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Abstract—This paper presents the theory, design principles, class of images. This description can take many forms: it can
implementation, and performance results ofPicHunter, a proto-  pe a set of keywords in the case of annotated image databases,
type content-based image retrieval (CBIR) system that has been or a sketch of the desired image [21], or an example image,

developed over the past three years. In addition, this document t of val that t fitati ictorial feat
presents the rationale, design, and results of psychophysical exper-Or a set or vajues that represent quantitative pictorial teatures

iments that were conducted to address some Key issues that aroseSUCh as overall brightness, percentages of pixels of specific
during PicHunter's development. ThePicHunter project makes colors, etc. Unfortunately, users often have difficulty specifying

four primary contributions to research on content-based image such descriptions, in addition to the difficulties that computer
retrieval. First, PicHunter represents a simple instance of a general programs have in understanding them. Moreover, even if a

Bayesian framework we describe for using relevance feedback to - o . .
direct a search. With an explicit model of what users would do, USET Provides a good initial query, the problem still remains of

given what target image they want,PicHunter uses Bayes'’s rule how to navigate through the database. After the query is made,
to predict what is the target they want, given their actions. This the user may provide additional information, such as which

is done via a probability distribution over possible image targets, retrieved images meet their goal, or which retrieved images
rather than by refining a query. Second, an entropy-minimizing - ¢ome closest to meeting their goal. This “relevance feedback”

display algorithm is described that attempts to maximize the t diff f th by bei int . d
information obtained from a user at each iteration of the search. Stade€ dIlIers irom the query by being more Inieractive an

Third, PicHunter makes use ofhidden annotationrather than having simpler interactions.
a possibly inaccurate/inconsistent annotation structure that the  To date, there has been a distinct research emphasis on the

user must learn and make queries in. Finally,PicHunter intro-  query phase and therefore finding better representations of im-
duces two experimental paradigms to quantltgtlvely evgluate the ages. So much emphasis is placed on image modeling that rele-
performance of the system, and psychophysical experiments are feedback i d istent tiall irina th
presented that support the theoretical claims. vance feedback is crude or nonexistent, essentially requiring the
. ) ~user to modify their query [7], [11], [17]. Under this paradigm,
_ Index Terms—Bayesian search, content-based retrieval, digital etrigval ability is entirely based on the quality of the features
libraries, image search, relevance feedback. . - .
extracted from images and the ability of the user to provide a
good query. Relevance feedback can be richer than this. In par-
I. INTRODUCTION ticular, the information the user provides need not be expressible

EARCHING for digital information, especially images,inthe query language, but may entail modifying feature weights

usic, and video, is quickly gaining in importance for busi[ZZ]'OLCO?St[UI((ZtIngthr?e\{\(ijea]EUI';S “on'tt::e fg “[23].' h
ness and entertainment. Content-based image retrieval (CBIR IcHuntertaxes his idea further with a bayesian approach,

is receiving widespread research interest [1]-[4], [6]-[20 er resgnt_ing .its uncertainty about the uger’s gogl by a proba-
It is motivated by the fast growth of image databases whic ility distribution over possible goals. This Bayesian approach

in turn, require efficient search schemes. A search typicag;he problem was pioneered by Geal.[3]. With an explicit
consists of a query followed by repeated relevance feedba

del of a user’s actions, assuming a desired deiaHunter
where the user comments on the items which were retriev

&’es Bayes's rule to predict the goal image, given their actions.
The user’s query provides a description of the desired image 7 the retrieval problem is inverted into the problem of pre-

icting users. Section IV describes how to obtain this predictive
model.
An impediment to research on CBIR is the lack of a quanti-
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contained in [1]-[6]. . . _was found that was satisfactorily “similar” to a desired target
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1) Target-Specific Search or, Simply, Target Seartlsers two experimental paradigms that are described in Section V.
are required to find a specific target image in the databadte also provide experimental results that evaluate the perfor-
search termination is not possible with any other image, meance oPicHunterwith and without relevance feedback. Next,
matter how similar it is to the singular image sought. This typa Section VI, we describe how annotation can be hidden from
of search is valuable for testing purposes (see Section V) aheé user yet still provide valuable semantic information to ex-
occurs, for example, when checking if a particular logo hgsedite the search process. Usually, the set of retrieved items
been previously registered, or when searching for a specifiat is displayed to a user is the closest set of current matches.
historical photograph to accompany a document, or whéfowever, such a scheme is not optimal from a search perspec-
looking for a specific painting whose artist and title escapes ttiee. In Section VII, we describe a strategy for display which
searcher’'s memory. attempts to maximize the information obtained from the user

2) Category Search:Users search for images that belong tat each iteration of the search. Theoretical and psychophysical
a prototypical category, e.g., “dogs,” “skyscrapers,” “kitchensstudies demonstrate the utility of the information maximization
or “scenes of basketball games;” in some sense, when a usgproach. Finally, Section VIII describes possible extensions to
is asked to find an image that is adequately similar to a targht PicHuntermodel, Section IX details future avenues of re-
image, the user embarks on a category search. search, and Section X concludes with a discussion of the con-

3) Open-Ended Search—Browsintisers search through atributions PicHunter makes to CBIR research together with a
specialized database with a rather broad, nonspecific goaldiscussion of broader issues.
mind. In a typical application, a user may start a search for a
wallpaper geometric pattern with pastel colors, but the goal may
change several times during the search, as the user navigates
through the database and is exposed to various options. During each iterationt = 1, 2, --- of a PicHunter ses-

The Bayesian approach described above can be adapted t¢#, the program displays a s of Np images from its
commodate all three search strategies. We focused on the tagifgabase, and the user takes an actlgrin response, which
search paradigm for the reasons explained in Section V. ~ the program observes. For convenience thstory of the

Another advantage of having a predictive model is that we c&gssion through iteration is denotedH, and consists of
simulate it in order to estimate how effective a particular kindD1, A1, D2, Az, --+, Dy, A}
of interaction will be, and thereby design an optimal interaction The database images are dendfed- - -, 7},, andPicHunter
scheme. In Section VII, we describe a novel display algorithfakes a probabilistic approach regarding each of them as a puta-
based on minimum entropy. This approach is evaluated by béife target After iterationt PicHunter's estimate of the prob-
simulation and psychophysical experiments. ability that database imadg is the user’s target’, given the

Searching for images in large databases can be gre&fgsion history, is then writteR(7T" = T;|H;). The system’s
facilitated by the use of semantic information. However, th@stimate prior to starting the session is denald™ = T7;).
current state of computer vision does not allow semantfdter iterationt the program must select the next €&t of
information to be easily and automatically extractethus, images to display. The canonical strategy for doing so selects
in many applications, image databases also include texttfa@ most likely images, but other possibilities are explored later
annotation. Annotated text can describe some of the semaiti¢his paper. So long as it is deterministic, the particular ap-
content of each image. However, text-based search of annota@ach taken is not relevant to our immediate objective of giving
image databases has proved problematic for several reasérigayesian prescription for the computationftfl” = 7;|H.).
including the user’s unfamiliarity with specialized vocabularjrrom Bayes’ rule we have
and its restriction to a single language. Section VI examines _ 7 _ 7
this problem in more detail. P(T =T;|H,;) = PULIT = TOPT = T5)

. . . P(H,)

This paper presents an overview RBitHunter, a prototype
image retrieval system that uses an adaptive Bayesian scheme, PULIT =T)P(I'=T))
first introduced in 1996 [3], and continuously updated with im-
proved features up to the present [1], [2], [4]-[6]. We present a
conceptually coherent and highly expressive framework for the
image retrieval problem, and report on validation of this frame- That is, thea posteriori probability that imageZ; is the
work using a simple system and careful experimental method&fget, given the observed history, may be computed by evalu-
Section Il describes the theoretical basisRicHunterand de- ating P(H,|T = T;), which is the history’s likelihood given
rives the necessary Bayesian update formulae. In order to ithat the target is, in factl;. Here P(1T" = T;) represents tha
plement the theoretical framework, it is necessary to deci@gori probability. The canonical choice (1" = 1) assigns
upon a user interface and a model of the user. These are l@bability 1/» to each image, but one might use other starting
scribed in Sections Il and IV. The user model is supportddnctions that digest the results of earlier sessfons.

t?y psychophysical experiments that_ are aiso reported in Sec‘Q'This amounts to the implicit assumption that the target is in the database,
tion IV. In order to evaluate the effectiveness of relevance feeghy this is indeed the case in all of our experiments. Formulations without this

back and a variety of other implementation issues, we introdugsumption are possible but are beyond the scope of this paper.
3The starting function must not assign probability zero to any image; oth-
1Color has proven to be an image feature with some capability of retrievimgwise the system’a posterioriestimate of its probability will always remain
images from common semantic categories [19], [24]-[29]. zero.

Il. BAYESIAN FORMULATION

S°PURT = TP =)

i=1
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The PicHuntersystem performs the computation B{7 =
T;|H,) incrementally fromP(T" = T;|H,_,) according to

P(A|T =T,,D )P =T;,|H—
P(T:CZ—;|Ht): ( t| (3} taSt 1) ( Z| t 1)

P(T =T)|H,) = P(T = T}|D,, Ay, Hy_1) > P(AT;, De, Sp1) P(T5|Hy 1)
_ P(Dy, AT =T, H,_)P(D,, T = T;|H,—1) =

1)
where the model starts in some initial st&#tgand updates its
stateS; ; to produceS, after observing actior,. Notice that
we have said nothing of the structure of the state variable. But
= for efficiency’s sake it makes sense to design it as a finite and

ZP(At|T =T}, Dy, Hy_1)P(T = T}|H;_.) succinct_digest qf the historif,.

o _Equat|on Q) is, howe\{er, a fully gener_al way to express
PicHunter update since it spans the entire spectrum from
where we may writeP(A,|T = T;, D;, H,_,) instead of time-invariant models where the state is trivial and constant,

™ P(Dy, AT = Ty, Hy )P = Ty H, 1)
j=1

PA|T =1T;,D, H_1)P(T =T;|H_1)

P(Dy, A|T = T,, H,_,) becauseD, is a deterministic through models that carry forward a finite amount of state, to
function of H,_;. the original formP(A,|T = T;, D, H,_,) where the staté,
The heart of our Bayesian approach is the td?d,|I” = IS justH; and grows without bound.

T;, D, H,_1), which we refer to as theser modebecause its Finding effective models with state is an intriguing oppor-
goal is to predict what the user will do given the entire histornity for future work within thePicHunter framework. We
D,, H,_, and the assumption th#} is his/her target. The userimagine that state might be used to carry forward estimates of
model together with the prior give rise inductively to a probfeature relevancy, user type (e.g., expert versus beginner), gen-
ability distribution on the entire event spafex H!, where eral model type (e.g., color versus texture), and others.
7 denotes the database of images &ffddenotes the set of
all possible history sequencés;, A, ---, D;, A;. The par-
ticular user model used in our experimental instantiation of the
PicHunter paradigm is described in section IV. Note that the PicHunteruses a simple user interface designed to search for
user model’s prediction is conditioned on imdfjeand on all targetimages with minimum training. The rationale is that CBIR
images that have been displayed thus far. This means that $fstems should ultimately be used as image-search tools by the
model is free to examine the image in raw form (i.e., as pixelg)eneral user on the World Wide Web, hence their usage should
or rely on any additional information that might be attached. loe effortless and self-explanatory. The user provides relevance
practice the model does not examine pixels directly but reliésedback on each iteration of the search. The interface and user
instead on an attached feature vector or other hidden attributesdel (described in Section 1V) are basedelative similarity
as described later in this paper. judgmentsamong images, i.e., “these images are more similar
Letting Np denote the number of images in each iteratiomo the target than the others.” If all images seem dissimilar to
our implementation assumes a spacg’of + Np + 1 possible the target, the user can select none. Many systems instead use
actions corresponding to the user’s selection of a subset of ttaegorical feedbackyhere the user only selects the images that
displayed images, or his/her indication that one of ¢ im- are in the same category as the target [16], [23]. However, this
ages is the target, or an “abort” signal respectively. But mudiurdens the user to decide on a useful categorization of images
more expressive action sets are possible within our framewanka possibly unfamiliar database, and is more suited to category
(Section IX-C). search (Section I) than target search.
A contribution of our work is then the conceptual reduction of The user interface is shown in Fig. 1. It consists of a
the image search problem to the three tasks: 1) designing a spamoall numberVy, of images; in this particular implementation
of user actions, 2) constructing a user model, and 3) selectingsip = 9. The initial display is determined by the display-up-
image display strategy. date algorithm. The target is always present in the display
Our implementation makes the additional simplifying ago avoid possible interference from memory problems. Of
sumption that the user model has the fabt,|T' = T;, D;), course, the target could be in the form of a traditional printed
i.e., that the user’s action is time-invariant. Note, however, thahotograph,but in such cases the CBIR system is unaware of
as a consequence of our Bayesian formulation, even this simpfeat the target is. The user selects zero or more images that are
time-invariant model leadBicHunterto update its probability similar to the desired target image by clicking on them with the
estimate in a way that embodies all the user’s actions from thmuse. If users wish to change their selection, they can unselect
very beginning of the search. images by clicking on them again; the mouse clicks function as
Beyond the time-invariant user models of our experiments amggles in selecting/unselecting images. As mentioned above,
models that fully exploit our Bayesian formulation and adaptsers can select no images if they think that all images are
their predictions based on the entire history. To preserve the pdissimilar to the desired target image. After users are satisfied
sibility of incremental computation we introduce the notion ofvith their selection, they hit the “GO” button to trigger the next
user models witlstateand write thePicHunterupdate equation iteration. The program then interprets their selection based on
as the user model, and subsequently the display-update algorithm

Ill. USERINTERFACE
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Fig. 1. PicHuntefs user interface.

(Section VII) decides whichV images will be shown in the  Psychophysical experiments helped us choose the distance

next iteration. The process is repeated until the desired imagensasure as well as the form of the probability function. Dif-

found. When this is achieved, the user clicks the mouse butti@ment models are compared in terms of the probability they as-

on the image identifier that is found directly above the imagesign to the experimental outcomes; models which assign higher
probability are preferred.

IV. USERMODEL: ASSESSINGIMAGE SIMILARITY WhenNp = 2 and the user must pick an imagé;(is either

. . . . . .1 or 2), the probability function that we found to perform best

As explained in the previous section, the key term in the~ ~ S ; . ;
; : was sigmoidal in distance (in what follows, we drop the iteration

Bayesian approach is the tetR(A,|T = T;, Dy, U), where subseript, for simplicity):

U stands for the specific user conducting the search. As- Pt plicity):

sume thatD, = {Xi, Xs, ---, Xn,}. The task of the user

model is to compute?(A,|T = T;, D, U) = P(A|T = 1

T,, X1, X2, -+, Xnp, U), in order to update the probability =

that each imagé’; in the database might be the target image 1+ exp((d(X1, T) — d(X2, 1)) /)

T'. The first approximation we make is that all users responghare ; is a parameter of the model chosen to maximize the
in the same way, so that the dependencé/aran be dropped.  ohapility of the data using a one-dimensional search.

This approximation is not entirely supported by our human eX-\yhen v, > 2 and the user must pick = 1, ---. Np, a
periments, but we believe that more complex models should &, e nient generalization is the softmin o
motivated by the failure of a simple one. Kurita and Kato (1993)

Psigrnoid(A = 1|)(17 X27 T)
(2)

[30] reported work intak_ing account of individual di]‘fer_ences. Pott min (A =a|X1, -+, Xnp, T)
The second approximation is that the user’'s judgment exp(—d(X,,T) /o)
of image similarity can be captured by a small number =5 ak . ©))
of statistical pictorial features, in addition to some se- -
) . ’ T ! —d(X;, T
mantic labels, chosen in advance. That is, it is a function ; exp(—d( /o)

of some distance measuré(f(Y), f(Z)) between the
feature valuesf(Y) = {fi(Y), fo(Y),---, fr(Y)} and Note thattransitive ordering of the images is not required by this
) ={f1(Z), f2(Z), ---, fr(Z)} of imagesY and~. model.
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When the user can pick any number of images, including  These values are obtained after conversion to HSV color
zero, no complete model has been found. One approachisto as- space and quantization indox 4 x 4 = 64 color bins.
sume that the user selects each image independently according) HSV-CORR, a 256-element long HSV color autocorrel-
t0 P50t min. Another approach is to assume that the user first ~ ogram at distances 1, 3, 5, and 7 pixels [24]. The pixel
decides the numbér of images to select and then chooses one  values are subjected to the same preprocessing as HSV-
of the (AkD) possible selections of images, according to a HIST. The first 64 bins are the number of times each pixel
softmin. Both approaches achieved similar probabilities for the  of a given color had neighbors of the same color at dis-
data once their weights were tuned. This paper reports on the tance 1. The next 64 bins are for distance 3, etc.
latter approach. Unfortunately, both give a constant probability 3) RGB-CCV, a 128-element long color-coherence vector of
to selecting zero images, independent of the target and the the RGBimage after quantizationinte4x4 = 64 color
choices, which is at odds with our experimental results and  bins. This vector is the concatenation of two 64-bin his-
limits the accuracy of our simulations. tograms: one for coherent pixels and one for incoherent

Two possible schemes for combining multiple distance mea-  pixels. A coherent pixel is defined as one belonging to a
sures were considered. The first scheme multiplied the softmin  large connected region with pixels of the same color [25]
probabilities for each distance measure. The second scheme
simply added the distance measures before computing BieRelative—Versus Absolute-Distance Criteria

softmin. In both cases, each distance measure was multiplieq) Relative-Distance Criterionin this scheme. the set

by an adaptive scaling factas;, since distance measures arey {X,1, X2, -+, X,c} of selected images in t,he display
. — qls qin bl q

generally not on the same scale. These scaling factors W€ as well as the seV — {Xp1, Xpa, -+, Xnz} of noNS-

set to maximizing the probability of the training data, using|acted images, play a role in approximating treer-model
gradient ascent. The second model achieved a higher maximidm,, P(A|Ti, D,) by a function S [3], [4]. The distance
probability, so it was chosen for thHeicHunter experiments. differenced(zf Xgo) — d(Ti, Xom) i é:omputed for every
. . 79 q 79 nm
The resulting formula is pair { X%, X,...} of one selected and one nonselected image.
- This difference determines, of course, whetfigiis closer to
_ X1 or to X,,,,; the difference is first transformed through a
d(f(Y), f(2)) = Zwidi(fi(y)’ fi2)) ) sigmoid function [(2) or (3)], and is then applied toward com-
=t puting the functionS. Thus, each pai{X,x, X, } increases
The individual distance; was the simple L1 distance betweerthe probabilities of images/., that are closer ta¥,., and
featuref;(Y) and fi(Z). decreases the probabilities of images that are clost,ig in
feature space.
2) Absolute-Distance Criterionin this scheme, only one

) . ) ) . image.X, in the displayD, can be selected by the user in each
This subsection deals with the pictorial features that the 4iion. The selection ak, either increases or decreases the

model uses for predipting human judgment of image Sim_"aritkﬁ'robability of an imagéd;, depending on whethek(T}, X,) is
It must be emphasized that we used rudimentary pictorgh | or |arge, respectively. In our implementation of the abso-

features, because our objective was not to test features as sjgh. gistance criterion. this updating of the probabilityl” =

but only to use them as a tool to test the Bayesian approagh isxes the form
2

and the entropy display-updating scheme. Hidden semanti
features are covered in Section VI. P(T =T,) — P(T = T,))G(d(T}, X,))

The original pictorial version oPicHunter[3] worked with
18 global image features that are derived for each picture in t\nﬁereg() is a monotonically decreasing function of its argu-
database. These features are: the percentages of pixels thagiigt. One way to think about the updating of probabilities is to
of one of eleven colors (red, green, blue, black, grey, whitgisualize the selected imagg, as defining an “enhancement
orange, yellow, purple, brown pink), mean color saturation gégion” in the F-dimensional feature space, centeredi(at,,).
entire image, the median intensity of the image, image widtiihe probability of each imag#; in this region is enhanced,
image height, a measure of global contrast, and two measuregg{ the magnitude of the enhancement decreases as the distance
the number of "edgels,” computed at two different thresholdgom f( X, ) increases. After obtaining a new valé¢7 = T;)
Thus the dominant influence is that of chromatic content, in ther each image by multiplying it bg(), each value is divided by
form of the 11-bin color histogram. These features are admife grand totap_" , P(T = T;), such that the ultimate values
tedly not as sophisticated as those used in other CBIR systegisthe end of each iteration sum up to 1. This post-normaliza-
but they merely provided a starting point for experimenting wition has the effect of enhancing or depressing the probabilities
the initial system. of images whose feature vectors are near or far, respectively,

The current version oPicHunter incorporates some rudi- from the selected imagg( X, ) in feature space, independently
mentary information on the spatial distribution of colors, in achf the magnitude of7(); the only requirement is tha®() be
dition to a conventional color hiStOgram. The current VerSion’rﬁonotonica”y decreasing_ The series of iterations can be visu-
pictorial features have the following three components. alized as a series of enhancement regions that progress toward

1) HSV-HIST, a 64-element-long histogram of the HS\the target from one iteration to the next, getting progressively

(Hue, Saturation, Value) values of the image’s pixelnarrower as they converge to a small region that contains the

A. Pictorial Features
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two test images seem to be equally similar or equally dissimilar
to the target image, then the user clicks on the middle button.
If one of the test images is somewhat more similar to the target
image, then he/she clicks on the button immediately to the left
or to the right of the center, as appropriate.

The third type of display, referred to as the “absolute-sim-
ilarity” configuration, involves two images, one on top of the
other, and five buttons at the bottom of the screen, as shown
in Fig. 2(c). These buttons are used by the user to denote the
degree of similarity of the two images, on a 5-point scale. The
extreme left button indicates the least degree of similarity (0),
and the extreme right one is used to show the maximum degree
of similarity (4). If the two images have intermediate degrees of
similarity, the user clicks on one of the intermediate three but-
tons, as appropriate.

The stimuli for this experiment consisted of a set of 150 LTR
triplets, in all of which the L, T, and R images were randomly se-
lected from a database of 4522 images. The user was presented
with a sequence of trials, i.e., a sequence of randomly selected
LTR triplets, and was asked to indicate his/her choices based on
image similarity. Each triplet was shown in all three configura-
tions of Fig. 2, and these three displays were randomly scattered
among the 600 trials (150 of type 2a, 150 of type 2b, and 300
Fig. 2. The three types of displays used in the experiments: (2) thdf type 2c, i.e., 150 for LT and 150 for RT pairings). Five users
,éﬁggutgf’sr}ﬂn?i:gfi’tt}',‘,’,nc’o(nbf?gt:gﬁger:f’“"e's'm"a”ty configuration, and () the 4k hart in this experiment. They were exposed to LTR triplets

for about 20 min before the beginning of a session, so as to ac-
custom themselves to the variety of images in the database and
the range of similarities and dissimilarities. They were told that

target. In this scheme, t&, —1) nonselected images do N0t e images they were exposed to represented a good sample of

influence at all the distribution of probabilities in the databasg” the images in the database. This exposure would allow them
Thus, this scheme can also be referred to as a “query-by-%(- 9 y P

amole” . . (‘halibrate their scales of similarity [31] to produce choices that
ple” search, because only one image can be selected in egq Il distributed across the entire range, and this was indeed
iteration, providing an example for converging to the target. arewe . g€,
the case with most of the users. The results from these exper-

] o iments indicated that 2AFC choices correlated very well with
C. Experiments: Judgment of Image Similarity by Humans pqth the relative-similarity and the differences between the ab-

This section deals with experiments that were designed to cplute-similarity judgments of the same LTR triplets. The data
lect data on how humans judge image similarity, for use in deéupported the idea of using some form of distance metric, and
veloping a user model with some knowledge of human perfoiere used for adjusting the weights of the distance function for
mance. In this experiment we used the three display configutfe pictorial features of the user model [see (4)].
tions shown schematically in Fig. 2. The task of the user was
always the same for a given configuration, but differed across
configurations. V. EXPERIMENTAL PARADIGM—TARGET TESTING

Fig. 2(a) shows the two-alternative forced-choice configura-
tion, which we shall refer to simply as the “2AFC” configura- The paradigm otarget testingrequires the user to find a
tion. Three images are presented on the screen: the target imgugific target image in the database. When a user signifies
on top, and two test images on the bottom. We will refer to tttbat he/she has found the target, there are two possibilities:
target, left test, and right test images in this and similar tripld) if this is indeed the target, the search is terminated; 2) if
configurations as T, L, and R, respectively; collectively, the sdte user mistakenly thinks that she/he found the target, then
will be referred to as the LTR triplet. The user must select tten appropriate message informs them of their mistake and
testimage that he/she thinks is more similar to the target imagestructs them to continue the search (the “ABORT” button is

The second type of display, referred to as the “relative-sinmthere for frustrated users who lose interest in finding the target
larity” configuration, is shown in Fig. 2(b). There are now fiveafter a lengthy search). This section presents more details on
buttons between the bottom two images. The user clicks on dhe implementation of the target testing paradigm that was used
of the five buttons, depending on how he/she judges the relatinethe vast majority of our experiments. General remarks are
similarities of the two test images are with respect to the targeade in Section V-A, and specific details on the databases are
image, using the 5-point scale. If he/she thinks that one of thgaresented in Section V-B. Section V-C discusses two major
is clearly more similar to the target image, he/she clicks on theemory schemes, and experimental results are given in the last
corresponding extreme button (left-most or right-most). If thisvo sections.

(a)

(b)

(c)
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A. Rationale D. Experiments on Features, Distance, and Memory Schemes

The main problem with evaluating the performance of CBIR

systems that terminate a search when the user finds an ima %Ilﬂt]he elxpe_nments dr_eplorte(; n t?lzsggipigzvier? c:mduc;ed
which is “adequately similar” to a target image is that the simi- € colorimages displayed on -pixelmonitor

larity criteria can vary from user to user. This is reflected in thie,' ©eNns, measunng 38 cm by 29 cm, viewed from a distance

data we obtained in two different search-termination strategié’g:abom 70 cm. The programs ran on Silicon Graphics Indigo2

one in which users terminate the search when a “similar” ima é)rkstations. Individual images were either in _“por'_[rait” or in_
is encountered, and another employing target testing. The st ﬁpt(_jscape tf)orm_?ft], and were gegeqtao dbyl'ihglr l:mq.t'ﬁ 'dﬁ nt_|—
dard deviation across users is much higher in the former ¢ ggtion number. They were padded with dark pIxels either nori-

(Section V-D), underlying the wide variability in judging image?oznstaIIy o;\l\llertlcallty tci fcc;rm sfqu?;e 'CO?S th'a't measur_ed 7152/51;
similarity. Thus it is very difficult to evaluate a CBIR system’s " cm. AR USETS lested periectfor color vision, scoring

performance under a category search, or a very-similar-to-tar ghsittan:r?dr(ioljrr::jh?gi;iset r?(l)?;le. (’)A‘rnclé?re;;::jeig iffmtss\tiesi;?r
search termination scheme. Y

culity.

The main reason for deciding to employ target testing feurn . .
PicHunterwas precisely our belief that the use of more objec- This set of experiments [5], [6] was designed 1o study the

tive criteria of performance than category search results in mJPée of the follow!ng cpmponents: 1) memory du_rmg the_search
reliable statistical measures. Therformance measutlat has Process, 2)_re_|at|ye-d|stance Versus absolute-d_stgnce Jud_gment
been used throughout our experimentshis averagenumber of image similarity (Section 1V-B); 3) semantic information

V' of images required to converge to the desired specific targ %e:['o': VI).h_Tr(])ward tg's gt%atl’. we ;es;(e\;jzsflx versions of
Typically, we obtained this average across 6—8 users, withCUnter which we code with trigraphs or mnemonic

each user’s score averaged across searches of 10-17 rand ons. Thg letters in the trigraphs XY.Z refer to components
selected target images. This performance measure is extremel abqvlt\eﬂ, 'nl\ﬁh(?t ortdetrr.] ITES :he {';St (Ije_;ter ij( drefetrs to
useful in two ways: 1) It provides a yardstick for comparin mory: vl or enote that the algorithm did or did not use

different PicHunter versions and evaluating new algorithmi en:jor;g :sespeqtlvely, Itn thefsgar(t:_h r{)}:’Iocefé.retfers o tthe
ideas; 2) it is also a first step in the direction of establishin andard bayesian system of SectionVl.reters 1o a system

a benchmark for useful comparisons between CBIR syste at bases its actions on the user’s relevance feedback for only
2 |ast display. The second letter Y, referring to distance, can

when coupled with a baseline search scheme, as explained I _
Section VPE P e eitherR or A to denote whether the model used relative

or absolute distances, respectively. Finally, the last letter Z is
devoted to semantic features, and it can have three possible
B. Databases values:P, or S, or B denote, respectively, that only pictorial

The pictorial database was assembled using images fromf@atures, or only semantic features, or both, are used in the user
Corel compact disks (CD’s), each containing 100 images wifpodel for predicting judgments of image similarity. The picto-
a common theme such as horses, flower gardens, eagles, pitfeatures in these experiments were the 18 features described
tures of Eskimo everyday life, scenes from ancient Egyptidh Sectlon_ IV-A. All the experiments of this sec_tlon were run
monuments, etc. [32]. To these 4400 images we added 122 #ith algorithms that used the most-probable display-updating
ages from a nonthematic Corel CD for a total of 4522 imagegc_:heme of Section VII-A. Our previous experience indicates
This database was used in all version®afHunterwhere the that some XYZ combinations are of little practical value, thus
user model was based exclusively on pictorial features. In a¥¢ concentrated on the following six versions.
dition, we created a database of 1500 annotated images, whlgq) MRB: Uses memory, relative distance, both semantic
wa§ a proper sub§et of the 4522-|mage sgt, from 15 t_hgmauc and pictorial features.
CD's. This semantic database is described in more detail in Secz) MAB: Same as MRB, but with absolute distance.

tion VI-A. 3) NRB: Same as MRB, but doesn’t use memory.
4) NAB: Same as MAB, but doesn’t use memory.
C. Schemes with and Without Memory 5) MRS: Same as MRB, but uses only semantic features.

PicHunter differs from most CBIR systems along another 6) MRP: Same as MRB, but uses only pictorial features.

dimension: how the user's relevance feedback is treatedSix first-time PicHunterusers, naive as to the experimental
from the very beginning of a search. Whereas most systepgposes, participated in this study. They ran the experiment
tend to concentrate on the user’s action only in the previoirsa 6-users x 6-versions Latin-square design [33]. Each user
iteration, PicHunters Bayesian formulation empowers it withwent through 15 target searches, terminating the search under
“long-term” memory: all the user’s actions during a targdhe targettesting paradigm; all searches terminated successfully.
search are taken into consideration. Nevertheless, the beni#fie results of these experiments are shown in Table I. The first
of such memory has not been demonstrated experimentattyw has the average number V of 9-image displays visited be-
It is conceivable that performance gains from the inclusion &re convergence to the target; smaller values of V denote better
memory may depend on other conditions. Investigating supkrformances. The second row displays the standard error SE,
dependencies was the purpose of the experiments presenteahith the third row shows the ratio SE/V, as a measure of the
Section V-D. variability of V across users. Two experienced users also ran
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TABLE | TABLE I
RESULTS OF THE EXPERIMENT THAT WAS RESULTS OFTHE EXPERIMENT WITH TARGET SEARCH AND CATEGORY

DESIGNED TOTEST THE ROLES OF MEMORY, DISTANCE METRIC, AND SEARCH. THE EXPECTEDVALUE OF V UNDER RANDOM SEARCH IS 83.3. THE
SEMANTIC FEATURES IN PICHUNTER THE EXPECTEDVALUE OF V UNDER ASTERISK ONRAND/C IS MEANT TO INDICATE THAT THIS IS NOT A
RANDOM SEARCH IS (1500/2)/9= 83.3. N THIS, AS WELL AS IN TABLES II, VERSION OF THEPICHUNTERCBIR SYSTEM

IV, AND V, SMALLER VALUES OFV SIGNIFY BETTER PERFORMANCES

Version MRB/T MRS/T MRB/C RAND/C*

Version MRB MAB NRB NAB MRS MRP No. displays, V 254 156 122 19.7

No. displays, V 254 358 455 332 156 35.1 Standard Error, SE 2.35  1.76 213 6.39

Standard Error, SE 2.35 2.37 248 244 1.76 2.11 Variability, SE/V. 0.093 0.113 0.175  0.324

Variability, SE/V  .093 .066 .055 .073 .113 .060 V, 2 exper. users  13.1 8.8 8.9 20.1

V, 2 exper. users 13.1 316 284 222 88 189

specific system, by comparing the new version’s performance

: " , against that of the original version. Ideally, one hopes for an
the experiments under the same conditions. Their averages glg,mated comparison, but this is not feasible at the present.
shown below the data for the naive users. _ Hence, our efforts must be focused on producing a benchmark,
The following main trends can be observed in the datg,qeq on efficient experiments with as few human users as pos-

First, when one compares the results of the MRB and the MR o The henchmark must yield a robust estimate of perfor-
schemes, performance with the semantics-

featurgs _(MRB)' T.h|s IS J_USt .the opposite of the expecteg, yheo target testing paradigm. Our experimental results tend
behavior; namely, if the pictorial features were well choSeR, qnfirm our intuition, and in this sense are not surprising.

their inclusion should improve, rather than worsen, perfop, s q\,ch confirmation is valuable in guiding the development
mance (even if semantic features dominate in judgments cﬂfcomplex systems that interact with humans.
similarity, the addition of pictorial features should at worst keep To be able to compare performances with systems that search
performancg the same)._ Qne obvpus conclusion IS that thed similar-category image, rather than a unique image target,
features oPicHunters original version need to be refined, and, o need to establish a performance baseline against which to
this is precisely what was done in the most recent version (§ggnnare other versions. Such a baseline is provided by a sim-
Section IV-A). , ilar-target search, with a random display update, since it is rea-
Second, the clear advantage of the MRS version over @l pie 1o determine what the performance would be in the
others underscores _the rolg played by semantic features 'néB?nplete absence of any relevance feedback from the user. This
search process. Th.'s fact is also corroborated by the expgfisiyated the present set of experiments, that were conducted
mentgl datg of _Sect|ons VI,'B and V“'E_' with six first-time PicHunterusers, who were naive as to the
Third, pair-wise comparison of versions MRB to NRB an‘Eyurposes of the experiment [6]. These users were the same as
MAB to NAB show that the effect of memory depends Ofy,,qe \who participated in the experiments of Section V-D. We
the distance criterion. The former comparison indicates thalye just introduced a new option, namely whether searches are
memory improves the reIatndastange version, while the Iatterterminated under target testing (T), or under “category” search
comparison shows thanemory slightly worsens the abso(c) “in which an image similar to the target is found. Thus,
lute-distance version. This apparent paradox can be explaingeg T and MRS/T denote the same target-specific versions of
if one visualizes the search in the absolute-distance versigjd nterthat were referred to as MRB and MRS, respectively,
as an enhancement region that moves toward the target acigsg orion v-p. Similarly, MRB/C is the MRB version that ter-
the iterations. Since probabilities are updated by multiplying;.ies searches when a similar image is found. In addition to
factors cumulatively in long-memory versions, this Memonype/T MRS/T and MRB/C, the fourth scheme that we exper-
adds a delay by introducing “inertia,” due to the effect of all thﬁnented with was RAND/C. RAND indicates that displays are
previous iterations. By contrast, this accumulation is helpfy,yaie at random, independently of the user's feedback, with
in the the relative-distance versions, in which the target {gq onyy restriction of not displaying images repeatedly, if they
approached as the feature space is successively partltloneq,érge already displayed in previous iterations.

each iteration [S]. _ The first three rows in Table Il are the results with searches
_ Fourth, other than the optimal scheme MRS, the nextbest Qe eqe four schemes for the six naive users, each searching
is the MRB scheme, wh|ch.|ncorporates memory, arelatlve—dlﬁ)—r the same 15 target images. In the XYZ/C searches, users
tance measure, and both kinds of features; all other schemes gtz instructed to terminate the search when they encountered
form somewhat worse than the two best schemes. -animage which looked similar to the targetimage. The entries of
Fifth, as expected, the expe.nenced users were substanh%lg Table follow the same convention as that of Table I. Namely,
more efficient than the inexperienced ones. the first row shows the mean number V of 9-image displays
i ) _required to converge to the target, averaged across the means of
E. Target and Baseline Testing as a Benchmark for Compariggsers, where each user's performance was averaged across the
CBIR Systems 15 targets. The Table also includes the standard error SE, as well
As argued earlier, there is a great need for a benchmark &wthe ratio SE/V, which is a measure of the relative variability of
comparing CBIR systems. Such a benchmark can also be useatcross users. The last row has the averages V of the same two
for assessing the value of incorporating a new approach foegperienced users who also ran the experiments of Section V-D.
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The entries for columns MRB/T and MRS/T are duplicated from For these reasons we are led to stidiyden language$or

Table 1. semantic encoding, and in particular hidden Boolean attributes
The following observations can be drawn from the data afffixed to each database image.
Table II.

1) RAND/C converged rather fast to a picture that the avA—‘ Annotation Implementation

erage user judged to be similar to the target, establishingin an effort to characterize how CBIR performance is en-
a high baseline standard. This makes it necessary to f@nced by the introduction of semantic cues, we created an an-
visit results given in other reports where similar imagegotated database of 1500 images from 15 thematic CD’s of 100
are retrieved, but no baseline is established. images each. A set of approximately 138 keywords was identi-
2) Despite this high standard, performance with the cofied by one of the authors who had extensive exposure to our ex-
respondingPicHunter scheme MRB/C is substantially perimental database of 1500 images taken from the Corel data-
better. base [32]. The objective was to obtain a set of keywords that
3) Variability in the baseline scheme RAND/C is markedlgovered a broad spectrum of semantic attributes. Each image
higher by a factor of 1.85 than that in MRB/C, which inwas then visually examined and all relevant keywords iden-
turn is higher than that of the MRB/T scheme by a factdified. An additional set ofcategorykeywords were then as-
of 1.88. Since low variability allows efficient tests withsigned automatically. For example, the “lion” attribute causes
few users, target search offers a valuable testing paradigfie category attribute “animal” to be present. Altogether there
for getting representative performance data. are 147 attributes. These supplement the pictorial features used
4) One must remark on the solid performance of the semd the basidPicHunterversion, and described in [2]. The 147
tics-only target-search MRS/T version, which is compaemantic attributes are regarded as a boolean vector, and nor-
rable to the category-search MRB/C version, and bettéalized Hamming distance combines their influence to form,
than the baseline. in effect, an additionaPicHunterfeature. Table Il shows rep-
5) Again, as expected, the performance of the experiend@s$entative semantic labels and suggests the level of semantic
users was considerably better that of the naive ones, wigsolution. It must be emphasized that these semantic features
the notable, but expected, exception of the random cag€ hidden: users are not required to learn a vocabulary of lin-

gory search. guistic terms before using the system, or even use a particular
language.
VI. HIDDEN ANNOTATION B. Experiments: Hidden Annotation and Learning

Systems that retrieve images based on tbeitentmust in These experiments were designed to compare performances
some way codify these images so that judgments and inferenbesveen the original pictorial-feature versionRi€Hunter[3]
may be made in a systematic fashion. The ultimate encodiwith a version that incorporated semantic features in addition
would somehow capture an image’s semantic content in a waythe image features. Furthermore, we examined whether user
that corresponds well to human interpretation. By contrast, therformances improved after they were explicitly taught which
simplest encoding consists of the image’s raw pixel values. Iparticular features were considered important by the algorithm’s
termediate between these two extremes is a spectrum of poaser model in both versions [1]. For notational purposes, we
bilities, with most work in the area focusing dow-level fea- refer to the pictorial version as “P” and to the pictonpdilis
tures i.e., straightforward functions of the raw pixel values (sesemantic version as “B” (B stands footh). The experiments
[34], [21], [7], [35], [11], [12], [36], [17], [37]-[39], and [19]). involved eight first-timePicHunterusers who were not aware
Some such features, such as color, begin to capture an imagé'the purposes of the study. All sessions involved searches of
semantics, but at best they represent a dim reflection of the@arget image among the 1500 images in the database. There
image’s true meaning. The ultimate success of content-basegte a total of 17 target images that were selected randomly.
image retrieval systems will likely depend on the discovery dfsers were required to locate all 17 targets in one session for
effective and practical approaches at a much higher level. In teiachPicHunter version. Both the P and the B versions were
section we report conceptual and experimental progress towangplemented with displays of nine images.
this objective. The experiments consisted of two major phases, each

Any attempt to codify image semantics inevitably leads tasing the same 17 target images. In the first phase, the pre-
design of a language with which to express them. If a humamrplanation phase, users were told to use their own similarity
operator is required to formulate a query using this languageiteria. The order of exposure was balanced: four users
and interpret a database image’s description in terms of the lavent through sequence (P,B), and the others through (B,P).
guage, two serious problems arise. First, the language mustTibe eight users were then divided in two groups of four,
only be effective in theory, but must also serve as a natural tdol balance within-group average performances and standard
with which a human can express a query. Second, inaccurateeviations for the two groups. This grouping was done on
inconsistent expression of each database image in terms oftthes basis of their performances in the first phase, and it was
language can lead to confusion on the part of the user, and ednstrained by requiring that each group have two members
timately undermine the effectiveness of, and confidence in, tteat went through the (P,B) sequence, and the other two
system. The need for accurate and consistent expression cantismigh the (B,P) sequence. In the second phase, users were
limit the language’s design. first given explicit instructions for judging image similarity,
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TABLE Il when their performance is pooled over both versions of
REPRESENTATIVESEMANTIC LABELS IN THE ANNOTATED DATABASE PicHunter

&y oud ground 3) Inthe P vers_ion tl_1(=T explanati.ons reduced. the search time
tree one subject aircraft to 77.8% of its original level; in the B version the search
horse two subjects | person time was reduced to 81.2% of its original level. A 2 x
water many subjects | lion 2 within-groups analysis of variance (ANOVA) was per-
snow sand animal formed over both the version type and the instruction
rodent arch church presence to look for an interaction between the two ef-
bicycle field shoe fects listed above. No such interaction was fo(fd =
Japan Africa woods 1.770; df = 1, 7;p = 0.225). This shows that the in-
art painting umbrella . . .
city boat night struction helped users equally with both versions.
interior wall autumn Also, the issue of feature relevancy must be addressed. In ob-
mountain | close up green grass serving the eight users’ strategies, we observed that test images
eagle child house were sometimes selected because of similarity with the target
fish pillar texture in terms of, say, color (it has as much blue as the target”), and

other times because of similarity in, say, overall brightness. To
the extent that a user relies on a small number of features during
TABLE IV a session, it may be possible to learn which are being used, and
EFFECT OFSEMANTICS AND EXPLANATIONS ON PERFORMANCE THE . doi . £ Thisis. i inciol ibl
EXPECTEDVALUE OF ENTRIES UNDER RANDOM SEARCH 1S 83.3 In _SO oing improve p_er ormance. 'S_ IS, ”? prmmp €, possible
using user models with state as described in Section II.

Before After Because the attributes are hidden in our approach, we are
explanations | explanations free to consider attribute schemes in future work that might not
Pictorial work well in a traditional nonhidden approach. We might, for
features 17.1 13.2 example, entertain a scheme that employs 10 000 attributes, far
;?Z'Oﬂal more than a human operator could reasonably be expected to
AND 11.7 95 deal with. Moreover, some of these attributes might correspond

to complex semantic concepts that are not easily explained, or
to overlapping concepts that do not fit well into the kind of hier-
archies that humans frequently prefer. They might even include
entirely artificial attributes that arise from a machine learning
according to the user model. For the P model, we briefigorithm. Because the attributes are hidden, it may be that the
eXpIained to them the 18 features and their relative WEighéglstem performs well despite considerabteor in the assign_
and instructed them to ignore the images’ semantic conterigent of attributes. For this reason we are free to consider at-
For the B model, users were told to base similarity not onlyjputes even if their proper identification seems very difficult.
on image characteristics, but also on image semantics; thexye remark that there are errors and inconsistencies even in
were shown the 42 words of Table Ill, to get an idea ofttributes assigned by humans. Here, the fact that the attribute
how the B version was designed. This explanation was vegjlues are hidden can result in more robust performance in the
brief, lasting at most 8 min for each of the two versiongresence of error. We also observe that in some settings, such as
Explanations were given separately for each version, afth emerging area of Internet Web publication, authors are im-
users started the 17'target search with that particular Versig[bmy annotating their images by their Choice of text to accom-
of PicHunter This was followed by explanations for thepany them. Exploiting this textual proximity represents an im-
other version, and ended with a 17-target search with thakdiate and interesting direction for future work and this gen-
other version. The order of versions, (P,B) or (B,P), wasra] direction is explored in [27], [40]. Semantically annotated
balanced in this second phase, as well. images are also appearing in structured environments such as
The results are given in Table IV, the entries of which are thedical image databases, news organization archives—and the
mean number V of nine-image displays that were required fgend seems to extend to generic electronic collections. In ad-
users to locate the target, averaged across the eight usersiigh to using these annotations in a hidden fashion, mature
the 17 tal’gets. It iS ObViOUS fl’0m the entl’ieS Of Table AV th%age Search Systems may be hyb”ds that inc|ude an exp“cit
both semantic features and training, in the form of eXpIanatiOQﬁ’ery mechanism that Corresponds to the Space Of availab|e an-
imprOVe users’ performance. Specifically, the data indicate thgtations_ Even in query_based SystemS, |earning may p|ay a
following. role as illustrated by related work in the field of textual infor-
1) Without prior instruction, users took on average about 1f8ation retrieval [41].
fewer displays to converge to the target with the B version It is not clear howhighin the semantic sense our approach of
than with the P version, underlying the importance of séidden attributes might reach. It is certainly conceivable that a
mantics. large portion of an image’s semantic content might be captured
2) After users were instructed on the similarity criteriahy a sufficiently large and rich collection of attributes—entirely
performance improved for both versions, as expecteabviating the need to produce a single succinct and coherent
Users took over 25% more displays prior to instructiorexpression of an image’s meaning.

semantic
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VII. DispLAY UPDATING MODEL Information theory suggests entropy as an estimate of the
umber of questions one needs to ask to resolve the ambiguity

n
Once the user-model module BicHunterupdates the prob gecified byP(T = T))

ability distribution across the entire database, the next task®

to select theVp images to be shown in the next display. We n

have experimented with several schemes in this area, butwere- ~ C[P(D)] ~ —a Y  P(T =T,)log P(T =T;)  (5)
port on the two that produced the best results: the most-probable i=1

scheme, and the most-informative scheme. for some positive constantwhich is irrelevant for the purpose

of minimization. This offers an alternative interpretation of min-
imizing future cost: maximizing immediate information gain.

This is an obviously reasonable strategy: For the next dis-To illustrate this scheme, consider an ideal case wign=
play, choose théV, images that possess the highest probabi-
ities o_f being t_he_ target; possible ties are broken with random 1, ifd(X,T) < d(Xs,T)
selections. This is the scheme that was used in all but the mgst .

. . . Lo ideal(A = ]_|4XV17 XQ, T) = 0.5, if d(Xl, T) = d(XQ, T)
recent version oPicHunter. It performed quite well, achieving 0 it d(X1,T) > d(Xo,T.)
search lengths that were about ten times better than random ’ L »o
target-testing searches for purely picture-based features [2], [8]lA = 1, all elements farther frorfi” than X will get zero
Typically, this updating scheme produces displays whose ifrobability. The remaining elements will have uniform prob-
ages belong to a common theme, such as aircraft or horsgsility (assuming no ties). The most-informative display up-
even with the purely pictorial feature user model, somehow egating scheme will therefore chood& and X, so that the ex-
hibiting an ability to extract semantic content. However, thisected number of remaining elements is minimum. This min-
greedy strategy suffers from an over-learning disadvantage thatim is achieved when the decision boundd(yx;, 7) =
is closely related to its desired ability to group similarly lookingi( X,, T') exactly divides the set of targets in half. So in this ide-
images. The problem is that, in a search of, say, an image adlized situation the most-informative display updating scheme
jungle scenePicHunteroccasionally “gets stuck” by showing behaves like theantage-point trealgorithm of Yianilos [42],
display after display of, say, lion pictures as a result of the usghich is a kind of binary search on an arbitrary metric space.
having selected a lion picture in an earlier display. This problemNow consider the generalization
is addressed by the information-based scheme, described below.

A. Most-Probable Display Updating Scheme

Psigrnoid(A = 1|X17 X27 T)
B. Most-Informative Display Updating Scheme 1

Another approach is to attempt to minimize the total amount ~ 14 exp((d(X1,T) — d(X>,T)) /o)
of iterations required in the search. The resultis a scheme whigfhen , —. 0, this is the same a#y..;.. When0 < o <

tries to elicit as much information from the user as possiblgoy there is a smooth transition from probability zero to prob-
while at the same time exploiting this information to end tthiIity one asT varies. Whens — oo. outcomes are com-

search quickly. , pletely random. This formula can be interpretedPag.., after
Atany time during the search, all of the knowledgeHunter .o nting the distance measurements with Gaussian noise. The

has about the target is concisely summarized by the distributign,a meter, can therefore be interpreted as the degree of preci-
P(T" = T;) over the databas§l}, Ty, - --, T,}. The ideais gjon in the distance measurements.
to estimate the number of iterations left in the search, based OYynfortunately, finding Xi, -, Xn to  minimize

L] k) ) Y D

the distributionP(I" = 7;). Call this estimate’[P(T)]. Then ¢y, ... X, ) is a nontrivial task. An incremental

the display scheme chooses the display which minimizes thgqrach inN;, does not seem possible, since an optimal
expected number of future iterations, which is display for N, — 1 can be far from an optimal display for

O(X1, -+, Xny) Np. The problem is at least as hard as vector quantization,
Lot AN which we know can only be solved approximately by local
= P(target not foundl> ~ C[P(T|A = a)] search algorithms. Local search does not seem feasible here,

since evaluating” is quite costly and there can be many local
P(A=alXy, -, Xp) minima. One needs an optimization scheme which can give
where decent results with a small number of evaluations. Inspired
P(A=alXy, -, Xn,) by Yianilos’s vantage-point tree algorithm, we chose a Monte
n Carlo approach: sample several random dispféays- - -, Xn,
= ZP(A =alXy, -, Xnp,, T=T)P(T =T, from the distributionP(T" = 7;) and choose the one which
i=1 minimizesC'. Though crude, it still achieves considerable gains
and over the most-probable display update strategy.
P(target not foungl

C. Related Work
=1-P(T=X,)—---—P(T=Xn,)

The general idea of maximizing the expected information
andp(T|A = a) is the distribution over targets after user refrom a query has also been pursued in the machine learning
sponsex. literature under the name “active learning” or “learning with
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Fig. 3. Number of iterations needed to find a target, for varying database sizes Fig. 4. Same as Fig. 3, but including the query-by-example method.

and search strategies. User actions were generated accordhg o

queries” [43]. Active learning techniques have been shown to
outperform simple probability ranking for document classifica-
tion [44]. We know of no application of active learning tech-
nigues to database retrieval.

Comparison searching with errors has also been studied in
the theoretical computer science literature. The algorithm of
Rivestet al.[45] assumes that the number of errors has a known
bound. Nevertheless, their algorithm is similar to the one pre-
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sented here, in the sense that it minimizes at each step an infor-
mation-theoretic bound on the number of future comparisons.
The algorithm of Pelc [46] allows errors to occur at random but
requires them to be independent of the comparison and the target
and furthermore does not guarantee that the target is foupg. 5
So while both of these algorithms run in provably logarithmig.1.
time, they also operate under more restrictive conditions than

PicHunter optimal, with deviations only due to a limited number of
Monte Carlo samples. The query-by-example scheme is quite
different, as shown in Fig. 4 note the change in vertical scale.
This section evaluates these two display update schenidé®e query-by-example method is not exploiting comparison
(most-probable and most-informative) by comparing them toformation very well; its time scales a&->. IncreasingVp
other plausible methods for chooqug, - Xnpt or the dimensionality will reduce the difference between the

a) Sampling: SampleXy, ---, Xy, from the distribu- four schemes.
tion P(T = T;). This is a special case of the Most Informative 2) Nondeterministic CaseFig. 5 shows what happens when
scheme where only one Monte Carlo sample is drawn. user actions are generated by thg ...« model, witho = 0.1.

b) Query by examplelet X;, ---, Xn, be the Np Increasingthe database size causes the unit square to be sampled
closest items to the winner of the last comparison. This isnaore and more finely, while the distance uncertainty threshold
favorite approach in systems without relevance feedback [é]remains the same. Thus it is much harder to isolate a partic-
It does not exploit memory or a stochastic user model. Thear target in a large database than in a small one, as would be
idea is to simulate a user’s responses by sampling from ttnee in a real situation. Again, the Sampling and Most Infor-
stochastic user model. The database is synthetic, consistingnattive schemes are similar in search time, which scales like a
points uniformly-distributed inside the unit square. This allowsquare root. However, the fragility of the Most Probable scheme
databases of varying sizes to be easily drawn. The simulatecevident here. Fig. 6 also reveals a large discrepancy in the
users used the Euclidean distance measure. query-by-example scheme. An explanation for this is that the

1) Deterministic Case:Fig. 3 plots the empirical averagemost probable and query-by-example schemes tend to choose
search time for finding a randomly selected target as a functielements which are close together in feature space—exactly
of database size, using the most probable, sampling, and meken comparisons are most unreliable. Entropy-minimization,
informative (entropy) schemes. The number of choidgs by contrast, automatically chooses displays for which compar-
was two. User actions were generated by ihe.; model. In isons are reliable. The most probable scheme also does not prop-
all experiments, the average is over 1000 searches, each witly exploit broad and nonuniform distributions, or distributions
a different target, and the database was resampled ten tinvesich are multimodal. Furthermore, a multimodal distribution
Performance of these three schemes is comparable, scaling titases this scheme to switch to different parts of the database
log, n. In particular, the Most Informative scheme is virtuallybetween iterations, which is disconcerting to a real user.

L Il i L Il

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Il X L 1

Here, user actions were generated according {0,..:« With o =

D. Simulation Results
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000 mance of individual metrics as well as combinations of metrics.
2) The user model in the old version was an approximate softmin
Fig. 6. Same as Fig. 6, but including the query-by-example metheduare. while the new version uses an exact softmin.

One can make the following observations on the data of
Table V. First, a comparison of the entropy-based schemes
reveals that the combination of both semantic and pictorial

The most recent experiments BitHunter, reported here for features (EB results in better performances than using either
the first time, addressed two issues. 1) Compare performansemantic (ES) or pictorial (EPfeatures alone, as expected.
with the two most promising display updating schemes. 2) Evarthis expected behavior is unlike the surprising pattern of
uate the new pictorial features introduced in Section IV-A. Taesults of the experiments in Section V-D. One possibility for
ward this end, we tested seven versiondPafHunter, coded the difference is that the new sétd? pictorial features is better
with a digraph notation XY that is analogous to that used than the original ones P, hence they improve performance
Section V-D. Some of these versions were the same as theden they combine with the semantic features. Second, the
tested previously (Section V-D); in these cases we label thest entropy-based scheme (EB at least as good as the best
scheme with the trigraph notation used in Section V-D nertost-probable scheme (MRBand both are much better than
to the new digraph notation. The first letter X of the digrapthe QBE search (NAB. The superiority of the entropy-based
XY represents the display-updating modestands for the en- scheme is even more evident in the results of the experienced
tropy-based “most-informative” updatingg stands for a rela- users. It is interesting to note that such a display strategy
tive-distance-based, most-probable scheme that uses memamyduces a qualitatively different feel to the overall system.
Ais similar toR, but uses an absolute distance criterion withoudt the beginning of the search, the displayed set of images
memory (“query-by-example”). The second letter Y of the dishows a large variety, which is in contrast to traditional display
graph XY denotes the features used by the model for singilgorithms that attempt to display a set of very similar images.
larity judgments:P for pictorial only, S for semantic only, and Third, the conditions RS and RP were used in order to compare
B for both, with P’ denoting the new pictorial features, andhe old version to the new one, where both were tested with
B’ = S+ P’ denoting the combination of the semantic featurée common new set of 15 target images. The data indicate
and the new pictorial features (the semantic features remairikdt the combination of both S and features (RB does not
the same). The seven versions are the following’, H¥, and seem to yield an improvement over the semantics-only version
ES, which are entropy-based schemes with & PPand S, re- (RS), which performs remarkably well. Parenthetically, one
spectively; RBand AB, which are the same as the versions degsiece of useful data that would enable a complete comparison
noted by MRB and NAB in the trigraph notation, but using theis performance of the most-probable scheme with the new
combination of the new pictorial features and the semantic fagietorial features alone, i.e., the Ritheme.
tures; finally, RS and RP, which are identical to versions MRS At this point, it is useful to reflect on the improvements of
and MRP of Section V-D. All seven versions were run with ththe present schemes as compared with earlier versions. In the
same set of 15 target images, which was different from the setasfginal implementation, about half of the searches by first-time
15 images of the experiments of Section V-D. seven users, wingers were labeled “unsuccessful” in that users gave up after
were naive as to the purposes of the experiment and had nemerexcessive number of iterations. The average number of im-
usedPicHunterbefore, participated in the 7 x 7 Latin-squareges visitedn the successful searches omhas 300 [3] which
design [33]. The results are shown in Table V, which uses theas 13.3% of the expected number under random search for the
same notation as that of Tables | and Il. The same two expts22-image database. This number must be at least doubled if
rienced users who participated in all the previous experimente want to include the effect of the unsuccessful searches. By
also ran a subset of the experiments. contrast, our users had only successful searches by definition,

The user model in the new version BicHunter (the results because they were required to continue searching until the target
of which are shown in the first five columns) differs from the oldvas found. This requirement necessitated some excessively long
one (last two columns) in two major ways, besides the pictoriséarches, which may be statistical outliers, yet their lengths in-
features. 1) The sigmoid slopegma and the feature weights flate the mean value. Despite this, the improved schemes con-
w; are different, since they are based on more training data, aretged after visiting, on average, 100.8 images, which is still
optimized in a better way than before. This affects the perfat3.4% of the expected number under random search for the

E. Experiments on Updating Schemes
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1500-image database. Experienced users do a lot better, atlg-spatial extent of each color, rather than a conventional color
aging 8.2% of the expected length of random searches. Consistogram’s mere first-order statistics. Along the same lines,
tent users irPicHunterevaluations, in addition to the authorsthe user model can benefit by adding more information on the
report that present versions BfcHunterperform remarkably spatial properties of images, such as location, size, shape, and
better than earlier versions in locating targets efficiently. It musblor of dominant objects in the image. The inclusion of spatial
be emphasized that these figures are for target testing, whiclamsl figural features is especially important for the minority of

the most demanding of the search types. color-blind people. Another feature can be the first few low-fre-
guency Fourier components of the image’s spectrum, or other
VIII. E XTENSIONS measures of the distribution of spatial frequencies [17]. The

] ) . need is evident for more psychophysical studies that investi-
All PicHunter versions to date have been using the targghye what criteria are used by humans in judging image simi-
search paradigm. However, when a user opefelSunterto ity [47], [48]. Ultimately, some shape information [9] or ob-

search for images that are similar to a prototype image, sayegi_hased scene description [49] must be employed in CBIR
North-Pole scene, the system quickly produces displays ngstems.

similar images; in a lax sense, under these conditions, this type

of search can be considered as a category search. Morg form?:“.y‘More Complex User Feedback
howeverPicHuntercan become eategory-searckengine if the
Bayesian scheme is modified to treat sets of images rather thaRicHunterwas deliberately designed with a very simple user
individual images. The challenge for the system would be toterface, to concentrate on more fundamental issues in CBIR
discern the commonality of the features that specify a certdigsearch. The items below remove this simplicity constraint by
category that the user has in mind. suggesting more complex ways of accepting users’ feedback.

The main characteristic apen-ended browsirig that users Obviously, the user model needs to be adjusted accordingly to
change their goals during the search either gradually or quitecommodate the additional feedback. Naturally, the introduc-
abruptly, as a result of having encountered something intéien of new feedback modes has to be evaluated vis-a-vis the
esting that they had not even considered at the beginningcehflicting requirement for a simple user interface; appropriate
the search. Accommodating these changes necessitates a nexgieriments can decide whether there are any significant gains
fication of the probability distribution updating scheme. For they the proposed idea to make it worth pursuing.
gradual changes one may assign weights to the probability upd) Specify Which Feature(s) are Relevant in a Selected
dating factors that are strongest for the most recent iteratithage: Post-experimental interviews with the users reveal that
steps, and decay exponentially for distant past steps. For stane of them followed a common strategy in selecting similar
abrupt changes, one option is to enable the user to indicate stgages in a display. They selected one image because it looked
switches, and then assign small weights to iterations prior to teignilar to the target in terms of, say, overall color, and another
abrupt change. image for its similarity in, say, overall contrast. This suggests

AlthoughPicHunterwas developed specifically for searchinghe possibility of allowing users to specify which feature(s)
image databases, its underlying design and architecture mak®ake a selected image desirable, and can be extended to cover
suitable for other types of databases that contain digital das&mantic features as well.
such as audio passages or video-sequence databases. 2) Strength of Selected Imagéndependently of specifying
feature relevance, the user could also indicate the degree, or
strength, of similarity between a selected image and the pur-
sued target. This can be done by providing either a slide bar or
A. More Representative Databases a series of buttons below each image in the display.

The main problem of the initial database, described in Sec-3) Portions of Selected ImageYet another independent
tion V-B, is that its images are clustered into thematic categoritgm of more complex user feedback is to indicate the portion(s)
of 100 elements each. This results in a clustered distribution@hthe image that is (are) similar to the target. The interface can
feature space, which may not be representative of distributic#tl maintain simplicity by allowing the user to circumscribe
in larger database®icHunters problem of occasionally “get- relevant portions using the mouse.
ting stuck,” i.e., producing displays of a certain category in step
after step (Section VII-A), may in fact turn out to be an advarB. More Complex Displays
tage in databases that have a_lwigler, nonclustereq, distribution iq‘he first three items below discuss how best to start the iter-
feature space. A representative image database is needed b
CBIR community as a means toward establishing a benchm%%e
for algorithm assessment.

IX. IDEAS FORIMPROVEMENT

process by using as informative an initial display as pos-
(the first item deals with expanding the current version by
just providing more images in the initial display, the next two
deal with initial queries). The last item provides the user with
information on why images were selected to be included in the
PicHuntefs performance improved when the new pictoriaturrent display.

features were incorporated in the user model. The main advani) Initial Display: It would be helpful to give the user a head
tage of the new features of the color autocorrelogram and thiart by using a more complex initial display, keeping displays
color-coherence vector is that they embody some measurdrothe rest of the iterations as simple as described so far. For the

B. More Relevant Image Features
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particular database that we worked with, one idea that we exp&his distribution is updated based on the user action after
imented with was to take advantage of the fact that the databaseh iterative display. This action is “interpreted” by thser
contained clusters in feature space. Thus we included in the finsbde] which is the second major component of the system,
display a large number of images (50 or so), each being at thgether with the probability vector. This is an action-pre-
center of a cluster. This seemed to speed up search time butliator model that uses rudimentary knowledge of humans’
yet we have no comprehensive data from such informal expgtidgments of image similarity, based on empirically derived
ments. pictorial and semantic features. The user model was refined
2) Initial Query Template: PicHuntecan be modified to on the basis of data obtained from our similarity judgment
add a feature that is common in many “query-by-exampl&Xperiments (Section IV-C). The third major component, the
CBIR systems that use a “sketch” to specify a template in ordgisplay-updating schemé concerned with how to select the
to start a search with a better-than-random initial display. Tlmages for the next iteration’s display. We presented two major
user can be given the option to select desirable values for #@iternatives, a most-probable and a most-informative scheme,
pictorial features by using, say, “slide bars.” These bars carich exhibited considerably improved performances over
be used to specify mean brightness, luminance contrast, ca@tiernative schemes. Overall, the system performs quite well
content, etc. This will enable the user to start the search withiaa a wide spectrum of users tested on a wide variety of target
good guess in the first iteration. images. The improvement over earlier versions, as verified by
3) Initial Query: Just as textual search engines do witthe reported experiments and attested by consistent users of the
words and phrases, CBIR systems may use Boolean expressgyssem, is very promising.
on semantics. The analogy is the following: with a databaseln comparing algorithms based on their performances under
browser, one specifies logical expressions of words whéme target testing scheme, we make the implicit assumption that
searching for a paper in the literature; by analogy, one can sestems which are optimized under this target testing condi-
self-explanatory icons (such as for tree, house, animal, towion will also perform well in category searches and open-ended
aircraft, person, crowd, lake, etc.), and build an interface fbrowsing. We reported on experiments that support this assump-
forming Boolean expressions that characterize the target imati@n when the target testing version is used for a form of cate-
This will enable users to start with an initial display that is vergory searching (Section V-E). Performance under open-ended
close to the desired target. browsing is much more difficult to quantify because of the vague
4) Which Features Caused an Image to be Display&tlie nature of the task at hand. The main requirement in open-ended
previous subsection dealt with allowing users to provide mobgowsing is that the system display images that are similar to
complex feedback to the system. Reciprocally, users can bentfiise selected by the user, and avoid displaying images that
by knowingPicHunters current “beliefs,” as this will give them are similar to the nonselected images, resulting in appropriate
an idea of how their choices affect the system. A simple wayéhanges to the display updating scheme. At the same time, be-
to provide an indicator, next to each displayed image, on thause the goal changes during the search, the user must be al-
system’s relative strength of belief. A more complex displapwed to reset the memory when he/she makes such a goal
could indicate which feature(s) caused each image to be seleatbdnge, so that earlier choices no longer affect the display up-

in the current display. dating decisions.
It would be highly desirable to rank-order the various cri-
E. Improved User Model teria used by humans for judging image similarity according

o their importance. Weights can the be assigned to such cri-

One area in which the scheme can be improved is in handling. . X o
the special case in which the user does not select any imagé% a according to the role they play in predicting judgment of

the current display before hitting the “GO” button to continuéImllarlty by hgmans. Rgleyant rgsearch has been carried out
the search. This is an essential special case because user ﬂébe gpphcguqn of mulltldlmensmnal scah_ng (MDS) methods
quently find themselves forced to proceed to the next iterati Il finding principal attributes to characterize texture percep-

without selecting any image. Currently, the program keeps tﬁgn [47]. Much image processing research has also been con-

o ; ted for utilizing texture as a pictorial feature in CBIR sys-
probability vector unchanged and then enters the display-upd He i . .
routine, in essence ignoring the user’s action. However, sor@ns [14], [,5.0]' [51]. Rogow.lte_t al.'[48] a_tpphed MDS. analysis .

umans’ judgments of similarity using natural images; this

perhaps most, users make this selection precisely to indicate ltﬁ’alf( . . . :
is quite complex, mainly due to the presence of semantics.

they want to avoid the types of displayed images. Experiments’. ) X C
y yP play g p interesting experiment along these lines is to let humans play

are needed to explore modifications to the algorithmfordealiﬁ le ofPicHunter t hat criteria th dt
with this special case. e role ofPicHunter, to see what criteria they use, and to com-

pare their performance with that BicHunter.

The computation performed bigicHunter with each user
interaction, and its main memory space requirements scale

PicHuntefs new approach is its formulation on a Bayesiafinearly with the number of images in the database assuming
framework, which tries to predict the user’s actions for refininthe user model requires constant time. Execution time is
its answers to converge to a desired target image. The centtaminated by the user modeknd space by the storage of
data structure is &ector of posterior probability distribution . . ) . -

Any machine learning technique capable of producing a predictive model

across the entire database, i.e., ea:(.:h image ha_s an entry ir‘h{aﬁoe used to implement the required user model, so itis hard to say anything
vector that represents the probability of its being the targe@tneral about its computational burden.

X. CONCLUSIONS—DISCUSSION
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feature vector§.As such our approach might be expected ttm any system that involves judgment of image similarity by
handle perhaps millions of images in today’s technologichbmans.

environment, but not hundreds of millions. We remark that
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