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Abstract In the practice of data analysis, there is a con-

ceptual distinction between hypothesis testing, on the one

hand, and estimation with quantified uncertainty on the

other. Among frequentists in psychology, a shift of emphasis

from hypothesis testing to estimation has been dubbed “the

New Statistics” (Cumming, 2014). A second conceptual

distinction is between frequentist methods and Bayesian

methods. Our main goal in this article is to explain how

Bayesian methods achieve the goals of the New Statistics

better than frequentist methods. The article reviews frequen-

tist and Bayesian approaches to hypothesis testing and to

estimation with confidence or credible intervals. The arti-

cle also describes Bayesian approaches to meta-analysis,

randomized controlled trials, and power analysis.

Keywords Null hypothesis significance testing · Bayesian

inference · Bayes factor · Confidence interval · Credible

interval · Highest density interval · Region of practical

equivalence · Meta-analysis · Power analysis · Effect size ·
Randomized controlled trial · Equivalence testing

The New Statistics emphasizes a shift of emphasis away

from null hypothesis significance testing (NHST) to “esti-

mation based on effect sizes, confidence intervals, and meta-

analysis” (Cumming, 2014, p. 7). There are many reasons
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to eschew NHST, with its seductive lapse to black-and-white

thinking about the presence or absence of effects. There

are also many reasons to promote instead a cumulative sci-

ence that incrementally improves estimates of magnitudes

and uncertainty. These reasons were recently highlighted in

a prominent statement from the American Statistical Asso-

ciation (ASA; Wasserstein & Lazar, 2016) that will be

summarized later in this article. Recent decades have also

seen repeated calls to shift emphasis away from frequentist

methods to Bayesian analysis (e.g., Lindley, 1975).

In this article, we review both of these recommended

shifts of emphasis in the practice of data analysis, and we

promote their convergence in Bayesian methods for esti-

mation. The goals of the New Statistics are better achieved

by Bayesian methods than by frequentist methods. In that

sense, we recommend a Bayesian New Statistics. Within

the domain of Bayesian methods, we have a more nuanced

emphasis. Bayesian methods provide a coherent framework

for hypothesis testing, so when null hypothesis testing is the

crux of the research then Bayesian null hypothesis testing

should be carefully used. But we also believe that typical

analyses should not routinely stop with hypothesis testing

alone. In that sense, we recommend a New Bayesian Statis-

tics, that is, Bayesian analyses that also consider estimates

of magnitudes and uncertainty, along with meta-analyses.

This article begins with an extensive description of fre-

quentist and Bayesian approaches to null hypothesis testing

and estimation with confidence or credible intervals. Subse-

quently, the article explains Bayesian approaches to meta-

analysis, randomized controlled trials, and power analysis.

We hope to demonstrate that Bayesian approaches to all

these analyses are more direct, more intuitive, and more

informative than frequentist approaches.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13423-016-1221-4-x&domain=pdf
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Two conceptual distinctions in data analysis

We frame our exposition in the context of the two concep-

tual distinctions in data analysis that we mentioned earlier,

and which are illustrated in Fig. 1. The rows of Fig. 1

mark the distinction between point-value hypothesis tests

and estimation of magnitude with uncertainty. The columns

of Fig. 1 indicate the distinction between frequentist and

Bayesian analysis. We will review the two distinctions in

the next sections, but we must first explain what all the

distinctions refer to, namely, formal models of data.

Data are described by formal models

In all of the data analyses that we consider, the data are

described with formal, mathematical models. The models

have meaningful parameters. You can think of a mathemat-

ical model as a machine that generates random samples of

data in a pattern that depends on the settings of its control

knobs. For example, a shower head spews droplets of water

(i.e., the data) in a pattern that depends on the angle of the

shower head and the setting of the spray nozzle (i.e., the

parameters). Different machines can make different patterns

of data; for example a lawn sprinkler can make different pat-

terns of water than a bathroom shower. In data analysis, we

describe the actually-observed data in terms of a mathemat-

ical machine that has its parameters set to values that would

generate simulated data that mimic the observed data. When

we “fit” a model to data, we are figuring out the settings

of the parameters (i.e., the control knobs) that would best

mimic the observed data.

For example, suppose we measure the intelligence quo-

tient (IQ) scores of a group of people. Suppose we make

a histogram of the scores, and the histogram looks roughly

unimodal and symmetric. Therefore we might choose to

describe the data in terms of a normal distribution. The

normal distribution has two parameters, namely its mean

Fig. 1 Two conceptual distinctions in the practice of data analysis.

Rows show point-value hypothesis testing versus estimating magnitude

with uncertainty. Columns show frequentist versus Bayesian methods.

Cells indicate the typical information provided by each approach

(denoted by Greek letter mu, µ) and its scale or standard

deviation (denoted by Greek letter sigma, σ ). These two

parameters are the control knobs on the machine that gen-

erates normally distributed data according to the Gaussian

formula. Suppose we find that when we set µ to 100 and

we set σ to 15 then the machine generates data that closely

mimic that actually observed data. Then we can meaning-

fully summarize the set of many data values with just two

parameter values and the mathematical form of the model.

All of the approaches to data analysis that we con-

sider in this article assume that the data are described by

mathematical models with meaningful parameters. Mathe-

matical models of data are profoundly useful for a variety

of reasons. In particular, mathematical models are useful

for describing data because people who are familiar with

the behavior of the model can grasp the form of the data

from only a few parameter values. Mathematical models are

useful for making inferences about data because the formal

logic of mathematics allows us to derive specific properties

of parametric descriptions that would not be obvious from

the data alone. For example, in a Bayesian framework we

could derive the probability that the mean µ falls within the

range 99 to 101, given the observed data.

The conceptual distinctions in Fig. 1 indicate different

sorts of analyses for a given model of data. The distinctions

in Fig. 1 apply to any particular model of data, regardless

of its complexity. The model could have its parameter val-

ues examined by a hypothesis test, or the model could have

its parameter values estimated with uncertainty (i.e., the row

distinction). The model could be addressed using frequen-

tist methods or with Bayesian methods (i.e., the column

distinction). To understand why various people recommend

emphasizing some approaches over others, it is important

to understand the different information provided by the dif-

ferent analyses. Therefore we tour the four cells of Fig. 1,

starting with the top-left cell.

Frequentist hypothesis test: Null hypothesis significance

test (NHST)

The top-left cell of Fig. 1 corresponds to a frequentist

hypothesis test. In this article we use “frequentist” loosely

to refer to the constellation of methods founded on sam-

pling distributions of imaginary data. Sampling distributions

are at the core of p values and confidence intervals, as

explained later. Bayesian analysis, by contrast, is not based

on sampling distributions.

For example, a traditional t-test involves computing a p

value, and if p < .05 then the null hypothesis is rejected.

The test proceeds as follows. We collect some data and com-

pute a summary statistic called t . For a single group of data,

t = (ȳ − µ0)/(s/
√

N) where ȳ is the sample mean, µ0 is

the null-hypothesis mean, s is the sample standard deviation,
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and N is the sample size. For our purposes, the exact for-

mula for the t statistic is not important; what matters is the

idea that the t statistic summarizes the data. Frequentists

want to know how likely it would be to get a value of t

at least this extreme if the null hypothesis were true and if

we were to collect data the same way we collect data in

the actual research. When this probability is small enough,

frequentists decide to reject the null hypothesis. Therefore,

the probability is the rate of committing a false alarm (also

known as a “Type I error”), and the goal of the decision

threshold (usually set at 0.05) is to limit false alarms to that

frequency.

Figure 2 illustrates the idea of a p value. The summary

value of the observed data is indicated as the concrete block

labeled “Actual Outcome.” The analyst, illustrated as the

face in the lower left, has a hypothesis in mind, such as a null

hypothesis of zero effect. We consider repeatedly randomly

sampling from the null hypothesis, every time generating a

sample in the same way that the actual data were sampled,

and for every simulated sample we compute a summary

statistic like the one we computed for our actual sample.

The resulting distribution of randomly generated summary

values is illustrated as the cloud in Fig. 2. The center of the

cloud is where most simulated samples fall, and the periph-

ery of the cloud represents extreme values that occur more

rarely by chance. Intuitively, if the actual outcome falls in

the fringe of the cloud, then the actual outcome is not very

likely to have occurred by the hypothesis, and we reject the

hypothesis. The proportion of the cloud that is as extreme

as or more extreme than the actual outcome is the p value,

shown at the right of Fig. 2.

Fig. 2 Definition of a p value. A summary of the observed data is

indicated as the concrete block labeled “Actual Outcome.” The analyst,

illustrated as the face in the lower left, has a hypothesis in mind, which

generates a distribution of possible outcomes when simulated data are

sampled according to the analyst’s stopping and testing intentions. The

sampling distribution is illustrated as the cloud. The proportion of the

cloud that is as or more extreme than the actual outcome is the p value,

shown on the right. Different stopping and testing intentions generate

different clouds of possibilities, hence different p values

Formally, a p value can be defined as follows. For a set of

actual data, let T (Dactual) be a descriptive summary value

of the data, such as a t statistic. Suppose that the actual

data were sampled according to certain stopping and testing

intentions denoted I . Then the p value is defined as

p value ≡ p
(

T (Dsimulated) � T (Dactual)

∣

∣

∣
µ, I

)

(1)

where T (Dsimulated) are the descriptive summaries of sim-

ulated data sampled from a hypothetical population charac-

terized by parameter value µ according to the same stopping

and testing intentions, I , as the actual data. In Eq. 1, the

relation “�” means “is at least as extreme as, relative to the

expected value of T (Dsimulated).” Usually, a p value refers

to the null hypothesis, in which case the model-parameter µ

is set to zero or some other value that represents no effect.

When the resulting p value is used to decide whether or not

to reject the null-hypothesis µ0, the procedure is called a

null-hypothesis significance test, abbreviated as NHST.

As a concrete example of NHST, we consider the sim-

plest sort of data: dichotomous outcomes such as cor-

rect/wrong, agree/disagree, left/right, female/male, and so

on. For example, we might be interested in knowing the

probability that people agree with a particular policy state-

ment. Suppose that of 18 randomly selected people, 14

agree with the statement. In the sample, the proportion

of agreement is 14/18 ≈ 0.778, which apparently dif-

fers from the value 0.50 that represents the “null” value

of ambivalence or equal preference. Formally, we denote

the underlying probability of agreement as θ , and the null

hypothesis as θnull = 0.50. The actual sample size is

denoted N = 18, and the number who agree is denoted

z = 14, as shown at the top of Fig. 3. (Please note that z

refers to the number of people who agree, not to any sort of

standardized score.)

To compute a p value for the data in Fig. 3, we first

must declare the stopping and testing intentions. We make

the conventional assumption that the stopping intention is to

sample until N = 18 and that this is the only test of the data

we intend to make. Then we create a sampling distribution

of the summary statistic z/N (that is, we create the cloud of

imaginary possibilities in Fig. 2). From this sampling dis-

tribution, we determine the probability that simulated z/N

would be as or more extreme than the actual z/N . The

resulting p value is indicated in the top-left cell of Fig. 3.

(The displayed p value is the two-tailed p value, which con-

siders the probability that simulated z/N would be more

extreme than actual z/N in either direction away from θnull ,

because either direction could reject the null hypothesis.) In

this case, because p is less than the conventional threshold

for tolerable false alarms (i.e., p < .05), the null hypothesis

is rejected.

It is important to understand that the p value would be

different if the stopping or testing intentions were different.
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p = 0.031

( θnull = 0.5 )

BFnull = 0.22

( alt = dbeta(1,1) )
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Fig. 3 Dichotomous data, with z occurrences in N trials shown at

the top. The 2 × 2 table shows results from analyses corresponding

to Fig. 1. Details of each cell are discussed in various sections of the

article. (BF Bayes factor, MLE maximum likelihood estimate, Conf.

Int. confidence interval. HDI highest density interval)

For example, if data collection were stopped because time

ran out instead of because N reached 18, then the sample

size would be a random number and the sampling distri-

bution would be different, hence the p value would be

different. When N is a random value, the sampling distribu-

tion is a probabilistic mixture of different fixed-N sampling

distributions, and the resulting mixture is (in general) not

the same as any one of the fixed-N distributions. More-

over, if a second survey question were being asked, then we

would have to consider the probability that z/N from either

question could be as or more extreme than the proportion

observed in the first question, and hence the p value would

be different. Corrections for multiple tests are discussed at

the end of our tour through the four cells of Fig. 1. Complete

numerical examples are provided in Kruschke (2015).

Notice that the only information delivered by NHST

itself is the p value, from which the user decides whether or

not to reject the hypothesized value of θnull . This dearth of

information can easily let the user slip into fallacious “black

and white” thinking: believing either that the null is true

and correct (which does not follow from p > .05) or that

some meaningfully large effect is true and correct (which

does not follow from p < .05). Moreover, the p value by

itself indicates nothing about the estimated magnitude of the

parameters, nor how uncertain the estimate is.

These issues and others are reviewed again later in the

article, when we describe the reasons for a shift in emphasis

from hypothesis testing to estimation. But for now we con-

tinue our expository tour through the four cells of Figs. 1

and 3, moving to the lower-left cell: frequentist estimation.

Frequentist estimation and confidence interval

In some situations we might be interested only in whether

or not the null value is an acceptable description of the data.

But in many and perhaps most situations, we would like to

know the magnitude of the trend or effect, and to have some

sense of how uncertain we are about the magnitude. For

example, in the case of agreement with a policy statement,

we might not be satisfied with only deciding whether or not

the population is ambivalent, but we would want to know

the magnitude of agreement and its range of uncertainty.

In frequentist methods, the best estimate of a parameter

in a descriptive mathematical model is usually obtained as

the maximum likelihood estimate, abbreviated as MLE. A

special case of the MLE is the least-squares estimate (LSE),

which may be familiar to readers who have previously stud-

ied analysis of variance (ANOVA) or linear regression. The

MLE is the value of a parameter that makes the data most

probable within the context of the descriptive mathematical

model. For example, if we are describing dichotomous data

with a simple model in which the probability of occurrence

is denoted by the parameter θ , then the MLE of θ is z/N . As

another example, if we are describing a set of metric numer-

ical values (such as heights of people) by a mathematical

normal distribution, then the MLE of the mean parameter µ

is the arithmetic mean of the sample.

The uncertainty of the estimated parameter value is rep-

resented, in frequentist methods, by the confidence interval.

The most general definition of a confidence interval, which

applies to all models and situations, is the following (e.g.,

Cox, 2006, p. 40): The 95 % confidence interval of a

parameter contains all the values of the parameter that

would not be rejected by p < .05. NHST asks whether

or not the null value of the parameter would be rejected.

The confidence interval merely asks which other values

of the parameter would not be rejected. Clearly the MLE

of the parameter would not be rejected, but how far away

from the MLE can we go before we reject the parameter

value?
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Formally, the frequentist 95 % confidence interval (CI)

is the range of values for a parameter µ such that the corre-

sponding p value (defined in Eq. 1) is greater than or equal

to 0.05:

µ is in the 95% CI if and only if

p
(

T (Dsimulated) � T (Dactual)

∣

∣

∣
µ, I

)

≥ 0.05 (2)

where Dsimulated are sampled from the hypothesized value

of µ according to the same stopping and testing intentions I

as the actual data.

An example of a CI is shown in the lower-left cell of

Fig. 3. The horizontal black bar marks the 95 % CI, which

is the range of parameter values that would not be rejected

by p < .05. In other words, any value for the parameter θ

outside the CI would be rejected by p < .05.

The CI reported in Fig. 3 was computed using the con-

ventionally assumed intentions: data collection was stopped

at a predetermined sample size N and there were no other

tests being conducted. If there were a different stopping

intention or a different testing intention, then the CI would

be different. Because a confidence interval is defined in

terms of p values, and p values depend on sampling and

testing intentions, it follows that researchers with identical

data but different stopping or testing intentions will have

different confidence intervals. Just as any set of data has

many different p values depending on the stopping and

testing intentions, any set of data has many different confi-

dence intervals. Complete numerical examples are provided

in Kruschke (2015).

Confidence intervals have no distributional information

Notice that a confidence interval has no distributional infor-

mation. The limits of the confidence interval merely define

the range of parameter values that would not be rejected

by p < 0.05. There is no direct sense by which parame-

ter values in the middle of the confidence interval are more

probable than values at the ends of the confidence inter-

val. This absence of distributional information is why the

confidence interval in Fig. 3 is drawn as a flat line.

It is easy to imagine a probability distribution super-

imposed over the confidence interval, such that parameter

values in the middle are more probable than parameter val-

ues at the ends. But this is a Bayesian interpretation of the

interval and is not what the frequentist confidence interval

actually provides. Bayesian intervals will be described later

in the article. Some frequentists have discussed functions

on confidence intervals that resemble probability distribu-

tions. For example, a plot of the p value as a function of

the parameter value (i.e., a plot of the p value in Eq. 1 as a

function of µ) will resemble a probability distribution (e.g.,

Poole, 1987; Sullivan & Foster, 1990). But the p value curve

is not a probability distribution, and it does not indicate

the probability of the parameter value. Some analysts have

suggested normalizing the p value curve (e.g., Schweder

& Hjort, 2002; Singh, Xie, & Strawderman, 2007), but the

meaning of such a distribution is remote and the result is

still sensitive to stopping and testing intentions. Cumming

(e.g., Cumming, 2007, 2014; Cumming & Fidler, 2009) has

discussed superimposing sampling distributions or relative

likelihood curves on the CI, but neither of these approaches

provides the probability of the parameter value, given the

data. For more details, see Kruschke (2013, p. 592) or

Kruschke (2015, pp. 323–324).

Summary of frequentist approach In summary, frequen-

tist approaches rely on sampling distributions, illustrated by

the cloud of imaginary possibilities in Fig. 2. The sampling

distribution is defined by the stopping and testing intentions

of the researcher. Thus, for any fixed set of actual data, dif-

ferent stopping or testing intentions yield different p values

and confidence intervals. Moreover, confidence intervals

have no distributional information.

At this point in the article, we are in the midst of

explaining the information provided by the various types of

analyses, laid out in the conceptual framework of Fig. 1 and

the numerical examples in Fig. 3. So far, we have described

frequentist approaches to hypothesis testing and estimation

with uncertainty, corresponding to the left column of Figs. 1

and 3. We next explain Bayesian approaches to estimation

and hypothesis testing in the right column of Figs. 1 and 3.

After that, we will explore various arguments for shifting

emphasis away from hypothesis testing to estimation with

uncertainty, and away from frequentist to Bayesian meth-

ods. Ultimately, we will discuss meta-analysis, randomized

controlled trials, and power analysis.

Bayesian estimation and highest density interval

To explain how the goals of the New Statistics are achieved

through Bayesian estimation, we must first explain the

information provided by a Bayesian analysis. We have lim-

ited space here and can therefore provide only a cursory

overview. Other introductory resources include a compan-

ion article in this issue (Kruschke & Liddell, 2015), Chapter

2 of Kruschke (2015, available free online), and other

articles (e.g., Kruschke, 2013; Kruschke, Aguinis, & Joo,

2012).

Bayesian analysis is re-allocation of credibility across

possibilities. Sherlock Holmes was doing Bayesian reasoning
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when he famously said, “when you have eliminated the

impossible, whatever remains, however improbable, must

be the truth” (Doyle, 1890). Holmes started with various

degrees of suspicion about each suspect, then collected new

evidence, then re-allocated degrees of suspicion to the sus-

pects who were not eliminated by the evidence. Even if

the prior suspicion for a suspect may have been low, when

the other suspects are eliminated then the ultimate suspi-

cion for the remaining suspect must be high. A tacit premise

of Holmes’ statement is that the truth is among the con-

sidered possibilities. A more accurate rephrasing would be,

“when you have depreciated the most improbable, whatever

remains is the least improbable of the options under con-

sideration.” Unfortunately, that nuanced phrasing sounds

more like Hamlet than Holmes. Nevertheless, the logic still

involves reallocation of credibility across possibilities. We

start with a prior degree of belief in each possibility, then

we collect some data and re-allocate credibility across the

possibilities, resulting in a posterior degree of belief in each

possibility.

In data analysis, the possibilities are parameter values in

a descriptive model of data. Just as Holmes started his inves-

tigation with a space of possible explanations for evidence,

we start our analysis with a space of possible parameter val-

ues in a descriptive model of data. (Frequentist approaches

also start with an assumed descriptive model.) The degree of

belief in each parameter value, without considering the data,

is called the prior distribution, and the degree of belief in the

parameter values after taking the data into account is called

the posterior distribution. The exact reallocation of credibil-

ity across parameter values is provided by the mathematics

of Bayes’ rule, the details of which are not necessary to

describe here. Instead, we provide a numerical example.

Consider again the scenario of the previous section, in

which respondents are asked whether they agree or disagree

with a particular policy statement. We model the data as if

each respondent is a random representative of the underly-

ing probability of agreement, denoted by the value of the

parameter θ . The parameter θ can take on values anywhere

from θ = 0 to θ = 1. From a Bayesian perspective, our goal

is to re-allocate credibility across the possible values of θ ,

away from values of θ that are inconsistent with the data.

We start with a prior distribution over the candidate val-

ues of θ , which for simplicity of illustration we take to be

the (essentially) uniform distribution shown in the upper

panel of Fig. 4. Then we take into account the data, namely

the number of agreements (z) out of the number of respon-

dents (N). Bayes’ rule re-allocates credibility to values of θ

that are reasonably consistent with the observed proportion

of agreement, z/N , as shown in the lower panel of Fig. 4.

Notice that small values of θ are not very consistent with

the high proportion of agreements in the data, so those small

values of θ have low posterior credibility. The modal value
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Fig. 4 Bayesian inference is re-allocation of credibility across can-

didate parameter values. Distributions show the probability density of

parameter value θ . The upper panel shows the prior distribution. In

this case, the prior distribution is essentially uniform, but peaked very

slightly so it has a well-defined mode and HDI for purposes of illustra-

tion. The lower panel shows the posterior distribution, given the data

z,N . The posterior distribution here is the same as that shown in the

lower-right cell of Fig. 3 (HDI highest density interval)

of the posterior distribution shows the most credible value

of the parameter, given the data.

The uncertainty of the estimate is explicitly indicated by

the spread of the posterior distribution. When there is great

uncertainty (e.g., because of having a small set of data) then

the posterior distribution is spread over a broad range of

parameter values, but when there is great certainty (e.g.,

because of having a large set of data) then the posterior

distribution is spread over a narrow range of parameter val-

ues. A convenient way to summarize the uncertainty is with

the 95 % highest density interval (HDI), which contains the

parameter values of highest probability and that span the

95 % most probable values. Any parameter value inside the

HDI has higher probability density (i.e., higher credibility)

than any parameter value outside the HDI. The parameter

values inside the 95 % HDI are the 95 % most credible val-

ues. Figure 4 marks the HDI’s with horizontal black lines

at the bottom of the distributions. The HDI is merely a

summary statistic and can be applied to any probability dis-

tribution. Notice that the 95 % HDI in the prior distribution

is wider than the 95 % HDI in the posterior distribution.

This reduction of uncertainty reflects greater precision of

estimation as more data are included.

It is important to understand that the distributions in Fig. 4

are probabilities of parameter values. The distributions in
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Fig. 5 Diffuse priors have little influence on the posterior for moderate amounts of data. Panel A shows results for a uniform prior. Panel B shows

results for a diffuse but slightly informed prior. Notice that the posterior modes and HDI’s are nearly the same for both prior distributions (HDI

highest density interval)

Fig. 4 are not sampling distributions of data, and have

nothing to do with the sampling distributions for p values

referred to in Fig. 2. The Bayesian posterior distribution in

Fig. 4 illustrates the probability of parameter values, given

the observed data.

If the prior distribution is broad and diffuse, it has little

influence on the posterior distribution when there are real-

istic (i.e., not tiny) amounts of data. Figure 5 shows that

the choice of prior distribution has virtually no effect on the

posterior distribution when the prior is relatively flat across

the parameter values. Panels A and B of Fig. 5 show two dif-

ferent prior distributions. In panel A, an essentially uniform

prior is used. In panel B, the prior distribution is what would

result from Bayesian updating of a uniform proto-prior with

a small representative pilot in which z = 2 and N = 3.

The resulting posterior distributions in Panels A and B are

virtually indistinguishable.

Please now look back to Fig. 3. Compare the informa-

tion in the lower-right cell, which indicates the information

delivered by Bayesian estimation, with the information in

the lower-left cell, which indicates the information deliv-

ered by frequentist estimation. The most obvious graphical

difference is that the Bayesian estimate includes an explicit

probability distribution on the parameter values. It is worth

re-emphasizing that the posterior distribution on the param-

eter explicitly indicates (i) the best estimate as the modal

value and (ii) the uncertainty as the HDI. The posterior

distribution also gives complete information about the cred-

ibilities of all the parameter values.

Although the frequentist CI and Bayesian HDI have sim-

ilar numerical limits in the present example (Fig. 3), the

frequentist CI is highly sensitive to the stopping and testing

intentions. By contrast, the Bayesian posterior distribution

does not change when the stopping or testing intentions

change because there is no sampling distribution involved

in Bayesian estimation. On the other hand, the Bayesian

posterior distribution can be affected by strongly informed

prior knowledge, while the frequentist CI is not affected by

prior knowledge (because the sampling distribution is not

affected by prior knowledge). It is rational that parameter

estimation should take into account prior knowledge. On

the contrary, it is questionable whether parameter estima-

tion should be based on which other tests were intended or

whether data collection stopped at fixed duration or fixed

sample size. These issues will be discussed in more depth

later in the article.

Assessing null values using intervals From the posterior

distribution on the parameter, we can assess the extent to

which particular values of interest, such as null values, are

among the most credible values. People who are familiar

with frequentist NHST and confidence intervals, whereby a

parameter value is rejected if it falls outside a 95 % confi-

dence interval, may be tempted to apply analogous logic to

Bayesian posterior distributions and reject a parameter value

if it falls outside a posterior 95 % HDI. Two problems arise

from this candidate decision rule. First, it can only reject a

parameter value and never accept it. Second, with optional

stopping (i.e., gradually accumulating data and repeatedly

testing) the decision rule will eventually always reject a null

value even when it is true.

To avoid those problems, we adopt a different deci-

sion rule, somewhat analogous to frequentist equivalence

testing (e.g., Rogers, Howard, & Vessey, 1993; Westlake,
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1976, 1981). The procedure requires establishing a region

of practical equivalence (ROPE) around the null value that

expresses a range of parameter values that are equivalent

to the null value for current practical purposes. For exam-

ple, if measuring the IQ of people in a treatment group, we

might say that any group mean in the interval from 98.5

to 101.5 is practically equivalent to the general population

mean of 100 (recall that the standard deviation of IQ scores

in the general population is 15, hence the ROPE in this

case extends plus or minus 0.1 standard deviations from the

general population mean). ROPE’s are routinely established

in clinical studies to test equivalence or non-inferiority,

where care must be taken in high-stakes applications (e.g.,

Lesaffre, 2008).

At the risk of slipping into black-and-white thinking, if

we must make a dichotomous decision about the null value,

we can use the following decision rule: If the 95 % HDI

falls entirely outside the ROPE then we decide to reject the

ROPE’d value (not the entire ROPE’d interval), and if the

95 % HDI falls entirely inside the ROPE then we decide

to accept the ROPE’d value for practical purposes, and

otherwise we remain undecided. The decision rule follows

directly from the meanings of the intervals: When the 95 %

HDI falls outside the ROPE, it literally means that the 95 %

most credible values of the parameter are all not practically

equivalent to the null value. When the 95 % HDI falls inside

the ROPE, it literally means that all the 95 % most credible

values of the parameter are practically equivalent to the null

value. Notice that the statements made in this context do

not use the terms “null hypothesis” or “hypothesis testing”

which are reserved for a different approach described later.

For example, in our ongoing example about the proba-

bility of agreement with a policy statement, suppose we are

interested in whether or not the population can be said to

be ambivalent (i.e., θ = 0.50), and for practical purposes

of decision making we define a ROPE from θ = 0.45 to

θ = 0.55. From the posterior distribution in Figs. 3 and 4,

we can make statements as follows: “The 95 % most credi-

ble values are all not practically equivalent to the null value

(i.e., the 95 % HDI excludes the ROPE)”, and, “there is

only 2.4 % probability that θ is practically equivalent to

the null value (i.e., 2.4 % of the posterior distribution falls

within the ROPE)”. The area of the posterior distribution

inside a ROPE is easily computed but is not displayed in

Figs. 3 and 4 (but is displayed later in Fig. 11). A different

Bayesian decision rule for equivalence examines only the

posterior probability mass inside the ROPE, without regard

to the HDI (e.g., Wellek, 2010) but we prefer to treat

the probability density as a meaningful quantity that bet-

ter handles skewed distributions (Kruschke, 2015, Section

12.1.2.2, p. 342).

As discussed by Kruschke (2015, p. 337), use of a

ROPE is also motivated from the broader perspective of

scientific method. Serlin and Lapsley (1985, 1993) pointed

out that using a ROPE to affirm a predicted value is essential

for scientific progress, and is a solution to Meehl’s paradox

(e.g., Meehl, 1967, 1978, 1997). ROPE’s go by differ-

ent names in the literature, including “interval of clinical

equivalence,” “range of equivalence,” “equivalence interval,”

“indifference zone,” “smallest effect size of interest,” and

“good-enough belt” (e.g. Carlin & Louis, 2009; Freedman,

Lowe, & Macaskill, 1984; Hobbs & Carlin, 2008; Lakens,

2014; Schuirmann, 1987; Serlin & Lapsley, 1985, 1993;

Spiegelhalter, Freedman, & Parmar, 1994).

We bring up the HDI+ROPE decision method here only

to make sure that readers do not assume, by analogy to

confidence intervals, that a null value can be rejected if it

falls outside the 95 % HDI. Instead, the decision rule uses a

ROPE around the null value. The ROPE is crucial to allow

a decision to accept a null value, and to make the decision

rule technically consistent: As N increases, the decision

rule converges to the correct decision (i.e., either practically

equivalent to the null or not). This decision rule is described

in more detail by Kruschke (2011a, 2015, Ch. 12). However,

dichotomous decision making is not meant to be the goal

here, and the emphasis is on the full information provided

by the continuous posterior distribution.

Highest density interval vs. confidence interval Here we

reiterate some essential differences between a Bayesian

HDI and a frequentist CI. An important quality of the pos-

terior 95 % HDI is that it really does indicate the 95 %

most probable values of the parameter, given the data. The

posterior distribution depends only on the actually observed

data (and the prior), and does not depend on the stopping

or testing intentions of the analyst. The frequentist CI is

often misinterpreted as if it were a posterior distribution,

because what analysts intuitively want from their analysis is

the Bayesian posterior distribution, as we discuss more later.

The posterior 95 % HDI refers explicitly to an actual

probability distribution over the parameter values, such that

parameter values in the middle of the HDI tend to have

higher credibility than parameter values at the limits of the

HDI. The posterior distribution shows the exact shape of

the distribution. A frequentist CI, on the other hand, does

not refer to a probability distribution over parameter values

and carries no distributional information, as was discussed

earlier in the article.

The posterior mode and HDI do not change if the stop-

ping or testing intentions change. By contrast, the frequen-

tist p value and CI are defined in terms of simulated data

generated by the stopping and testing intentions, and there-

fore the p value and CI change when stopping or testing

intentions change (as was explained in a previous section).

In a Bayesian analysis, it is straight forward to indicate the

95 % HDI around a modal parameter estimate. In frequentist
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analyses, on the other hand, there is often difficulty deciding

what is an appropriate CI because it depends on the testing

and stopping intention.

Finally, if an HDI is used as part of a decision rule to

assess null values, the decision rule should include a ROPE

around the null value. A null value should not be rejected

merely if it falls outside a 95 % HDI (unlike 95 % CI’s

in NHST). Moreover, the decision rule based on HDI and

ROPE intervals is not called Bayesian “hypothesis testing,”

which is a term reserved for a different framework that we

describe next.

Bayesian hypothesis test

In a Bayesian point-null hypothesis test, the null hypothesis

is expressed as a prior distribution that puts all credibility in

an infinitely dense spike at the null value of the parameter,

with zero credibility on all other values of that parameter.

In other words, the prior distribution for the null hypothesis

says that only the null value is available. (The Bayesian

framework allows other types of null hypotheses, but here

we focus on point nulls for comparability to NHST.) Cru-

cially, the null hypothesis is compared against an alternative

prior distribution that spreads credibility over other values

of the parameter. Unlike NHST, a Bayesian hypothesis test

demands the specification of an alternative hypothesis, in

the form of an alternative prior distribution on the parameter.

Each hypothesis is indicated by a model-index parameter:

M = 1 for the null hypothesis and M = 2 for the alterna-

tive hypothesis. Bayesian inference reallocates credibility

across the two hypotheses by reallocating credibility across

the values of the model-index parameter.

(A) (B)

Fig. 6 Bayesian point-null hypothesis testing. The null value of

parameter θ is denoted here generically by the tic mark at θ = 0.5. In

A, the prior distribution shows that the null hypothesis (M=1) assumes

a spike-shaped prior distribution on θ such that only the null value

has non-zero probability, whereas the alternative hypothesis (M = 2)

assumes a broad prior distribution on θ . In B, the posterior distribution

shows that credibility has been re-allocated across the possible param-

eter values. For these data, the model-index parameter M shows that

the alternative hypothesis (M=2) has higher posterior probability, and

within the alternative hypothesis the distribution over θ shows that the

most credible values of θ are away from the null value

To illustrate this idea, consider again the case of estimat-

ing the underlying probability of agreement to a policy state-

ment. Denote the underlying probability of agreement as θ ,

and suppose that the “null” value of θ is 0.5, indicating exact

ambivalence in the population. The null hypothesis has a

spike-shaped prior distribution on θ , denoted p(θ |null),

such that the probability density is p(θ = 0.5|null) = ∞
and p(θ �= 0.5|null) = 0. The alternative hypothesis has

a prior distribution over θ denoted p(θ |alt) that is spread

over θ in some meaningful way. The alternative-hypothesis

prior on θ could be generically vague and set by default,

or the alternative-hypothesis prior on θ could be meaning-

fully informed by previous data or theory. Although we will

illustrate Bayesian null hypothesis testing by using a default

alternative prior, in applied practice it is important to use

a meaningfully informed alternative prior (Dienes, 2014;

Kruschke, 2011a; Vanpaemel and Lee, 2012).

Figure 6 illustrates the parameter space for Bayesian null

hypothesis testing. Panel A of Fig. 6 shows the null hypoth-

esis as a distribution over θ that has a spike at θ = 0.5. The

alternative hypothesis has a broad distribution over θ . The

null and alternative priors are indexed at the top of Panel A by

the model index parameter M . The two-bar distribution at the

top of panel A indicates the prior probabilities that M=1 or

M=2, which in this illustration are set equal to each other.

Bayesian inference reallocates credibility across the

model index M and the parameter θ simultaneously. When

new data are taken into account, Bayes’ rule prescribes how

to shift probabilities across the parameter values. The result-

ing posterior distribution is illustrated in panel B of Fig. 6. In

this case, the data consisted of a higher proportion of agree-

ment than disagreement, and therefore the explicit estimate

of θ , illustrated inside the alternative hypothesis in panel B,

is peaked somewhat larger than the null value. Simultane-

ously, the distribution on the model index has shifted so that

M= 2 is more probable than M= 1. Bayesian null hypoth-

esis testing focuses on the model index, not on the estimate

of parameters within the models.

The degree to which the model index shifts, from prior to

posterior, is called the Bayes factor. With respect to Fig. 6,

the Bayes factor can be visualized by seeing how much the

two-bar distribution on M shifts from panel A (the prior) to

panel B (the posterior). In panel A of Fig. 6, the height of the

bar on M= 1 is the prior probability of the null hypothesis,

denoted p(M=null). In panel B of Fig. 6, the height of the

bar on M=1 is the posterior probability of the null hypoth-

esis, denoted p(M=null|D) where D denotes the observed

data. The Bayes factor of null versus alternative is denoted

BFnull and can be defined as the ratio of the posterior odds

to the prior odds:

BFnull ≡
p(M=null|D)

p(M=alt |D)

/

p(M=null)

p(M=alt)
(3)
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Importantly, the Bayes factor does not indicate the poste-

rior probabilities or posterior odds; instead, the Bayes factor

indicates the degree of change from the prior odds to the

posterior odds of the null-model index. In other words, the

posterior odds are the prior odds multiplied by the Bayes

factor:

p(M=null|D)

p(M=alt |D)
= BFnull ×

p(M=null)

p(M=alt)
(4)

A numerical example of a Bayes factor is shown in the

upper-right panel of Fig. 3. In that case, a spike-shaped null

hypothesis (at θnull = 0.5) is compared against an alterna-

tive hypothesis that has uniform probability across the range

of θ . A depiction of an essentially uniform prior was pro-

vided in Fig. 4. The uniform distribution for the alternative

prior distribution is denoted in Fig. 3 by the notation “alt

= dbeta(1,1)” because it is a formal reference to a beta dis-

tribution that is equivalent to a uniform distribution. The

example in the upper-right panel of Fig. 3 shows that the

Bayes factor is approximately 0.22, meaning that the prior

odds of the null hypothesis is reduced by a factor of 0.22.

For example, if the prior probability of the null hypothesis

were 0.8, then the Bayes factor of 0.22 implies that the pos-

terior probability of the null hypothesis would be 0.47. If the

prior probability of the null hypothesis were 0.5, then the

posterior probability of the null hypothesis would be 0.18. If

the prior probability of the null hypothesis were 0.2, then the

posterior probability of the null hypothesis would be 0.05.

In all cases, these posterior probability of the null hypoth-

esis is with respect to the particular alternative hypothesis

being tested.

A common decision rule for Bayesian null-hypothesis

testing is based on the Bayes factor (not on the poste-

rior probabilities). According to this decision procedure, the

Bayes factor is compared against a decision threshold, such

as 10. When BFnull > 10, the null hypothesis is accepted

relative to the particular alternative hypothesis under con-

sideration, and when BFnull < 1/10, the null hypothesis

is rejected relative to the particular alternative hypothe-

sis under consideration. The choice of decision threshold

is set by practical considerations. A Bayes factor between

3 and 10 is supposed to indicate “moderate” or “substan-

tial” evidence for the winning model, while a Bayes factor

between 10 and 30 indicates “strong” evidence, and a Bayes

factor greater than 30 indicates “very strong” evidence

(Jeffreys, 1961; Kass & Raftery, 1995; Wetzels et al., 2011).

Dienes (2016) suggested a Bayes factor of 3 for substan-

tial evidence, while Schönbrodt et al. (2016) recommended

the decision threshold for a Bayes factor be set at 6 for

incipient stages of research but set at a higher threshold of

10 for mature confirmatory research (in the specific con-

text of a null hypothesis test for the means of two groups,

implying that the decision threshold might be different for

different sorts of analyses). Somewhat analogous to con-

siderations for a ROPE, the decision threshold for a Bayes

factor depends on the practical aspects of the application.

Basing a decision on the Bayes factor alone can be use-

ful when the prior odds of the models are 50/50 because

then the Bayes factor numerically equals the posterior odds,

as can be seen immediately from Eq. 4. Otherwise it is

important to take into account the prior probabilities of

the hypotheses. For example, consider a study of extrasen-

sory perception (ESP), in which people are asked to predict

which of two random stimuli will appear in the future. The

null hypothesis of chance performance has an extremely

high prior probability. Even if the Bayes factor indicates a

shift away from the null hypothesis by a factor of 30 or

more, the posterior probability of the null hypothesis would

remain very high (e.g., Rouder & Morey, 2011; Rouder,

Morey, & Province, 2013). As another example in which the

Bayes factor alone is not appropriate for making decisions,

consider the diagnosis of rare diseases. In this context, the

datum is the outcome of a diagnostic test, which could be

“positive” to suggest the presence of disease or “negative”

to suggest the absence of disease. The actual underlying

condition of the patient is one of two states, or models: M=
1 indicates the patient really has the disease, and M=2 indi-

cates the patient really does not have the disease. Because

the disease is rare, the prior probability that M= 1 is very

small. When the test result is positive, the Bayes factor is the

hit rate of the diagnostic test divided by its false alarm rate.

Even if this Bayes factor for having the disease is large, the

posterior probability of having the disease remains small.

Further discussion of the Bayes factor in disease diagnosis

is provided at http://tinyurl.com/ModelProbUncertainty.1

Making decisions about null values Each cell of the 2×2

table in Figs. 1 or 3 allows the analyst to make a deci-

sion about a null value, if the analyst is so inclined, but the

decision is based on different information in different cells.

In the upper-right cell, the BF indicates the degree of shift

from prior odds to posterior odds of a null-hypothesis prior

and a particular alternative hypothesis prior. The BF is a

continuous value that can be compared against a criterial

threshold for making a decision (although we recommend

considering the posterior probabilities instead of the BF). In

the lower-right cell of Figs. 1 or 3, the posterior distribu-

tion shows which values of the parameter are more or less

credible. The HDI captures the most credible values, and

can be compared against a criterial ROPE around the null

value for making decisions. The two Bayesian methods base

decisions on the posterior probability of parameter values,

with the BF focusing on the between-model index parameter

1The full url is http://doingbayesiandataanalysis.blogspot.com/2015/

12/lessons-from-bayesian-disease-diagnosis 27.html.

http://tinyurl.com/ModelProbUncertainty
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
http://doingbayesiandataanalysis.blogspot.com/2015/12/lessons-from-bayesian-disease-diagnosis_27.html
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and the HDI+ROPE focusing on the within-model param-

eter estimate. There is no necessary relation between

making a decision via the BF and making a decision

via the HDI+ROPE, though often the decisions will agree.

In the frequentist column of Figs. 1 or 3, in the upper-left

cell the p value indicates the probability that a null hypoth-

esis would generate imaginary data with a summary statistic

as extreme as or more extreme than the actual data’s sum-

mary statistic, for imaginary data sampled and tested with

the same intentions as the actual data. The p value is a

continuous value that can be compared against a criterial

threshold for making a decision. The threshold represents

the rate of false alarms we are willing to tolerate. In the

lower-left cell of Figs. 1 or 3, the confidence interval indi-

cates the range of hypothetical parameter values that have p

values that do not fall below the decision threshold. There-

fore the null value is rejected if and only if it falls outside

the CI. In this way the upper-left and lower-left cells are

redundant when using them to reject null values. (Frequen-

tist equivalence testing accepts the null value if the 90 %

confidence interval falls inside a region of equivalence to

the null.)

Another example of frequentist and Bayesian

approaches to hypothesis testing and estimation

In this section we present another example of the informa-

tion in the four cells of Fig. 1, this time applied to metric

data from a single group. We will model the data with a nor-

mal distribution, which has two parameters: the mean µ and

the standard deviation σ . There is a third parameter derived

from the mean and standard deviation, called the effect size,

that we describe in more detail below. We are interested in

testing and estimating all three parameters.

We are presenting this additional example because it

illustrates several interesting contrasts between approaches

that were not evident in the simpler case presented earlier.

In particular, (i) hypothesis testing of the three parame-

ters involves three distinct tests, (ii) Bayesian hypothesis

testing can come to different conclusions for mean and

effect size unlike traditional frequentist hypothesis test-

ing, and (iii) frequentist parameter estimation involves three

sampling distributions whereas Bayesian parameter estima-

tion seamlessly yields complete information about all three

parameters in a unified joint distribution.

The top panel of Fig. 7 shows a histogram of the data,

which were generated as a random sample from a normal

distribution. The values are supposed to be in the vicin-

ity of typical intelligence quotient (IQ) scores, which are

normed for the general population to have a mean of 100

and a standard deviation of 15. We suppose that the data

came from a group of subjects who were given a “smart

drug” and we would like to know how different this group is

from the general population. Typically for this sort of data

there are (at least) three parameters of interest, namely, the

mean µ, the standard deviation σ , and the effect size, which

we define here as Cohen’s d = (µ − 100)/σ , which is the

distance between the mean and a reference value, relative

to the “noise” in the data (Cohen, 1988). We are interested

in the mean because we would like to know how different

the central tendency of the smart-drug group is from the

general population. We are interested in the standard devi-

ation because we would like to know how different the

variability of the smart-drug group is from the general

population on the scale of the data. Stressors such as perfor-

mance drugs can increase the variance of a group because

not everyone responds the same way to the stressor (e.g.,

Lazarus & Eriksen, 1952). Finally, we are interested in the

effect size because it indicates the magnitude of the change

in central tendency standardized relative to the variability in

the group.

Three frequentist hypothesis tests are shown in Fig. 7.

A traditional t-test checks the hypothesis that µ = 100.0.

The summary statistic for its sampling distribution is t =
(ȳ − 100.0)/(s/

√
N) where N is the sample size, ȳ is

the sample mean, and s is the sample standard deviation

(using N −1). A chi-square test checks the hypothesis that

σ = 15.0. The summary statistic for its sampling distribu-

tion is χ2 = (N−1) s2/15.02. Finally, the summary statistic

for the effect size is d = (ȳ − 100.0)/s, which follows a

non-central t distribution (e.g., Cumming & Finch, 2001).

Notice in this case that the null hypotheses that µ = 100.0

and δ = 0.0 cannot be rejected. (Failure to reject the null

hypothesis does not imply accepting the null hypothesis,

which could be addressed by equivalence testing.) The null

hypothesis that σ = 15.0 can be rejected. For all three tests,

we assume that N is fixed by the stopping intention. If there

were some other stopping intention, the p values provided

by standard software would not be accurate. Moreover, the

p values of the three tests are not corrected for the fact that

there are multiple tests on the data. Corrections (enlarge-

ments) of the p values would be necessary if the analyst

wanted to keep the overall false alarm rate limited to some

maximum such as 5 %. Our main point in presenting these

tests is to emphasize that they involve distinct summary

statistics with distinct sampling distributions.

Frequentist confidence intervals are shown in the lower-

left of Fig. 7. The CI’s are linked to the p values in the

cells above them, because the CI’s are defined in terms of

the p values. The three CI’s involve distinct summary statis-

tics with distinct sampling distributions, as indicated by the

cell annotations. Specifically, the CI for the mean comes

from the sampling distribution of the mean (equivalently,

a central t distribution), the CI for the standard deviation

comes from a chi-square sampling distribution, and the CI

for the effect size comes from a sampling distribution for
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Fig. 7 Data are shown in the top panel (the annotated sdN uses N in its denominator to describe the sample). Lower panels show various analyses

as described in the main text (BF Bayes factor, MLE maximum likelihood estimate, CI confidence interval, HDI highest density interval)

non-central t . The three CI’s would change if the stopping

intention were changed or if the p values were corrected for

multiple testing.

Results from Bayesian hypothesis tests are shown on the

right side of Fig. 7. Because we are dealing with two param-

eters (i.e., µ and σ ), the null and alternative hypotheses

involve different prior distributions on the two-dimensional

joint parameter space. For a hypothesis test regarding the

mean, the null prior is an infinitesimally narrow ridge at

µ = 100.0 but broad over σ . That is, the null hypothe-

sis is a “spike” prior on the mean parameter, crossed with

a vague prior on the standard-deviation parameter. For a

hypothesis test regarding the standard deviation, the null

prior is an infinitesimally narrow ridge over σ = 15.0 but

broad over µ. For a hypothesis test regarding the effect

size, the null hypothesis is an infinitesimally narrow ridge

at δ = (µ − 100.0)/σ = 0.0 but broad over σ . In all

three cases the alternative hypothesis is broad over both µ

and σ , but note that the prior probability density at 〈µ, σ 〉
does not necessarily equal the prior probability density at

〈(µ − 100.0)/σ, σ 〉. Bayes factors were computed using

the Savage-Dickey method (Lee and Wagenmakers, 2014;

Wagenmakers et al., 2010; Wetzels et al., 2009). The alter-

native prior was moderately diffuse such that it yielded a BF

on the effect size quantitatively similar to the BF produced

by the Bayes factor package of (Morey et al., 2015) with

rscale at its default value of 0.707. This choice of default

prior is merely a convenience for the purpose of illustration.
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Real research would instead have to use an informed prior

that expresses a theoretically meaningful alternative. The

three BFs were computed simultaneously using the same

alternative prior; future researchers might recommend using

different alternative priors for different tests.

Figure 7 shows that the BF for the test of the mean indi-

cates a large shift between prior odds and posterior odds

in favor of the null hypothesis relative to the alternative

hypothesis. The BF for the effect size also indicates a shift

between prior odds and posterior odds in favor of the null

hypothesis. If an analyst based a decision on a BF threshold

of 10.0 (e.g., Schönbrodt et al., 2016), the null hypothesis

for the mean would be accepted relative to the alternative

hypothesis but the analyst would remain undecided about

the effect size. The BF for the standard deviation, on the

other hand, indicates a large shift between prior odds and

posterior odds in favor of the alternative hypothesis relative

to the null hypothesis. Our main point in presenting these

tests is to emphasize that the three Bayesian hypothesis tests

are considering distinct prior distributions for distinct null

hypotheses (so that the BF for the mean can differ from

the BF for the effect size), and that the Bayesian hypothe-

sis test can decide to accept the null relative to a particular

alternative not just reject the null.

Finally, the lower right of Fig. 7 shows the result of

Bayesian estimation of the parameters, starting with a dif-

fuse prior distribution on the joint parameter space (the

same that was used as the alternative hypothesis in the

Bayesian null hypothesis tests). As was emphasized ear-

lier, any reasonably diffuse prior yields virtually the same

posterior distribution on continuous parameter values for

moderate amounts of data. In the posterior distribution,

each 〈µ, σ 〉 combination corresponds to an effect size, δ =
(µ − 100.0)/σ , so the posterior distribution simultaneously

provides a posterior distribution on effect size. The lower

right of Fig. 7 shows the marginal posterior distribution on

µ, σ , and δ. Notice in particular that the posterior distribu-

tion on the mean has a 95 % HDI with a width greater than

14 IQ points, meaning that there is a fairly wide range of

credible means despite the fact that the BF favors the null

hypothesis. We emphasize that the Bayesian parameter esti-

mates come from a single prior distribution, not from separate

hypotheses.

Corrections for multiple tests

In frequentist analysis, a primary goal for the decision rule

is keeping the overall false alarm rate (a.k.a., Type I error

rate) limited to 5 % (say) across the set of tests. When more

tests are included in the analysis, there is increased opportu-

nity for false alarms, as was discussed earlier in the context

of Fig. 2. Therefore the decision thresholds for every test

must be made more conservative, or, equivalently, the p val-

ues of every test must be made larger. The exact amount

of increase in p depends on the structural relations of the

tests, and hence there are a variety of different corrections

available for different typical families of related tests (e.g.,

Tukey, Scheffé, Dunnett, Bonferonni, etc.; see Maxwell &

Delaney, 2004). If error control is the goal of the deci-

sion rule, then, by definition, p values must be computed

and their dependency on the stopping intention and testing

intention must be taken into account.

Bayesian analysis does not base decisions on error con-

trol. Indeed, Bayesian analysis does not use sampling dis-

tributions. (The only exception to this statement is Bayesian

power analysis, which, by definition, considers sampling

distributions but not p values. Bayesian power analysis is

described later in this article.) Instead of using error rates,

Bayesian decisions are based on properties of the posterior

distribution on parameter values.

Of course, ignoring errors rates does not make them go

away. Any decision rule on noisy data will eventually com-

mit an error on some set of data, because ultimately the

errors come from noise that spawns random coincidences

of rogue data. Bayesian analysis can mitigate false alarms

through model structure instead of through p values. In

particular, hierarchical models are seamlessly analyzed in

Bayesian software, and hierarchical models allow the data

to inform shrinkage which pulls in parameter estimates of

rogue groups. An example of a hierarchical model with

shrinkage is presented later in this article, in an application

to meta-analysis.

Ultimately, errors can be rectified only by pre-registered

replication attempts. Some Bayesian methods in replication

analysis are surveyed in a short video available at the follow-

ing link, http://tinyurl.com/BayesianReplicationAnalysis2

Interim summary

We have now provided two full examples of the information

provided by hypothesis testing and parameter estimation,

using frequentist and Bayesian approaches. The results of

the examples are summarized in Figs. 3 and 7. The exam-

ples illustrate the very different information provided by the

different approaches. Within hypothesis testing, frequentist

approaches provide a p value for imaginary data from a null

hypothesis, whereas Bayesian approaches provide a com-

parison between the relative abilities of a null hypothesis

and an alternative hypothesis to account for the actual data.

Within estimation, frequentist approaches provide the range

2The full URL is http://doingbayesiandataanalysis.blogspot.com/

2016/05/some-bayesian-approaches-to-replication.html.

http://tinyurl.com/BayesianReplicationAnalysis
http://doingbayesiandataanalysis.blogspot.com/2016/05/some-bayesian-approaches-to-replication.html
http://doingbayesiandataanalysis.blogspot.com/2016/05/some-bayesian-approaches-to-replication.html
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of parameter values that would not be rejected, whereas

Bayesian approaches provide a full posterior distribution

over the joint parameter space. At the least, these exam-

ples illustrate that Bayesian approaches provide different

and richer information than frequentist approaches.

All of the preceding formed the foundation for the

major topics in the remainder of the article, where we will

review arguments for shifting emphasis from frequentist to

Bayesian methods, and for emphasizing estimation and not

only hypothesis testing. We will then explain meta-analysis,

randomized controlled trials, and power analysis from a

Bayesian perspective. Now would be a good time to stretch,

refill your coffee mug, and then return here to read the

exciting conclusion!

Arguments for shift from frequentist to Bayesian

The literature across many sciences has articles and books

that note and promote a shift away from frequentist to

Bayesian methods (e.g., Allenby, Bakken, & Rossi, 2004;

Beaumont & Rannala, 2004; Brooks, 2003; Gregory, 2001;

Howson & Urbach, 2006; Lindley, 1975; McGrayne, 2011,

etc.). Reasons for the shift are numerous; here we focus on

only a few foundational issues. First, any set of data has

p values and confidence intervals that depend on stopping

and testing intentions, but this dependency may not be desir-

able. Second, frequentist approaches answer a question that

most analysts are not asking, whereas Bayesian approaches

actually address the question of usual interest.

Sampling and testing intentions influence p values

and confidence intervals

Recall the notion of a p value illustrated back in Fig. 2

and defined formally back in Eq. 1. A crucial detail of the

process in Fig. 2 is that the simulated samples of data are

generated the same way as the actual sample of data. In

particular, if the actual sample was generated by collecting

data until a specific sample size was reached, then the simu-

lated samples must be generated by sampling data until that

same sample size is reached. This assumption of stopping

at fixed N is the usual and tacit assumption. By contrast,

actual data are often sampled with other intentions for stop-

ping of data collection. For example, a mail survey will have

a random number of respondents. In this case, to generate

the cloud of possible outcomes in Fig. 2, we must not use

a fixed N for the simulated samples, but we must gener-

ate each sample with a random size that mimics the random

sample sizes possible in the actual survey. As another exam-

ple, experimenters in a university setting might post times

for available sessions during which people can sign up to

participate. Although there is a fixed number of sessions,

the number of people who volunteer within that window is

a random number. To generate the cloud of possible out-

comes in Fig. 2, the analysts must not use a fixed sample

size, but must generate each sample with a random size

that mimics the random sample sizes possible in the actual

experiment procedure. The procedure for collecting data

determines when to stop collecting data, and is called the

stopping intention.

The stopping intention is crucial for computing the p

value because the stopping intention determines the cloud of

imaginary possibilities relative to which the actual outcome

is judged. In other words, different stopping intentions yield

different p values for the same actual outcome. In particu-

lar, two researchers might happen to collect the same data,

but if they had different stopping intentions, then their iden-

tical data would have different p values. Detailed numerical

examples are provided in the literature, including Kruschke

(2013, pp. 588-590) and Kruschke (2015, Ch. 11) and many

references cited therein. Despite this dependency of a p

value on stopping intention, all standard software packages

assume a fixed-N stopping intention.

The p value for a set of data is also affected by the other

tests that will contribute to the cloud of possible data sum-

maries. If the actual outcome is going to be compared with

several other groups, then there are additional opportunities

for the simulated summaries from all the groups to exceed

the actual outcome. In other words, the cloud of possibil-

ities expands and the p value increases, even though the

actual outcome is unchanged. This inflation of p values with

additional tests is often discussed in textbooks and articles,

which describe an elaborate set of “corrections” to p val-

ues (e.g., Maxwell & Delaney, 2004). Figure 2 annotated

the dependence of the cloud of possibilities on the testing

intention as well as the stopping intention.

In particular, two researchers might happen to collect the

same data, but if they had different testing intentions, then

their identical data would have different p values. Notice

that the p value is affected only by the intention to do

other tests, not by the actual data for the other tests or even

whether the other data have yet been collected. This infla-

tion of the p value with intention to do more tests causes

many researchers, when reporting an analysis, to pretend

disinterest in comparisons that obviously deserve testing.

A confidence interval is defined in terms of p values, and

therefore when the stopping and testing intentions change,

the CI changes too. The formal definition of a CI was

provided in Eq. 2, where the dependence on stopping and

testing intentions was explicitly noted. When the p value is

inflated by additional tests, the confidence interval becomes

correspondingly wider. Because the limits of the CI merely

indicate the parameter values at which p = 0.05, there is
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no distributional information provided by a CI. The con-

trast between CI and Bayesian posterior distribution was

graphically illustrated in Figs. 3 and 7.

The dependence of the p value and CI on stopping and

testing intentions does not make much sense when the goal

is inferring the credibility of descriptive parameter values.

If two researchers collect the same data, but one researcher

stopped at fixed N (with a random duration of data collec-

tion) while the other researcher stopped Friday at 5:00pm

(with a random N), it seems absurd that the researchers

should have different estimation intervals from their identi-

cal data. But different p values and CI’s are required by a

correct application of the frequentist approach, and the dif-

ferences can often be very substantial. Bayesian inference

does not depend on stopping and testing intentions.

Frequentist NHST asks the wrong question

When we collect data about some phenomenon of interest

and we describe the data with a mathematical model, usu-

ally our first question is about what parameter values are

credible given the actual data. For example, given a set of

IQ scores, we would like to know what values of the mean

parameter are credible. Formally, we denote this desired

information as

p
(

µ

∣

∣

∣
Dactual

)

(5)

where µ indicates a parameter value and Dactual indicates

the actual data. Equation 5 describes the probability of all

possible parameter values given the actual data. This desired

information is exactly what Bayesian inference provides in

the posterior distribution. But this is not what a frequentist

analysis provides. Frequentist analysis provides the proba-

bility that summaries of simulated data from a hypothetical

value of the parameter would be more extreme than the

summary of the actual data. Formally, frequentist analy-

sis provides the p value that was defined in Eq. 1 and is

repeated here for convenience:

p
(

T (Dsimulated) � T (Dactual)

∣

∣

∣
µ, I

)

(6)

where T (Dsimulated) is a summary description (such as a t

statistic) of simulated data that are sampled according to the

same stopping and testing intentions I as the actual data.

Notice that the conditional probability provided by fre-

quentist analysis in Eq. 6 is the reverse of the desired

conditional probability provided by Bayesian analysis in

Eq. 5. For example, the (Bayesian) information we desire

may be the probability that it will rain at noon today,

but the (frequentist) information provided is the proba-

bility that it is noon given that it is raining. Needless

to say, p(rain|noon) does not equal p(noon|rain), and

analogouslyp(µ | Dactual) does not equal p(T (Dsimulated) �
T (Dactual) | µ, I). Notice also that the conditional proba-

bility provided by frequentist analysis in Eq. 6 involves the

sampling intentions I but those intentions are not involved

in the Bayesian information in Eq. 5. For example, the

Bayesian probability in Eq. 5 does not change if the stop-

ping intention changes from fixed sample size to fixed

duration of sampling.

Because researchers want the Bayesian information in

Eq. 5, they often misinterpret the results of frequentist anal-

ysis. When people find that a frequentist p value is, say,

0.02, they often mistakenly interpret the p value as mean-

ing that the probability that µ equals the null value is 2 %

(e.g., J. Cohen, 1994, and references cited therein). In other

words, researchers often treat a p value as if it refers to

Eq. 5. But the frequentist p value of Eq. 6 has little to say

about the probability of parameter values. “[NHST] does

not tell us what we want to know, and we so much want to

know what we want to know that, out of desperation, we

nevertheless believe that it does!” (J. Cohen, 1994, p. 997).

Analogously, we so much want to know a distribution of

probability across parameter values, as in Eq. 5, that, out

of desperation, we believe there is such a distribution on a

frequentist confidence interval even though there is none.

The frequentist question can be the right question to ask

if the analyst is specifically interested in a decision rule

that attempts to control error rates (e.g., Mayo & Spanos,

2011; Mayo, 2016). As Bayesian analysis ignores coun-

terfactual error rates, it cannot control them. “The reason

is that [Bayesian methods] condition on the actual data;

whereas error probabilities take into account other outcomes

that could have occurred but did not.” (Mayo, 2016) That

is, if the goal is specifically to control the rate of false

alarms when the decision rule is applied repeatedly to imag-

inary data from the null hypothesis, then, by definition, the

analyst must compute a p value and corresponding CI’s.

To answer this sort of question, the analyst must take into

account the exact stopping and testing intentions. Conse-

quently, there is a proliferation of methods for computing

correct p values and confidence intervals for many differ-

ent stopping and testing situations (e.g., Sagarin, Ambler, &

Lee, 2014). It is important to understand that any such pro-

cedure does not yield the credibility of parameter values (as

in Eq. 5) but instead yields the probability of imaginary data

(as in Eq. 6).

Benefits of Bayesian

Frequentist hypothesis testing can only reject or fail to

reject a particular hypothesis. It can never show evidence in

favor of a hypothesis. Bayesian hypothesis testing, on the

other hand, inherently compares a (null) hypothesis against
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one or more alternative hypotheses. In the Bayesian frame-

work, the null hypothesis can be accepted relative to the

particular alternative (e.g., Edwards, Lindman, & Savage,

1963; Lee & Wagenmakers, 2014, Ch. 7). One benefit of

Bayesian hypothesis testing is that a goal for research could

be to reject or to accept a null hypothesis, and publications

might be less selectively biased toward rejected null values

(Dienes, 2016). As is discussed later, Bayesian methods also

allow precision of estimation to be a goal for research more

coherently than with frequentist methods.

The examples in Figs. 3 and 7 might make it appear that

frequentist and Bayesian estimation tend to look remark-

ably similar, and all that Bayesian analysis adds is a pretty

distribution over the parameters along with legalistic legit-

imacy to interpret the result as probabilities of parameters,

without actually changing any conclusions. Such an impres-

sion is a false generalization from the simple examples

presented in those figures. There are applications in which

frequentist CIs are only roughly approximated or are diffi-

cult to compute at all, but Bayesian posterior distributions

and their HDIs are seamlessly computed. In many realistic

applications with complex models, frequentist approaches

are limited by (1) hill-climbing algorithms for finding

MLE parameters that sometimes fail to converge, (2) large-

N approximations to sampling distributions that provide

overly optimistic p values and CI’s, and (3) software that

constrains the types of model structures and data distribu-

tions. On the other hand, modern Bayesian algorithms and

software are robust across a wide range of complex models

that can be very flexibly specified by the analyst, and the

results are exact for any size N no matter how small. Exam-

ples of more complex applications of Bayesian methods

are presented later in the article (for randomized controlled

trials and for meta-analysis of binomial data). Moreover,

Bayesian methods allow prior knowledge to be incorporated

into estimation and decision making, as is well recognized

to be crucial in disease diagnosis and drug testing.

Arguments for shift of emphasis toward estimation

with uncertainty—the “New” in the New Statistics

The literature is replete with articles and books that lament

hypothesis testing and encourage a shift to estimation with

uncertainty. Among the most recent and prominent cautions

against NHST is a statement from the American Statisti-

cal Association (ASA; Wasserstein & Lazar, 2016), which

featured six principles for properly interpreting p values.

Principle 3 said “Scientific conclusions and business or pol-

icy decisions should not be based only on whether a p value

passes a specific threshold. ... The widespread use of ‘sta-

tistical significance’ (generally interpreted as ‘p < 0.05’)

as a license for making a claim of a scientific finding (or

implied truth) leads to considerable distortion of the sci-

entific process.” Principle 5 said “A p value, or statistical

significance, does not measure the size of an effect or the

importance of a result. Statistical significance is not equiva-

lent to scientific, human, or economic significance. Smaller

p values do not necessarily imply the presence of larger or

more important effects, and larger p values do not imply a

lack of importance or even lack of effect.”

Accompanying commentaries on the ASA statement also

highlighted a shift of emphasis from (frequentist) null

hypothesis testing to estimation with uncertainty: “... sta-

tistical tests should never constitute the sole input to infer-

ences or decisions about associations or effects. Among

the many reasons are that, in most scientific settings, the

arbitrary classification of results into ‘significant’ and ‘non-

significant’ is unnecessary for and often damaging to valid

interpretation of data; and that estimation of the size of

effects and the uncertainty surrounding our estimates will

be far more important for scientific inference and sound

judgment than any such classification.” (Greenland et al.,

2016)” To avoid fallacious black-and-white thinking from

null hypothesis testing, “... we can and should advise today’s

students of statistics that they should avoid statistical signif-

icance testing, and embrace estimation instead.” (Rothman,

2016)”

The literature offers numerous reasons in support of

a shift away from (frequentist) null hypothesis testing to

estimation with uncertainty. In this section we focus on

only three reasons: Null hypotheses are often false a pri-

ori (so it’s pointless to test them), null-hypothesis tests

ignore magnitude and uncertainty (which can lead to misin-

terpretation of results), and null hypothesis testing impedes

meta-analysis and cumulative science.

When we use the term “hypothesis testing,” we mean

point-value hypothesis testing, for which the hypothesis

being tested is a specific value of a parameter such as

a null value, as in the examples presented earlier in the

article. There are other types of non-point hypotheses that

can be tested, but the typical routine hypothesis test (either

frequentist or Bayesian) involves a point-null hypothesis.

Null hypotheses are often false a priori

One argument against using null hypotheses is that in many

applications they are straw men that can be rejected with

enough data. The premise of the argument is that most fac-

tors of interest have some non-zero relation or effect on

other variables of interest, even if the effect is very small.

With enough data to cancel out noise variance, any non-zero

effect can be detected. Thus, if a theory merely posits any

non-null effect, then the theory becomes easier to confirm
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as more data are collected. But scientific theories should

work the other way around: Because theoretical predictions

almost surely deviate from reality by some amount how-

ever small, it should be easier to disconfirm a theory as

data accumulate. This contradiction between the way sci-

ence should work and the way traditional null-hypothesis

testing does work is sometimes known as Meehl’s paradox

(Meehl, 1967; 1978; 1997).

A premise of the argument from Meehl’s paradox is

that most factors of interest have a non-zero effect, that is,

some non-zero departure from the predicted value (e.g., null

value) even if the discrepancy is small. To what extent is this

premise true?

Some factors might plausibly have exactly zero effect,

and theories about the factor might be committed to an

exactly zero effect size. For example, we might assert that

extra-sensory perception, in the sense of foretelling the

future via temporally-backward causality, is theoretically

impossible and therefore has exactly zero effect size. In

this case, any deviation from zero, no matter how small,

could be a major upheaval in current theories of physics.

Various authors have discussed situations in which a point

null is theoretically important to consider (e.g., Gallistel,

2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009).

Examples in cognitive psychology were provided by Lee

and Wagenmakers (2014, Ch. 7). In these situations, when

the null hypothesis is genuinely plausible, there are a vari-

ety of reasons to prefer Bayesian hypothesis testing over

frequentist hypothesis testing, as was discussed previously.

But theories that are plausibly exactly correct (includ-

ing an exactly correct null hypothesis) may be relatively

rare. For example, Anderson, Burnham, and Thompson

(2000, p. 913) stated that “The most curious problem with

null hypothesis testing, as the primary basis for data anal-

ysis and inference, is that nearly all null hypotheses are

false on a priori grounds (Johnson, 1995).” Anderson et al.

(2000) surveyed 500 articles randomly sampled from sev-

eral years of two respected journals. They found on average

about two dozen reported p values per article. Despite

the many thousands of hypothesis tests, “In the 347 sam-

pled articles in Ecology containing null hypothesis tests, we

found few examples of null hypotheses that seemed bio-

logically plausible. Perhaps 5 of 95 articles in Journal of

Wildlife Management contained ≥ 1 null hypothesis that

could be considered ... plausible” (Anderson et al., 2000,

p. 915). Some a priori false null hypotheses that have

been tested in the ecology literature include “the occurrence

of sheep remains in coyote (Canis latrans) scats differed

among seasons (p = 0.03, n = 467), (2) duckling body

mass differed among years (p < 0.0001), and (3) the den-

sity of large trees was greater in unlogged forest stands

than in logged stands (p = 0.02)” (Johnson, 1999). We are

not aware of analogous surveys of the literature in psycho-

logical sciences, but we strongly suspect there would be

analogous results. The general point about straw-man null

hypotheses has been made for decades by many authors

(e.g., Savage, 1957).

In a Bayesian framework, the implausibility of a null

hypothesis is expressed as a low prior probability of the null

hypothesis relative to a high prior probability of the alter-

native hypothesis. The prior probabilities of the hypotheses

were illustrated graphically in panel A of Fig. 6 as the

heights of the bars on the model index M . To say that a null

hypothesis is false a priori is to say that the height of the bar

on the null model index M =1 is infinitesimally small, and

the height of the bar on the alternative model index M =2 is

essentially 1.0. Therefore the posterior probabilities of the

models must favor the alternative (non-null) model regard-

less of the Bayes factor. This conclusion can be understood

directly from Eq. 4: If the prior odds are zero then the poste-

rior odds are zero, regardless of the Bayes factor. This type

of argument also applies, in reverse, when the null hypoth-

esis has an extremely high prior probability. For example,

as was mentioned previously for the case of ESP, the null

hypothesis of no effect has an extremely high prior probabil-

ity and therefore the posterior probability of the alternative

hypothesis is very small even if the Bayes factor strongly

suggests a shift away from the null (Rouder and Morey,

2011; Rouder et al., 2013).

In a Bayesian context, putting a high prior probability on

a model is not a claim that the model is true or correct in an

ontological sense. Instead, Bayesian model probabilities are

indicators of relative descriptive abilities within the limited

space of models being considered. Thus, to say that the prior

probability of the null model is virtually zero and the prior

probability of the alternative model is virtually one is not to

say that the alternative model is correct; rather, it says that

within the limited space of models under consideration the

null model is not a plausible description of the data relative

to the other models.

Null hypothesis tests ignore magnitude and uncertainty

A more important general problem of point-value hypoth-

esis testing is that the result of a hypothesis test reveals

nothing about the magnitude of the effect or the uncertainty

of its estimate, which we should usually want to know. Null

hypothesis testing, in frequentist or Bayesian forms, has

three undesirable consequences: (i) a null hypothesis can

be rejected by a trivially small effect; (ii) a null hypothe-

sis can be rejected even though there is high uncertainty in

its magnitude; and (iii) a null hypothesis can be accepted

by a Bayes factor even though the interval estimate of the

magnitude includes a fairly wide range of non-null values.
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The severity of problems (ii) and (iii) declines with more

conservative decision criteria that demand larger N , but

the problems can be dramatic when using the typical weak

criterion of p < .05 in a frequentist test. A correspond-

ing Bayes-factor criterion is roughly 3 (i.e., BFnull > 3

accepts the null hypothesis and BFnull < 1/3 accepts the

alternative hypothesis), but there is no direct mathematical

equivalence to p < .05 (Wetzels et al., 2011). While Dienes

(2016) suggests that a BF of 3 is “substantial,” other propo-

nents of Bayesian hypothesis tests (e.g., Schönbrodt et al.,

2016) recommend higher decision thresholds such as 6 or

10 depending on the nature of the research.

As examples of the three problems mentioned above,

consider a single group of metric values sampled from a

normal distribution. (i) Suppose the sample has N = 1, 200

with sample mean of 101.5 and standard deviation of 15.0.

Relative to a null hypothesis mean of 100.0, it turns out that

p = 0.001 and the Bayes factor on the effect size (using

the BayesFactor R package, Morey et al., 2015, with default

alternative hypothesis rscale=0.707) is 0.08 with respect to

the null hypothesis, that is, 12.5 in favor of the alternative

hypothesis. Thus, the BF rejects the null hypothesis even

with a fairly strict decision threshold of 10. But despite

rejecting the null, the estimated effect size indicates only

a small effect, with the 95 % HDI extending from 0.04 to

0.15 (which is less than a conventionally “small” effect size

of 0.2; J. Cohen, 1988). Therefore, rejecting a null hypoth-

esis by itself tells us nothing about the magnitude of the

effect and whether the effect is eye-rollingly trivial or eye-

poppingly whopping. (ii) Suppose the sample has N = 20,

with sample mean of 111.0 and standard deviation of 15.0.

Relative to a null hypothesis mean of 100.0, it is the case

that p = 0.005 and the Bayes factor on the effect size

is 0.10 (that is, 10.0 in favor of the alternative), rejecting

the null hypothesis. Despite rejecting the null hypothesis,

the magnitude of the effect is very uncertain, with the 95

% HDI extending from 0.20 to nearly 1.2, that is from

“small” to very large. (iii) Suppose the sample has N = 125

and the sample mean exactly matches the null mean. Then

the Bayes factor exceeds 10 in favor of the null hypoth-

esis and the 95 % HDI on the effect size spans ±0.18.

While the width of the HDI is not enormous because the

high criterion on the BF demanded a relatively large sam-

ple size, the HDI does suggest that a non-negligible range

of non-zero effect sizes remains plausible. When lower

decision criteria are used for the BF (e.g., 3.0 as used by

Dienes, 2016), the HDI is noticeably wider. For these three

generic illustrations we computed BFs using the BayesFac-

tor R package (Morey et al., 2015) with default alternative

hypothesis rscale=0.707. In applied research, it would be

important to use meaningfully informed alternative priors,

which would result in different values for the BF’s (Dienes,

2014; Kruschke, 2011a; Vanpaemel and Lee, 2012).

One of the key problems with null-hypothesis testing is

that it easily leads to fallacious “black and white thinking”

that ignores the magnitude and uncertainty of the effect.

When a null hypothesis is not rejected (by a p value) or

even when a null hypothesis is accepted (by a Bayes fac-

tor), people can mistakenly believe there is zero effect even

though the results may actually allow for a reasonable range

of non-zero effect magnitudes. “... a non-significant result

is often in practice taken as evidence for a null hypothesis.

For example, to take one of the most prestigious journals

in psychology, in the 2014 April issue of the Journal of

Experimental Psychology: General, in 32 out of the 34 arti-

cles, a non-significant result was taken as support for a null

hypothesis (as shown by the authors claiming no effect),

with no further grounds given for accepting the null other

than that the p value was greater than 0.05.” (Dienes, 2016,

p. 2) When a null hypothesis is rejected, people can mistak-

enly believe that the effect is solidly large, even though the

results may actually allow for a large range of effect magni-

tudes, including very small effect sizes (e.g., Kline, 2004).

On the other hand, if the estimated effect size and its inter-

val of uncertainty are explicitly presented, we can judge not

only whether the null value is near the interval of uncer-

tainty, but we can also judge the importance of the effect

size and how securely its magnitude has been ascertained.

Null hypothesis testing hinders cumulative science

and meta-analysis

One of the main casualties inflicted by the black-and-

white thinking of hypothesis testing is cumulative science.

(Schmidt, 1996) clearly explained the problem and pro-

vided a compelling example, which we now briefly sum-

marize. Suppose there is a real effect being investigated

that has a moderate (non-null) effect size. We repeat-

edly generate experimental samples of data from that fixed

non-null effect. Using typical low-power sample sizes,

experiments will show that about one third produce sig-

nificant results (with p < .05) and the other two thirds

produce insignificant results (with p > .05). There are

two traditional interpretations of the set of results. One

interpretation tallies the black-and-white decisions, notes

that the majority of studies found no effect, and con-

cludes therefore that there is no effect. This conclusion

is wrong, of course, because all the data were gener-

ated by the same non-null effect size. The second tradi-

tional interpretation notes that while the majority of studies

found no effect, some of the studies did find an effect,

and therefore follow-up research must discover modera-

tor variables that cause the effect to appear sometimes and

not other times. This conclusion is also wrong, because

the data for all studies were generated the same way.

Schmidt (1996, p. 126) concluded that “Researchers must
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be disabused of the false belief that if a finding is not

significant, it is zero. This belief has probably done more

than any of the other false beliefs about significance test-

ing to retard the growth of cumulative knowledge in

psychology.”

An emphasis on null-hypothesis testing impedes cumu-

lative science another way, by biasing which data get pub-

lished. In the example of the previous paragraph, all of the

(simulated) studies were considered, including all the stud-

ies that produced non-significant results. But scientific jour-

nals (i.e., reviewers and editors) are reluctant to publish non-

significant results (e.g., Rosenthal, 1979). Therefore what

actually gets published is a biased and unrepresentative sam-

ple. This bias has been pointed out many times, and recently

by Cumming (2014, p. 22), who said, “Indeed, NHST has

caused some of its worst damage by distorting the results

of meta-analysis, which can give valid results only if an

unbiased set of studies is included; ... selective publica-

tion biases meta-analysis.” Dienes (2016) recommended

basing publication on Bayesian null-hypothesis testing

when a decision is reached in either direction, so that both

rejected and accepted null hypotheses would be published.

To discourage black and white thinking, we further rec-

ommend an emphasis on effect size and uncertainty. As is

discussed later in the article, if publication were based on

achieving a reasonable degree of precision (and assuming

that precise estimates are accurate estimates, which is usu-

ally the case), regardless of whether a null hypothesis is

rejected or accepted or undecided, then there would not be

bias in published data.

From Bayesian null hypothesis testing to Bayesian

estimation

There are some clear advantages of Bayesian hypothesis

testing over NHST. Most prominently, because an explicit

alternative hypothesis is posited, the Bayesian approach

can produce the relative probabilities of hypotheses, unlike

NHST which only yields the probability of simulated data

from the null hypothesis (as was expressed in Eq. 1). In par-

ticular, Bayesian hypothesis testing can indicate that the null

hypothesis is more credible than the alternative hypothesis,

which NHST can never do. This is highly desirable for theo-

retical domains in which “proving” the null is the goal (e.g.,

Dienes, 2014, 2016; Gallistel, 2009; Lee & Wagenmakers,

2014; Rouder et al., 2009; Wagenmakers, 2007).

But because the Bayes factor does not reveal magni-

tude and uncertainty, it is easy for the meaning to slip

away and for only the dichotomous accept/reject decision

to remain. Gigerenzer and Marewski (2015, p. 423, 437)

warned against default Bayes factors becoming the same

“mindless null ritual” as NHST: “The automatic calculation

of significance levels could be revived by similar routines

for Bayes factors. That would turn the [Bayesian] revolu-

tion into a re-volution — back to square one. ... The real

challenge in our view is to prevent ... replacing routine sig-

nificance tests with routine interpretations of Bayes factors.”

Cumming (2014, p. 15) made a similar remark: “Bayesian

approaches to estimation based on credible intervals, to

model assessment and selection, and to meta-analysis are

highly valuable (Kruschke, 2011b). I would be wary, how-

ever, of Bayesian hypothesis testing, if it does not escape the

limitations of dichotomous thinking.”

Beyond the general problems, Bayesian hypothesis test-

ing has some problems unique to its formulation. First, the

BF is extremely sensitive to the choice of prior distribu-

tion for the alternative hypothesis. Therefore in realistic

application it is important to use a theoretically meaningful

and informed distribution for both the prior and alternative

hypotheses, not merely generic defaults, and it is impor-

tant to check that the BF does not change much if the prior

distributions are changed in reasonable ways (e.g., Dienes,

2014, 2016; Kruschke, 2011a; Lee & Wagenmakers, 2014;

Vanpaemel & Lee, 2012). Second, the BF does not indicate

the posterior odds, and users must remember to take into

account the prior odds of the hypotheses. If the null hypoth-

esis has a minuscule prior probability, then BFnull must be

enormous to compensate and produce a posterior probabil-

ity that favors the null. Of course that reasoning goes the

other way, too, so that if the null hypothesis has an enormous

prior probability, then BFnull must be exceedingly tiny to

compensate and produce a posterior probability that favors

the alternative.

In summary, in those situations that you really want to

test a null hypothesis, it is better to do it by Bayesian model

comparison than by frequentist NHST because the Bayesian

approach can provide information about the relative prob-

abilities of hypotheses. For Bayesian hypothesis testing, it

is important to use prior distributions that are theoretically

meaningful and that previous data could have generated; be

wary of using a generic default prior. (Bayesian estimation,

on the other hand, is typically far less sensitive to default

priors.) It is important to incorporate the prior probabilities

of the hypotheses and not rely only on the Bayes factor to

make decisions. Perhaps most importantly, do not fall into

black-and-white thinking; also estimate the magnitude and

uncertainty of the parameters with a goal of precision and a

meta-analytic thinking.

Meta-analysis, randomized controlled trials,

and power analysis: Better done Bayesian

The previous sections have shown that the usual goals

of hypothesis testing and estimation in general are better

achieved with a Bayesian approach than with a frequentist
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approach. The following sections visit three other specific

emphases of the “New Statistics” (Cumming, 2014): Meta-

analysis, randomized controlled trials, and power analysis.

Meta-analysis: Better done Bayesian

To discuss meta-analysis, we first discuss hierarchical mod-

els, because models for meta-analysis are a case of hierar-

chical models. Hierarchical models are natural descriptions

for many kinds of data. For example, in a variety of stud-

ies, there might be many individuals in each treatment, and

each individual provides many data values. In these cases,

the model has descriptive parameters for each individual

and higher-level parameters that describe the distribution

of individual-level parameter values. As another example,

consider a study that includes many different predictors in

a large multiple regression. The distribution of regression-

coefficient values across predictors can be described by a

higher-level distribution.

Hierarchical models are especially useful because the

low-level and high-level parameters are estimated simul-

taneously and are mutually constraining. When data from

many low-level units inform the high-level distribution, the

high-level distribution constrains the low-level parameters

to be mutually consistent. This causes the more extreme

low-level cases to be “shrunken” toward the mode(s) of

the group. Shrinkage helps prevent false alarms caused by

random conspiracies of rogue outlying data. Essentially,

the data from the other individuals are acting as simul-

taneous prior information to rein in estimates of outlying

individuals. Bayesian hierarchical models are explained by

Kruschke and Vanpaemel (2015) and Ch. 9 of Kruschke

(2015), among other resources.

HDI is seamless for complex hierarchical models, unlike

the CI Bayesian methods are especially convenient for

complex hierarchical models for two reasons. First, the

interpretation of the parameters is seamless because we sim-

ply read off whatever we want to know from the posterior

distribution, including modal parameter values and their

HDIs. There is no need for auxiliary assumptions for gen-

erating p values and confidence intervals from sampling

distributions. (In frequentist analyses of hierarchical mod-

els, p values and confidence intervals are typically only

roughly approximated.) Second, modern Bayesian software

allows very flexible specification of complex hierarchical

models. For example, attentional parameters in a cogni-

tive model of classification can be useful to characterize

what individual respondents attend to in a classification

task. The cognitive model can be easily implemented in

Bayesian software and its parameters estimated. Kruschke

and Vanpaemel (2015) reported estimates of attentional

allocation by individual human subjects in a classifica-

tion task, grouped by clinical symptoms. The estimates of

individuals showed shrinkage toward two modes of a bi-

modal group distribution, in which some subjects paid most

attention to one stimulus dimension while other subjects

paid most attention to another stimulus dimension. Another

example of the flexibility of Bayesian hierarchical model-

ing is a hierarchical conditional-logistic regression model

for describing behavior of players in a public goods game

who chose different types of punishments to apply to free

loaders (Liddell & Kruschke, 2014). Every subject’s multi-

nomial choice data were modeled with conditional-logistic

regression. The distribution of individuals’ regression coef-

ficients was modeled by a heavy-tailed t-distribution, which

accommodated some widely outlying individuals without

distorting the estimates of typical respondents. Parameter

estimates and HDIs are produced seamlessly for these com-

plex hierarchical models. It would be difficult to generate

accurate CIs for these models in a freqentist framework.

Various software packages have the abilities we have

been touting. The most popular, and free of charge, are

JAGS (Plummer, 2003, 2012), BUGS (2013), and Stan

(Stan Development Team, 2012). A thorough introduction

is provided by Kruschke (2015).

Meta-analysis as Bayesian hierarchical modeling A core

premise of meta-analytic thinking is that “Any one study is

most likely contributing rather than determining; it needs

to be considered alongside any comparable past studies and

with the assumption that future studies will build on its con-

tribution” (Cumming, 2014, p. 23). That premise is based on

the fact that any one study is merely a finite random sample

of data, and different random samples will show different

trends due to random variation. Therefore, we should com-

bine the results of all comparable studies to derive a more

stable estimate of the true underlying effect.

Describing variation of data across studies is a modeling

problem, just like describing variation of data within a study

is a modeling problem. The structure of data across multi-

ple studies is naturally described by a hierarchical model:

Each study has individual parameters, and a higher-level

distribution describes the variation of those parameters

across studies. The top-level distribution describes the cen-

tral tendency of the trend across studies, and the uncertainty

of that trend. This type of hierarchical structure is often

referred to as a random-effects model, with the idea being

that each individual study has its own effect that is ran-

domly selected from the overarching population. “... what

we should routinely prefer ... is the random-effects model,

which assumes that the population means estimated by the

different studies are randomly chosen from a superpopula-

tion” (Cumming, 2014, p. 22)
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As an example of Bayesian meta-analysis, consider data

from 22 clinical trials of beta-blockers for reducing mor-

tality after myocardial infarction, from Yusuf et al. (1985)

and reported in Gelman et al. (2013, Sec. 5.6). In each of

the studies, heart-attack patients were randomly assigned

to a control group or a group that received a heart-muscle

relaxant called a beta blocker. For each group, the num-

ber of patients and the number of deaths was recorded.

Across studies, group size ranged from about 40 to 1,900.

The typical proportion of deaths in the control group,

deathscontrol/patientscontrol, was just under 9 %, but varied

across studies.

The underlying probability of death in the control group

of study s is denoted θC[s], and the underlying probability of

death in the treatment group of study s is denoted θT [s]. The

difference in probability of death between the two groups is

indicated by the log odds ratio,

ρ[s] = logit
(

θT [s]
)

− logit
(

θC[s]
)

(7)

where the logit function is the inverse logistic function,

and logit is also called the log odds. (The parameter ρ is

called the log odds ratio because is can be re-written as

ρ = log ([θT /(1 − θT )]/[θC/(1 − θC)]), which is the log-

arithm of the ratio of the odds in the two groups.) The log

odds ratio is a natural way to express the difference between

the groups because ρ is symmetric with respect to which

outcome (e.g., heart attack or no heart attack) is the event

being counted and with respect to which group is the target

group, by merely changing the sign of ρ. A key feature of

Eq. 7 is that it can be re-arranged to express the dependency

of the death rate in the treatment group on the death rate in

the control group:

θT [s] = logistic
(

ρ[s] + logit
(

θC[s]
))

(8)

The idea expressed by Eq. 8 is that the treatment effect ρ[s]
shifts the rate of occurrence relative to the control rate.

The goal in meta-analysis is to combine the information

across studies to derive a more precise and stable estimate

of the relative risk of heart attack when using beta block-

ers. We assume that each study is representative of (i) an

underlying probability of heart attack across the control

groups and (ii) an underlying effect of treatment. In partic-

ular, we model the distribution of treatment effects across

studies as a normal distribution with mean µρ and standard

deviation σρ . Both of these parameters are estimated from

the data. Analogously, we model the distribution of control

rates as a beta distribution with mode ωC and concentra-

tion κC . The computer programs are available at https://osf.

io/j6364/, and more details can be found at http://tinyurl.

com/BayesMetaTwoProp3 Our primary interest is the mag-

3The full URL is http://doingbayesiandataanalysis.blogspot.com/

2016/11/bayesian-meta-analysis-of-two.html.
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Fig. 8 Meta-analysis of effect of beta-blockers on heart-attack fatali-

ties. The horizontal axis shows the effect of beta-blockers expressed by

the value of the parameter ρ described in Eqs. 7 and 8. The vertical axis

shows the study ID number and the overall estimate at top. For each

study, the triangle shows the study-specific sample value of ρ along

with total sample size (N) in the study. The distributions show the pos-

terior distribution of each parameter, with a horizontal bar marking

the 95 % HDI and a vertical line marking the mode of the distribution.

Numerical values of the mode and 95 % HDI are displayed on the right

side

nitude and uncertainty of the overall treatment effect as

expressed by the parameter µρ , but we are also interested in

the estimated effect for each study as expressed by ρ[s].

https://osf.io/j6364/
https://osf.io/j6364/
http://tinyurl.com/BayesMetaTwoProp
http://tinyurl.com/BayesMetaTwoProp
http://doingbayesiandataanalysis.blogspot.com/2016/11/bayesian-meta-analysis-of-two.html
http://doingbayesiandataanalysis.blogspot.com/2016/11/bayesian-meta-analysis-of-two.html
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Anything we want to know about the parameter estimates

can be directly read off the full posterior distribution, and

without any need for additional assumptions to create sam-

pling distributions for p values and confidence intervals.

Figure 8 shows a forest plot of the results. The top row

shows the posterior distribution of the overall effect µρ ,

and the lower rows show the posterior distributions for the

study-specific effects ρ[s]. Each distribution is marked with

a horizontal bar that indicates the 95 % HDI, and with a ver-

tical line that marks its mode. The numerical values of the

mode and 95 % HDI limits are displayed on the right side

of the graph. The graph also plots the study-specific sample

values of ρ as triangles, with the size of the triangle indicat-

ing the sample size of the study. The top of Fig. 8 indicates

that overall, across studies, the log odds ratio has a modal

estimate of −0.25, with a 95 % HDI from −0.38 to −0.11,

and the distribution is clearly well below zero.

The meta-analysis simultaneously estimates the effects in

each of the 22 studies. Because of the hierarchical structure

of the random-effects model, the estimate of each individual

study is informed by the data from the other 21 studies. The

22 studies inform the overarching estimate, which in turn

shrinks the individual study estimates toward what is typical

across studies. The posterior distributions of trial-specific

ρ[s] in Fig. 8 reveal the shrinkage. For example, the posterior

distribution for ρ[22] is noticeably skewed to the left, and

the posterior distribution for ρ[14] is noticeably skewed to

the right. Shrinkage is strong, as indicated dramatically by

the posterior 95 % HDI of ρ[s] for many studies not even

including the triangle that indicates the sample value of ρ[s]
(e.g., studies 2, 18, etc.).

Brophy et al. (2001) pointed out that Bayesian meta-

analysis also seamlessly produces a posterior distribution

on the difference of probabilities of heart attack in the two

groups, as shown in Fig. 9. In the model, the over-arching

probability of death in the control group is denoted ωC , and

the over-arching probability of death in the treatment group

is denoted ωT . The left panel of Fig. 9 shows the joint pos-

terior distribution of ωC and ωT . The right panel of Fig. 9

shows the marginal difference of the probabilities, ωT −ωC ,
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Fig. 9 Posterior distribution on overall probability of death in treat-

ment and control groups

which has a modal values of about −0.016 with 95 % HDI

from about −0.028 to −0.007, that is, about 1.6 lives saved

per 100 heart attacks. This result provides clinicians with

important information to decide if the number of lives saved

is worth the cost and possible side effects of the treatment.

In general, Bayesian methods are well suited for meta-

analytic modeling because meta-analytic models are a kind

of hierarchical model and Bayesian methods are exception-

ally useful for hierarchical models. The Bayesian approach

makes it especially easy and direct to interpret the results,

without need for auxiliary assumptions and approximations

for constructing confidence intervals or p values. Moreover,

software for Bayesian estimation makes it straightforward

to set up complex hierarchical models. Pitchforth and

Mengersen (2013, p. 118) said that “Bayesian meta-analysis

has advantages over frequentist approaches in that it pro-

vides a more flexible modeling framework, allows more

appropriate quantification of the uncertainty around effect

estimates, and facilitates a clearer understanding of sources

of variation within and between studies (Sutton and Abrams,

2001).”

For some textbook treatments of Bayesian meta-analysis,

see Berry, Carlin, Lee, and Müller (2011, Sec. 2.4), Gelman

et al. (2013, Sec. 5.6), and Woodworth (2004, Ch. 11). A

brief example of Bayesian meta-analysis applied to smok-

ing and lung-cancer was presented by Ntzoufras (2009,

Sec. 9.2.4). Pitchforth and Mengersen (2013) gave examples

using the software WinBUGS, based on the precedent pro-

vided by Sutton and Abrams (2001) who gave an example

of a three-level hierarchical meta-analysis. A mathematical

discussion of Bayesian meta-analysis was given by Hartung

et al. (2008).

Randomized controlled trials: Better done Bayesian

Randomized controlled trials (RCTs) are an important

experimental design that can present challenges for gener-

ating and interpreting confidence intervals, as was empha-

sized by Cumming (2014, p. 19) in his article about the New

Statistics. In this section we show that analysis of RCTs is

seamless and straightforward in a Bayesian framework.

In an RCT, subjects are randomly assigned to a control

condition or a treatment condition. There could be several

different types of control conditions (e.g., do nothing or

administer placebo) and several different types of treatment

condition. These conditions constitute a factor with con-

ditions that vary between subject. Within each condition,

every subject might be measured on a series of occasions

or in a series of orthogonal within-subject conditions, such

as pre-treatment, post-treatment, follow-up 1, and follow-up

2. This particular type of design, which crosses a within-

subject factor with a between-subject factor, is called a split-

plot design. Split-plot designs are discussed in a frequentist
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Fig. 10 Fictitious data for a randomized controlled trial (RCT) in

a split-plot design. The within-subject factor (Time: Pre-Treatment,

Post-Treatment, Follow-Up 1, and Follow-Up 2) is plotted on the

horizontal axis. Each level of the between-subject factor (Treatment:

Control, Medication, and Counseling) is marked by a separate curve.

Symbols show posterior estimated cell means with 95 % HDIs

framework by Maxwell and Delaney (2004, Ch. 12) and

Howell (2013, Sec. 14.7), and in a Bayesian framework by

Kruschke (2015, Ch. 20).

As an example of a RCT with a split-plot structure,

consider the fictitious data summarized in Fig. 10. The

structure of the scenario is analogous to the one presented by

Cumming (2014, p. 19). We consider two treatments for

anxiety, viz. medication and counseling, and a control treat-

ment (e.g., no intervention). Every subject had their anxi-

ety measured at four times: pre-treatment, post-treatment,

follow-up 1, and follow-up 2. There were 15 subjects in the

control condition, 12 in medication, and 13 in counseling.

Figure 10 shows the overall trends, where it can be seen

that all three groups had similar pre-treatment anxiety lev-

els. After treatment, anxiety levels in the medication and

counseling treatments appear to be lower than in the control

condition, but anxiety levels seem to rise during follow-up after

medication. Please note that these are completely fictitious

data, merely for illustration of analysis methods.

We did a Bayesian analysis of the data, described by

a model that is directly analogous to the usual frequen-

tist analysis-of-variance (ANOVA) model. Our model also

had a hierarchical structure that imposed modest shrinkage

on the effects; details are explained in Ch. 20 of Kruschke

(2015). The computer programs are available at https://osf.

io/j6364/. We assumed that the residual variance was nor-

mally distributed and homogeneous across cells (which was

true for the program that generated the simulated data). It

is easy to relax these assumptions in Bayesian software to

accommodate outliers and heterogeneous variances, unlike

in frequentist approaches.

The Bayesian analysis produces a posterior distribution

over a joint space of 60 parameters, including a baseline

(one parameter), a main effect of treatment (three parame-

ters), a main effect of time (four parameters), an interaction

of treatment by time (3 × 4 = 12 parameters), and separate

additive effects for each individual subject (40 parameters),

that simultaneously respect the sum-to-zero constraints of

the ANOVA-like model (see Section 20.5.2 of Kruschke,

2015). The 60-dimensional posterior distribution provides

the relative credibility of all possible parameter-value com-

binations. In particular, the Bayesian analysis yields a poste-

rior distribution on the estimated cell means, as summarized

in Fig. 10. Each point shows the central tendency of the pos-

terior distribution on the cell mean, µtreat,time, and the ver-

tical bar through the point shows the 95 % HDI of the cell mean.

The structure of the split-plot RCT in Fig. 10 suggests

many interesting comparisons. We might be interested in

comparisons across levels of the between-subject factor

(Treatment), or comparisons across levels of the within-

subject factor (Time), or interaction contrasts that assess

how much the effect of one factor changes across levels of

the other factor, or “simple” contrasts within single levels

of either the within-subject or between-subject factor. All

of these comparisons can be simply “read off” the posterior

distribution. If we are interested in the difference between

µtreat1,time1 and µtreat2,time2, we just look at the posterior dis-

tribution of the difference, µtreat1,time1 − µtreat2,time2, which

is directly computable from the joint distribution across the

parameter space.

Figure 11 shows many such comparisons, including

marginal contrasts on the between-subject factor, marginal

contrasts on the within-subject factor, interaction contrasts

for particular combinations of levels of each factor, and

“simple” comparisons of cells within levels of one factor or

the other. All of these comparison are computed merely by

looking at the corresponding difference of cell means in the

joint posterior distribution.

It can be challenging to conduct these comparisons in

NHST because each type of test requires the choice of an

appropriate error term for the test’s F ratio. “You can test

the effects of the [within subjects] factor separately for each

group or test the effects of the [between-subjects] factor

separately at each level of the [within-subjects] factor or

conduct tests in both ways... . Unfortunately the interaction

of the two factors in a mixed design complicates the choice

of an error term for each of the simple effects... . (B. H.

Cohen, 2008, p. 549)” The choice of error term influences

the p value and confidence interval for the comparison. The

frequentist CI for comparisons tends to be a bit wider than

the Bayesian HDI. For example, the 95 % CI for panel A

of Fig. 11 extends from 7.6 to 13.4, as opposed to the 95 %

https://osf.io/j6364/
https://osf.io/j6364/


Psychon Bull Rev (2018) 25:178–206 201

Control

vs

Medication.Counseling

Difference

0 5 10 15

mode = 10.2

0% in ROPE

95% HDI
8.34 12.5

(A) PostTreat

vs

FollowUp1.FollowUp2

Difference

−10 −8 −6 −4 −2 0 2

mode = −5.81

0.2% in ROPE

95% HDI
−8.13 −3.18

(B) Medication.v.Control

(x)

PreTreat.v.PostTreat

Difference of Differences

0 5 10 15 20 25 30

mode = 14.8

0% in ROPE

95% HDI
7.8 21.6

(C)

Counseling.v.Medication

(x)

PostTreat.v.FollowUp1.FollowUp2

Difference of Differences

0 5 10 15 20

mode = 7.89

2.1% in ROPE

95% HDI
2.35 14.6

(D)
Control   Medication @ FollowUp1

Difference

−5 0 5 10 15

mode = 5

12.6% in ROPE

95% HDI
−0.227 9.45

(E)
PreTreat   PostTreat @ Control

Difference

−5 0 5 10 15

mode = 4.88

12.9% in ROPE

95% HDI
−0.14 9.23

(F)

Fig. 11 Posterior distributions of selected comparisons for data in

the split-plot RCT shown in Fig. 10. The horizontal axes indicate

differences in anxiety-scale units. A region of practical equivalence

(ROPE) is marked around zero difference, at ±2 units on the anx-

iety scale. The ROPE here was chosen arbitrarily for purposes of

illustration; a ROPE should be based on the clinical significance of

differences on the anxiety scale. A Marginal contrast on the between-

subject factor. B Marginal contrast on the within-subject factor. C,

D Interaction contrasts. E Simple between-subject contrast at a fixed

level of the within-subject factor. F Simple within-subject contrast

at a fixed level of the between-subject factor. HDI highest density

interval

HDI which extends from about 8.3 to 12.5. Furthermore, the

magnitudes of the Bayesian estimates have been shrunken a

bit by the hierarchical model. For example, the 95 % CI for

the interaction contrast in panel C of Fig. 11 extends from

9.1 to 23.1 around a central estimate of 16.1, as opposed to

the 95 % HDI which extends from about 7.8 to 21.6 around

a central estimate of about 14.8. For the interaction contrast

in panel D, the 95 % CI extends from 2.87 to 15.37 around a

central estimate of 9.12, as opposed to the 95 % HDI which

extends from about 2.3 to 14.6 around a central estimate of 7.9.

Panels E and F of Fig. 11 show two “simple” contrasts of

individual cells within a level of the between-subjects factor

or within a level of the within-subjects factor. The posterior

distribution of the differences was computed the same way

as all the other Bayesian contrasts, merely by computing the

difference of the cell means at the cells of interest. In NHST,

however, these contrasts require consideration of different

error terms. “However, because the sphericity assumption

is generally considered quite risky, especially for pairwise

comparisons, it is strongly recommended that you base your

error term only on the two levels being tested. (This is equiv-

alent to performing a simple matched t test between a pair

of [within-subject] levels for one of the groups.)” (B. H.

Cohen, 2008, p. 550) Again the Bayesian HDI’s are tighter

than the frequentist CI’s: For panel E, the 95 % CI extends

from −1.66 to 10.89 while the 95 % HDI extends from about

−0.2 to 9.5, and for panel f the 95 % CI extends from −0.91

to 9.05 while the 95 % HDI extends from about −0.1 to 9.2.

A frequentist would also want to correct the p values

and confidence intervals because of doing multiple com-

parisons. As described in the context of Fig. 2, when more

tests are conducted, the cloud of simulated test statistics

expands, consequently enlarging the p value for every test.

The exact correction would depend on the particular set of

tests being conducted. Bayesian analysis, on the other hand,

does not set decision thresholds on the basis of false-alarm

rates. Instead, Bayesian analysis considers only the poste-

rior distribution based on the actual data. False alarms can

still occur, of course, because false alarms are caused by

rogue data. But Bayesian analysis can attenuate false alarms

in ways other than corrections on p values. In particular,

the model used here has hierarchical structure that imposes

data-driven shrinkage across levels of a factor, which reins

in outlying cells.

In summary, Bayesian analysis yields a posterior distri-

bution from which the answer to any comparison can be

directly viewed, even in complex split-plot RCT designs.

Frequentist analyses, on the other hand, require careful

selection of appropriate error terms for F ratios and correc-

tions for multiple comparisons.

Planning for precision and other goals: Better done

Bayesian

When the focus of data analysis is on null-hypothesis test-

ing, then the goal of research is to reject or to accept a null
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hypothesis. But when the focus of data analysis is on esti-

mation, uncertainty, and meta-analysis, then a natural goal

for research is to achieve precision of estimation. The dif-

ference in the goal is important because the goal determines

how we plan the research. Traditional planning involves

computing the probability of achieving the goal of rejecting

the null hypothesis, which is called statistical power. But we

can instead compute the probability of achieving the goal of

a precise estimate. This is called planning for precision or

for accuracy in parameter estimation (AIPE; Kelley, 2013;

Maxwell, Kelley, & Rausch, 2008). For many model param-

eters, precision achieves accuracy, so we will use the term

precision instead of the term accuracy.

The procedure for traditional power analysis is dia-

grammed in the upper part of Fig. 12. The analyst hypoth-

esizes a specific point value for a parameter such as effect

size. This point value is supposed to be the analyst’s best

guess for the true, non-null effect size. Then random sam-

ples of simulated data are generated from the hypothesis.

Every sample of simulated data is created according to the

intended stopping rule that will be used for the real data.

For example, the stopping rule could be a fixed sample size,

N . Because of random variability in the sample, only some

of the simulated samples will have data extreme enough

to reject the null hypothesis. The probability of rejecting

the null hypothesis is called the traditional “power” for the

choice of sample size and posited effect size. If the power is

not big enough, then a larger N is considered.

In frequentist approaches to planning for precision, a

similar scheme is used, but the goal is to achieve a width of

CI that is less than some maximum. For a particular sample

size N , we compute the probability that the width of the CI

will not exceed the desired maximum. If the probability is

not big enough, then a larger N is considered.

A key problem with the frequentist approach to power,

or the probability of achieving any goal, is that the hypoth-

esized value is punctate, that is, only one specific point

value. This assumption conflicts with the fact that we do not

know the exact value of the parameter that best describes the

world. If we did know the exact value, then we would not

be doing the research. Our hypothesis would be better rep-

resented as a distribution across possible parameter values.

A Bayesian approach naturally takes this uncertainty into

account.

The Bayesian procedure for computing the probability

of achieving any goal is diagrammed in the lower part of

Fig. 12. The procedure begins by hypothesizing a prob-

ability distribution over parameter values. Typically, the

hypothesized distribution is simply the posterior distribution

from a Bayesian analysis of previous data. The previous data

could be real data or idealized data. This approach is par-

ticularly appealing because it is often easier for theorists to

hypothesize idealized data than to hypothesize probability

distributions on complex parameter spaces. That is, a theo-

rist can have an informed idea of what the data in a proposed

study should look like without knowing what those data

imply for a multi-dimensional parameter distribution in a

complex model. The amount of data expresses the degree

of certainty, because the posterior distribution becomes nar-

rower (more certain) as the amount of data increases. The

theorist has real or idealized data, and then a Bayesian

analysis of the data produces a corresponding distribu-

tion over parameter values that expresses the corresponding

hypothesis for power analysis.

With the hypothetical distribution over parameters in

place, the next step is to randomly sample a set of repre-

sentative parameter values, as indicated in the lower part

of Fig. 12. This sampling of parameter values is already

Fig. 12 Flowcharts for procedures in traditional power analysis

(upper chart) and Bayesian generalized power (lower chart). In

the Bayesian approach, the hypothesized distribution over parameter

values is usually the posterior distribution from previous data, either

real or idealized (NHST null hypothesis significance test)
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provided directly by the Bayesian computational method

called Markov chain Monte Carlo (MCMC), which is routine-

ly used in modern software. The parameter values are then

used to generate simulated data. Finally, the simulated data

are given a Bayesian analysis just as the real data would be,

and the posterior distribution is checked for whether the goal

is achieved. The process repeats, and the proportion of times

that the goal is achieved is the estimate of its probability,

that is, the power of the study’s procedure for that goal. This

estimated probability takes into account the uncertainty in

the hypothesis. The process is also completely general and

can be used for any goal, and multiple goals can be checked

simultaneously. The Bayesian approach works seamlessly

for all models. The process shown in Fig. 12 is simulated

directly in Bayesian software. Repeated random data sets are

generated until the estimate of power is as precise as desired.

The goals of research are closely linked to criteria for

publication. When the focus is on rejecting a null hypoth-

esis, then rejection of the null often becomes the criterion

for publication (and vice-versa: when rejection of the null

is the publication criterion, then it becomes the focus of

research). Unfortunately, that particular criterion creates

biases in the data that get published because of the file-

drawer problem. We might instead consider focussing on

Bayesian hypothesis testing and judge that publication is

merited whenever the null hypothesis is rejected or accepted

(Dienes, 2016). That criterion for publication could use-

fully redress some of the biases caused by the file-drawer

problem of NHST. Unfortunately a focus on hypothesis test-

ing can engender fallacious black-and-white thinking and

impede meta-analytic thinking. For example, many of the

individual beta-blocker studies in the meta-analysis of Fig. 8

have default Bayes factors that neither reject nor accept

the null hypothesis. (Bayes factors for the individual beta-

blocker studies can be computed exactly using extensions

of formulas described on pages 160 and 305 of Kruschke,

2011b.) What should be the publication status of indecisive

studies? Should they remain in the file drawer, unpublished?

Moreover, Bayes factors should use meaningfully informed

priors instead of defaults, and the magnitude (and even

direction) of a Bayes factor can vary substantially with the

prior, and different studies might be analyzed with differ-

ent alternative hypotheses. Instead of filtering publication

according to whether or not a null hypothesis was rejected

or accepted, publication might be based on whether or not

a reasonable precision was achieved relative to the practical

constraints of the study. The posterior precision is relatively

invariant for vague priors. Basing publication on adequate

precision will help solve the file-drawer problem because

all suitably representative studies will get published, not

just those studies that happen to sample enough data to

reject or accept a null hypothesis relative to some particular

alternative hypothesis.

Different procedures have different trade-offs, and the

advantages or disadvantages of different procedures will

continue to be discussed and clarified in coming years. What

is clear is that the scheme in the lower part of Fig. 12

is more general, more appropriate, and more informative

than the traditional frequentist scheme for power analysis.

In particular, the general scheme represents the hypothesis

as a (Bayesian posterior) distribution over parameter values

instead of only as a point value, allows simulating any sam-

pling procedure instead of only fixed N , and encourages

considering multiple goals for research such as Bayesian

hypothesis testing and Bayesian precision (HDI width)

instead of only p values.

Bayesian power and planning for precision is dis-

cussed in the video at http://tinyurl.com/PrecisionIsGoal.4

A working package and full explanation of Bayesian power

and planning for precision for comparing two groups is

detailed in Kruschke (2013). Details of the general procedure

are explained at length in Chapter 13 of Kruschke (2015).

Summary and conclusion

Trafimow and Marks (2015) banned NHST from the jour-

nal Basic and Applied Social Psychology. In other words,

the editors banned the methods in the top-left cell of Fig. 1.

But Trafimow and Marks (2015) also expressed doubt about

frequentist confidence intervals and Bayesian approaches

involving Bayes factors. In other words, they expressed

doubt about the lower-left and upper-right cells of Fig. 1.

The remaining cell, at the convergence of Bayesian methods

applied to estimation, uncertainty, and meta-analysis, was

not mentioned by Trafimow and Marks (2015). We believe

that this convergence alleviates many of the problems that

the editors were trying to avoid.

Bayesian estimation can help us remember the dance

Cumming (2014) encouraged analysts to keep in mind that

their particular set of data is merely one random sam-

ple, and another independent random sample might show

very different trends. He called the random variation from

sample to sample a “dance” and emphasized that CIs can

change dramatically from one random sample to the next. In

Bayesian analysis there is also a dance across different ran-

dom samples. Indeed, the posterior distribution revealed by

a Bayesian analysis is always explicitly conditional on the

data, by definition: p(µ|D) in Eq. 5. If the data change, then

the posterior distribution changes. There is a dance of HDIs.

4The full url is https://www.youtube.com/playlist?list=PL mlm7M63

Y7j641Y7QJG3TfSxeZMGOsQ4.

http://tinyurl.com/PrecisionIsGoal
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
https://www.youtube.com/playlist?list=PL_mlm7M63Y7j641Y7QJG3TfSxeZMGOsQ4
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We think that the Bayesian framework is amenable to

remembering the dance of random samples. This claim

might seem implausible insofar as the Bayesian frame-

work de-emphasizes thoughts of random samples by never

using a hypothetical sampling distribution for computing p

values (as in Fig. 2). On the other hand, a Bayesian frame-

work does emphasize that the results are conditional on the

particular (random) data obtained, and that the inference

is merely the best we can do given the data we happen

to have. Bayesian power analysis (Fig. 12) also explic-

itly simulates the dance of random samples. Perhaps most

relevantly, the Bayesian framework is helpful for remem-

bering the dance because it facilitates meta-analysis. The core

premise of meta-analysis is acknowledging the variation of

results across different samples.

Summary: Bayesian estimation does everything

the New Statistics desires, better

We agree with many of the claims made by Cumming

(2014) and others about the advantages of estimation and

meta-analysis over null hypothesis tests, but we hope

to have shown that when hypothesis testing is theoret-

ically meaningful then it is more coherently done in a

Bayesian framework than in a frequentist framework. We

have attempted to show that Bayesian estimation, Bayesian

meta-analysis, and Bayesian planning achieve the goals

of the New Statistics more intuitively, directly, coherently,

accurately, and flexibly than frequentist approaches.
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