imposed by the coherence requirements are that both

a and B lie in the unit interval. Furthermore there is no obligation

on the scientist to consider other events logically derivable from A and

B : for example, the union of A and B , A U B . It is usually stated

that the events under consideration must form a a-field, closed under

countable unions and intersections. In a sensible description of reality

this is not so, the events may have any structure that the scientist finds

convenient; and all that the coherence requirements demand is that those

probabilities he has actually assessed (and not those he might have assessed)

obey the rules of the calculus of probabilities. Suppose next that the

scientist does some logic and discovers that A and B are exclusive,
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A n B - . Then H has changed because of this logical consideration,

to H' say, and he could now assess p(A I H') and p(B I H') as

Oi' and ' respectively. There is no exact connection between the

original assessments, a and B , and the revised values, a' and 8'

obtained after the logical calculation. All that can be said is that,

assuming a < 8 without loss of generality, 0 < a' < a and

(8 - a)/(l - a) < 8' < 8 • (An explanation for these inequalities

follows in a few lines.) Additionally, a' + 8' < 1 .

If, in addition to A and B , the scientist considers the union

and assigns probability y = p(A U B I H) , he has then implicitly assessed

p(A 0 B I H) to be (a + 8 - y) . Consequently if he now performs the

logic and finds that A and B are exclusive, he can update his original

probabilities, rescaling them to add to one. Hence a' = (y -0)/(l -a -8 +y)

and 8' - (Y-)(l-a-8+y) . (Since max(,8) = 8 < Y < a + a , these

equalities provide the inequalities stated at the end of the previous

paragraph.) So we see that it is possible for logical calculations to

change probabilities according to rules of the calculus, as in this

paragraph, or to change them arbitrarily subject only to some inequality

constraints, as in the previous paragraph. The role of logical considera-

tions in formulating uncertain opinions is therefore a subtle one that

perhaps deserves more consideration than its heretofore been given.

De Finetti (1974/5) has investigated the condition under which a set of

probabilities, such as a , 8 and y above, do constitute a complete

set in the sense that all other events, logically derivable from those

considered, have their probabilities implied by the rules of the calculus.

An example of incomplete logic that is often quoted concerns the

decimal expansion of r , the ratio of the circumference to the diameter
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of a circle. For most of us the probability that the millionth digit of ff

is 7 is 0.1, despite the fact that were we to do the logic--equivalent to

finding A fl B - 0 above--we would know the value of the millionth digit.

This is a clear example of how H can change by purely logical considera-

tions. Bayes theorem principally describes how H changes by empirical

considerations. It is a practical advantage of the coherent scheme that

it can embrace situations in which the logic is incomplete so that,

for example, not all the events in the a-field need to be prescribed.
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3. CONDITIONING

It should be clear that probability is a function of two arguments,

X and H . Most treatments of probability are based on probability as

a measure. Probability as a function of X is a measure; but as a function

of H , it is not. The measure-theory accounts diminish the role of the

second argument and reinforce this by utilizing independence conditions

so substantially that manipulations using the second argument are scarcely

needed. We have already seen how independence can simplify the reduction

of H and we shall see later how it can be used with great advantage in

a Bayesian treatment of models in Section 4. Nevertheless independence

needs most careful consideration. For example, independence is itself

a conditional statement: we cannot say A is independent of B , but

only given H ; for the independence may fail if H changes. An excellent

discussion is given by Dawid (1979).

The role of the second argument in probability is most clearly revealed

in Bayes theorem,

.% H) p (x.HX H
~X x ~2, pX ( 2  *Hpx I)

1 21

These two measures for X1are connected by the function p X (x 2  -,H)

2

of X 1in the other argument. Whilst P I xl,H) is a measure,
1 2

PX (X 2 1 *,H) in the theorem is not. It is called a likelihood function;
2

in contrast to a probability (or measure) function. Its importance is

considerable because the only feature of the random quantity X 2 9 that

has become known to be x 2 , used in Bayes' result is the likelihood

function of X1for that value x 2 (and not for other values of X2).
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This is natural since X2has passed from being random to being known

and the previously possible, but now impossible, values are irrelevant.

We say the likelihood function of X, given x 2 vis sufficient. Much

of modern statistics denies this sufficiency and requires more fromX2

than the likelihood function: and it is this denial that constitutes

the main difference between the Bayesian and other paradigms of statistics.

Notice that in accord with the earlier discussion of Borel's paradox, it

is not enough to know x 2 , we must know which r.q. it was that was seen

to have the value x 2 '. may not be forgotten entirely.

In considering the role of the two arguments in a probability state-

ment attention needs directing towards the word "given" in the phrase

"$probability of X , given H". A scientist, at a point in time, will

know H and consider X . In that case it is sensible to say "given H"

as an abbreviation for "given H is known". But we have seen that he

might evaluate p(X 11 X 2 0H) , still at the point in time where XK2  is

unknown. In that case "given XK2" does not mean XK2  is known but rather

Iter X2  to be known": the subjunctive tense is the relevant one. The

gambling interpretation of a probability has been explained above, and

a gamble on X1 , were X2to be true, is interpreted as a gamble on XK1

that only pays if both XK1  and X2are true: indeed, a form of

this identification constitutes one of the axioms in the theoretical

development of the coherent paradigm. It is sometimes referred to as

the axiom of called-off bets, meaning that the gamble is called off if

K 2  (as an event) is false. Hence in contemplating p(X I I X2 H) the

scientist is thinking of his attitude to XK1  were XK2  true. There is

a distinction between the contemplation of XK2  and the actual experience

of X2*There is no reason why, when XK2 is actually realized and the
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subjunctive becomes unnecessary, the scientist should not express his

uncertainty about X 1differently from the original p(X 1 1 X VH) . He

must still adhere to the original gamble but his attitude to new gambles

might be different. All of us experience the situation in which the ex-

perience of something changes our view. Thus I might evaluate my prob-

ability of something were it to rain tomorrow, but change it when I

experience the rain. This does not invalidate the necessity for the

original judgements to cohere, but gives a license to change when con-

templation becomes reality. What happens here is that the scientist

would say that it is not merely the rain that I have experienced but

other, previously unconsidered events, like wet clothes, that I had not

contemplated. En other words, that my original collection of random

quantities was too small. We must always be alert to a possible useful

enlargement of the sets of quantities being considered.

Another point that arises here is the difference between "F is true"

and "F is known to be true". Really, E given F means the contempla-

tion of E "were F known to be true". This is clear because the

probabilistic description of the world is of an incomplete world with lots

of true and false events whose truth or falsity is not known to the

scientist, so that the probability must incorporate this lack of knowledge.

An interesting example of the need for the distinction arises in legal

applications. Suppose that a crime has been committed and the forensic

evidence establishes the fact that the criminal has a certain property, A

We later learn that an individual, Smith, has A :what is the probability

that Smith is the criminal? We need to calculate the probability that

"Smith is guilty" given "we know that Smith has A". As soon as one
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expresses it this way, one realizes that it might be pertinent to ask

how it is that we know Smith has A . One possibility is that when the

forensic evidence was described to a police officer he reported that he

knew a man with A , his name was Smith. Another possibility is that the

police searched amongst their files, or amongst possible suspects, until

they found someone with A , who chanced to be Smith. Detailed calcula-

tions show that the two methods of acquiring the knowledge that Smith has

A lead to different numerical values for the required probability of

Smith's guilt.

The point is related to Borel's paradox where we conditioned not just

on x but on a random quantity X that has taken the value x . We can-

not condition on Smith's having A but on the observation of some random

quantity that takes that value. The quantity in a police search is different

from that of a policeman's recollection. It is also related to the question

of whether a quantity is controlled or not. Thus an experiment might be

performed in which a quantity X varies from unit to unit. Such an ex-

periment may give us valuable information for a new unit in which X is

uncertain, but little, or no, information for a new unit controlled, or

made, to have a prescribed value for X . To appreciate what happens when

control is exercised one has to experiment with control. Free and controlled

variation differ not in x ,but in the X realized to be x



21

4. MODELS

The interpretation of probability in terms of a gamble is only

meaningful if the gamble can be settled; that is, if the status of the

random quantity can be changed to a known quantity either by observation

or by logic. The same remark applies to de Finetti's device of a scoring

rule. This is no real restriction since it is idle to talk about things

that cannot affect observable quantities. It is idle to discuss the

random event that Shakespeare wrote the plays attributed to him unless

the event has realizable effects--and doubtless the tourist industry in

Stratford feels that it has. We like to talk about unobservables because

they can influence observables about which gambles can be settled. A

more important reason is that the introduction of unobservables can

simplify ourprobability considerations. Let us see how this can happen.

The specification of p(X I H) is difficult if only because the

dimensionalities of X and H are both large, and we have seen that

there are advantages in considering large sets. We therefore seek ways

of simplifying the specification. We can always write

p(X I H) = p P(X I 8,H)p(e I H)

for any quantity 6 . Suppose now that X is independent of H , given

6 ; then our assessment of the uncertainty about X can be changed to

one conditional on e but for which H is irrelevant, and to another

about 6 . In particular if 0 can have low dimensionality, the specifi-

cations required may be simpler. We say p(X I 8) is then a (probability)

model and refer to e as a parameter of the model. A model is self-

contained in the sense that it is uninfluenced by the known quantities
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in H and, more importantly, by a change in H . If X is decomposed

into (XI,X2 ) we may write

P(Xl,X 2 I H)= p P(XI I e)P(X 2 I 8,XI)p(8 I H)

If the further assumption is made that 8 known not merely suppresses

H but also an addition of H to H U X, we may write

p(XI,X 2 I H)= p P(XI I O)P(X 2 I 8)p(O I H) (4.1)
e

resulting in yet further simplification since XI and X2 necessarily

have smaller dimensionalities than X . Most of the models used in

statistics have this further property that make not only X and H

independent given 8 , but also X and X 2 independent given e

Notice that "given" is again to be interpreted here in the subjunctive

form since the parameter is rarely an observable quantity that can be

made known. Rather its role is to stand between X and H to give

them, and the components of X , independence properties. A further

simplification that is often made is to suppose in (4.1) that the dis-

tributions of XI and X2 given e are functionally the same: in our

fuller notation p1 (- 8) = (2 8) = f(. I e) say. GeneralizingP1 =X2

from 2 to n random quantities we have the common statistical model with

n

P(X(n) I H)= a f(Xi e)p(8 I H) (4.2)

8 i=l

It is usual to make inferences about the parameter

n
p(8 1 x(n),H) a f(Xi e)p(e H)

i=l 1
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but it is often more realistic to make inferences in terms of observables.

Thus we may write

p(Xn x(n-l),H) - f(X n I e)p(9 I X(n-),H) (4.3)
(

in virtue of the independence of X and X(n-i) , given 9 . The rolen

of the model and of the parameter is to simplify the calculations and to

isolate extraneous factors in H from the rest of the system. In

particular, the specification of the probabilities given H are reduced

from p(X I H) to p(6 I H) Even the latter may be too complicated

and we may prefer to model that through

p(O I H) = p p(e I 1)(4 H)

and hyperparameters 4 ; with e independent of H , given 4 . The

process may be repeated to model the hyperparameters; and so on. The

device is essentially one to simplify our calculations and descriptions.

A sequence X(n ) satisfying (4.2) has the property of exchangeability

given H : that is, the probability is invariant under permutation of the

suffixes 1,2, ..., n , as is easily seen because of the common function

f . (Not all exchangeable sequences have the representation (4.2), but

the more commonly-used ones do.) This exchangeability implies a par-

ticular form of connection between X and X (n-1) as spelt out inn

(4.3). It is an important part of our study of uncertainty to recognize

exchangeability and to see, for a random quantity Y , which sequences

X(n-l) are exchangeable with Y . This establishes a relation between

a random Y and data x (n - ) of known quantities. The point has been

considered by Lindley and Novick (1980).
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5. MODEL FIT

Although the use of models in expressing uncertainty about quantities

is widespread, it has long been recognized that no model is a totally

adequate description of one's uncertainty, and that, at best, it is a

good approximation. To appreciate this consider the following argument

where M is an event of high probability; specifically p(M I H) = e

with e small. Then

p(X I H) = p(X I M,H)p(M I H) + p(X I M,H)p(M I H)

or

p(X I H) - p(X I M,H) = fp(X I M,H)-p(X I M,H}p(M I H)

Since the difference of probabilities in braces cannot exceed 2 in modulus,

lp(X I H) - p(X I M,H)I < 2e

This result enables us to condition on an event, M , of high probability

without making much difference to the final result: or we may condition

on an event that is nearly true. If M is the event that a model, such

as (4.2), is true, then we may evaluate p(X I H) as if (4.2) obtained

provided we have high probability for the model. If X = (XI,X 2) and

X2 becomes known, so that H changes to H , X2 , the same argument

will persist provided p(M I H,X2 ) remains small. However the observed

value x2 may suggest that M is false and then the calculations will

be seriously affected by the supposition of M . Thus the Bayesian

paradigm supports the principle of using a simple model until the data

suggests it might be false.
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One way of proceeding is to think of a model with parameter 6

as part of a wider model with parameter (e,a) that reduces to the

earlier model when a = 0 . If p(a = 0 j H) is large we may ignore

a, but if x reduces this probability seriously then it may be

advisable to consider values of a other than zero. The description

of this is not too difficult. One would start, in the usual continuous

case, with a density for a centered at zero with small spread and then

update this by Bayes theorem to evaluate p( I X2,H)

It therefore pays to make the model as large as possible. Since an

important reason for introducing the model is to simplify the calculations,

these two considerations pull in opposite directions and some compromise

is essential. There are cases where the technical manipulations are not

so hard that very large models may be contemplated. As an example consider

a situation where one wishes to make inferences about the relationship

between two, one-dimensional quantities Y and X partly expressed

through E(Y X) . We may model this through E(Y I X,6) plus other

features of the distributions of Y , given X . Over a finite range

of X the expectation may be described by an expression

E(Y I X,6) - j fi(x)ei
i=O

where f i(X) is a polynomial of degree i orthogonal to the other

polynomials and e = {e1,e2, ... } . To perform the Bayesian analysis

it is necessary to describe the uncertainty about this polynomial expressed

through uncertainty about the 6 's . Our general scientific experience

teaches us that polynomials of rather low degrees suffice, so that the

distribution for 61 with large i would concentrate around zero.
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The necessary calculations have been performed by Young (1977). There

we have a model which, at least as far as the expectation is concerned,

could hardly be any larger and no difficulties over its approximations

should arise.

Notice that the adequacy of the model can be investigated within

the Bayesian paradigm by the calculation of p(R H,X), or, in

parametric form, using p(a I H,X). In practice, the first suggestion

that M is inadequate to explain the data will arise through informal

considerations, such as plotting the residuals, but a formal investigation

requires the scientist to think about M;that is, about alternatives

to M . We return to this point later in the section.

This combination of informal suggestion of an alternative to the

model and its subsequent, more precise analysis has been discussed because

it has been suggested, most recently by Box (1980), that the Bayesian

paradigm is not adequate to deal with model criticism and that devices

outside the coherent system are necessary. One such device is to test

the hypothesis that the model is M by calculating p(X 2  HIM) which

express the uncertainty, given M I of the random quantity subsequently

observed and using this to obtain p(E(x 2) 1 HIM) where E(x2) is a

set of values of " tmore extreme than" the observed x2 .(A coimmon

example of "more extreme than" is the tail of the distribution of a

univariate X 2  beyond x 2 *) There is a conceptual connection between

the choice of what constitutes more extreme values and the alternative

models described by a . Whilst the latter consideration is coherent

the former is not. One can easily see this by noting that in order to

evaluate p(E(x 2) 1 HIM) more information about X2has to be provided

beyond x 2 as a known value of X 2 , which is all that the coherent
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paradigm requires. In particular, values that could fall in E(x 2)

have to be contemplated. As Jeffrey's remarks, what might have happened

[to X 2J but didn't hardly seem relevant once X2= x 2  has been observed.

The sufficiency of the likelihood function is being denied.

These considerations are also relevant to the closely related question

of robustness of an inference procedure wherein we ask how far the final

uncertainty p(X 1 1 X 2,H) is affected by the choice of model. Again,

as far as technical considerations allow, the coherent approach should

consider large models where the robustness question looms less large.

Notice that the method is quite specific about how the data should be

analyzed with any model, large or small; namely by calculation of the

final probability using only the rules of the probability calculus.

Analysis of the normal, linear model within either the standard or the

Bayesian paradigm is straightforward. To extend the model and replace

normality with t-distributions would cause substantial difficulties

within the standard approach, if only because of the nonexistence of

sufficient statistics of small dimensionality, whereas anyone with

adequate knowledge of the probability calculus and access to computing

facilities could perform the arithmetic for any data set.

One difficulty with the above analysis of the adequacy of a model

M is that it forces consideration of alternatives M to that model.

This is not necessary in the approach using E(x 2) except insofar as

E(-) might informally be suggested by alternatives. Differently expressed,

the coherent paradigm, by requiring a probability distribution over

possible models, is essentially a method of comparison of models, not of

the adequacy of a single model. (The point applies equally to values of

random quantities.) The following example is designed to show why this
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difficulty is a real feature of any study of uncertainty, so that its

avoidance using E(.) , for instance, may be unsound.

A scientist has an observation which is a finite sequence of zeroes

and ones. His model for this is a Bernoulli sequence with chance e

Contrast two cases. In the first he notices that the sequence has a 0

in every even place and 1 in every odd, an unlikely occurrence under his

model. He seeks for an alternative model and, although he cannot specify

it tightly, he sees one that could explain the data and has reasonable

probability; both p(XI  M,H) and p(M I H) for data X, and alterna-

tive M are not near zero. In the second case he notices that the sequence

has a 0 in every place whose order is composite and 1 against every prime.

In this case no M satisfying the condition in the first case is avail-

able. Hence we have two pieces of data, X and X2 , with

p(X1 I M,H) = p(X2 I M,H) very small, yet our reactions to them will

be different because in one there exist an alternative with reasonable

probability, which might be investigated, whereas in the other no such

alternative exists and we can only conclude that an unusual observation

x2 has been observed. Actually all observations have something unusual

about them: the key question is whether there is a reasonable alternative

to explain the observation.
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6. CROMWELL'S RULE

Suppose that a random quantity X can only assume one of n values

XlX 2 P .... x . An event is an example of this, where n is 2. Ifn

another random quantity Y is observed the uncertainty about X will be

updated by the usual Bayes result

p(X I Y,H) - p(Y I X,H)p(X I H)

It immediately follows that if p(xi I H) is zero for any i then

P(Xi I Y,H) is also zero. Since Y is arbitrary, it follows that if

P(X. I H) - 0 , no evidence whatsoever will alter the probability to any

value other than zero. Whilst there is nothing in the Bayesian paradigm,

as usually discussed, to rule out this possibility, it seems unreasonably

rigid to fly in the face of all evidence, even when it supports strongly

the possibility that X - x . We therefore suggest adding an additional

requirement, namely that for quantities taking only a finite set of values,

no probability be zero. With this addition it is easy to see that if

indeed X = xi , then data can eventually accumulate to make this almost

certain. (The requirement might be called Cromwell's rule, since he

suggested its equivalent when he advised the Church of Scotland to remember

that it might be wrong.) In the extension to continuous X , where we are

dealing with densities rather than probabilities, the equivalent require-

ment seems to be that the density nowhere vanishes.

Cromwell's rule is relevant when we consider the relationship between

a Bayesian view of the world and the reality of that world that he learns

by experience. We have seen that with a complete probabilistic description

p(X I H) , with X - (X1,X2) and X2 observed, the experience is trans-

lated into p(X1 I X2,H) , so that he need only update his probabilities
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according to the rules and no rethinking, only calculation is needed.

This may be unsatisfactory as the following example shows.

Let X consist of a long, perhaps infinite, sequence of ones and

zeros and let p(X I H) consist in saying that the sequence is a

Bernoulli sequence with chance of one at any place. This is a coherent

allocation of probabilities to X , assigning probability ( nto any

subsequence of length n . Consequently even if a sequence of 100 zeros

is observed the probability of a 1 in the 101lst place is still . This

scarcely seems reasonable and a second, coherent scientist watching this

behaviour will describe that view as "unscientific" in that it does not

incorporate sensible reaction to the data.

The difficulty can be mitigated by judging the sequence to be,

conditional on 6 , Bernoulli with chance 6 and ascribing to 8 a

density p(O H) which nowhere vanishes--unlike the earlier case where

p(O I H) - 0 for all 8 0 This is an example of a model as defined

above. Now with any sequence observed, the probability of a 1 in the

next place will be around r/n , where r is the number of l's in the

sequence of length n . The second scientist might regard this appreciation

of data as "scientific". But now suppose the observed sequence showed 0's

and l's alternating, the probability for a 1 in the next place will be

about ; , since r - ;n , whereas a more appealing value might be around 1

if the observed sequence ended in a 0, and 0 if ending in a 1. Hence even

this Bayesian reacts unreasonably to some data.

This can be overcome by supposing the sequence to be a first-order

Markov chain with parameters (e,ct) , 6 being as before. Now reactionj

to the alternating sequence will be reasonable but a sequence exhibiting

only triplets 011, say, will be handled unreasonably. This can be
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countered by a second-order chain: and so on. Each case is defective,

when viewed in the light of the next case, in that it assigns zero

densities. For example, the Bernoulli assignment gave zero density

to all but one value of a in the Markov chain description. Cromwell's

rule would have avoided the difficulties.

A realistic position seems to be that a coherent view must not assign

density zero to any possibility. (Or alternatively zero probability to

any open set.) That at any stage it may work with a simplified model,

such as a Markov chain, assigning some zero densities, having probability

near one; but be prepared to abandon it in the light of unexpected data

that suggests the model may have lower probability than thought earlier.

(This agrees with our discussion of models above.) This recipe seems to

lead to reasonable appreciation of data. Cromwell's rule might therefore

be added to our axiom system.

The rule is also related to the phenomenon of calibration that has

been usefully studied by experimental psychologists: Lichtenstein et al.,

(1977) provide an excellent survey. A person is said to be calibrated

if, after assigning probabilities to a long sequence of independent events,

the frequency of events subsequently found to be true amongst all those

assigned probability p , is p ; and this for all p . Dawid (1980)

has shown that every Bayesian is calibrated with probability one. For

example, the scientist with a Bernoulli sequence of chance who does

not learn from a long string of zeros is nevertheless calibrated. The

"catch" in Dawid's result is that the probability referred to is the

Bayesian's own probability, so that the adherent of chance has very

low probability for the string of zeros. It is not true that one Bayesian

will be calibrated with probability one according to a second Bayesian.
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A desirable state of affairs would be that every Bayesian would attach

probability one to another being calibrated. A requirement for this

again seems to be Cromwell's rule so that if one gives probability greater

than zero to some possibility, so will the other. Two such Bayesians

will ultimately come to agree in the light of suitable data.

Notice that logic, as distinct from experience, can make a probability

zero, or one. Thus lengthy, accurate calculations can establish the true

value of the millionth digit of i , and Cromwell's rule does not apply.
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7. SUBJECTIVITY AND APPRAISAL

Two, related objections to the Bayesian paradigm are often raised.

The first is that the procedure is subjective, the second that the

probabilities are unknown. These have been much discussed but their

frequent repetition suggests some more consideration might be desirable

even although there is little new to say.

Consider two scientists contemplating a random quantity X . Then

their probabilities for X might reasonably differ. The usual explana-

tion for part, at least, of the difference is that their current states

of information differ: that one is evaluating p(X I H 1) and the other

p(X I1H2 ) . Probability is a function of two arguments. It is therefore

an important part of the Bayesian paradigm that information should be

shared and that both scientists should contemplate X given H = (H1,H 2)

We saw in Section 2 how this might be done coherently for both of them.

It is an advantage of the paradigm that it provides the machinery for

doing this sharing of knowledge. Even with the same information the two

scientists might still have different probabilities p i(X IH),

i = 1,2 . It is possible to argue that no two scientists have, or could

have, identical H's and that differences could still be ascribed to

difference in parts of H not previously considered. An extension of

this view is to argue that, on proper specification of X and H

all people would agree on p(X I H) , which may be thought of as a

rational, or logical, view, and extends ordinary logic. Attempts to

calculate pCX I H) , at least for simple situations, have not been

totally successful but neither have they been total failures.

Jeffreys (1967) is a protagonist for this view. Box and Tiao (1973)

and Zellner (1971) both use the idea in their books. My own view is
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the purely subjective view makes more sense. One disadvantage of the

logical view is that it discourages serious contemplation of t1'i

probabilities--and even of X and H beyond their symbolic meanings--

and adopts, perhaps uncritically, a logical probability. Most attempts

at describing a logical probability reduce to considering the case where

H is, if not empty, at least small, and p(X I H) is a probability for

X in a state of "ignorance." However we are never ignorant: as long

as the words mean something to us, we know something. At best an

"ignorance" probability could only serve as a reference point for other,

more realistic, ones.

On the subjective view there is no reason why p i(X IH) should

agree for two scientists. However, it must be remembered that we are

supposing the two scientists are coherent; that is, they have assessed

other probabilities that combine together according to the rules of the

probability calculus (Section (1)). Much scientific opinion--and

especially that based on orthodox statistical principles that deny the

likelihood principle--is currently incoherent, and my conjecture is that

some disagreement in views results from the scientist's failure to treat

his data coherently. Certainly this is true of some significance test

arguments and data-analytic techniques that do not assess evidence by

consideration of alternative hypotheses (Section (5)).

The message of this section is that two major impediments to agree-

ment can be removed: use of different H's and the failure of coherence.

Yet still two scientists might disagree. But now remember that they

have expressed their views in an easily understood way, namely by means

of numbers (probabilities), and communication between them is easy be-

cause they speak a common tongue. Because of this it is possible for
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them to see where their principle differences lie and to concentrate

attention on these. To do so may be enough to resolve differences.

If it is not, then a possibility is to devise an experiment to reduce

disagreement. For example, if one scientist attaches high probability

to X and another to X2 , the observation of Y , where P(Y I X1 )

and p(Y I X2) are agreed to differ substantially, essentially resolves

the issue. It is necessary to invoke Cromwell's rule, for with one

scientist denying with certainty what another scientist credits with

being a possibility, is to deny the possibility of critical experimenta-

tion.

We see that the subjective approach has the great strength of en-

couraging cooperation and discussion amongst scientists and of suggesting

new experiments. Always the argument comes back to coherence: to the

fitting of judgements of uncertainty together. A scientist doing an

experiment has been taught by statisticians that there is a unique, proper

analysis of the data. When he attempts a Bayesian analysis he sees that

this is not so: the analysis will depend on the "prior", on the probability

before seeing the data. This will have come from previous evidence,

perhaps of earlier experiments that the scientist did. The apparent merit

of a unique analysis denies the proper appreciation of the relationship

between experiments and the coherence of judgements concerning them.

It denies part of learning from experience.

It is often maintained that the likelihood is objective even if the

"prior" is not. This is not so: the probability from which it is derived

is subjective, like any other probability assessment. There may be more

agreement, usually because of the model feature (Section (3)) of independence

from H , given e , but also because of exchangeability being agreed.

But were coherence to be used more rigorously, we would have more information
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about reasonable likelihoods and have real evidence for normality or

other assumptions.

The second objection is that the probabilities are unknown: loosely,

what is the "prior"? The Bayesian paradigm purports to describe how a

scientist would wish to behave, rather than how he does behave. To

achieve this wish he needs to think probabilistically. Once convinced

of this, he needs to assess probabilities, to supply actual numbers.

Since he has not been doing this he needs to develop expertise and to

develop to tools to assist him. The objector is correct in asking his

question: he is incorrect if he thinks that its answer is to come as

revelation, without substantial studies by the scientist. He must think

about the quantity, about ways of assessing it, and must face up to a

research project. Scientists who encounter a measurement problem that

they think is worth solution, do not say "I cannot do this," rather they

launch a research program to discover how to do it. So we should approach

the assessment of probabilities.

Some work on the determination of probabilities has been done using

scoring-rules and calibration--two topics mentioned above. Useful as

both of these devices are, they fail to exploit the basic concept of

coherence: they fail to see how one probability impinges on another.

Ways of exploiting coherence have been suggested by Lindley et al., (1979).

Essentially, the idea is to ask for sets of pr&oabilities. Thus we

might try p(A I B) , p(A I B) and p(B) for events A and B . The

coherent assessor is then committed to p(B I A) , indeed to all un-

certainties concerning A and B . He may feel that the calculated

p(B I A) is unsatisfactory. He can then modify any or all of the original

triplet of values to attain coherence and to agree with his total appre-

ciation of the uncertainties surrounding the events.
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Neither of the objections dealt with in this section recognize the

power of coherence: the ability of that tool to fit opinions concerning

uncertainty together in an unobjectionable way. No other procedure

besides the Bayesian method can do this: for that method follows from

reasonable assumptions of behaviour.
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