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Abstract10

The Bayesian Earthquake Analysis Tool (BEAT) is an open-source python software to con-11

duct source-parameter estimation studies for crustal deformation events, such as earthquakes12

and magma intrusions, by employing a Bayesian framework with a flexible problem defini-13

tion. The software features functionality to calculate Green’s functions for a homogeneous or14

a layered elastic half-space. Furthermore, algorithm(s) that explore the solution space may be15

selected from a suite of implemented samplers. If desired, BEAT’s modular architecture allows16

for easy implementation of additional features, for example, alternative sampling algorithms.17

We demonstrate the functionality and performance of the package using five earthquake source18

estimation examples: a full moment-tensor estimation; a double-couple moment-tensor estima-19

tion; an estimation for a rectangular finite source; a static finite fault estimation with variable20

slip; and a full kinematic finite fault estimation with variable hypocenter location, rupture21

velocity and rupture duration. This software integrates many aspects of source studies and22

provides an extensive framework for joint use of geodetic and seismic data for non-linear source-23

and noise-covariance estimation within layered elastic half-spaces. Furthermore, the software24

also provides an open platform for further methodological development and for reproducible25

source studies in the geophysical community.26

1 Introduction27

Crustal deformation processes, such as earthquakes, volcanic intrusions or due to human activities,28

can have severe socio-economic impacts. For appropriate hazard assessment of these phenomena,29

better understanding of the physical processes causing such deformation is required. An impor-30

tant step towards this goal is to carefully examine the geophysical observables caused by e.g. an31

earthquake rupture, and then use these data to infer the spatial and temporal evolution of the32

earthquake. The static surface deformation caused by such events can be measured by geodetic33

techniques such as global navigation satellite systems (GNSS, e.g. GPS, Galileo and Glonass) and34

Interferometric Synthetic Aperture Radar (InSAR) [e.g. Jónsson et al., 2002; Sudhaus and Jóns-35

son, 2009; Bathke et al., 2013]. Rapid ground-surface displacements caused by a seismic wavefield,36

on the other hand, can be measured with seismometers and in some cases GNSS. Both types of37

measurements can be employed to study the characteristics of the deformation source by investi-38
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gating the inverse problem that relates source parameters to the observed data [e.g. Kikuchi and39

Kanamori, 1982; Yagi and Fukahata, 2011].40

Depending on the process being studied, the source can be parameterized in various ways. For41

example, to explain displacements caused by a magma intrusion in the crust, an isotropic moment42

tensor (MT) can sometimes be a reasonable approximation to model the observations [e.g. Bathke43

et al., 2011; Biggs et al., 2014]. For earthquakes, a full or deviatoric MT [Jost and Herrmann,44

1989; Tape and Tape, 2012; Sokos et al., 2012; Stähler and Sigloch, 2014; Tape and Tape, 2015]45

in combination with a single source-time function may be sufficient to explain seismological obser-46

vations when the event is not large or is recorded at larger distances. However, the point-source47

assumption of the MT is generally not valid for earthquake ruptures. Therefore, finite sources48

with a spatial extent approximating earthquake fault planes have been applied. These include49

simple rectangular sources [Haskell, 1964; Okada, 1985] and more complex finite-fault sources with50

hundreds of source parameters [e.g. Olsen and Apsel, 1982; Hartzell and Heaton, 1983; Ji et al.,51

2002]. The variety of finite fault representations that have been used is large, even for the same52

earthquake, as illustrated in the SRCMOD database [Mai and Thingbaijam, 2014].53

For meaningful interpretation of estimation results, parameter uncertainties should be quanti-54

fied. These uncertainties are mostly caused by measurement errors and theory errors [Tarantola55

and Valette, 1982]. The measurement error is partly due to data being contaminated by random56

noise during measurement. This noise at seismic stations can be reduced, for example, by em-57

ploying better instruments and recording in low-noise environments. The most important error58

components in InSAR data are of atmospheric origin and may be reduced, for example, through59

using additional independent data or through advanced processing strategies [Bekaert et al., 2015].60

Theory errors arise from assumptions in the mathematical formulation relating the model param-61

eters to the observed data. For example, layered models that simplify the velocity structure of62

the Earth are used in the computation of Green’s functions [e.g. Yagi and Fukahata, 2011; Minson63

et al., 2013; Duputel et al., 2014]. Also, the parametrization of the deformation source, like the64

discretization of the earthquake fault plane into a fixed number of patches, introduces theory errors65

[Dettmer et al., 2014].66

Parametrizations involving the source location, geometry and source-time-function are nonlin-67
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early related to the surface displacements caused by the source. Consequently, inferring the source68

parameters and uncertainties from displacements requires non-linear evaluation methods, which69

have high computational costs [Dettmer et al., 2007]. Bayesian inference is increasingly being ap-70

plied to solve nonlinear estimation problems as it has the advantage of quantifying uncertainties71

of parameters [Monelli and Mai, 2008; Razafindrakoto and Mai, 2014] and prior information can72

be consistently integrated in the problem definition [Xu et al., 2015; Dutta et al., 2018].73

Only a few software packages are available for nonlinear Bayesian inference combining static74

and dynamic displacement data (Tab. 1). For example, MTFit (Moment Tensor Fit) samples the75

parameters of a full moment tensor while fixing the centroid location [Pugh and White, 2018].76

The algorithm considers amplitude ratios and the polarity of seismic phases. Although it does not77

support seismic waveforms, the software is useful for seismic events of low moment magnitudes78

(Mw ∼3). BayesISOLA (Bayesian Isolated Asperities) supports seismic waveforms to sample the79

parameters of a full moment tensor in a mixed linear-nonlinear setting [Vackář et al., 2017]. The80

location and source time are sampled via grid search and the moment-tensor components are81

determined with a linear least-squares inversion. GBIS (Geodetic Bayesian Inversion Software)82

provides a Bayesian framework for sources with simple geometrical shapes (prolate spheroid, penny-83

shaped crack, etc.) [Bagnardi and Hooper, 2018] that have analytic closed form solutions, assuming84

a homogeneous elastic half-space Earth structure. Due to these source parameterizations GBIS is85

limited to static surface displacement data, but can be useful in volcano geodesy (Tab. 1). While86

the advantages of using Bayesian inference in deformation source estimations are undeniable, a87

software package that is sufficiently general for a wide range of applications has been lacking.88

In this work, we present the Bayesian Earthquake Analysis Tool (BEAT), a general suite of89

programs for a wide range of linear and nonlinear deformation source studies (Tab. 1, 2). BEAT90

provides the first open-source implementation for finite-fault estimations with variable static and/or91

kinematic slip parameters (including hypocenter location) using Bayesian inference. Our approach92

can include static and/or dynamic deformation data and the user can specify which seismic phases93

to include in the estimation. In addition, BEAT uses Green’s function databases [Heimann, 2011;94

Heimann et al., 2019] to speed up the source parameter estimations, where the user can also95

customize the 1D subsurface Earth structure. Finally, the software supports several sampling96
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algorithms that can be chosen depending on the problem to solve and the available computer97

resources. In conclusion, BEAT presents a complete open-source software infrastructure that can98

be applied to a wide range of problems and can also be extended by the user to foster future99

development of new methods, and to support reproducible research [Mai et al., 2016a,b].100

2 Bayesian inference101

To estimate model parameters of a selected deformation source from geodetic/seismic data we102

apply Bayesian inference. The posterior probability density of the model parameters p(m|dobs)103

can be obtained following Bayes’ theorem104

p(m|dobs) ∝ p(m)p(dobs|m), (1)

where m is a vector of the parameters to estimate, i.e., the source parameters and optional hi-105

erarchical parameters (often called hyper-parameters), and dobs are observed data, i.e., seismic106

waveforms and/or geodetic surface displacements.107

A priori information is expressed through p(m) for m, and p(dobs|m) is the probability distri-108

bution of residuals (consisting of measurement and theory errors) for a given set of m. For a given109

set of observed data, p(dobs|m) is interpreted as the likelihood function L(m), which quantifies110

the probability that a particular set of model parameters gave rise to the data. The observed data111

dobs can be regarded as the real quantity dreal in addition to measurement errors emeas,112

dobs = dreal + emeas. (2)

The forward model d(m) simulates displacements generated by the chosen deformation source113

dsource and includes theory errors eth [Tarantola and Valette, 1982],114

d(m) = dsource + eth. (3)

The theory errors result from assumptions and simplifications in the mathematical formulation115

of the forward model, e.g., from assuming a simple subsurface model that differs from the true116

subsurface structure. Typically, measurement errors and theory errors are not exactly known in-117

dependently and probability distributions are thus commonly assumed to represent these errors.118
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In this study, we are mostly investigating nonlinear problems for which no analytic solution ex-119

ists. Therefore, we have to solve the problems numerically. We assume a multivariate Gaussian120

distribution with error scaling σk to estimate the scale of the unknown distribution of residuals as121

a hierarchical parameter for each dataset dobs,k [Fukuda and Johnson, 2008] of K datasets. Thus122

the PPD becomes123

p(m, σ1, σ2, ..., σK |dobs,1,dobs,2, ...,dobs,K) ∝ p(m) ·

K
∏

k=1

L(m, σk), (4)

with124

L(m, σk) =
1

(2πσ2

k)
Nk/2|Cxk

|1/2
exp

[

−
1

2σ2

k

(dobs,k − dk(m))
T
C

−1

xk
(dobs,k − dk(m))

]

, (5)

where d(m) are the Nk predicted static or transient displacements for dataset k. The covariance125

matrix Cxk
describes the variances and covariances of residuals for each dataset. The inverses of the126

covariance matrices in combination with the hierarchical scaling parameters σk act as weights for127

the different datasets. While BEAT includes significant infrastructure for addressing the covariance128

estimation, the details on the inference process are described elsewhere [Dettmer et al., 2007; Yagi129

and Fukahata, 2011; Duputel et al., 2014; Hallo and Gallovic, 2016].130

2.1 Earth structure and Green’s Functions131

Before computing data predictions d(m) for a set of source mode parameters m, we need to132

make assumptions about the elastic subsurface structure. We assume the structure is a layered133

elastic half-space described by the density, thickness, seismic wave velocity and attenuation of each134

layer. Once the subsurface structure has been defined, a linear combination of 10 (8 for the far135

field) elementary Green’s Functions (GFs) is needed to compute time-series of displacements for a136

general moment-tensor source [Heimann, 2011; Heimann et al., 2019].137

The GFs are numerically expensive to compute and it is thus advantageous to pre-compute a138

database of GFs prior to the model parameter estimation. Here, the software library pyrocko-gf139

is employed to generate databases of GFs [Heimann et al., 2019, 2017], which is an approach that140

allows customizing the subsurface layering below each recording location. For example, the shallow141

subsurface structure from the CRUST2.0 model [Bassin et al., 2000] could be included for each142

station to complement a common global Earth structure below the crust [Kennett et al., 1995].143
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Estimation of the MT centroid location is possible once the GFs have been pre-computed for an144

appropriate source-receiver volume, which requires that the source region is discretized with a GF145

grid.146

The GF databases are setup such that different programs can use them. Currently, support is147

included for QSEIS [Wang, 1999], QSSP [Wang et al., 2017] and PSGRN/PSCMP [Wang et al.,148

2006]. QSEIS calculates seismograms based on a layered visco-elastic half-space model and should149

be used if local or regional setups are of interest. QSSP calculates seismograms based on a layered,150

self-gravitating Earth and should be used for teleseismic setups or if interaction of the crust and151

atmosphere is important. PSGRN/PSCMP calculates synthetic stress, strain, displacement, tilt152

and gravitational fields on a layered visco-elastic halfspace and should be used for static displace-153

ment data.154

Therefore, this infrastructure allows computing geodetic static displacements (at any depth) and155

seismic waveforms at any distance and depth range with desired frequency content. In addition,156

the open-source approach of BEAT makes extensions through user contributions straightforward157

to include.158

2.2 Estimation of source location and geometry159

The first order parameters of a deformation source are source location (east, north, depth), source-160

time-function (time, duration), and source geometry. These are determined in a nonlinear estima-161

tion (Eq. 5) and the number of source parameters m depends on the choice of deformation source.162

BEAT supports a variety of point sources: a full moment tensor, an isotropic moment tensor,163

a double-couple moment tensor and a compensated linear vector dipole (CLVD) moment tensor164

(Tab. 2). By superposition of moment tensors, the GF database infrastructure permits discretizing165

finite sources of arbitrary geometry and temporal evolution. For example, the parameters of a166

rectangular source [Haskell, 1964; Heimann, 2011] with unknown rupture nucleation and rupture167

velocity can be inferred (Tab. 2, Supplemental Fig. S1, available in the electronic supplement to168

this article). BEAT also allows for multiple sources of the same type, each with a full and indepen-169

dent set of source model parameters, allowing for custom and complex model setups. With this170

flexible setup, complex source shapes, such as caldera ring faults [e.g. Bathke et al., 2015], faults171
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with variable strike and dip [e.g. Dutta et al., 2019] and curved dike intrusions [e.g. Chadwick172

et al., 2011] can be studied.173

2.3 Estimation of the slip history on a finite fault174

For a finite fault source, under the assumption that the source fault geometry is known, the aim is to175

resolve the spatio-temporal slip pattern on sub-faults. These sources are commonly discretized more176

finely than can be resolved by data (over-parameterization), which requires regularization to avoid177

unstable solutions due to the ill-posed inverse problem [Altman and Gondzio, 1999]. Regularization178

is typically applied via smoothness constraints based on a trade-off between slip smoothness and179

data fit [Jónsson et al., 2002]. In Bayesian inference, smoothing regularization can be achieved via a180

Gaussian prior p(s|α), which includes a covariance matrix with off-diagonal terms, whose Cholesky181

decomposition is equivalent to a Laplacian finite difference operator L of size M ×M . The trade-182

off parameter α scales the degree of smoothing and can be assumed to be an unknown parameter183

(i.e., a hierarchical scaling that is estimated based on data information). Including smoothing184

regularization of slip values s on M discretized fault patches, the PPD becomes [Fukuda and185

Johnson, 2008]186

p(m, σ1, σ2, ..., σK |dobs,1,dobs,2, ...,dobs,K) ∝ p(m) · p(s|α) ·
K
∏

k=1

p(dobs,k|m, σk), (6)

with187

p(s|α) =
|LT

L|1/2

(2πα2)M/2
exp

[

−
1

2α2
(Ls)T (Ls)

]

. (7)

Note that the application of Bayesian methods by themselves does not remove the need for regu-188

larization; it stems from the choice of spatial discretization of the fault. As long as the model is189

over-parametrized, regularization is needed. However, Bayesian model selection can be applied to190

overcome the need for regularization and subjective discretization choices [Dettmer et al., 2014].191

For static geodetic data, the slip values on the fault patches are linearly related to the resulting192

surface displacements and d(m) reduces to Gm. Here, G is the sensitivity kernel containing dis-193

placement GFs for a source with unit slip for each slip direction (slip-parallel and slip-perpendicular)194

on each sub-fault [Aki and Richards, 2002]. With seismic waveform data, kinematic rupture pa-195

rameters can be estimated. These include hypocenter location and time, rupture velocity and the196

rupture duration. If rupture velocities are treated as an unknown velocity field on the fault, the197
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Eikonal equation can be solved in each forward operation to ensure causal rupture propagation198

[Minson et al., 2013]. This leads to nonlinearity and G consists of two additional fields, i.e., the199

rupture duration and rupture start time on each slip patch for each seismic station.200

In BEAT, G is referred to as a library and can be assembled given the source geometry and201

the desired sub-fault discretization. This process requires a GF database to be pre-computed (see202

Sec. 2.1). When working with these libraries, it is useful to pre-compute them to make the203

numerical sampling of the posterior computationally tractable and more efficient. However, the204

libraries can be large for kinematic cases, leading to memory limitations. To overcome these205

limitations, we recommend to apply as much a priori information about the source parameters as206

possible when defining the problem. For example, the rupture velocity of an earthquake is likely to207

be close to the shear wave velocity of the subsurface medium [e.g. Das, 2015]. Consequently, the208

prior on the rupture velocity on each patch can be adjusted accordingly, if rupture propagation209

with super shear wave velocity is not expected.210

3 Sampling algorithms211

The posterior probability density (PPD) is usually numerically estimated through sampling with212

Markov Chain Monte Carlo (MCMC) methods [Sambridge and Mosegaard, 2002] or sequential213

Monte Carlo (SMC) methods [Moral et al., 2006]. A commonly-used algorithm in the family of214

MCMC samplers is Metropolis-Hastings sampling (MHS) [Metropolis et al., 1953]. In MHS, the215

solution space is explored by a random walk, where the direction and size (or length) of a step is216

randomly proposed by drawing from a probability distribution [Hastings, 1970]. A new state in217

the random walk is accepted or rejected probabilistically; if the new state has a higher or equal218

posterior probability than the current state, the new state is always accepted. If the new state has219

a lower posterior probability, the new state is sometimes accepted and sometimes rejected. This220

algorithm, samples directly from the PPD and allows to estimate general distributions where no221

closed-form solutions are available.222

However, nonlinear source estimations often result in complex, multi-modal solutions that re-223

quire advanced sampling algorithms in order to fully sample the complex multidimensional PPD224

and to avoid misleading results. For BEAT, we implemented three advanced sampling algorithms:225
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Adaptive Metropolis-Hastings (AMH) [Roberts and Rosenthal, 2001], Sequential Monte Carlo226

(SMC) [Jarzynski, 1997; Neal, 2001; Moral et al., 2006; Ching and Chen, 2007; Minson et al.,227

2013] and Parallel Tempering (PT) [Geyer, 1991; Jasra et al., 2007; Dettmer and Dosso, 2012]. In228

the following paragraphs, we give a short description of each algorithm and refer the reader to the229

original publications for details.230

The Adaptive Metropolis-Hastings algorithm tunes the step size of the proposal distribution231

based on the acceptance rate of the last N samples. If the acceptance rate is low, smaller steps232

are proposed and vice versa. This algorithm is useful when sampling problems with only a few233

model parameters; for example when estimating an isotropic moment tensor from geodetic data to234

resolve the location and volume change of a point source underneath a volcano [Kumagai et al.,235

2014].236

In higher-dimensional problems, particularly with seismic data, the AMH algorithm appears to237

be insufficient. Here, the SMC algorithm performs better due to its ability to temper the likelihood,238

apply resampling, and to take advantage of parallel computing. In the SMC algorithm, samples239

are obtained by simulating a sequence of intermediate distributions from the prior to the posterior.240

Each sample starts from the prior and follows a trajectory through the intermediate distributions241

to the posterior, where it is independent from other samples. The transitioning between distribu-242

tions is typically achieved by scaling from the prior to the posterior via an annealing parameter243

that allows samples to initially move freely in the parameter space, but gradually becomes more244

constrained by the data as the sample approaches the posterior. At various stages, resampling can245

be applied to refocus the large number of samples into regions of high likelihood. This process246

also helps the algorithm to avoid local minima. While slowly decreasing the annealing parameter247

for each trajectory, a sample transitions through the bridging distributions until the PPD is sam-248

pled. The annealing enables sampling of complex, multi-modal and highly peaked distributions249

since data information is gradually introduced. However, the number of trajectories needs to be250

sufficiently large with respect to the number of parameters [Minson et al., 2013]. We implemented251

the SMC algorithm with python’s multiprocessing library, and consequently, this implementation252

cannot scale beyond a single node of a computer cluster.253

For parallel computing architectures (e.g. computer clusters), we implemented the PT algo-254
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rithm with the Message Passing Interface (MPI). This algorithm generates many MCMC chains255

in parallel (one per CPU), which draw samples from a joint posterior that includes the target256

posterior as well as tempered posteriors where the likelihood function is raised to a power of less257

than unity. The chains are typically split such that half of the chains sample the target posterior258

while the other half sample the tempered distributions. In addition, PT includes exchange moves,259

where various chains communicate and exchange information by swapping parameter vectors m.260

The tempered posteriors significantly help the algorithm to widely explore the parameter space261

and reduce the tendency of getting stuck in modes.262

4 Seismic covariance-matrix structure263

In BEAT, the covariance matrices Cx for the seismic waveforms are estimated during the sampling,264

based on data information and assumptions on the noise structure. It is important to note that265

the noise covariance matrix substantially influences the Bayesian estimation result [Dettmer et al.,266

2007; Duputel et al., 2012]. This matrix is generally not known a priori and it therefore has to be267

considered as a part of the estimation problem. However, as the residuals include theory errors268

(see Eqs. 2, 3), this task is not trivial. In BEAT, three different forms of the covariance matrix269

are currently available: variance, exponential(toeplitz), non-toeplitz. For the variance and270

exponential forms, the data variance is estimated from the seismic data by analyzing the data271

variability prior to the P-phase arrival. The non-toeplitz matrix on the other hand, is estimated272

with an iterative approach and is based on the residual waveforms for the maximum a-posterior273

(MAP) model parameters [Dettmer et al., 2007]. The non-Toeplitz covariance matrix accounts for274

both non-stationary and correlated noise. As it is based on the residuals, it includes the effects275

of both measurement errors and theory errors, e.g. due to inaccurate velocity structure of the276

subsurface.277

5 Software features278

BEAT is written in the python programming language and provides a Bayesian sampling frame-279

work for deformation source estimation. The project website, program prerequisites, platform and280
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license information can be found in Section 8. Several parts of BEAT are based on the pyrocko281

seismological toolbox [Heimann et al., 2017]. The programming structure is object-oriented and282

designed around two main estimation problems, which are referred to as modes and illustrated in283

Fig. 1. The first mode, geometry, addresses the nonlinear problem of estimating the geometry,284

source-time-function, location and magnitude or slip of the deformation sources (Sec. 2.2). The285

second mode, ffi (finite fault inversion), is used to estimate the spatially-variable static-slip values286

or kinematic rupture parameters (Sec. 2.3). While the modes can operate independently, we rec-287

ommend to apply a geometry estimation prior to an ffi estimation. For example, if a geometry288

estimation for a magnitude Mw > 6.5 earthquake yields a fault plane striking between 130 and 140289

degrees, this information can be used in the ffi mode to constrain the fault geometry. Otherwise,290

a reference fault geometry must be specified from other information.291

A problem-specific yaml-configuration file (e.g. config_geometry.yaml in Fig. 2) provides an292

interface for the user to adjust the various parameters of the problem, including prior informa-293

tion, data processing, and sampling-algorithm tuning. Two datatypes are supported in BEAT:294

seismic (waveforms) and geodetic (GNSS and InSAR static displacements). The data types are295

implemented in terms of composites that can be combined in the problem setup (Fig. 1). The296

problem and composites classes include the formulation of the posterior likelihood (eq. 5), which297

is then synthesized to the model (Fig. 1) object that can be used by any sampler to explore the298

solution space of the PPD. For numerical efficiency, the model is implemented via the open-source299

libraries theano and pymc3, which provide the option to translate python code to C code, making300

it computationally more efficient, or to CUDA C code to make use of graphical processing units301

(GPUs).302

When using the software, the directory structure of the working directory gradually grows303

(Fig. 2). For example, the mode specific directories, such as geometry, are created during the304

course of the sampling and the figures directory after the results are plotted.305

6 Application Examples306

To demonstrate the capabilities of BEAT, we present five different source estimation examples.307

For the first example, we generated seismic waveforms from a MT point source and contami-308
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nated them with synthetic correlated noise. These synthetic data were then used to estimate the309

components of a full MT. In the other four examples, we considered both geodetic and seismic310

data of the 2009 L’Aquila earthquake. First, we estimate the location and the parameters of a311

double-couple point source. Then, we employed a rectangular source to estimate the fault ge-312

ometry of the rupture assuming uniform slip. With the MAP parameters from the rectangular313

fault solution we then estimate spatially variable static slip, while keeping the fault geometry314

fixed. Finally, we estimated kinematic parameters of the rupture based on the results of the pre-315

vious two steps. Here, hypocentral location, rupture velocity and rupture duration were treated316

as unknowns. These scenarios are fully reproducible and available as step-by-step tutorials at317

https://hvasbath.github.io/beat/examples/index.html.318

The uncertainty-quantification capability of BEAT and its flexibility can result in significant319

computational costs. The overall computation time depends on the amount of data, the complexity320

of the source parametrization, and the available computational resources. In the following, we will321

provide approximate computation times for the five estimation examples.322

6.1 Example 1: Full Moment Tensor323

Here, we used the geometry mode to estimate parameters of a Mw5.5 MT source from simulated324

seismic data at regional distances up to 1000 km (Supplemental Fig. S2, available in the electronic325

supplement to this article). Simulated waveforms were computed using a double-couple MT source326

with a sinusoidal source-time-function (on [0, π]) and the simulated waveforms (Figs. S3 &S4 avail-327

able in the electronic supplement to this article) were contaminated with simulated, temporally328

and spatially correlated noise. To obtain such correlated noise for each waveform, we summed329

up 300 synthesized waveforms containing the signals of random, full moment tensor sources in the330

epicentral region (±3 km) with magnitudes between 3.0 and 4.7 and including five larger magnitude331

sources between 4.5 and 5.0 with random source time variations between -20 and 5 seconds with332

respect to the reference event. The corresponding signal-to-noise ratio varies between 1.2 and 3.3.333

We applied SMC sampling with a MTsource parametrization to sample the parameters of a full334

moment tensor, its centroid location and its source-time function.335

To demonstrate the influence of different parametrizations for the data error covariance matrix336
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(Sec. 4), we compared results of sampling based on a diagonal covariance matrix (uncorrelated337

noise, variance type in BEAT) and a non-Toeplitz, full covariance matrix, which accounts for338

time-dependent and non-stationary noise [Dettmer et al., 2007]. The comparison shows that the339

double-couple mechanism was not retrieved in the estimation when neglecting noise correlations340

(Fig. 3a, c), but was well recovered when using a non-toeplitz covariance matrix (Fig. 3b, d).341

With only data noise contamination in this synthetic test, the uncertainty of the solution is low for342

the variance covariance-matrix case and the data are overfitted (Supplemental Fig. S5, S6 available343

in the electronic supplement to this article). However, this overfitting was reduced by using non-344

Toeplitz covariance matrices and the resulting parameter marginals are less biased (Supplemental345

Fig. S7, S8, S9 available in the electronic supplement to this article), than when diagonal covariance346

matrices were used.347

For this example, we used 4 CPU cores on a standard mobile computer. We configured the348

SMC sampler with 2,000 Markov chains over 300 steps over 40 stages. During the sampling, the349

forward model was evaluated 24 million times, which took about 4 hours.350

6.2 Example 2: Double-Couple Moment Tensor351

We considered data from the 2009 L’Aquila earthquake to estimate the double-couple moment-352

tensor (DCSource) using the geometry mode of BEAT. We included P waveforms from 35 seismic353

stations at teleseismic distances between 30 to 90 degrees (Supplemental Fig. S10, available in the354

electronic supplement to this article). The seismic data were filtered with a Butterworth bandpass355

filter between 0.01 and 0.2 Hz. We applied a time window of -10 to +40 seconds around the356

theoretical P-phase arrival time to calculate the posterior probability at each station. For the357

seismic data we utilized the AK135 Earth velocity structure [Kennett et al., 1995] to compute a358

GF database with QSSP [Wang et al., 2017]. To compare the results for two sampling algorithms359

on the PPD, we used PT and SMC sampling with the same setup.360

For both sampling algorithms (PT and SMC), the mode and MAP of the marginals are similar361

(Fig. 4). The estimated uncertainties in the source parameters are larger for PT compared to362

SMC. Fuzzy waveform misfits (Supplemental Figs. S11, S12 available in the electronic supplement363

to this article) are comparable and uncertainties obtained from the SMC algorithm might be un-364
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derestimated. These differences highlight that there is neither an ultimate measure nor a guarantee365

for convergence of sampling algorithms and the user must carefully evaluate posterior marginals366

estimated by the samplers [Mosegaard, 2012].367

We configured the PT sampler with 20 chains and we randomly applied swaps every 10 to368

30 steps. After each swap, we stored the sample of each Markov Chain that was sampled from369

the target PPD until 400k samples had been collected, which resulted in ∼60 million forward370

evaluations and required ∼5 hours of runtime. The SMC sampler was run with 5,000 Markov371

Chains and 400 steps that resulted in 31 stages where the forward model has been evaluated ∼62372

million times and required ∼6 hours of runtime.373

6.3 Example 3: Rectangular Source Fault estimation374

Here, we used the seismic data from Example 2, and complement them with geodetic data to375

estimate the fault dimensions and geometry for the L’Aquila earthquake using the geometry mode376

of BEAT. The geodetic data were comprised of two InSAR surface displacement maps, derived377

from Envisat satellite images acquired before and after the earthquake from both ascending and378

descending acquisition geometries (Supplemental Tab. S1, available in the electronic supplement379

to this article). We applied the kite software [Isken et al., 2017] to spatially downsample the380

interferograms and to estimate the full data error variance-covariance matrix [Sudhaus and Jónsson,381

2009; Jolivet et al., 2012]. The AK135 Earth velocity structure [Kennett et al., 1995] was applied382

to compute a GF database for the geodetic data with PSGRN/PSCMP [Wang et al., 2006]. The383

frequency band for the seismic data is broad compared to the previous example with 0.001Hz384

to 0.1Hz, because the rectangular source with the rupture propagating across the fault produces385

broad spectra.386

We applied the SMC algorithm, a rectangular source parametrization and a non-Toeplitz seismic387

covariance matrix to estimate the location, orientation, extent and slip of the L’Aquila source fault388

(Supplemental Fig. S1, available in the electronic supplement to this article). In addition, we389

estimated the rupture nucleation point assuming a constant rupture velocity of 3.5 km/s as well as390

a source start time and duration of a half-sinusoidal source-time function. Finally, a hierarchical391

scaling was estimated (Eq. 4) for the interferograms and seismic data, as well as a bilinear ramp392
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function to account for possible inaccuracies in the satellite orbit information.393

The results show that the strongest parameter trade-offs are between the extent of the fault394

(width and length), fault slip and the depth of the upper edge of the fault (Fig. 5). The horizontal395

location of the rupture nucleation point is well constrained and located near the western edge of396

the fault (nucleation_x: -1 at left edge and 1 at right edge), while its downdip location is more397

uncertain, located somewhere near the bottom edge of the fault (nucleation_y: -1 at the top edge398

and 1 at bottom edge). The MAP model can explain the static surface displacement data well399

(Supplemental Fig. S13, available in the electronic supplement to this article) and the simulated400

waveforms also show a good agreement with the observations, considering that only uniform fault401

slip was included in this model estimation (Supplemental Fig. S14, available in the electronic402

supplement to this article).403

In this example, we again used 4 mobile CPU cores to sample 1,000 Markov chains with 100404

steps each and through 22 stages of the SMC sampler. This resulted in ∼2.2 million forward405

evaluations and over 11 hours of computation time.406

6.4 Example 4: Static slip-distribution estimation with Laplacian smooth-407

ing408

In this example we consider a finite fault parametrization for the L’Aquila earthquake and the ffi409

mode of BEAT using the static InSAR data. We employed the previously determined parameters410

from the rectangular source estimation (Sec. 6.3) to fix the source fault location and geometry as411

well as the orbital ramps for the InSAR scenes. We extended the previously obtained MAP fault412

dimensions in length by a factor of 1.6 and in width by a factor of 1.4. Then, we discretized the fault413

into 2×2 km patches resulting in 121 patches (11×11). For each of these patches, we computed GFs414

slip-parallel and perpendicular to fault rake. While assuming smooth slip on neighboring patches415

(Laplacian smoothing; Eq. 7), we applied the SMC algorithm to solve for the two slip parameters416

on each patch as well as estimating the smoothing parameter and hierarchical scaling for each417

interferogram (Eq. 4). The number of parameters estimated in this example is 245, i.e., two slip418

parameters for each patch, one smoothing parameter and two hierarchical scaling parameters. To419

initialize each Markov Chain at a reasonable starting point of the high-dimensional search space,420
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we drew a random smoothing weight α from its prior (uniform) distribution. With these smoothing421

values we inverted for the rake-parallel slip distribution via regularized non-negative least-squares422

[Fukuda and Johnson, 2008]. The resulting slip vectors in the slip-parallel direction and zero slip423

in the slip-perpendicular direction were set as the starting points for the MCs in the first stage of424

the SMC algorithm.425

The fault slip distribution results (Fig. 6) show a maximum slip of ∼0.7 m and significant slip426

confined between 2 and 18 km. The slip uncertainties increase with depth as the ability of static427

surface displacements to resolve fault slip decreases with depth. This solution does not consider428

uncertainties in location and geometry as found in Example 3 (Fig. 5). These would enlarge the slip429

vector error ellipses [Sudhaus and Jónsson, 2009, 2011]. The model prediction of this variable fault430

slip model fits the observed InSAR data better than the previous constant slip model (Supplemental431

Fig. S15, available in the electronic supplement to this article).432

We carried out this model parameter estimation on 4 mobile CPU cores as before and included433

sampling of 3,000 Markov chains for 300 steps over 43 stages of the SMC sampler. During the434

sampling the forward model was evaluated 39 million times, which took about 3 hours.435

The assumption of smooth slip between neighboring slip patches can sometimes be inappro-436

priate [Minson et al., 2013; Duputel et al., 2014; Ragon et al., 2018]. Thus, BEAT also supports437

estimating distributed slip without a Laplacian smoothing prior, but instead the uncertainty in438

Earth structure is propagated [Duputel et al., 2014] (Supplemental Sec. 1, Figs. S16-S22, available439

in the electronic supplement to this article).440

6.5 Example 5: Kinematic nonlinear slip estimation with Laplacian441

smoothing442

In this final example we extended the L’Aquila source estimation to include rupture kinematics443

and used both seismic waveforms and static InSAR data as observations. To increase the data444

information about the rupture details, we filtered the waveforms with an upper limit of 0.5 Hz and445

we extended time windows around P-wave arrivals to -10 s to 50 s. For the estimation, we applied446

the ffi mode of BEAT and used the posterior slip distribution result of example 4 as a slip prior447

to reduce the parameter space. The kinematic rupture parameters that we estimated include the448
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hypocenter time and location as well as the rupture velocity and duration on each fault patch. In449

addition, we estimated smoothing parameter α and hierarchical residual scaling parameters. The450

total parameter count in this example is 491, i.e., four kinematic slip parameters for each of the451

121 patches, three hypocenter parameters, one smoothing parameter, and three scaling parameters452

for the two InSAR datasets and the seismic data. We applied the SMC sampler in the estimation,453

assuming a non-Toeplitz seismic covariance matrix, with Markov Chains initialized to the posterior454

from the previous example, as we considered it as prior information.455

The kinematic results show that the hypocenter location is well constrained, and that the456

rupture nucleated near the western edge of the fault at a depth between 10 and 12 km (Fig. 7457

a). The rupture appears to have spread with near constant rupture velocity of ∼3 km/s across458

the fault. Compared to the static solution, the maximum slip is reduced to ∼0.6 m and the slip459

distribution is overall somewhat shallower (by ∼2 km), i.e., it is now mostly confined to depths less460

than 16 km. Due to the addition of seismic data, rake and slip uncertainties on deep slip patches are461

significantly reduced. Marginal distributions of selected patches (Supplemental Fig. S23, available462

in the electronic supplement to this article) show that the kinematic slip parameters for patches far463

from the hypocenter (e. g. patch 15) are poorly resolved, with the 95% confidence bounds on the464

rupture duration and rupture velocity, between 0.5 and 2.6 seconds and between 2.5 and 4.3 km/s,465

respectively. This is not be surprising as only teleseismic data were used in the estimation. Patches466

with high slip values have shorter rupture durations (e. g. patch 51) with the 95% confidence bounds467

between 0.1 and 2 seconds. The rupture velocities of patches close to the hypocenter (e. g. patch 67)468

are slightly better constrained (with the 95% confidence bounds between 2.45 and 3.8 km/s) than469

patches further away. Note that this kinematic solution includes an estimation of the smoothing470

weight α and the result is based on a range of α values rather than a single fixed smoothing471

value (Fig. 7 c). The moment rate function shows a source rupture duration of ∼9-10 s with the472

peak moment release occurring between 4 s and 6 s (Fig. 7 b). The fit with the geodetic data is473

comparable to Example 4 (Fig. 8), but the fit with the seismic waveforms (Fig. 9) appears to be474

poorer than in Examples 2 and 3. The latter comparison, however, is unfair as the seismic data in475

this example include significantly more details due to the increased upper cut-off frequency of the476

bandpass filter.477
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Several features from our results generally agree with previous studies. The rupture exhibits478

predominantly a single slip region at depths between 5 and 16 km. The hypocenter is located in479

the northwest and offset from the main slip region [Cirella et al., 2009; Zhang et al., 2012]. The480

moment rate function (Fig. 7) shows a small peak near 2 s. Finally, the rake angle indicates a slight481

rotation of the slip vector with increasing depth [Zhang et al., 2012].482

In this example we employed 25 cores on a workstation to sample 10,000 Markov chains for 300483

steps over 35 stages of the SMC sampler. This resulted in ∼100 million forward model evaluations484

and a runtime of ∼85 hours.485

7 Conclusions486

The Bayesian Earthquake Analysis Tool (BEAT) is a new software for source estimations and487

uncertainty quantification in deformation source studies. It is open source and available under the488

license GPL3.0 and can be downloaded at https://github.com/hvasbath/beat [Vasyura-Bathke489

et al., 2019]. BEAT provides an extensive open source framework to study earthquake sources490

with various parameterizations, including moment-tensor point sources, rectangular static and491

kinematic sources, and static and kinematic finite fault sources. An important aspect of BEAT’s492

contribution is the integration of multiple methods in a unified platform. In addition, we provide493

the novel ability to consider joint inversion of geodetic and seismic data for sources in a stratified,494

elastic half space with residual covariance estimation, while allowing fully non-linear treatment of all495

sources in a Bayesian framework. The intention behind providing such a unified framework to the496

geophysics community is to make research more reproducible and to accelerate the development of497

comprehensive tools for deformation source studies. The five examples presented here demonstrate498

the main functionalities of the BEAT software and can be reproduced through step-by-step tutorials499

available on the project website: https://hvasbath.github.io/beat/examples/index.html.500

8 Data and Ressources501

The BEAT package runs under Linux and MacOS on python versions =<3.5 and is available at502

https://github.com/hvasbath/beat [Vasyura-Bathke et al., 2019]. It is distributed under the503
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GNU General Public Licencse, version 3.0 and depends on the following main python libraries504

(and dependencies within): pyrocko [Heimann et al., 2017], pymc3 [Salvatier et al., 2015], Theano505

[Theano Development Team, 2016] and MPI4py [Dalcin et al., 2011].506

The presented examples can be reproduced following the tutorials at: https://hvasbath.507

github.io/beat/examples/index.html.508

Seismic waveforms were originally downloaded from Incorporated Research Institutions for509

Seismology (IRIS) https://ds.iris.edu. Envisat satellite radar data were provided by the European510

Space Agency (ESA) https://earth.esa.int/web/guest/home.511

All of the figures have been produced by using matplotlib [Hunter, 2007] and can be generated512

through the BEAT plot command. Some maps have been produced by using Cartopy [Met Office,513

2015].514

Supplemental Material for this article includes a pdf file further illustrating the examples.515
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List of figure captions732

Figure 1: The BEAT modular program structure. The main problem objects determine, to-733

gether with their composites, the model that contains the rules to calculate the posterior prob-734

ability. To date, BEAT contains two problem classes, the geometry problem (Sec. 2.2) and the735

finite-fault estimation problem (Sec.: 2.3). These are being used by the sampler objects to explore736

the solution space of their respective PPD.737

738

Figure 2: An example of a directory tree for a BEAT project after all steps have been executed.739

The config_*.yaml files are the parameter files to configure and customize the sampling pro-740

cess. The results directory (created by command export) contains sampling results, estimated741

covariance matrices and synthetics. The hypers directory contains sampling results of the initial742

hyper-parameter estimation. The linear_gfs directory contains the Green’s functions for the743

finite-fault-inversion (created by command build_gfs). stage_* folders contain results of the dif-744

ferent sampling stages of the SMC sampler ("*" represents the integer number of the corresponding745

stage) and stage_-1 contains the PPD of the model parameters of the corresponding final stage.746

747

Figure 3: Results of Example 1: (a) and (b) Hudson plots from ensembles of 1000 moment-tensor748

solutions (small black beachballs) for estimations using variance and non-Toeplitz covariance data-749

covariance matrices, respectively. The large red and grey beachballs show the MAP solutions and750

the true moment tensor, respectively. (c) and (d) fuzzy beachballs based on ensembles of 1000751

MT solutions drawn from the PPD of the two estimations using the variance and non-Toeplitz752

data-covariance matrices, respectively.753

754

Figure 4: Results of Example 2: Marginal posterior distributions for model parameters of a double-755

couple source estimated from real teleseismic data of the L’Aquila earthquake obtained from two756

different sampling algorithms, Sequential Monte Carlo (SMC, yellow) and Parallel Tempering (PT,757

blue). The MAP values are marked by vertical colored lines.758

759

Figure 5: Results of Example 3: 1D and 2D marginal posteriors of a rectangular source for the760
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L’Aquila earthquake. The red vertical lines in the histograms and the red dot in the 2d correlation761

maps mark the MAP solution. In the correlation plots, blue colors are regions of high probability.762

North and East shifts are relative to a given reference location.763

764

Figure 6: Results of Example 4: a) Static slip distribution solution for the L’Aquila 2009 earth-765

quake estimated using static InSAR surface displacements. The patch colors and the black arrows766

show the MAP, whereas the black ellipses around the arrow tips show the two-sigma confidence767

bounds.768

769

Figure 7: Results of Example 5: (a) Kinematic slip distribution for the L’Aquila 2009 earthquake770

from the joint inference on teleseismic and InSAR static data. The patch colors and the black771

arrows show the MAP, whereas the black ellipses around the arrow tips indicate the two-sigma772

confidence boundaries, and the black star marks the hypocentral location. The black continuous773

lines show the MAP of the evolving rupture front, with the timing of each front in seconds anno-774

tated on the respective isoline. The uncertainty of the rupture onset time is shown as the fuzzy775

isolines with light grey indicating lower probability. (b) The ensemble of moment rate function776

solutions, with dark and red colors indicating high probability moment rates. The continuous black777

line shows the MAP moment rate function. (c) Marginal posterior distribution for the Laplacian778

smoothing weight α, with the red vertical line marking the MAP solution.779

780

Figure 8: Results of Example 5: geodetic InSAR data fits for the L’Aquila earthquake from781

descending (a) and ascending (b) acquisition geometry. (data panels) Geocoded unwrapped in-782

terferograms in radar line-of-sight (LOS) with negative values indicating increasing LOS distance783

due to subsidence. The displayed displacement values are derived from quadtree subsampling and784

extrapolated to each pixel that belong to the same quadtree square. The look-vector and heading785

of the satellite are shown by the two short and long arrows, respectively. (model panels) Synthetic786

surface displacements in LOS derived from the MAP solution. The small grey rectangle shows787

the location and orientation of the derived fault geometry from example 2, whereas the red rect-788

angle shows the extended fault geometry that is used in examples 3 and 4. The solid black lines789
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mark the upper edge of the fault. (residual panels) Residual surface displacements, i.e., the dif-790

ference between the model and the data panels. Note the different color scale for the residual plots.791

792

Figure 9: Results of Example 5: Waveform fits for the kinematic finite fault solution for P-793

wave arrivals for 16 of the 35 stations used. The filtered (0.001-0.5Hz) displacement waveform794

data (dark grey solid line) and the filtered synthetic displacement waveforms (red solid line) are795

shown together, with the brown shading indicating 100 random draws of the filtered synthetic796

displacements from the PPD. The residual waveforms are shown below each waveform as filled797

red-line polygons. Each trace box is annotated with the station name and component, as well as798

the distance and azimuth from the MAP solution of the center of the reference fault. The arrival799

time and the duration of each window are shown in the lower left and right, respectively.800
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Table 2: Types of deformation sources and their source specific parameters that can be estimated in the

geometry mode of BEAT.

Deformation

Source

Parameters m References

Full moment tensor

(MT) I

mnn, mee, mdd, mne, mnd, med, mo-

ment magnitude

[Stähler and Sigloch, 2014]

Full moment tensor

(MT) II

u, v, κ, σ, h, moment magnitude [Tape and Tape, 2015]

Isotropic moment

tensor

moment magnitude or volume change [Kumagai et al., 2014]

Double couple

(DC)

strike, dip, rake, moment magnitude [Jost and Herrmann, 1989]

Compensated lin-

ear vector dipole

(CLVD)

dip, azimuth (of largest dipole), mo-

ment magnitude

[Jost and Herrmann, 1989]

Rectangular source strike, dip, rake, length, width, slip, op-

tional: hypocentral location (x,y), rup-

ture velocity

[Haskell, 1964]
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10 Figures802
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│ ├── figures
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│ ├── results
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