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Abstract

This paper presents a theory of visual word recognition that assumes that, in the tasks of word 

identification, lexical decision and semantic categorization, human readers behave as optimal 

Bayesian decision-makers. This leads to the development of a computational model of word 

recognition, the Bayesian Reader. The Bayesian Reader successfully simulates some of the most 

significant data on human reading. The model accounts for the nature of the function relating word-

frequency to reaction time and identification threshold, the effects of neighborhood density and its 

interaction with frequency, and the variation in the pattern of neighborhood density effects seen in 

different experimental tasks. Both the general behavior of the model, and the way the model 

predicts different patterns of results in different tasks, follow entirely from the assumption that 

human readers approximate optimal Bayesian decision-makers. 
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Introduction 

Words that appear frequently in the language are recognized more easily than words that appear 

less frequently. This fact is perhaps the single most robust finding in the whole literature on visual 

word recognition.  The basic result holds across the entire range of laboratory tasks used to 

investigate reading. For example, frequency effects are seen in lexical decision (Forster & 

Chambers, 1973; Murray & Forster, 2004) in naming (Balota & Chumbley, 1985; Monsell, Doyle, 

& Haggard, 1989), semantic classification (Forster & Hector, 2002; Forster & Shen, 1996), 

perceptual identification  (Howes & Solomon, 1951; King-Ellison & Jenkins, 1954) and eye 

fixation times (Inhoff & Rayner, 1986; Just & Carpenter, 1980; Rayner & Duffy, 1986; Rayner, 

Sereno, & Raney, 1996; Schilling, Rayner, & Chumbley, 1998). Frequency effects are also seen 

reliably in spoken word recognition (Connine, Mullennix, Shernoff, & Yelen, 1990; Dahan, 

Magnuson, & Tanenhaus, 2001; Howes, 1954; Luce, 1986; Marslen-Wilson, 1987; Pollack, 

Rubenstein, & Decker, 1960; Savin, 1963; Taft & Hambly, 1986) and therefore appear to be a 

central feature of word recognition in general. 

 

The fact that high frequency words are easier to recognize than low frequency words seems 

intuitively obvious. However, possibly because the result seems so obvious, very little attention has 

been given to explaining why it is that high frequency words should be easier to recognize than low 

frequency words.  All models of word recognition contain some mechanism to ensure that high 

frequency words are identified more easily than low frequency words but, in many models, high 

frequency words are easier by virtue of some arbitrary parameter setting. For example, in the E-Z 

Reader model (Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, Rayner, & Pollatsek, 1999, 

2003), lexical access is specified to be a function of log frequency, where the slope of the 

frequency function is a model parameter. In the logogen model (Morton, 1969) resting levels of 

logogens for high frequency words are set to be higher than resting levels for low frequency words. 
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However, resting levels or thresholds could equally well be set to make low frequency words easier 

than high. The only factor preventing this move is that it would conflict with the data. More 

generally, even when models contain a mechanism that necessarily produces a frequency effect 

(e.g. Forster’s, 1976, search model) one might still ask why there should be a frequency effect at 

all. That is, wouldn't it be better if all words were equally easy to recognize?  The present paper 

attempts to answer this question by presenting a rational analysis (Anderson, 1990) of the task of 

recognising written words. This analysis assumes that people behave as optimal Bayesian 

recognizers. This assumption leads to an explanation of why it is that high frequency words ought 

to be easier to recognize than low frequency words. Furthermore, it explains why the function 

relating frequency to reaction time (Whaley, 1978) and perceptual identification threshold (Howes 

& Solomon, 1951; King-Ellison & Jenkins, 1954), is approximately logarithmic (although for 

further qualification see Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004, and Murray & 

Forster, 2004). It also explains why neighborhood density influences word recognition, and why 

neighborhood density can have a different influence on tasks such as lexical decision, word 

identification, and semantic categorization. 

 

Explaining the word-frequency effect

Explanations of the word frequency effect fall into three main categories: First, frequency could 

influence processing efficiency or sensitivity (e.g. Solomon & Postman, 1952). That is, perceptual 

processing of high frequency words might be more effective than perceptual processing of low 

frequency words. Second, frequency might alter the bias or threshold for recognition (e.g. 

Broadbent, 1967; Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; Morton, 1969; Norris, 

1986; Pollack et al., 1960; Savin, 1963). That is, frequency might not alter the effectiveness of 

perceptual processing, but would simply make readers more prepared to recognize a high frequency 

word on the basis of less evidence than would be required to identify a low frequency word.  
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Finally, lexical access could involve a frequency ordered search through some or all of the words in 

the lexicon (Becker, 1976; Forster, 1976; Glanzer & Ehrenreich, 1979; Murray & Forster, 2004; 

Paap, McDonald, Schvaneveldt, & Noel, 1987; Paap, Newsome, McDonald, & Schvaneveldt, 

1982; Rubenstein, Garfield, & Millikan, 1970). 

 

 

Frequency as sensitivity 

The idea that frequency might have a direct effect on the efficiency or sensitivity of perceptual 

processing was first proposed by Solomon and Postman.  However, there has been very little direct 

evidence for this view, and there have been no explicit accounts of how changes in word frequency 

might alter the nature of perceptual processing, beyond what might be involved in the initial 

learning of a new word. Broadbent (1967) directly compared bias and sensitivity accounts of 

frequency in spoken word perception and concluded that the evidence was entirely consistent with 

a response bias account. 

 

However, the debate over whether frequency effects are due to changes in sensitivity or bias has 

been reengaged recently by Wagenmakers,  Zeelenberg, and Raaijmakers  (2000),  Wagenmakers,  

Zeelenberg,  Schooler, and Raaijmakers (2000), and Ratcliff  and McKoon (2000). The debate 

centers on data from a two-alternative forced-choice tachistoscopic identification task. In this task, 

participants see a briefly presented word followed by a display consisting of two words, one of 

which is the briefly presented word. The participant's task was to decide which of these two words 

had actually been displayed. Wagenmakers,  Zeelenberg, and Raaijmakers  showed that participants 

perform better when the alternatives are both high-frequency words than when they are both low in 

frequency. This is exactly what one would expect if frequency increased perceptual sensitivity 

rather than bias. A simple response bias account would predict that, with words of equal frequency, 
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the biases would cancel out, and performance on high and low frequency words would be identical.  

However, Wagenmakers,  Zeelenberg,  Schooler, and Raaijmakers suggest that this result can be 

explained by assuming that participants sometimes make a random guess when words have not 

reached a sufficiently high level of activation. As participants will be more likely to guess high-

frequency words, high-frequency words will tend to be identified more accurately.This suggestion 

is similar to Treisman’s  (1978a,1978b)  Perceptual Identification model. Triesman assumed that 

once perception had narrowed its search to some subvolume of perceptual space, words within that 

subvolume were chosen at random, with a bias proportional to frequency, regardless of how near 

they were to the centre of the subvolume. As Wagenmakers,  Zeelenberg,  Schooler, and 

Raaijmakers note, this is not an optimal strategy, as some potentially useful information is 

discarded. 

 

However, it is also possible that this task may make it difficult for participants to behave optimally.  

The best strategy would be to consider only the two alternative words presented, and to ignore the 

rest of the lexicon. With words of equal frequency, participants should then choose the alternative 

that best matches the target. However, because of the delay (300ms) between presentation of the 

target and the alternatives, participants may begin to identify the target word in the normal way, 

such that all of the words in the lexicon are potential candidates. If this were to happen, low 

frequency words would be less likely to be identified correctly, and participants might often 

misidentify low frequency targets as a word other than one of the two alternatives. When the two 

alternatives are presented, participants would then have to make a random choice between them. 

There would therefore be more random guesses for low than high-frequency words. The important 

point here is that participants can only behave optimally if they can completely disregard other 

words in the lexicon. 
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Response Bias Theories 

The most familiar example of a response bias account of word frequency is Morton's (1969) 

logogen model.  In the logogen model, each word in the lexicon has a dedicated feature counter, or 

logogen. As perceptual features arrive, they increment the counts in matching logogens. A word is 

recognized when its feature count exceeds some threshold. Frequency effects are explained by 

assuming that high-frequency words have higher resting levels (or equivalently, a lower threshold) 

than low frequency words. High frequency words can therefore be identified on the basis of fewer 

perceptual features than low-frequency words.  In such a model, it might seem that word 

identification would be most efficient when thresholds are set as low as possible, consistent with 

each logogen responding to only the corresponding word, and not to any other word. However, as 

Forster (1976) pointed out, if this were so, then increasing the resting level of high frequency words 

beyond that point would often cause a logogen for a high frequency word to respond in error when 

a similar word of lower frequency was presented. To avoid this, and allow headroom for frequency 

to modulate recognition, thresholds must initially be set at a conservative level where many more 

than the minimum number of features is required for recognition. So, if the baseline setting is that 

words need N more features than are actually required for reliable recognition, the resting levels of 

high-frequency words can be raised by up to N features before causing errors.  However, all other 

words will now be harder to recognize than they would have been using the original threshold. That 

is, in order to be able to safely raise the resting levels of high-frequency words, all other words in 

the lexicon have had to have their thresholds set higher than necessary. The overall effect of 

making a logogen system sensitive to frequency is therefore to make word recognition harder. This 

seems to be a quite fundamental problem with the account of frequency given by the logogen 

model: Incorporating frequency into resting levels decreases the efficiency of word recognition. 

However, as will be shown later, this is not a problem with criterion bias models in general, but 
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rather with the way the logogen model combines frequency and perceptual information in a 

completely additive fashion. 

 

Search Models 

The other main class of theory is search models. The most fully developed search model is that of 

Forster (1976).  In Forster's search model, a partial analysis of a word directs the lexical processor 

to perform a serial search through a frequency ordered subset of the lexicon (a ‘bin’). The 

straightforward prediction of this model is that the time to identify a word should be a linear 

function of the rank position of that word in a frequency ordered lexicon.  Recently, Murray and 

Forster  have presented evidence that rank frequency does actually give a slightly better account of 

the relation between RT and frequency in a lexical decision task than does log frequency. Although 

the difference between rank frequency and log frequency correlations is small, it is quite possible 

that the choice between alternative models will ultimately hinge on such subtle differences. 

However, although the search model does give a principled explanation of the form of the relation 

between frequency and RT, this is the only prediction that follows directly from the assumption of 

a search process. For example, Murray and Forster (2004) showed that the function relating 

frequency and errors was also closely approximated by a rank function. However, to explain this in 

a search model, they had to suggest that, as each lexical entry was searched, there was some 

probability that the search might get side-tracked and move to the wrong subset of the lexicon. A 

search of the wrong bin should always lead to a 'no' response. Murray and Forster pointed out that 

if the probability of a side-tracking error is sufficiently small, error rate will be approximately 

proportional to the number of lexical entries that must be searched before encountering the correct 

word, i.e. rank frequency. 
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Note that the search model also incorporates a degree of 'direct access'. The initial analysis of a 

word directs the search to a bin containing only a subset of the words in the lexicon which share 

some common orthographic characteristics. By reducing the bin size to 1, the search model would 

become a direct access model. The fewer words there are to be searched in each bin, the faster 

recognition would become. In other words, search is a suboptimal process. Direct access would be 

more efficient, but then there would be no word frequency effect. 

 

Frequency and learning 

A deficiency in all of these explanations is that they simply indicate how a word frequency effect 

might arise. None offers a convincing explanation for why word recognition should be influenced 

by word frequency at all. Monsell (1991) has directly considered the question of why there should 

be frequency effects. He argued that frequency effects follow naturally from a consideration of how 

words are learned. His arguments were cast in the framework of connectionist learning models, and 

he suggested that it was an inevitable consequence of such models that word recognition would 

improve the more often a word was encountered. Indeed, all models of word recognition in the 

parallel-distributed processing framework do show a word frequency effect (e.g. Plaut, 1997; Plaut, 

McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989). Depending on the 

exact details of the network, a connectionist model could predict that frequency would influence 

bias, sensitivity or both. However, two main factors undermine the learning argument somewhat. 

The first is that not all connectionist learning networks need extensive experience to learn. In 

particular, localist models are capable of single trial learning (see Page, 2000,  for a discussion of 

the merits of localist connectionist models). Human readers are also capable of very rapid and long-

lasting learning of new words (Salasoo, Shiffrin, & Feustel, 1985). The second is that readers will 

have extensive experience with words from all but the lowest end of the frequency range. Why 

should these words not end up being learned as well as high frequency words? In particular, one 
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would expect that readers with more experience would show a smaller frequency effect.  Over time, 

performance on high frequency words should approach asymptote, while low frequency words 

would continue to improve.  There is some support for this prediction. Tainturier, Tremblay, and 

Lecours  (1992) found that individuals with more formal education (18 years vs 11 years) showed a 

smaller frequency effect. As Murray and Forster (2004) point out, the word frequency effect should 

also get smaller with age.  However, the frequency effect seems to either remain constant with age 

(Tainturier, Tremblay, & Lecours, 1989) or to increase (Balota, Cortese, & Pilotti, 1999; Balota et 

al., 2004; Spieler & Balota, 2000).  This would seem to imply that learning is not very effective.  

That is, a learning-based explanation of the word frequency effect seems to be predicated on the 

assumption that the learning mechanism in the human brain fails to learn words properly even after 

thousands of exposures.  In effect, this form of explanation amounts to a claim that sensitivity to 

word frequency is an unfortunate and maladaptive consequence of an inadequate learning system. 

 

Search models are open to a similar criticism. A frequency ordered search process will make low 

frequency words take longer to identify than high frequency words, but a parallel access system 

would eliminate the disadvantage suffered by low frequency words completely. Once again, the 

word frequency effect is explained as an undesirable side-effect of a suboptimal mechanism.  

 

A Bayesian recognizer

One answer to the question of why word recognition should be influenced by frequency is provided 

by asking how an ideal observer should make optimal use of the available information. The concept 

of an ideal observer has a long history in vision research (Geisler, 1989; Hecht, Shalaer, & Pirenne, 

1942; Weiss, Simoncelli, & Adelson, 2002), but has less commonly been applied to higher 

cognitive processes. However, recently, the ideal observer analysis has also been applied to object 

perception (Kersten, Mamassian, & Yuille, 2004), eye movements in reading (Legge, Klitz, & 
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Tjan, 1997), and letter and word recognition (Pelli, Farell, & Moore, 2003). The basic concept of 

the ideal observer is very simple: given some form of perceptual input, and a clear specification of 

the task to be performed, what is the behavior of a system that performs the task optimally?1. 

In cases where the perceptual input is completely unambiguous, an ideal observer would simply 

select the lexical entry whose representation matches the input. The actual implementation of the 

matching process might be very complex, but the optimal strategy is just to select the matching 

word from the lexicon. An optimally designed system would be able to match the input against all 

words in the lexicon in parallel, and there would be no effect of word-frequency. However, if the 

input is ambiguous, the requirements are different. With ambiguous input it is no longer sufficient 

simply to select the best matching lexical entry. Under these circumstances an ideal observer must 

also take the prior probabilities of the words into account.  That is, an ideal observer should be 

influenced by the frequency with which words occur in the language.  

 

The behavior of an ideal observer is critically dependent on the precise specification of the task or 

goal. In what follows, the goal of the observer will be taken to be that of performing the 

experimental task as fast as possible, consistent with achieving a specified level of accuracy.  In 

practice, goals are much more complex than this. Even in a lexical decision experiment, accuracy 

has to be traded off against speed. Responses have to be made before some deadline imposed by the 

experimenter. There are costs in making errors, and a cost in not responding in time. There may be 

different costs in making errors on words and nonwords. In an ideal observer analysis this trade-off 

between different constraints is expressed in the form of a utility function (or, conversely, a loss 

function). The task of the ideal observer then becomes one of maximizing the value of the utility 

function. However, the form of the utility function is likely to vary between experiments, and may 

even be influenced by factors such as the interpersonal interaction between experimenter and 

participant. In practice, participants have no way of knowing how to maximize the utility function 
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until they have had some experience with the experimental stimuli. For example, if the goal is to 

respond as quickly as possible consistent with making about 5% errors, the response threshold will 

depend on the specific experimental stimuli used. Are the items easy or hard, or a mixture of the 

two?  Some suggestions as to how participants might adapt to the characteristics of the stimuli in a 

particular experiment are given  in Mozer, Colagrosso and Huber (2002) and Mozer, Kinoshita and 

Davis (2004). However, in the present context, the goal will be taken simply as performing the 

experimental task with certain accuracy (95% correct).   

 

Ideal observers almost always use Bayesian inference (cf. Geisler, 2003; Knill, Kersten, & Yuille, 

1996) as this is the optimal way to combine perceptual information with knowledge of prior 

probability. Bayes’ theorem is shown in Equation 1. 
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Starting from knowledge of the prior probabilities with which events or hypotheses (H) occur, 

Bayes’ theorem indicates how those probabilities should be revised in the light of new evidence 

(E). Given the prior probabilities of the possible hypotheses P(Hi), and the likelihood that the 

evidence is consistent with each of  those hypotheses P(E|Hi), Bayes’ theorem can be used to 

calculate P(Hi|E), the  revised, or posterior probability of each hypothesis, given the evidence. 
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In the case of word recognition, the hypotheses will correspond to words, and P(H) is given by the 

frequency of the word. As shown in Equation 2, the probability that the input corresponds to a 

particular word is then given  by the probability that the input was generated by that word, divided 

by the probability of observing that particular input. Any particular input could potentially be 

produced by many different words. The probability of generating a particular input is therefore 

obtained by summing the probabilities that each word might have generated the input (Equation 3). 

As will be discussed later, this definition of P(Input) carries the implication that the input was 

indeed generated by one of the words in the lexicon. This will not always be the case. Bayesian 

methods are commonly employed in automatic pattern recognition systems (cf. Jelinek, 1997). For 

example, in tasks such as automatic speech recognition, the process of matching a given input to 

words in the lexicon is hardly ever perfect. Whether because of ambiguity in the signal itself, or 

because of limitations on the ability of the recognizer, there is always some residual ambiguity in 

the match. Even when the input appears to match a particular word very well, there remains some 

probability that the input to the recognizer could have been generated by another word. In the 

absence of any knowledge of the prior probabilities of the words, the best strategy will always 

simply be to choose the word that best matches the input. However, if prior probabilities are 

available, these should be taken into account by the application of Bayes’ theorem.   

It might appear that in many laboratory word recognition tasks, such as lexical decision, there is no 

ambiguity in the input, so prior probability, or frequency, need not be considered. Words are 

generally presented clearly under circumstances where the participant will have no difficulty in 

identifying the stimulus accurately. However, the critical question is not whether the stimulus itself 

could potentially be identified unambiguously, but whether there is ambiguity at the point where a 

decision is made. Participants in a lexical decision experiment are encouraged to respond as quickly 

as possible. Indeed, participants generally respond so quickly that they make errors. If they respond 

before they have reached a completely definitive interpretation of the input, there will necessarily 
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be some residual ambiguity at the point where the decision is made. Under these circumstances, 

frequency should still influence responses, even though the stimulus itself is presented clearly. 

 

In order to appreciate the importance of including prior probability in the Bayes’ equation, it is 

helpful to consider a simple example. In common with most expositions of Bayes’ theorem I will 

consider a simple case of medical diagnosis and use Bayes’ theorem to determine the probability 

that a patient has disease D, given that they test positive for that disease (Equation 4). Assume that 

the test can correctly identify the disease 95% of the time when the disease is present, and has a 

false alarm rate of 10%. That is, on 10% of occasions when the disease is not present, the test 

incorrectly produces a positive result. 

 

Equations 5 and 6 show the probability that a patient testing positive for the disease really does 

have the disease when the prevalence of the disease is 1 in 5, or 1 in 1000. P(Disease | Test 

Positive) is much lower when the prevalence of the disease is also low. The reason is very simple: 

Because there is a substantial probability that the test will produce a false positive result, the rarer 

the disease, the more likely it is that a positive result will be due to a false alarm. In a sense, we can 

think of Bayes’ theorem as providing a correction for false alarms.  
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Exactly the same reasoning applies to word recognition.  If the recognizer is presented with a noisy 

representation of a word (whether because the stimulus itself is noisy, or because there is noise in 

the perceptual system) there will be some probability that the word that most closely matches the 

input will not be the correct word.  If the input most closely matches a low frequency word (tests 

positive for that word), there is some probability that the input was actually produced by another 

word (i.e. the fact that the low frequency word is the best match is a false alarm). If the other word 

is much more frequent than the low frequency word, it may be more likely that the input was 

produced by the less well matching high frequency word than the more closely matching low 

frequency word. That is, information about word frequency effectively alters the weighting of 

perceptual evidence. Note that frequency is not the only factor that can influence the prior 

probability of a word. Under natural reading circumstances a variety of sources of contextual 

information will also alter the expected probability of words. For example, syntactic knowledge, 

sentence level semantic interpretation, discourse representations, and parafoveal preview (e.g. 

Rayner, 1998) might all alter the prior probabilities. Frisson, Rayner and Pickering (2005) and 

McDonald and Shillcock (2003a; 2003b) have shown that eye movements are influenced 

predictability or transition probability. McDonald and Shillcock  (2003a) interpreted their data in 

terms of Bayes’ theorem, and they suggest that transition probability and frequency act on the same 

stage of reading. In automatic speech recognition, all of these probabilities are usually derived from 

what is referred to as a language model. In fact, word frequency is simply a unigram language 

model.  

 

The general form of Bayes’ theorem shares a family resemblance to the Luce (1959) choice rule 

and Massaro's Fuzzy Logical Model of Perception (FLMP Massaro, 1987; Oden & Massaro, 1978). 

In common with the Luce choice rule, the probability of a word is given by the ratio of the evidence 
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for that word, divided by the evidence for all other words. What is perhaps unfamiliar in Bayes’ 

theorem is the fact that the measure of the evidence for a word contains the term P(I|W), that is, the 

probability of observing the perceptual input I, given that the word W has been presented. P(I|W) 

could be determined by experience. For example, each time a word is encountered it will produce 

some representation Ix at the input of the recognizer. The recognizer could then (assuming it had 

some source of knowledge about the true identity of the word) learn the probability density 

function (pdf) representing the probability of receiving a particular input, given that a particular 

word was presented. For any new input, the system would then be able to look up the probability 

that that input came from presentation of a particular word (P(I|W). This is effectively how some 

automatic speech recognition systems are trained to recognize words using hidden Markov models. 

In fact, P(I|W) could be computed from the products of  P(I|Letter) over letter positions, so there is 

no need for the system to have extensive experience of every word in the lexicon. Experience of 

letters should suffice. However, as will be explained below, here I will take a rather different 

approach to computing P(I|W) and estimate it from the input. 

 

In effect, frequency in the Bayesian approach acts as a bias. For example, in a perceptual 

identification task, a Bayesian recognizer should respond with the word with the largest posterior 

probability. Other things being equal, high frequency words would therefore tend to be generated as 

responses more often than low frequency words. However, frequency would not improve the 

perceptual sensitivity of the system in terms of its ability to discriminate between a pair of words in 

a forced-choice task. This is consistent with Broadbent’s (1967) data (for speech recognition) that 

suggested that word frequency is best characterized as a response bias, and with Wagenmakers, 

Zeelenberg, Schooler, and Raaijmakers’ (2000) interpretation of forced-choice perceptual 

identification data. 
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It is important to note that the frequency bias in a Bayesian recognizer (and also in the Luce choice 

theorem and FLMP) acts quite differently from the response bias in, for example, Morton's logogen 

model, or the criterion bias model described by Broadbent (1967). In the logogen model, the 

response bias is independent of the amount of perceptual information available. High frequency 

words just require fewer features to exceed threshold than do low frequency words.  As explained 

earlier, this leads to a problem whereby incorporating frequency makes recognition less rather than 

more efficient. However, the bias in Bayes’ theorem trades off against perceptual evidence. If 

P(I|correct word) is 1.0, and all other P(I|W) are 0.0, then frequency P(W) cancels out. The better 

the perceptual evidence, the smaller will be the influence of frequency. Frequency can never 

override reliable perceptual evidence. This is clearly a desirable property. No matter how large the 

frequency difference between two similar words, a Bayesian decision process will always select the 

correct word when the input is unambiguous. 

 

Having established that an optimal word recognizer should take frequency into account, the next 

section of the paper will develop a simple Bayesian model of visual word recognition (the Bayesian 

Reader). The aim here is to produce a computational account of word recognition that makes as few 

assumptions as possible. The model can then be used to simulate word identification and lexical 

decision tasks, and to investigate how the model behaves when presented with words varying along 

dimensions such as frequency and orthographic neighborhood density.  In effect, this is an exercise 

in what Anderson (1990) terms 'rational analysis'. Beginning with an account of how an optimal 

word recognizer should work, we can ask whether the characteristics of human word recognition 

can be explained by assuming that we approximate optimal recognizers. Remarkably, it turns out 

that this simple model shows striking parallels with human behavior.  
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Rational analysis tries to explain cognition in terms of an optimal adaptation to the environment.  In 

this framework, a theory should be more than just an account of how behavior is produced. A good 

theory should also explain why it is that people behave as they do. This is the link with Bayesian, 

or ideal observer approaches. Ideal observers behave the way they do because this is the optimal 

way to perform the task.  This contrasts with the alternative accounts of the word-frequency effect 

reviewed here. All current word recognition models propose some mechanism that can produce a 

word-frequency effect, but none explains why there should be a word-frequency effect. For a 

concise summary of the rational analysis position, see Chater and Oaksford (1999), or Schooler 

(2001). 

 

Rational analysis attaches very little importance to mechanisms or to considerations of neural 

implementation. The burden of explanation is carried by what Marr (1982) refers to as the 

computational level. Theories at the computational level specify both what functions a particular 

information processing system must compute, and why those computations are required to achieve 

the goals of the system. For any given computational-level theory there will be many different 

algorithms that could compute the necessary functions, and many different ways those algorithms 

might be implemented in the brain. However, in the absence of additional constraining data (e.g. 

from neurobiology) there is typically little basis for choosing one implementation over another, so 

the computational level provides the most appropriate characterization of the theory.  The model 

presented here is therefore a computational-level theory, although some suggestions will be offered 

as to how the model might be reformulated as a connectionist network, and how some functions of 

the model might be implemented. Norris (2005) discusses the relation between computational 

models and theories in more depth. 
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It is important to note that neither the rational analysis nor ideal observer approaches imply that 

human perception or cognition is perfect. The ideal observer is generally assumed to operate on a 

restricted input where some information is either noisy, or missing completely. There may also be 

processing limitations, such as limited memory capacity. The ideal observer then makes optimal 

use of the information and resources available.  Differences between the performance of an ideal 

observer and human perception can therefore help reveal the nature of any information loss in the 

perceptual system.  Information loss might come about as a result of internal noise, or from 

recoding perceptual representations in a way that throws some information away.  The ideal 

observer analysis can therefore provide significant insights into the nature of the input available to 

a particular component of the perceptual system.  Because the ideal observer only has access to 

limited information, it will often produce errors. In fact, some of the main benefits of the approach 

have been in explaining patterns of errors. For example, rational analysis has been used to explain 

errors in reasoning (McKenzie, 1994; Oaksford & Chater, 1994), syntactic parsing (Chater, 

Crocker, & Pickering, 1998; Crocker, 1999; Jurafsky, 1996), and memory (Anderson & Milson, 

1989).  In recent work in vision, Weiss, et al. (2002) have shown how an ideal observer analysis 

can explain errors in motion perception. 

 

The remainder of this paper is devoted to developing the Bayesian Reader, an ideal observer model 

of human word recognition. The goal is to establish whether some of the most important features of 

visual word recognition can be explained simply by assuming that readers approximate ideal 

observers operating on a noisy perceptual input.  All of the important features of the model follow 

from this simple assumption. The model has quite deliberately been kept as simple as possible to 

ensure that, to the extent that the model does simulate human data, this is solely a consequence of 

the assumption that the recognition process is optimal. Like all theory development, rational 
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analysis is an iterative procedure, whereby theories are refined in the light of discrepancies between 

theory and data. The Bayesian Reader is the first step in this process. 

 

 

The Bayesian Reader

As a first step in assessing the behavior of an optimal word recognizer, it is necessary to have an 

estimate of P(I|W).  Although P(I|W) could be learned, for the purposes of the simulations 

presented here, we will take a rather different approach and assume that P(I|W) can be estimated 

from the current input.  This depends on three assumptions: 

 

1. All words can be represented as points in a multidimensional perceptual space. 

2. Perceptual evidence is accumulated over time by successively sampling from a 

distribution centered on the true perceptual co-ordinates of the input with samples being 

accumulated at a constant rate. 

3. P(I|W) for all words can be computed from an estimate of variance of the input 

distribution  

 

The first assumption follows simply from the fact that some words are more easily confused than 

others.  The notion of words as being represented in a multidimensional perceptual space has been 

most clearly articulated by Treisman (1978a; 1978b) in his Perceptual Identification model, and has 

subsequently been incorporated in other models of word recognition (Luce & Pisoni, 1998; Norris, 

1986). In fact, almost all computational models of word recognition either explicitly or implicitly 

share this assumption. For example, the letter features used in Rumelhart and McClelland's (1982) 

interactive activation model ensure that words are located in a multidimensional space. 
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The second assumption should also be fairly uncontroversial, and is similar to the feature 

accumulation process in the model of lexical decision presented by Wagenmakers, Steyvers,  

Raaijmakers,  Shiffrin, van Rijn,  and Zeelenberg (2004) although, in their model, the rate of 

feature accumulation is not linear with time. It also has parallels with random walk or diffusion 

models (e.g. Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004). This assumption is necessary for 

the present exercise because it provides a way of investigating the behavior of an optimal 

recognizer under varying degrees of perceptual uncertainty. As noted above, if perceptual 

information were completely unambiguous, word frequency should have no influence on 

recognition. 

 

The third assumption avoids the need to learn the probability density function of P(I|W) for 

individual words.  It also helps to keep the model simple and general, and avoids making any 

arbitrary assumptions about learning.  As successive samples arrive, it is possible to compute the 

mean location and the standard error of the mean (SEM, Equation 7) of all samples received so far.  

 

)7(NM σσ =
 

The mean represents a point in perceptual space (the co-ordinates of the best guess as to the 

perceptual form of the input), and the SEM is computed from the distances between each sample 

and the sample mean. The SEM is measured in units corresponding to Euclidean distance in 

perceptual space.  

 

 

INSERT FIGURE 1 ABOUT HERE 
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The calculations in the model are illustrated graphically in Figure 1. The figure illustrates the case 

of a lexicon with only two words, where those words differ along a single perceptual dimension. 

Each curve represents the probability density function ƒ(I|W) for a given  SEM.  Note that in 

Equation 3 the input I is implicitly assumed to be one of a discrete set of values over which the 

probability P(I|W) is distributed. Given the form of input being assumed here, I is a continuous 

valued variable whose probability distribution is then correctly represented as a density function 

ƒ(I|W). Under these assumptions the equivalent Bayes’ equation is: 

)8())|()(()|()()|(
0
∑
=

=

××=
ni

i
ii WIfWPWIfWPIWP

 

where ƒ(I|W) corresponds to the height of the pdf at I. For a given I, ƒ(I|W) is called the likelihood 

function of W. When comparing different  candidate W's on the basis of input I, it is the ratio of the 

likelihoods that influence the revision of the prior probabilities. The full set of equations governing 

the calculation of P(W|I) is given in Appendix A. 

 

In Figure 1 the current estimate of the mean of the input distribution falls in between the two 

words, although closer to word 1 than word 2. The lower two curves represent some point early in 

processing where the SEM is large, and the upper two curves represent a later point, where the 

SEM is much smaller. As more samples arrive, the SEM will decrease. As shown in Equation 7, the 

SEM is proportional to the inverse square root of the number of samples. Words that are far away 

from the mean of the input distribution will tend to become less and less likely as more samples are 

accumulated. Consequently, P(W|I) of the word actually presented will tend to increase, while the 

P(W|I) of all other words will decrease.  One noteworthy feature of this kind of sampling model is 

that, given enough samples, there is no limit as to how small the SEM can become. In the absence 

of any restrictions on the amount of data available (i.e. number of samples), the P(W|I) of a clearly 

presented word will always approach 1.0 in the limit. 
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For clarity, the mean of the input distribution is assumed to be the same at both the early and late 

processing times. In practice, the estimate of the input mean would change over time. The relative 

heights of the curves for the two words at the point corresponding to the mean of the input 

distribution reflect the relative likelihoods of the two words.  At the early time point the heights of 

the two curves at the input mean are fairly similar, indicating that the input distribution is only 

slightly more likely to have been generated by word 1 than word 2. Later in time there is a very 

large difference in the heights. This is as much due to the fact that ƒ(I|word 2) is now very low as 

due to ƒ(I|word 1) being high. In effect, word 2 has stopped competing with word 1. The two 

curves centered on word 1 are identical to those centered on word 2. Because of this, we would get 

the same calculated heights from a curve centered on the input mean. However, this will only be 

the case under the assumption that the SEM of the input distribution can be used to estimate ƒ(I|W) 

for all words. If the pdf of ƒ(I|W) were learned, then each word is likely to have a different pdf.  

 

Although Figure 1 has been described as representing recognition of words, the same principles 

would apply to recognition of any object in perceptual space. For example, letter recognition from a 

noisy input would operate in exactly the same way. Indeed, another version of the model has been 

constructed that operates by computing letter probabilities and then computing word probabilities 

from the letter probabilities. P(I|W) is then simply computed from the product of the P(Letter|Input) 

for each letter in the word. Including a letter level in this way does not alter the behavior of the 

model.  

 

For some purposes it may be possible to derive P(I|W), or P(Input | Letter) from perceptual 

confusion matrices, rather than estimating them from the input. This has been done for visual word 

identification by Pelli, Farrel and Moore (2003), who used perceptual confusion data to simulate 
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performance in the Reicher-Wheeler task (Reicher, 1969; Wheeler, 1970) in a Bayesian framework. 

However, a limitation of this technique is that construction of confusion matrices requires a large 

amount of data, and each confusion matrix can only characterize the information available at a 

single point in time. Pelli et al.  were only able to perform simulations for three different exposure 

durations in a perceptual identification task. Their data and simulations will be discussed in more 

detail later in the paper. 

 

Note that as more perceptual information arrives, P(W) will have less and less influence on P(W|I). 

In the limit, P(I|W) for all but the word actually presented will approach 0, and P(W) will have no 

effect whatsoever. However, in general, as P(W) gets lower, the number of samples required to 

reach a given P(W|I) will increase. That is, high frequency words will be identified more quickly 

than low frequency words. 

 

It is important to bear in mind that the posterior probabilities being calculated here are the 

probabilities that the input is a particular word, given that the input really is a word. Because of the 

properties of the normal distribution, the closest word to the input mean will always have a 

probability approaching 1.0 in the limit, even if the input does not correspond exactly to any 

particular word. The decision being made is: given that the input is a word, which word is it?  Even 

an unknown word will produce a high P(W|I) for one existing word in the lexicon. When 

simulating identification of known words, this limitation is not a problem. However, consideration 

of how to handle unknown words will become important later when modeling lexical decision. 

 

The representation of word frequency

Equation 1 implies that readers have access to information about each word's prior probability of 

occurrence in the language.  Ideally this would be an estimate of the expected probability of 
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encountering each word in the current context. However, here I will simply assume that this can be 

approximated by the measure of word frequency recorded in CELEX (Baayen, Piepenbrock, & 

Gulikers, 1995).  It is important to note that behavior will only be optimal if P(W) is a true 

probability based on the absolute frequency counts, and not on log frequency.  This is an important 

contrast between the present model and almost all psychological accounts of frequency. Even 

Rumelhart and Siple  (1974), who incorporated a Bayesian decision rule in their model of word 

recognition, used log frequency. 

 

It is clearly possible that the psychological representation of prior probability might be modulated 

by factors other than frequency itself.  McDonald and Shillcock (2001) suggested word recognition 

is strongly influenced by the number of different contexts a word can appear in.  It has also been 

argued that age of acquisition (Juhasz, 2005; Morrison & Ellis, 1995; Morrison, Ellis, & Quinlan, 

1992) or cumulative frequency (Zevin & Seidenberg, 2004) are more powerful determinants of 

recognition than overall frequency of occurrence. However, this is still an active area of debate 

(Juhasz, ; Stadthagen-Gonzalez, Bowers, & Damian, 2004) and, for present purposes, we can think 

of these factors as simply influencing the psychological estimate of a word's prior probability. 

 

In many psychological experiments the distribution of word frequencies is not at all the same as the 

distribution of word frequencies in the language. For example, in some experiments (e.g. Forster, 

1981; Glanzer & Ehrenreich, 1979) participants may see only high-frequency words, or only low-

frequency words. An ideal Bayesian decision process should adapt to these local probabilities (cf. 

Mozer et al., 2002). However, it is worth bearing in mind that, even if participants are aware that an 

experiment contains predominantly low frequency words, low frequency words will have lower 

effective probabilities than would high frequency words in an experiment containing only high-

frequency words.  Because there are more low-frequency than high-frequency words (Zipf's law), 
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the probability of encountering any particular low-frequency word will still be less than the 

probability of encountering a particular high-frequency word.  

 

Possible mechanisms 

Although the Bayesian Reader has been developed within the rational analysis framework, and has 

therefore been presented purely at a computational level, it should be relatively straightforward to 

implement the theory as a connectionist network.  Following from the work of MacKay (1992) 

there has been considerable interest in developing connectionist networks to perform Bayesian 

inference and classification.  A detailed account of how to construct connectionist networks to 

perform Bayesian inference is given by McClelland (1998). Possible neural mechanisms to 

compute likelihood ratios are discussed in Gold and Shadlen (2001), while Rao (2004) shows how 

a recurrent network architecture can implement Bayesian inference for an arbitrary hidden Markov 

model. This latter paper is particularly interesting in the present context as the network has to learn 

probability density functions.  Further discussion of the neural mechanisms that might perform 

Bayesian computations are discussed in Burgi, Yuille and Grzywacz (2000) and Kersten, 

Mamassian and Yuille (2004). 

 

From the rational analysis perspective a connectionist implementation of the Bayesian Reader 

would not increase the explanatory value of the theory. However, an illustration of how the model 

might be implemented as a network might make it easier to appreciate the relationship between the 

Bayesian Reader and connectionist models of word recognition like MROM (Grainger & Jacobs, 

1996) and DRC (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). A possible architecture is 

shown in Figure 2. The topology of this network is exactly the same as that presented in figure 2.1 

of McClelland (1998). Although this network assumes a direct mapping between input features and 
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words, it would be trivial to extend it to have an additional level of representation mapping from 

input features to words via letters. 

 

INSERT FIGURE 2 ABOUT HERE 

 

The input units in the network would each correspond to an element in a feature vector 

corresponding to the mean value of that element in the input samples. So, for a 4-letter word there 

would be 4 x 26 input units. The input units therefore code the vector representing the location of 

the current input in perceptual space, and are exactly equivalent to the input to the model as already 

described. Layer 1 consists of Gaussian word units whose output is a Gaussian function of the 

distance between the stored representation of the word and the input words. These units produce a 

larger output the closer the input vector is to the representation stored in the weights of the word 

unit. These units calculate the heights of the pdfs. The sharpness of the Gaussian tuning function is 

modulated by the current SEM.  The smaller the SEM the more finely tuned (peaked) the Gaussian 

function will be. These units therefore calculate the likelihoods of the words. The Layer 1 word 

units also need to have a bias representing the frequency of the word so that the likelihoods can be 

multiplied by P(W). The sigma unit sums the activation of all layer 1 word units, and passes that to 

the output units which calculate P(W|I) by dividing their input from Layer 1 by the output of the 

sigma unit. Responses can therefore be controlled by setting a threshold on the activation of the 

output units. In common with other connectionist models in psychology, it is likely to be the case 

that the functions computed by the units in the network might be best computed by a neuronal 

assembly consisting of a set of simpler elements.   

 

The first point to note about this network is that, by design, it is guaranteed to produce exactly the 

same output as the Bayesian Reader. In fact, the network is simply a redescription of the 
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computations performed in the Bayesian Reader. For example, the computer code required to 

simulate a Gaussian word unit is exactly the same as the code required to compute the heights of 

pdfs in the model. Indeed, the program currently implementing the Bayesian Reader is exactly the 

program one would write to implement the network. Only the names given to functions and objects 

might change. The only difficulty in transforming the Bayesian Reader into a network is really in 

deciding which of the many possible implementations one might choose. In the absence of 

additional constraining data (e.g. from neurobiology) there is little basis for choosing one 

implementation over another, therefore the computational level provides the most appropriate 

characterization of the theory. The network in Figure 2 is not the theory (see Norris (2005), for 

further discussion of the relationship between networks, models, and theories). The network 

representation of the model highlights an important similarity, and difference, between the 

Bayesian Reader and MROM and DRC. Both MROM and DRC rely on a measure of global 

activation in order to perform lexical decisions. The Bayesian Reader requires a measure of global 

activation computed by the sigma unit in order to perform word recognition at all. Although normal 

word recognition depends solely on individual P(W|I), the system must always compute global 

activation too.  

 

The following section presents a simulation to illustrate the behavior of the Bayesian Reader when 

identifying words of different frequencies. 

 

Simulation of the word-frequency effect in identification tasks 

In all of the simulations presented here, each input letter is represented as a 26-element vector. 

Each letter of the alphabet is coded by setting a single element to 1.0 and all other elements are set 

to zero.  Words are represented by a concatenation of position-specific letter vectors.  Every word, 

or letter string, can therefore be considered to be represented by a point in multidimensional space 
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(104-space for 4-letter words).  Because this coding scheme does not lend itself to representing 

words of different length in a single multidimensional space, all simulations use only words of a 

single length. This particular coding scheme was chosen because of its simplicity rather than 

because of a theoretical commitment to this form of input representation. When a letter string is 

presented to the Bayesian decision process a series of samples is generated from a distribution 

centered on the corresponding point in space. Each sample is generated by adding zero-mean 

gaussian noise to all dimensions. The exact value of the variance of the noise can be considered to 

be a scaling parameter. The more noise is added, the longer it will take to reduce the SEM to a 

point where decisions can be made with a high degree of certainty. 

 

After each new sample is received, the mean location of the input distribution is estimated, and the 

SEM is calculated.  The SEM is then used to calculate the P(I|W) for all words (see Figure 1). The 

P(I|W) are then entered into Equation 2. This allows P(W|I) to be calculated for all words. If the 

probability of a word exceeds some threshold, then that word is generated as a response. This 

procedure is very closely related to the M-ary Sequential Probability Ratio Test (MSPRT) 

described by Baum and Veeravalli (1994), which is an extension of Wald’s (1947) Sequential 

Probability Ratio Test (SPRT). Given that one sample is accumulated per unit time, the number of 

samples required to reach a given probability threshold will be linearly related to both RT and 

identification threshold. 

 

It is also possible to set a time threshold rather than a probability threshold, and then to read out 

probabilities after a given amount of time (cf. Van Rijn & Anderson, 2003; Wagenmakers et al., 

2004).  Because the model has to cycle through the lexicon computing probabilities for all words, 

and response times have to be averaged over many runs, it is very computationally expensive. All 
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simulations were run on a network of Windows PCs running the Condor system (Litzkow, Livny, 

& Mutka, 1988) . 

 

The first set of simulations of word frequency use a lexicon containing 4106 5-letter words from 

the CELEX database. One hundred and thirty words were selected at random from this lexicon as 

test stimuli. These words were divided into 13 sets of 10.  Each set of 10 words was assigned to one 

of 13 different frequency values (1,2,5,10,20,50,100,200,500,1000,2000,5000,10000), while the 

remaining words were given their normal CELEX written frequency values3. In order to ensure that 

these initial simulations would reflect word frequency rather than properties of individual words, 

there were 13 different lists of the 130 words, with assignment of frequency to words over lists 

determined by a latin square. Identification time for all words in each frequency value was 

averaged over 50 simulation runs i.e. each mean is the results of 50 x 13 x 10 runs. Figure 3 plots 

log word frequency against the number of steps required to reach a response threshold of P(W|I) 

=0.95 for a single word. The function is very nearly a straight line, and the best fitting log function 

accounts for 0.99 of the variance. This simple model therefore automatically produces the 

logarithmic relation between frequency and both RT and identification threshold observed in the 

literature. Changes in the variance, or the response threshold, do not alter the form of the function. 

This result is consistent with Baum and Veeravalli’s (1994) analysis of the MSPRT which showed 

that the expected time to reach a probability threshold should be a decreasing linear function of the 

logarithm of the prior probability of the hypothesis, with the slope depending inversely on the 

information (Kullback-Leibler) distance to the nearest competitor hypothesis.  

 

 

INSERT FIGURE 3 ABOUT HERE 
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The data that these simulations most directly map onto are the identification threshold data from 

Howes and Solomon (1951) or King-Ellison and Jenkins (1954).  There are no comparable data 

available from speeded response tasks, such as progressive demasking, that might be considered to 

be pure measures of the time taken to identify a word. Almost all of the available data comes from 

lexical decision or naming. It might appear that the model could be compared with data from word 

naming, such as the Balota and Spieler (1999) data set. However, as is widely recognized, naming 

generally involves contributions form both lexical information, and knowledge of spelling to sound 

correspondences. Lexical effects in naming are therefore likely to be greatly attenuated by the 

contribution of sublexical information. Indeed, unless special measures are taken to prevent the use 

of non-lexical pronunciation procedures, naming usually produces a much smaller frequency effect 

than tasks like lexical decision (Monsell et al., 1989). In fact, it is not even clear that word naming 

always involves identification of a unique word in the lexicon. In cascaded systems like the DRC, 

and in the multiple-levels model (Norris, 1994), sublexical information allows responses to be 

generated earlier than would be possible if responses had to await unique identification of the word. 

So, while the Bayesian Reader could be used to simulate the word recognition processes underlying 

naming (e.g. the lexical component of the multiple-levels model of Norris, 1994), it is difficult to 

extend the rational analysis or ideal observer approaches to all of the operations involved in reading 

aloud.  The first problem is that is hard to specify exactly what decision an ideal observer would 

need to make in order to pronounce a word. For example, one might specify that all of the 

phonemes in the pronunciation of a word had to be determined with a given level of accuracy 

before pronunciation. However, perhaps there is left-to-right processing (as in the DRC) such that 

pronunciation can be initiated as soon as the first one or two phonemes have been determined, even 

if later phonemes were still uncertain. Of course, it is quite possible that the phonological 

representations underlying pronunciation might not be phonemes at all.  Finally, even if the nature 

of the phonological representations were known, the performance of an ideal observer would 
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depend on the relative time courses with which lexical and sublexical sources of phonological 

information become available. However, despite the difficulty of applying the Bayesian approach 

to reading aloud, it can readily be extended to the lexical decision task. 

 

Lexical decision

So far, I have described the optimal procedure for word identification. This assumes that the task of 

the recognizer is to identify which word has been presented. Importantly, I have assumed that the 

input is always a word in the model's lexicon. This is clearly not the case in a lexical decision task. 

Generally, half of the stimuli in a lexical decision experiment will be unfamiliar nonwords. The 

task is no longer to identify which specific word has been presented (although human readers may 

well do this under some circumstances) but to decide whether the input is a known word or not. 

The primary interest is not in calculating P(W|I), but P(a word rather than a nonword | I), as in 

Equation 9. 
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It might seem that the simplest procedure for lexical decision would be to respond ‘Yes’ as soon as 

any word in the lexicon exceeds the recognition threshold. Although simple, such a procedure has a 

number of drawbacks.  The first is that this procedure has no way of making a ‘No’ response to a 

nonword. One word will always reach the recognition threshold, even when a nonword is 

presented. As noted earlier, because of the properties of the normal distribution, eventually the 

probability of one word will always approach 1.0. The Bayesian P(W|I) does not actually depend 

on a high value of P(I|W), so long as P(I|W) for all other words is sufficiently low. P(W|I) reflects 

the relative probability of words in the lexicon, under the assumption that the input is indeed a 

word. In lexical decision, this is clearly not a valid assumption.  An alternative procedure might be 
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to use the normal recognition mechanism to identify the best matching word, and then to perform a 

spelling check to determine whether the input really does correspond to that word (cf. Balota & 

Chumbley, 1984). This is a strategy that participants might adopt if they are being very cautious; 

however, is it not the most efficient way to use the available information.  

 

Although lexical decision seems like an artificial laboratory task, the ability to distinguish between 

familiar words and unfamiliar letter strings is also an essential part of the normal reading process 

(Chaffin, Morris, & Seely, 2001). Readers will often encounter unfamiliar words, and these should 

be recognized as being unknown words rather than simply being identified as a token of the nearest 

known word. It turns out that the problems of identifying unknown words and performing lexical 

decision have the same solution.  That is, lexical decision can be based on information that has to 

be computed anyway in the course of normal reading.  

 

Some of the critical differences between identification and lexical decision can be appreciated by 

considering how lexical decision might be performed if somehow there was a fixed set of nonwords 

with known locations that could appear in an experiment. Assume that the nonwords in the 

experiment are equiprobable (i.e. all P(NWi) are the same). Because words and nonwords are 

equally likely to appear in a lexical decision experiment, word and nonword probabilities must each 

sum to 0.5. For any input I, we can then calculate the likelihood of that input, given that the input 

was produced by a word (Equation 10), and the likelihood that the input was produced by a 
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nonword (Equation 11). 

 

Equation 12 gives the likelihood of observing this particular input. Equation 13 gives the 

probability that the input was generated by presentation of a word, and Equation 14 gives the 

probability that the input was generated by a nonword. Informally, these equations indicate that, of 

all of the ways that the input I could have been produced, some proportion comes from words, and 

some from nonwords.  If most of the ways that the input could have been produced are from words, 

then the input is likely to have been a word. The important feature to note about these equations is 

that P(word|I) depends on summing the contribution of the likelihoods of all individual words, and 

does not depend of a high value of P(Wi |I) for any particular word. That is, the appropriate 

procedure for performing lexical decision does not depend on first recognising any specific word. 

 

This example illustrates how to discriminate between two sets of inputs (words and nonwords) 

where the items in the sets are known in advance.  However, the set of nonwords used in a real 

lexical decision experiment is generally not known in advance. In lexical decision experiments the 

nonwords are usually constructed according to some quite general rule. For example, nonwords 

might be one letter different from words, be pronounceable letter strings, pseudohomophones, or be 

letter strings matched on bigram frequencies.  The exact form of the nonwords generated by an 

experimenter might be influenced by implicit rules that even they themselves are unaware of. 

Nevertheless, a participant (or ideal observer) needs to have some way of representing members of 

both the word and nonword categories in order to construct a decision rule to discriminate between 

them. Part of the participants’ task in lexical decision is therefore to construct a model of the 

nonwords used in the experiment. However, even an ideal observer will be unable to anticipate the 

exact set of nonwords used in an experiment. A model of the nonwords will therefore inevitably be 

based on a heuristic approximation.  Fortunately, it is possible to achieve high levels of 
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performance in lexical decision simply by estimating how close words and nonwords are to each 

other in lexical space. 

 

If nonwords are formed by changing a single letter in a real word (e.g. BLINT), they will be very 

close in space to real words, whereas consonant strings (e.g. CVXR), will be quite far from the 

nearest word. Assume for the moment that all nonwords in an experiment differ from real words by 

only a single letter. Effectively, the participant must decide whether the input is a real word, or a 

letter string that differs only slightly from a real word. The simplest way to do this is just to 

approximate f(I|nonword) by a single point in space, where the point corresponds to a nonword one 

letter different from the nearest word. At least when using high response thresholds, the main 

influence on lexical decision will be from words and possible nonwords located very close to the 

input. When the SEM is small, most of the words and nonwords (or empty spaces in the lexicon) 

will have almost no influence on P(I|word). Because of this, lexical decision can be performed 

simply by assuming that there is a single nonword positioned close to the input. But, where exactly 

should that nonword be placed?4 

 

With the input representation used here, any two letter-strings that differ by a single letter will 

always be the same fixed distance apart in perceptual space (in fact, 1.41, i.e. √2). The estimate of 

how close nonwords are to words in an experiment will be referred to as the nonword distance, ND. 

In trying to discriminate between words and nonwords, the question then becomes one of whether 

the input is more likely to have been generated by a word, or by a nonword located near the input, 

but at least ND from the nearest word.  That is, no nonword in the experiment should be closer than 

ND to a word. In general, if the input is estimated to be much closer than ND to a word, then the 

input is likely to have been generated by that word. If the input is much further away than ND from 

the nearest word, the input is more likely to have been produced by a nonword. The further the 
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input is from the nearest word, the less likely it is that the input is a word. In practice, an estimate 

of ƒ(I|nonword) can be computed simply by assuming that there is a single virtual nonword located 

on a line connecting the input with the nearest word. This virtual nonword is placed as near to the 

input as possible on that line, but never closer than ND to the word.  The value of ND should reflect 

the difficulty of the word-nonword discrimination in the experiment. If nonwords are very similar 

to words, ND should be small. If nonwords are very dissimilar to words (e.g. consonant strings) ND 

should be large. If the virtual nonword is set to have a frequency that is approximately the same as 

the average frequency of the words, it is now possible to calculate ƒ(I|nonword) in exactly the same 

way as for a word (Equation 15). P(virtual nonword|I) can then be calculated and used as a basis for 

lexical decision. If P(virtual nonword|I) is >> 0.5, respond 'No' , if P(virtual nonword|I) is << 0.5,  

respond 'Yes’.  

 

( ) )15()|()|(/)|()|( nonwordvirtualIfwordIfnonwordvirtualIfInonwordvirtualP +=
 

 

In other words, if the input is more likely to have been generated by a word than the virtual 

nonword, respond ‘Yes’, otherwise respond ‘No’. This procedure works because, late on in 

processing, the virtual nonword is usually only competing with one or two nearby words. Setting 

the nonword frequency to the average word frequency makes the competition between words and 

the virtual nonword roughly even. Although this procedure can reliably perform lexical decision, 

and also gives a logarithmic relation between frequency and RT, it is not ideal. The main problem 

is that it takes no account of the contribution that other potential nonwords (i.e. nonwords of the 

sort that might appear in the experiment) should make to ƒ(I|nonword). This causes the model to 

have a strong bias to respond ‘Yes’ if it is required to make decisions based on very little evidence 

(e.g speeded responding, or the response-signal procedure studied by Wagenmakers et al., 2004). 
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When the SEM is large, many words in a large subvolume of perceptual space will all make some 

contribution to ƒ(I|word). The contribution of each word will be multiplied by its frequency, and 

the combined influence of all of these words can overwhelm  ƒ(I|nonword). As the model is forced 

to respond faster P(nonword|I) decreases.  That is, with fast responses the model has a bias to 

respond 'Yes'.  What is needed is some way of representing the influence of the whole range of 

potential nonwords that could have appeared in an experiment. I will call these nonwords 

background nonwords. There is no need for these background nonwords to be explicitly 

enumerated, or added to the lexicon. All that is required is to make allowance for the fact that the 

experiment might contain nonwords distributed throughout lexical space, in addition to the virtual 

nonword. All that we need to know about background nonwords is their distance from the input. 

For example, if we wish to consider the influence of a nonword some distance away from the 

current estimate of the mean co-ordinates of the input, it really makes little difference exactly 

where in space that nonword is located (e.g. at a position that would correspond to a pronounceable 

nonword, or perhaps a string of consonants). The only information that goes into Bayes’ equation is 

the distance between the nonword and the current estimate of the input co-ordinates. Furthermore, 

most of the contribution to P(I| a nonword) is from locations very close to the input. 

 

Because the exact location of background nonwords does not matter, it is possibly to make the 

simplifying assumption that nonwords are distributed homogeneously in lexical space. This ignores 

the fact that, if nonwords are chosen to be pronounceable, both words and nonwords will tend to be 

clumped together in small regions.  However, this simplification has little effect on the behavior of 

the model, as these possible nonwords only exist to balance the probabilities of words and 

nonwords. Their exact location in perceptual space is of little consequence because they simply 

represent the fact that there is a possibility that the experiment might contain nonwords that are 

located in perceptual space some distance from the current estimate of the input co-ordinates. 
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Given these assumptions, we can calculate the likelihoods of background nonwords at various 

distances from the input, and use these to model the contribution of the entire set of possible 

nonwords. The details of the procedure for estimating the influence of background nonwords will 

depend on the form of input representations used. The present simulations simply take advantage of 

the fact that all letter strings differing from any particular letter string by a given number of letters 

will lie at the same distance, and therefore all have the same f(I|NW). For example, for a 4-letter 

word we can calculate the number of strings differing by 1,2,3, and 4 letters, and multiply those 

numbers by the f(I|NW) at the corresponding distance.  The probability of these nonwords is then 

set to sum to 0.5 – P(virtual nonword).  Multiplying this probability by the sum of the f(I|NW), then 

gives an estimate of the contribution of the background nonwords. The calculations are given in 

Appendix B, along with a description of an alternative procedure that can be used if there is an 

intermediate letter level. 

  

As already noted, this simple model of background nonwords takes no account of factors such as 

whether or not nonwords might be pronounceable. Also, all regions of space have the same 

nonword density, regardless of how many words are in that region. Furthermore, because the 

distances to background nonwords are measured relative to the input, there is no guarantee that they 

will correspond exactly to real letter strings. Although it is possible to develop a more elaborate 

model of background nonwords, the method described here does what is required to roughly 

balance the overall word and nonword probabilities early in processing when there is still 

ambiguity in the input. Indeed, simulations using slightly different models of background nonwords 

produce the same pattern of results. When the SEM is large, probabilities will now be influenced 

both by words that are some way away from the input word, and also by distant nonwords. If a very 

high probability threshold is used, it makes little difference whether the background nonwords are 

included. With high thresholds, only words and nonwords very close to the input have any 



 Bayesian Reader                                                                                                                                                              37 

influence on the probabilities. The addition of the background nonwords adds hardly anything to 

the computational complexity of the model as it only adds one term for each letter in the input 

string. Most of the computation still involves calculation of word probabilities. 

 

The procedure for modeling ƒ(I|nonword) is exactly what is required to deal with unknown words 

in normal reading. We need to have some idea of what the input from an unknown word would 

look like. As in the case of lexical decision, the most important information is that an unknown 

word will differ from any known word by at least one letter, and that unknown words could be 

located almost anywhere in perceptual space. An important difference is clearly that the probability 

of encountering an unknown word in normal text is going to be very much lower than in a lexical 

decision experiment. However, the main difference between normal reading and lexical decision is 

in how the available information is used. In normal reading, the critical probabilities for word 

identification are the P(Wi|I). P(nonword|I) is  the probability that the input is a novel word. In 

lexical decision, ‘No’ responses can also be based on P(nonword|I), but ‘Yes’ responses should be 

based on P(a word|I)  (or, equivalently, 1-P(nonword|I)), and not on the probabilities of individual 

words (P(Wi|I)). So, although this method of making lexical decisions might seem complicated, 

something very much like it is essential for normal reading. Furthermore, because most of the work 

is being done by the virtual nonword nearest to the input, there is no need to have a very precise 

model of ƒ(I|nonword). The interesting implication of this analysis is that lexical decision does not 

require any specialized information or procedures that are not already required for normal reading.   

 

Simulation of the frequency effect in lexical decision

In all simulations ND is set to 2.0, which is the distance between two letter strings differing by 2 

letters. The inclusion of background nonwords actually means that there is some small contribution 

from background words closer than 2.0, so the effective ND is actually slightly smaller than 2.0, 
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meaning that nonwords 1 letter different from words will tend to be correctly classified as 

nonwords. This gave good levels of accuracy for both words and nonwords in all of the simulations 

reported.  In practice, an increase in response threshold can have the same effect as a decrease in 

ND. However, if ND bears no relation to the difficulty of the discrimination, the resulting value of 

P(a word) will no longer be a good estimate of P(a word).  

 

Other than when demonstrating the effect of varying the response threshold, all simulations use a 

threshold of P(word) > 0.95, for 'yes' responses, and P(word) < 0.05 for 'no' responses. All 

simulation results represent the average of 50 simulation runs of each stimulus. The simulations 

therefore use no free parameters. However, in some instances an additional set of figures is also 

reported where two additional parameters are used to fit the model response times to actual RTs. 

One parameter represents time that human participants spend performing response execution and 

other processes outside of the scope of the model, and the other parameter specifies the 

correspondence between model time-steps and real time. These numbers are reported simply to 

make it easier to appreciate the exact relationship between the simulations and the data.  

 

Figure 4 shows the results of a simulation of lexical decision using exactly the same materials as 

the earlier simulation of identification. As in the case of identification, the function relating RT to 

log frequency is close to linear, with an R2 of 0.99.  

 

INSERT FIGURE 4 ABOUT HERE 

 

In the next simulation, the model is compared to real data from the Balota, Cortese and Pilotti  

(1999) study of lexical decision which included almost all of the monosyllabic words in English.  

Table 1 shows the results of simulations of their 4-letter words for which CELEX frequencies were 
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available, using the data from their younger group of participants. Simulations of their 5-letter 

words produce similar results. The table shows correlations between model RT, data, both log and 

rank frequency, and neighborhood density (N). Correlations are shown for the model with 

recognition thresholds of both 0.95 and 0.99. As would be expected from the previous simulations, 

there is a very high correlation between simulated RT and both log and rank frequency. All three of 

these measures correlate to a similar degree with the data, although, consistent with Murray and 

Forster’s (2004) data, rank frequency has a slightly higher correlation than the others. It is 

interesting to note that the correlation between model RT and N increases as the response threshold 

is decreased. This is a quite general property of the model, and is also seen in a simulation of data 

from Forster and Shen (1996) to be presented later. 

 

INSERT TABLE 1 ABOUT HERE 

 

The analyses performed by Balota et al. (2004) suggest that the CELEX database may not be the 

best predictor of lexical decision latency. However, for the present purposes we are comparing 

CELEX frequency measures (and rank frequency derived from CELEX) with the predictions of the 

model, which also incorporates CELEX frequencies. Using a different frequency measure might 

alter the correlations overall, but should not alter the intercorrelations between the different 

frequency-based predictor variables.  

 

Neighborhood effects

So far we have seen that the Bayesian Reader gives a good explanation of the relationship between 

frequency and RT (or exposure duration) in both identification and lexical decision. The form of 

the frequency function, in both the model and the data, is the same in the two tasks. However, one 

factor, namely neighborhood density (usually defined in terms of Coltheart, Davelaar, Jonasson and 
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Besner’s, N (1977), the number of words differing from a target word by exactly 1 letter), has 

generally been found to have opposite effects in lexical decision and identification (for reviews see 

Andrews, 1997  and Perea & Rosa, 2000 ). In identification tasks, words in dense neighborhoods 

are usually harder to identify (Grainger & Segui, 1990; Havens & Foote, 1963; Perea, Carreiras, & 

Grainger, in press; Perea & Pollatsek, 1998; Pollatsek, Perea, & Binder, 1999), whereas in lexical 

decision, such words are generally easier to classify (e.g. Andrews, 1989, 1992; Forster & Shen, 

1996).  Furthermore, in lexical decision, high N nonwords are harder to classify than are low N 

nonwords (e.g. Coltheart et al. 1977; Forster and Shen, 1996). Note that there are some exceptions 

to the general finding of facilitatory neighborhood effects on words in lexical decision.  For 

example, the original Coltheart et al. study only found an effect of N on nonwords, but not on 

words. Johnson and Pugh (1994) found facilitatory effects of N on words when the nonwords were 

unpronounceable, but inhibitory effects when they were pronounceable.  However, a facilitatory 

effect of N is by far the dominant pattern, especially in English (see Andrews, 1997).  Some studies 

of perceptual identification have also reported facilitatory effects of density.  For example, Sears, 

Lupker and Hino (1999) found facilitatory effects in perceptual identification when performance 

levels were low. 

 

 However, the most convincing evidence that having many neighbors produces an inhibitory effect 

on identification comes from a study by Pollatsek, Perea and Binder (1999). They demonstrated 

that words that showed a facilitatory effect of neighborhood density in lexical decision produced an 

inhibitory effect in reading, as measured by eye tracking. As eye tracking during reading probably 

represents the most 'ecologically valid' measure of word identification, this result cannot readily be 

attributed to unusual task demands or strategies. 
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It might seem that data from word naming (reading aloud) might also provide a useful source of 

information on neighborhood effects. Indeed, nonwords in dense neighborhoods have been found to 

be easier to name (McCann & Besner, 1987). However, this may well be due to phonological 

factors rather than the process of word identification itself. Words in dense neighborhoods are more 

likely to have common spelling to sound correspondences than words in sparse neighborhoods. For 

example, the multiple-levels model of reading aloud described by Norris (1994)  produces 

facilitatory effects of neighborhood density on naming, even though lexical activation in that model 

is not directly influenced by orthographic similarity. Norris presented simulations of Andrews’ 

(1989) lexical decision data and showed that the naming latencies produced by the model closely 

paralleled the data.  

 

The fact that neighborhood density has the opposite effect in identification and lexical decision 

poses problems for existing models of word recognition.  For example, the basic mechanism in 

interactive activation models predicts that words in dense neighborhoods should be harder to 

identify than words in sparse neighborhoods.  Inhibition between similar words should make words 

with many neighbors harder to identify.  The search model predicts that there should be an 

inhibitory neighborhood effect on nonwords, but no effect for words. This is because close matches 

are initially simply flagged for later verification. This means that responses to words are unaffected 

by the presence of neighbors. However, the flagged entries are checked before ‘No’ decisions are 

made, and this produces an inhibitory effect of neighborhood density on nonwords. In contrast, 

Sears, Hino and Lupker (1999) showed that both the Plaut et al. (1996) and Seidenberg  and 

McClelland (1989) models predict that neighborhood effects should be facilitatory, at least for low 

frequency words. None of these models can readily account for the fact that effects of 

neighborhood density are inhibitory in tasks requiring perceptual identification, but facilitatory in 

lexical decision. In a further complication, words that show facilitatory effects of density in lexical 
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decision have been claimed to show no density effect in a semantic classification task (Forster & 

Shen, 1996; Forster & Hector, 2002 ), although Sears, Lupker and Hino (1999) reported facilitatory 

effects of density in semantic classification. 

 

This variability poses problems for any simple notion that all tasks tap directly into the same 

underlying word recognition process.  One way of accommodating these task differences is to 

assume that one kind of task is a true reflection of the underlying recognition process, while other 

tasks are contaminated by task-specific processes. In her review, Andrews (1997) concluded that it 

was the facilitatory effects in lexical decision that were driven by the recognition system, while 

identification tasks were contaminated by guessing. On the other hand, Jacobs and Grainger (1992) 

concluded that it was the inhibitory effect that was fundamental.  In order to explain the facilitatory 

effect in lexical decision, Grainger and Jacobs (1996) developed the Multiple Read-Out Model 

(MROM). In MROM, lexical decision responses are based both on the activation of individual 

words (the M criterion) and on the ∑ criterion, which is sensitive to the total amount of activity in 

the lexicon. Similar assumptions are made in the DRC model (Coltheart et al., 2001).  Total activity 

will be greater for words in dense than in sparse neighborhoods. To the extent that responses are 

influenced by this criterion, there should be a facilitatory effect of neighborhood density in lexical 

decision.  Note that lexical decision responses can not be based solely on the ∑ criterion as high N 

nonwords can produce more lexical activation than low N words. Therefore, the ∑ criterion cannot 

discriminate reliably between words and nonwords.  Although MROM can simulate most of the 

data on neighborhood effects, Grainger and Jacobs offer no independent motivation for adding the 

∑ criterion to the model. The model does not explain why lexical decision should be based on 

multiple response criteria rather than simply on the activation of individual words. However, as we 

shall see, the Bayesian Reader necessarily predicts that neighborhood effects are inhibitory in 

identification, and facilitatory in lexical decision. 
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It should be apparent that, as applied to perceptual identification, the Bayesian Reader has to 

predict that words with many lexical neighbors will be harder to identify than words with few 

neighbors. For a given SEM, a nearby neighbor will have a much larger P(I|W) than a distant 

neighbor. Close neighbors add to the denominator of Equation 2 and decrease the P(W|I) of the 

target word. Words in dense neighborhoods will therefore take longer to identify than words in 

sparse neighborhoods. Although the model does not incorporate explicit inhibition between 

neighbors, neighbors do effectively compete with each other. For any input, the probability of the 

target word will be lower if it has more neighbors. The probability will be lower still if those 

neighbors are also high in frequency. 

 

In lexical decision, on the other hand, the neighborhood density effect will be reversed. Words in 

dense neighborhoods will be classified more easily than words in sparse neighborhoods. This is 

because all words in the neighborhood of the input contribute to the likelihood that the target is a 

word. This clearly makes intuitive sense if one thinks of the lexicon as consisting of a space 

populated by words, and by 'holes' (to use the terminology of Treisman , 1978a,1978b) that could 

be nonwords in an experiment.  If the estimate of the input mean is located in a very dense 

neighborhood, the neighborhood will contain more words than holes, and the input is most likely to 

have been produced by a word. In a sparse neighborhood, the ratio of words to holes will be much 

smaller, and the input is more likely to correspond to a hole (nonword) (see Figure 5). Note that the 

bias to respond 'word' in dense neighborhoods will apply to both words and nonwords. Nonwords 

in dense neighborhoods will therefore be classified more slowly, as more perceptual evidence will 

be required to overcome the bias to respond 'word'. 

 

INSERT FIGURE 5 ABOUT HERE 
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The behavior of the Bayesian Reader in an identification task follows inevitably from the 

assumptions about the form of the input available to the system. Although the procedure for making 

lexical decisions is more complex, its behavior also follows directly from the demands of 

performing the task in an optimal fashion. The change from an inhibitory effect of neighborhood 

density in identification, to a facilitatory one in lexical decision, is therefore a direct consequence 

of the requirement to perform the tasks optimally. If readers showed an inhibitory effect of 

neighborhood density in lexical decision, this would indicate that they were not performing the task 

in optimally. For example, a strategy of identifying the closest word to the input and then 

performing a spelling check would be an inefficient way to perform lexical decision, and would 

produce an inhibitory effect of neighborhood density. Unlike existing accounts of neighborhood 

effects, there is no need for ad hoc assumptions simply to make it fit the data: this is simply how an 

optimal decision-maker has to behave. The notion of task requirements here therefore differs 

somewhat from standard discussions of 'task demands' in word recognition. Task-specific processes 

are often invoked to explain the different patterns of results found in different tasks. For example, 

according to Grainger and Jacobs (1996), lexical decision imposes additional task demands that 

turn an underlying inhibitory effect of neighborhood density into a facilitatory one. According to 

Andrews (1997), the natural state of affairs is for neighborhood density to have a facilitatory effect 

and this is counteracted by the demands of perceptual identification tasks. On the grounds that they 

found no neighborhood effects on 'No' responses in a semantic classification task (“is this word an 

animal?”), Forster and Shen (1996) concluded that all neighborhood effects are due to task specific 

strategies. The common feature of all of these accounts is that they assume that there is an 

underlying recognition system with quite fixed properties (e.g. inhibitory vs. facilitatory effects of 

neighbors). In response to the demands of different tasks, the output of this recognition system can 

be used in different ways that can alter, or even reverse, the behavior of the system.  The problem 



 Bayesian Reader                                                                                                                                                              45 

with these appeals to task demands is that the task-specific mechanisms exist solely to explain data 

that is at variance with the predictions of the underlying model. In the Bayesian procedures 

developed here, there is no underlying default mechanism. All perceptual decisions require some 

task-specific computations. In the absence of such computations (and a clear specification of what 

decision is to be made), there simply is no behavior. Therefore neither inhibition nor facilitation are 

general properties of the system. This can be further illustrated by considering how other tasks 

should be performed. 

 

Semantic classification

Forster and Shen (1996) reported that there were no systematic effects of neighborhood density on 

'no' responses to words in a semantic classification task, even though the same words showed a 

facilitatory effect of N in lexical decision (although there was, in fact, a 20ms facilitatory effect of 

density in semantic classification in their experiment 5). Similar results were obtained by Forster 

and Hector (2002). Despite this result, there remains some uncertainty as to whether there is a 

genuine effect of neighborhood density on 'no' decisions in semantic classification. Sears, Lupker 

and Hino (1999) found facilitatory effects of N in both perceptual identification and semantic 

classification. Nevertheless, it is instructive to consider what pattern of data we would expect to see 

if participants in such tasks behaved optimally. 

 

Let us examine how an ideal observer might perform a semantic classification task. Note that an 

ideal observer would be able to perform all necessary computations instantly, and would be limited 

only by the quality of the available data. In order to decide that 'bear' is an animal, it is necessary to 

distinguish 'bear' from neighboring words like 'pear'. Failure to discriminate between these 

alternatives could lead to an error because a 'pear' is not an animal.  Now consider what should 

happen when the task is to decide whether 'bear' is a member of a different category, such as a 
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vehicle. At some stage in processing, when 'bear' and 'pear' are still hard to distinguish, it would be 

possible to determine that neither is a vehicle. In psychological terms, it may be possible to 

determine whether the words have appropriate semantic features. This would enable a 'no' response 

to be made without fully analysing the input. If the ideal observer is able to make this semantic 

assessment before word identification has been fully resolved, neighborhood effects in semantic 

categorization should be much smaller for 'no' responses than for 'yes' responses. Note that one 

would still expect to see effects of frequency, as frequency will still alter the probability of all 

candidate words.  Indeed, Forster and Shen (1996) did find frequency effects in semantic 

categorization. 

 

Forster and Hector (2002) have shown that neighborhood effects on nonwords also vary as a 

function of task demands.  For example, whether or not a nonword has a close neighbor does not 

influence 'no' responses in a semantic categorization task, unless one of the neighbors is a member 

of the relevant category (e.g. 'turple' when the category is 'animal'). This result would seem to have 

exactly the same explanation as Forster and Shen's (1996) data. If none of the neighbors is a 

category member, then those nonwords can be rejected without needing to perform accurate 

identification (i.e. to establish definitively that they are not specific words). If a nonword has a 

neighbor that is a category member, the nonword must be processed further to establish that the 

stimulus really is a nonword and not its neighbor. The explanation being proposed here has points 

in common with Forster and Hector’s own account. They suggest that, each word is linked to broad 

semantic fields. When a nonword like ‘turple’ is presented, the search process locates the entry for 

‘turtle’. As ‘turtle’ is linked to the semantic field for animal, ‘turple’ is subject to a more detailed 

form check that takes extra time. 
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The idea that these data should be explained by assuming that semantic information becomes 

available before words are uniquely identified receives support from a recent study by Pecher, 

Zeelenberg and Wagenmakers (2005) using a semantic categorization task. When participants were 

required to judge whether a word like 'cat' was animate or not, they responded more quickly if they 

had previously seen an orthographically similar word from the same category ('rat') than a similar 

word from a different category ('mat'). Relative to a neutral baseline of words whose neighbors had 

not been seen, both the facilitatory effect of having seen a same-category word, and the inhibitory 

effect on having seen a different category word were significant.  In another experiment, 

participants were faster at categorizing words with orthographic neighbors belonging to the same 

category than words whose neighbors were not in that category. In a related experiment, Rodd 

(2004) found that words like 'leotard' that had an animal neighbor ('leopard’) were responded to 

more slowly than words like 'toffee' which had a neighbor that was not an animal ('coffee'). 

 

Depending on the task, neighborhood effects can be facilitatory, inhibitory, or non-existent. If one 

starts from the assumption that there is an underlying word recognition system with fixed 

properties, this pattern of data is difficult to explain without invoking special task-specific 

mechanisms. In general, task-specific mechanisms serve little purpose other than to alter the default 

behavior of the model to fit the data. For example, the extra decision criteria in Grainger and 

Jacobs' (1996) MROM model seem to have no adaptive function other than to produce facilitatory 

effects of neighborhood density in lexical decision. In contrast, the Bayesian decision procedures 

developed here are motivated solely by the requirement to perform the task in an optimal fashion. 

These procedures follow entirely from a rational analysis of the tasks, and have not been adapted to 

fit the data. 
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One might object that the rational analysis approach permits an unconstrained proliferation of task-

specific decision rules.  In part this is true, but the rules are determined by the task and not by the 

data. It seems likely that the empirical results themselves follow as a direct consequence of the 

adaptability of human decision making.  There is effectively no limit on the number of different 

tasks that humans can perform, and each task must necessarily use slightly different decision rules. 

Given that human behavior in these word recognition tasks is in line with the predictions of the 

rational analysis, this tells us something very important about the flexibility of human decision 

making. Even with minimal training, humans can perform all manner of complex tasks. For 

example, participants in a lexical decision experiment are unlikely to have any prior experience in 

making word-nonword decisions, yet they adapt readily to the task. Furthermore, as argued here, 

and by Wagenmakers et al. (2004), they behave in a manner that is close to optimal. This ability to 

reconfigure cognitive processes adaptively in response to environmental demands is an essential 

part of human intelligence (Duncan, 2001). However, as was noted when developing Bayesian 

Reader lexical decision procedure, lexical decision should be based on the kind of information that 

must already be available to detect unknown words in normal reading. All that really changes 

between tasks is that, whereas responses in identification are based on P(W|I), responses in lexical 

decision are based on P(nonword|I). A similar case can be made that the optimal procedure for 

semantic categorization also capitalizes on information already required for normal reading. Norris 

(1986) suggested that, as a word is being recognized, it should be evaluated for its compatibility 

with the context, and that this was essential for disambiguation. Access to the semantic 

representation of a word before it has been uniquely identified is exactly what is required for the 

semantic classification strategy proposed here. Viewed in this way, it is perhaps not so surprising 

that readers can perform these tasks using what appears to be a near optimal strategy: all of the 

information required is already available from the processes involved in normal reading, 
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The next section investigates the behavior of the Bayesian Reader further by presenting simulations 

of a number of experiments studying the influence of word frequency and number of orthographic 

neighbors in the lexical decision task. 

 

Simulations of neighborhood density effects.

A number of studies have investigated the detailed pattern of neighborhood effects seen in the 

lexical decision task. For example, Andrews (1989,1992) showed that there was an interaction 

between density and frequency, with a larger effect of density being observed for low-frequency 

than for high-frequency words. Forster and Shen (1996) parametrically manipulated number of 

neighbors (N) for both words and nonwords. They found that while increasing neighborhood 

density facilitated responses to words, it inhibited responses to nonwords (see also Coltheart et al., 

1977). Siakaluk, Sears and Lupker (2002) reported a series of experiments where they examined 

the neighborhood effects for high and low frequency words while manipulating nonword N, so as 

to alter the difficulty of the word-nonword discrimination. They found a tendency for density to 

have less of an effect the more similar the nonwords were to words. In their experiment with the 

most word-like nonwords (1D) they found that high frequency words in sparse neighborhoods were 

actually responded to faster than high frequency words in dense neighborhoods. 

 

In order to illustrate the similarity between the behavior of the recognizer and human data the 

remainder of this section reports simulations of the main lexical decision experiments in all four of 

these studies. Each simulation uses the model exactly as described above, apart from the fact that 

simulations of 4, 5 and 6 letter words had to be performed separately with lexicons consisting only 

of words of that length. When simulating experiments where different length words are used, the 

reported means are always unweighted means of the mean number of steps for words of each 

length, as this eliminates any confounds due to the model responding differently to different length 
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words. The simulations all use exactly the same materials as in the original experiments, apart from 

words that are not in the CELEX database. 

 

Andrews (1989,1992)

The first experiments in both the Andrews  (1989) and Andrews (1992) studies looked at lexical 

decision performance on words of high and low frequency that had either a large or small number 

of neighbors.  Andrews found that there was an interaction between frequency and N such that the 

facilitatory effect of N was larger for low- than high-frequency words. The original data and the 

simulations are shown in Tables 2 and 3. The tables also show the adjusted model output where the 

raw output is transformed as described earlier. These numbers are presented to make it easier for 

the reader to appreciate the similarity between the pattern of results produced by the model and the 

human data. In both simulations, the model shows a facilitatory effect of neighborhood density and 

an interaction between frequency and density. The main divergence between the model and the data 

is that the model produces too big an effect of N on high frequency words in the 1989 simulations, 

but too small a effect in the 1992 data. Snodgrass and Mintzer (1993) used the Andrews (1989) 

items in a perceptual identification task. They found that the effect of N was inhibitory. Table 4 

shows the result of a simulation of identification time rather than lexical decision time for the 

words from Andrews (1989). In line with Snodgrass and Mintzer’s results, the facilitatory effect of 

N seen in lexical decision becomes an inhibitory effect when the model simulates identification. 

 

INSERT TABLES 3 & 4 ABOUT HERE 

 

Forster and Shen (1996) 

Experiment 2 of Forster and Shen (1996) manipulated N for both words and nonwords in a lexical 

decision task. Simulations of this experiment are shown in Figure 6.  Note that the simulation omits 
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the item ‘flyer’ as this does not appear in CELEX. In line with the data, the model produces a 

facilitatory effect of N on words, and an inhibitory effect on nonwords. The main discrepancy 

between the model and the data is that the model responds equally quickly to words and nonwords, 

whereas the data show the standard finding of slower responses to nonwords. Forster and Shen's 

participants had quite high error rates (up to 23.4% for nonwords with 3 or 4 neighbors). With the 

0.95 threshold the model makes a maximum of only 2% errors in any one condition.  Therefore 

Figure 5 also shows the model performance using a lower threshold of 0.75. In the case of the 

materials used in this experiment the maximum error rate of the model is 11% errors to the 

nonwords with 3 or 4 neighbors. With this lower threshold (and higher error rate) the model output 

looks more like the data, as the effect of neighborhood density for words and nonwords becomes 

more similar. As noted earlier, this tendency of the simulations to show larger effects of N as the 

response threshold is reduced is a very general characteristic of the model. With a threshold of 0.99 

the model becomes almost completely insensitive to N.  

 

The fact that word and nonword responses are equally fast is not an inevitable property of the 

model. As Figure 6 shows, reducing the threshold for nonwords from 0.95 to 0.75 would make 

word responses faster than nonword responses. If the nonword threshold is reduced too much, this 

could sometimes cause low frequency words to be misclassified. However, the maximum increase 

in word error rate from reducing the nonword threshold from 0.95 to 0.75 is less than 3% in any 

one condition. In many experiments it may not be appropriate to set word and nonword thresholds 

to the same value. In general, if the Bayesian Reader were set up to have a perfect model of the 

distribution of possible nonwords in an experiment, and all words had the same frequency, one 

would expect reaction times for words and nonwords to be the same if the same threshold was used 

for both. Words and nonwords would be equivalent sets of items contributing equally to P(Word). 

However, in practice, there will inevitably be some differences between words and nonwords. 
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Words will each have their own individual frequency, whereas nonwords will be assigned to a 

single frequency corresponding to the mean frequency of the words. Because roughly 2% of word 

types account for about 50% of all word tokens, the mean word frequency will be very much larger 

than the frequency of most words. As the model is currently set up, most words are effectively 

competing with a virtual nonword that is higher in frequency. For low frequency words, P(Word) 

can therefore drop very low before rising toward 1.0 as more samples arrive.  If the nonword 

threshold is set too liberally, many low frequency words will be misclassified as nonwords. In 

contrast, a low word threshold does not lead to so many errors with nonwords. An ideal observer 

should therefore adapt the word and nonword thresholds to the conditions of each specific 

experiment to track the selected accuracy level. In practice, nonword thresholds are likely to have 

to be higher than word thresholds.  

 

 

INSERT FIGURE 6 ABOUT HERE 

 

Siakaluk, Sears and Lupker (2002)

Siakaluk, Sears and Lupker (2002) carried out a number of experiments investigating neighborhood 

effects, and the way they vary as a function of the nonwords used in the experiment. Experiments 

1A, 1B, 1C, and 1D all used the same set of words, but with progressively more word-like 

nonwords. Nonwords in 1A had no neighbors, while those in 1D had large numbers of neighbors. 

Their data for all four experiments and the model simulations are shown in Table 5. The table 

shows both the raw model output and also the output adjusted to fit the data from Experiment 1A. 

The general pattern of the data is that N effects are marginal for high-frequency words, apart from 

in 1D where they were actually inhibitory. For low frequency words there is a facilitatory effect of 

N for all but the words in 1D with high-frequency neighbors. Overall, words with a high-frequency 
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neighbor tend to be faster than words with no high-frequency neighbor. Once again the model 

output corresponds closely to the experimental data, and captures the interaction between N and 

word frequency and the effect of high-frequency neighbors.  The most problematic aspect of these 

data for the Bayesian Reader is that there is an 11.5ms inhibitory effect of neighborhood density for 

high-frequency words in experiment 1D. This difference was significant by subjects, but not items. 

Other things being equal, the Bayesian Reader should always produce a facilitatory effect of 

neighborhood density in the lexical decision task. However, whether or not people produce this 

pattern of data depends, of course, on whether they behave as optimal Bayesian recognizers. As 

noted earlier, it is quite possible that people might adopt a suboptimal strategy such as identifying 

the nearest word and then performing a spelling check. If this were the case (and identification 

were based on the procedure described here) then we would expect to see the same inhibitory effect 

on N found in identification. Interestingly, this possibility might provide an explanation for the 

different effect of N seen in older and younger individuals. Balota et al. (2004) found that N had a 

smaller effect in older than younger participants, Perhaps older participants are more likely to adopt 

the suboptimal strategy of first identifying the word. This is consistent with the suggestion of 

Balota et al. (2004) that older participants may be less likely to engage the specific task demands of 

the lexical decision task. 

 

INSERT TABLES 5 & 6 ABOUT HERE 

 

Experiment 2 of the Siakaluk et al. (2002) paper examined the effect of having a single high-

frequency neighbor.  Investigations of the effect of the frequency of lexical neighbors have 

produced inconsistent results (see the reviews by Andrews, 1997, and by Perea & Rosa. 2000).  

While some studies have found facilitatory effects of the presence of high frequency neighbors 

(Forster & Shen, 1996; Sears, Hino, & Lupker, 1995), others have found that high frequency 
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neighbors inhibit lexical decision (Carreiras, Perea, & Grainger, 1997; Grainger, O'Regan, Jacobs, 

& Segui, 1992; Grainger & Segui, 1990; Huntsman & Lima, 1996; Perea & Pollatsek, 1998).  

 

While simulations cannot resolve the empirical debate, it is informative to simulate a study of 

neighborhood frequency effects to illustrate the behavior of the model. One merit of the Siakaluk et 

al. (2002) study is that they manipulated both the presence of high-frequency neighbors, and N. 

Given that the major theoretical issue is whether, as predicted by MROM, high-frequency 

neighbors and N have different effects, it is hard to draw any conclusions where there is no clear 

effect of N in an experiment.  

 

Experiment 2A in Siakaluk et al. (2002) used words and nonwords with small neighborhoods, and 

Experiment 2B used stimuli with large neighborhoods. The data and simulations are shown in 

Table 5.  In line with the data, the model shows that the effect of having a single high-frequency 

neighbor is facilitatory. Note that, whereas the simulations produce faster RTs in Experiment 2B 

than in Experiment 2A, the human RTs were faster in Experiment 2A. This is most likely because 

the nonwords in Experiment 2B also had more neighbors. This is likely to require a more 

conservative threshold to produce similar error rates in the two experiments. Siakaluk et al. 

attempted to simulate this data in MROM. They report that they were unable to simulate the data 

from Experiment 2A, and the only way they could produce a facilitatory neighborhood effect in 

Experiment 2B was by using parameters that produced a nonword error rate of 21.6%, compared to 

6% in the data.  When the probability threshold for a 'No' response is set to 0.95, the Bayesian 

Reader makes no errors to any of the nonwords used in the Siakaluk et al. experiments. However, 

errors do start to appear as the threshold is lowered beyond this. 
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This illustrates an interesting difference between the Bayesian Reader and MROM. In MROM, a 

single high-frequency neighbor will have a strong inhibitory effect on the target word, and it is this 

inhibitory effect that dominates the model's behavior, rather than the increase in global activation 

that produces N effects. In the Bayesian Reader there is no inhibition between words, and lexical 

decision is facilitated by the presence of neighbors, regardless of their frequency. 

 

Summary of simulations

The simulations reported here are intended to give an indication of the behavior of the Bayesian 

Reader when words vary in frequency and in similarity to other words. The first simulations 

showed that both lexical decision and identification time in the model are an approximately 

logarithmic function of word frequency.  Simulations of the experiments by Andrews (1989, 1992), 

Forster and Shen (1996), and Siakaluk et al. (2002)  all showed that the model produces the 

expected facilitatory effect of N on lexical decision. As shown in Table 4, the facilitatory effect of 

N in lexical decision becomes an inhibitory effect when the model is required to identify the same 

items. Simulations of the Andrews and Siakaluk et al. experiments also showed that the effect of N 

is greater for low- than for high-frequency words.  The model also successfully simulates the 

inhibitory effect of N on nonwords in a lexical decision task (Forster & Shen). Finally, the model 

correctly predicts that the presence of a single high-frequency neighbor should have a facilitatory 

effect on words in lexical decision (Siakaluk et al.). Overall, the performance of the model shows a 

remarkable parallel to that of human readers in all of the experiments simulated, even when 

considering only those simulations using the standard threshold of 0.95. There has been no need to 

perform an extensive search through parameter space to get the model to fit the data. In part this is 

because the only parameters available to manipulate are the nonword distance (ND) and the 

response threshold. Furthermore, these two parameters have very similar effects. Decreasing ND or 

increasing the threshold both reduce the model’s sensitivity to N.  This can bee seen in the 
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simulations of the data from Balota, et al. (1999), and from Forster and Shen.  However, the main 

reason for the model’s insensitivity to parameter settings is that the behavior of the model observed 

in these simulations follows automatically from the demands of optimal decision making. 

 

Interpretation of Bayesian probabilities

Although Bayes’ theorem delivers an estimate of the posterior probability for each word, these 

probabilities need to be interpreted with some caution. The probabilities will only be accurate to the 

extent that the underlying assumptions are satisfied. For example, in the characterisation of the 

identification task, the probabilities depend on the input corresponding to a known word, and on the 

frequency of the word being accurately represented.  In the lexical decision simulations, 

probabilities also depend critically on the accuracy of the parameter representing the similarity of 

words and nonwords, and on assumptions about distribution of words and nonwords in perceptual 

space. As already pointed out, prior estimates of word frequency may not accurately reflect the 

probabilities of the words actually presented in an experiment.  In practice then, experimental 

participants are likely to have to modify their response thresholds during the course of an 

experiment in order to achieve the desired speed-accuracy trade-off. In the context of the present 

simulations, this means that setting the response threshold to say, 0.95, will be unlikely to produce 

an error rate of exactly 5%. Of course, in contrast to human participants, the Bayesian Reader never 

presses the wrong button by accident. 

 

Limitations of the model

The simulations reported here are intended to demonstrate the general characteristics of a Bayesian 

recognizer. No attempt has been made to incorporate extra assumptions or mechanisms into the 

model to help make the model give a better fit to the data. Primarily this is because the goal of the 

enterprise has been to establish whether many of the standard empirical findings can be explained 



 Bayesian Reader                                                                                                                                                              57 

purely on the basis of a rational analysis of the tasks involved. Any move to incorporate additional 

assumptions would increase the complexity of the model and make it harder to determine the true 

cause of the model’s behavior. However, having established that the model does give a principled 

explanation of a wide range of data, it is possible to consider how it might be developed further. 

One of the major limitations of the model is in the form of the input representations. The 

assumptions that all letters are equally confusable, and that letter representations are position-

specific, are unlikely to be an accurate characterisation of human perception (Chambers, 1979; 

O'Connor & Forster, 1981; Perea & Lupker, 2003, 2004). However, experimenting with alternative 

input representations that take some account of letter similarity made little difference to the 

behavior of the model. Even incorporating a separate level of letter representations does not alter 

the behaviour of the model. Arguably, discovering the perceptual representation of orthographic 

form is likely to remain one of the main goals of reading research for some time to come. 

 

As it stands, the Bayesian Reader has access to only two representations, the written forms of 

words, and their frequencies. Human readers have access to a great wealth of knowledge about 

words. For example, they know their pronunciation, their meaning, and whether they are likely in 

the current context. All of these factors influence ease of word recognition (see Balota et al., 2004 

for a recent review, and also Balota, 1990 ). These factors could also potentially influence an 

optimal Bayesian recognizer. Although lexical decision can only be performed reliably on the basis 

of orthographic information, recognition could be influenced by phonological information. If a 

phonological representation corresponding to a word becomes available during recognition, this 

may bias the recognizer toward a 'Yes' response. The extent of any such bias might depend, for 

example, on whether or not the nonwords in an experiment were pseudohomophones or not 

(Coltheart et al., 1977; Rubenstein, Lewis, & Rubenstein, 1971). Finally, semantic information may 

correlate with the kind of contexts words appear in (cf. McDonald & Shillcock, 2001) which, in 
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turn, may alter the expectation that different classes of word (e.g. abstract/concrete) may appear in 

isolation in a psychological experiment. 

 

As already noted, P(W) should really be an estimate of the probability that a word will appear in 

the current context, so one would expect recognition to be influenced by contextual factors. The 

Bayesian account is neutral as to the exact mechanism responsible for calculating prior 

probabilities. For example, contextual probabilities could be modulated by spreading activation 

(Collins & Loftus, 1975; McNamara, 1992) compound cueing (Ratcliff & McKoon, 1988), or 

plausibility checking (Norris, 1986). Although context must be mediated by its influence on the 

Bayesian prior probabilities, this does not mean that the priors have to be determined ‘prior’ to the 

presentation of the target word. Priors simply need to be available at the point when the Bayesian 

computations are performed. In the Bayesian Reader these computations are being performed 

continuously so, for example, the priors could be updated as a result of a plausibility checking 

process taking place during the course of recognition. In contrast to spreading activation models, 

probabilities should go down as well as up. That is, words that are unlikely in a particular context 

should have P(W) reduced, and therefore should be inhibited (for review of context effects in 

reading see Neely, 1991). According to the Bayesian analysis, inhibition, like frequency, is an 

important factor in helping recognition. Reducing the probability of contextually improbable words 

will benefit the recognition of contextually probable words by decreasing the effective competition.  

Importantly, facilitation and inhibition (increasing and decreasing prior probabilities) should act as 

an integrated process. This would seem to be more compatible with a unitary account like 

plausibility checking than two-process accounts involving facilitation by spreading activation, 

combined with attention-based inhibition.  
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The simulations presented here have all focussed on mean RT. In recent years, a number of 

researchers have also performed analyses of RT distributions in lexical decision and naming 

(Andrews & Heathcote, 2001; Balota & Spieler, 1999; Grainger & Jacobs, 1996; Ratcliff et al., 

2004). Because the simulations presented here include noise in the sampling process, we can also 

measure the distributions of the model RTs. However, a consistent feature of these simulations is 

that RTs have very small variance. For example, in a simulation comparing two sets of 20 words, 

one with a Kucera and Francis (1967) frequency of  approximately 100, and one with a frequency 

of approximately 5 (the same frequency range used by Balota and Speiler (1999), the model 

produces RT distributions that have almost no overlap. Given that the model simulates an ideal 

observer, and that the only source of noise is in the sampling process, this is perhaps not too 

surprising. Even if the human perceptual system did approximate an ideal observer, it is highly 

implausible that there would be no additional sources of noise in decision or response execution 

processes. For example, there might be trial-to-trial variability in the variance of the input noise, the 

threshold value, or ND.  Note that Wagenmakers et al. (2004) had to add noise to their model in the 

form of trial-to-trial variation in the effective start of feature activation, in order to simulate the 

detailed pattern of speed-accuracy trade off that they observed. Variability in the decision criteria 

also plays an important role in MROM. 

 

I have not yet investigated the effects of adding noise elsewhere. Partly this is because the model is 

already computationally expensive, and collecting sufficient data to examine changes in response 

distributions while varying several noise parameters would be an exceedingly slow process.  

 

Although I have argued that the assumption that human readers approximate optimal Bayesian 

decision-makers goes a long way to explaining the general character of human visual word 

recognition, it would seem unlikely that humans can ever be completely optimal in their behavior. 
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As noted above, there are almost certainly significant uncontrolled sources of noise in the human 

perceptual system. Furthermore, not all participants in an experiment will be guaranteed to home in 

on an optimal strategy.  For example, Balota et al. (2004) suggested that their older participants 

might not engage fully with the demands of the lexical decision task. Some readers might adopt a 

cautious strategy of first identifying the closest word, and then checking to see whether the word is 

spelled correctly. The issue of optimality in the early perceptual stages of reading has been 

investigated by Pelli, et al. (2003). They presented evidence that, under some circumstances at 

least, word recognition is in fact suboptimal. They investigated whether readers were able to make 

full use of all of the visual information in a word, or were dependent on identifying individual 

letters in the word. Using a perceptual identification task they found that readers were not able to 

integrate all of the available visual information. An ideal observer should be able to recognize all 

words equally well so long as they have the same overall contrast energy. That is, longer words 

should require less contrast energy per letter than shorter words. However, Pelli et al. found that 

identification performance was determined by the contrast energy of the individual letters. Readers 

therefore behaved as though each letter had to be identified separately, rather than being able to 

identify words as wholes.  

 

Pelli et al. (2003) simulated their data using a two-stage model in which the first stage outputs a 

single hypothesis as to the identity of each letter. The second stage then uses knowledge of the 

confusions produced at the first stage to produce a best guess as to the identity of the word. Their 

simulations were based on empirically derived letter-confusion matrices at each of three contrast 

levels. For each input letter the confusion matrix gives the probability that the letter will be 

identified as any particular output letter. They assume that, given a particular letter as input, the 

first stage of recognition emits an output letter in accordance with the probabilities from the 

confusion matrices. The second stage has knowledge of these confusion probabilities. That is, for 
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each letter it knows P(letter produced by first stage | true identity of input letter). The probabilities 

P(Word|Input) can be computed from the products of the letter probabilities. Combined with 

knowledge of P(Word), Bayes’ theorem can then be used to compute P(Word | Input). This is 

exactly how the Bayesian Reader operates when it is implemented with an intermediate level of 

letter representations. 

 

A focus of some concern in the word recognition literature has been the effect of list composition. 

The main empirical finding is that responses are faster in lists consisting of only easy words, than 

when lists contain both easy and hard words together. Responses to hard words tend to be faster in 

mixed lists than in pure lists of hard words. This effect is found both for naming (Lupker, Brown, 

& Colombo, 1997; Rastle, Kinoshita, Lupker, & Coltheart, 2003; Taylor & Lupker, 2001) and 

lexical decision (Dorfman & Glanzer, 1988; Glanzer & Ehrenreich, 1979; Gordon, 1983; Perea et 

al., in press; Rastle et al.) and also for tasks not involving word recognition (Strayer & Kraymer, 

1994). The standard explanations for list composition effects are in terms of adjustments in 

response criteria (Grainger & Jacobs, 1996; Lupker et al., 1997 ; Perea et al., ; Taylor & Lupker).  

For example, criterion bias models would explain these data by assuming that participants can set a 

lower threshold when lists contain only high-frequency words. When there are no low-frequency 

words, a more liberal threshold can be set for responding ‘No’, leading to faster ‘No’ responses in 

pure high-frequency lists. Both of these options are clearly available to the Bayesian Reader, and an 

ideal observer would be expected to adjust its decision criteria to optimize performance. However, 

Mozer et al. (2004) reported that they were unable to simulate the full pattern of list composition 

effects by a simple manipulation of response thresholds. Instead, they developed a Bayesian 

explanation for how participants adapt to list composition, which is compatible with the Bayesian 

Reader.  They assume that a participant’s placement of a response threshold is influenced by what 

they refer to as the Historical Accuracy Trace.  In terms of the Bayesian Reader, this can be 
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thought of as the average function relating P(a word) to time over recent trials. This is combined 

with the Current Activity Trace (CAT, equivalent to the growth of P(a word) over time in the 

Bayesian Reader) to generate a weighted Mean Activity Trace (MAT). Responses are determined 

by a threshold placed on the MAT rather than the CAT itself, and this is what causes the list 

composition effect. 

 

If a high-frequency word appears in a list of mixed high and low-frequency words, the MAT for the 

word will under-estimate the accuracy  expected for a given level of P(a word), and responses will 

be slower than they would have been in a pure high-frequency list. Conversely, if a low-frequency 

word appears in a mixed list, the MAT will over-estimate the accuracy expected for a given level of 

P(a word) and responses will speed up relative to what would be expected in a list of pure high-

frequency words.  

 

 

 

 

 

Comparison with other models 

 

REM-LD

The Bayesian heritage of the model places it in the same lineage as the REM-LD model of 

Wagenmakers et al. (2004). Both models depend on accumulating evidence over time, and on 

making a Bayesian decision as to whether the input is a word or a nonword. However, the models 

differ in the form of the input representations, the details of the evidence accumulation, and their 

accounts of frequency and neighborhood density. Furthermore, whereas the Bayesian Reader was 
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developed to establish the general characteristics of a Bayesian recognizer in a range of tasks, 

REM-LD was designed to provide a detailed fit to results from experiments using the response-

signal lexical decision task. Consequently, REM-LD requires many more parameters than the 

Bayesian Reader.  

 

In the response-signal task, participants are required to make a response at a particular point in 

time, rather than when they are confident in making a correct decision. As Wagenmakers et al. 

(2004) note, performance in this task is difficult to explain with models such as MROM where 

there are multiple response criteria (see below).  However, Bayesian models are ideally suited to 

this kind of task as they generate a single output representing the probability that the stimulus is a 

word. When participants are signalled to respond they simply need to determine whether P(a word) 

is greater or less than 0.5.  

 

A significant difference between the models is in the form that the input takes. In REM-LD, words 

are coded in terms of a set of 30 discrete features that are sampled without replacement. Each input 

feature has some probability of matching the corresponding feature of a word, given that the word 

contains that feature (beta 1), and some probability that the probe will match a word, given that the 

word does not contain that feature (beta 2). These probabilities place a fixed limit on the amount of 

perceptual evidence that can be extracted from the input. The vectors that represent words in their 

simulations are generated according to these probabilities, and do not represent the actual form of 

real words. beta 1 and beta 2 are free parameters in the model. They effectively determine how 

reliably the input features help to discriminate between alternative words and, in that respect, they 

are broadly analogous to the distances between words in the present model.  In REM-LD the 

probabilities are set for the entire lexicon, meaning that all words in any single simulation 

effectively have the same neighborhood density. REM-LD is therefore only used to simulate the 



 Bayesian Reader                                                                                                                                                              64 

behavior of sets of words with general properties, and does not simulate responses to specific 

words. 

 

Wagenmakers et al. (2004) reported simulations of a response-signal experiment using nonwords 

varying in word-likeness. They simulated responses to 4-letter nonwords that differed from words 

either by a single letter, or by 2 letters. Although nonwords differing from words by two letters 

clearly must have an N of 0, nonwords differing from words by a single letter could have any value 

of N between 1 and 25, so this manipulation is rather different from standard manipulations of N. 

Word-likeness was simulated by lowering the probability that a feature in a word would match the 

input given that the feature was not actually in the input for less word-like nonwords.  In effect, this 

makes less word-like nonwords easier to discriminate from words. 

 

However, this way of simulating word-likeness seems difficult to motivate given that both words 

and nonwords are comprised of the same set of features. This implies that a given feature has one 

probability of incorrectly matching a word when the feature comes from presentation of a word-like 

nonword or a word, and a different probability when the feature is in a less word-like nonword.  In 

other words, identical features must be marked according to which type of stimulus they belong to.  

Another significant difference between the models is that in REM-LD the rate of accumulation is 

not-linear, but is a negatively accelerated function that is determined by a rate parameter, b. 

 

Whereas the central focus of the present work is on the proper treatment of word frequency, 

Wagenmakers et al. (2004) do not commit themselves to any particular explanation of the word 

frequency effect. For the purposes of their simulations, they assume that frequency alters 

probability of a match between a probe (input) feature and a feature in a word, given that the word 

and probe feature are the same. The main advantage of the current model over REM-LD is 
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therefore that the current model gives a natural and completely Bayesian account of word 

frequency. Furthermore, by using a form of input that can represent individual words, the Bayesian 

account automatically explains neighborhood effects without any additional assumptions or 

parameters. 

 

ACT-R 

Van Rijn and Anderson (2003) presented a model of speeded lexical decision in the ACT-R 

(Anderson, 1993) framework. They simulated the same response-signal data as Wagenmakers et al. 

(2004). This model has the advantage that it uses a standard lexicon, and frequency is a function of 

each word's CELEX frequency. However, the input to the model is log frequency rather than linear 

frequency. The growth of word activation over time in the model is handled by a "competitive 

latency mechanism" whereby time to retrieve chunk depends on its own activation relative to the 

activation of other chunks. This clearly has parallels with Bayes’ equation, the Luce choice rule, 

and the FLMP. However, the basic principles of the model do not explain why the more word-like 

nonwords should be harder to classify than the less word-like nonwords (as they were in the 

Wagenmakers et al., 2004 data). In order to get the model to simulate this aspect of the data, high 

word-like nonwords are assumed to retrieve more words that are similar to the nonwords than are 

less word-like nonwords. 

 

In common with REM-LD then, the ACT-R account of lexical decision has no principled reason for 

the particular choice of word frequency mechanism. Although both ACT-R and REM-LD have an 

intuitively reasonable account of the influence of word-likeness on nonword responses, the account 

does not follow necessarily from the basic assumptions of the models. 
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Search models

The search model (Forster, 1976; Murray & Forster, 2004) shares only one feature with the 

Bayesian Reader: both predict that word recognition RT should be a roughly logarithmic function 

of frequency. Murray and Forster have argued that rank position in a frequency ordered lexicon is a 

better predictor of RT than is log frequency. However, as can be seen from the correlations 

presented in Table 1 the differences between the two measures are very small. 

 

A limitation of the search model is that the function relating frequency to RT and error rate is the 

only prediction that follows directly from the basic search model. All other predictions require 

additional assumptions. For example, facilitatory effects of neighborhood density in the lexical 

decision task are attributed to an unspecified bias in the decision process (Forster & Shen, 1996). 

One might argue that the Bayesian Reader also has a bias to respond positively to more word-like 

stimuli. However, this bias is an integral and unavoidable part of the process of making optimal 

decisions. 

 

 

Ratcliff, Gomez and McKoon (2004) 

Ratcliff, et al.  (2004) have recently applied Ratcliff's (1978) diffusion model to the lexical decision 

task. In their account of lexical decision, a diffusion process is driven by an input corresponding to 

a value on a word-nonword continuum. The drift rate of the diffusion process is determined by the 

value on the word-nonword continuum. On the basis of an analysis of RT distributions, Ratcliff et 

al. concluded that the effect of word frequency in lexical decision can be characterized solely by a 

change in the drift rate of the diffusion process. This has intriguing implications for the nature of 

the word recognition process. It implies that word frequency has no effect at all on the duration of 

word recognition itself. Apart from some variation due to noise, the word recognition process must 
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always take the same amount of time to complete, regardless of word frequency. Once a word has 

been recognized, the recognizer outputs a value on the word-nonword continuum as a signal to 

commence the diffusion process. This ensures that, although the word recognition system is able to 

identify high and low frequency words equally quickly, the diffusion process is told to respond 

more slowly to low frequency words. In effect, the explanation for the word frequency effect in 

lexical decision is that, for some unspecified reason, low frequency words are responded to more 

slowly than high frequency words. In the absence of any reason why frequency should modulate 

drift rate, the diffusion account suffers from the same problem as the other models reviewed here.  

Having a lower drift rate for low-frequency words is suboptimal, because recognition would be 

faster if low-frequency words had the same drift rate as high-frequency words.  Part of the problem 

with the diffusion model may be that it assumes a constant drift rate.   The probabilities in the 

Bayesian Reader can also be considered to be a random walk, with probabilities starting near 

P(Word) = 0.5, and drifting toward an upper boundary determined by the threshold for a word 

response, and a lower boundary determined by the threshold for a nonword response.  However, in 

the Bayesian Reader the drift rate (expected change in probability per step) changes over time. 

More importantly, the random walk begins at the very beginning of the word recognition process, 

not the end. The change in drift rate both over time, and as a function of frequency, reflects the 

dynamics of the word recognition process itself, and is not simply an uninteresting side-effect of a 

decision process.  

 

Jacobs and Grainger's MROM 

MROM probably simulates the broadest range of data from perceptual identification and lexical 

decision tasks of any current model. The underlying mechanism of MROM is an interactive 

activation model similar to that of Rumelhart and McClelland (1982). However, in order to 

simulate lexical decision data, the interactive activation model has to be supplemented with extra 
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decision criteria (the ∑ and T criteria). MROM simulations use three response criteria. The M 

criterion is sensitive to the activation in individual word units, the ∑ criterion is sensitive to the 

total level of activation in the lexicon, and the T criterion is a time deadline for making ‘No’ 

responses. During processing,  these criteria can be altered on the basis of the overall lexical 

activation. If overall activation is high after seven processing cycles, T is increased and ∑ is 

decreased.  Because overall activation will tend to be higher for high N words and nonwords, this 

will tend to make responses to high N words faster than to low N words, while making responses to 

high N nonwords slower than to low N nonwords. By adding these two new criteria to the basic 

interactive activation model, MROM is able to simulate both the facilitatory effect of neighborhood 

density on words in the lexical decision task and the inhibitory effect of density on nonwords. The 

DRC model of (Coltheart et al., 2001) explains lexical decision in the same way as MROM. 

However, what is lacking in either MROM or DRC is an independent motivation for why lexical 

decision should  be influenced by overall lexical activation. As Grainger and Jacobs themselves 

note (Grainger & Jacobs, 1996, pp 559 & 565), the total level of lexical activation is not a reliable 

cue to lexical decision. This means that placing too much reliance on overall lexical activation can 

make the model produce a very high error rate. For example, Siakaluk et al. (Siakaluk et al., 2002). 

found that MROM could not simulate their neighborhood data from words without producing far 

too many errors on nonwords (Siakaluk et al., , p 677). The Bayesian Reader was able to simulate 

these data while still classifying nonwords accurately. Grainger and Jacobs motivate MROM as 

extending the scope of interactive activation models, and providing an integrated account of 

identification and lexical decision. However, the central problem with the model is that the only 

reason for using the ∑ criteria on summed activation is to transform the inhibitory effect of N seen 

in identification into the facilitatory effect found in lexical decision. Interestingly, the Bayesian 

Reader has to compute a measure of summed ‘activation’ (P(I)) in order to identify words at all. 

This reason for this can be seen both in the basic Bayes’ equation (Equation 2) and in Figure 1. In 
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fact, if decisions are made very slowly it is possible to make completely accurate lexical decisions 

based solely on P(I). After a sufficiently large number of samples, P(I) should approach 1.0 for 

words, and 0.0 for nonwords. However, using a threshold on P(I) is a very suboptimal decision rule 

because P(I) can be quite large early on in processing, decrease, and then increase again. Although 

the Bayesian approach might seem to provide some justification for the use of summed activation 

in MROM, it could only be fully justified if MROM were also modified to deliver an estimate of 

P(I) based on the P(I|W)s. As P(I|W) is not available from the interactive activation network in 

MROM, the entire network would have to be replaced with a network able to compute the relevant 

probabilities. This would effectively transform MROM into a notational variant of the Bayesian 

Reader. 

 

Wagenmakers et al. (2004) raised a number of criticisms of MROM with regard to its ability to 

simulate data from the response-signal paradigm. For example, it is not clear how the model could 

be modified to generate a response before any of its response criteria were exceeded. In fact, this is 

a problem for all activation models. How can an activation model decide whether a stimulus is a 

word or nonword in a response-signal task where the criteria cannot be reliably set before stimulus 

presentation? From the onset of stimulus presentation both the activation of individual words and 

the overall lexical activation will grow. If a response is required before the criteria are reached, how 

is a decision to be made? The only principled way to make a decision is to determine whether the 

amount of activation is more or less than would be expected at that time if the target were a word. 

This implies that the model needs to know how the values of the response criteria should change 

over time. In contrast, in both REM-LD and the Bayesian Reader, there is a single probability 

measure that can be continuously monitored. At any point in time it is possible to make a lexical 

decision based on whether that single value of  P(a word) is above or below 0.5.  For the same 
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reason, a Bayesian mechanism doesn’t need a response deadline criterion for making ‘no’ 

responses, as all that is required is to monitor P( a word). 

 

The Neighborhood Activation Model (Luce & Pisoni, 1998) 

Luce and Pisoni’s Neighborhood Activation Model (NAM) of spoken word recognition has some 

important similarities with the Bayesian Reader. In their model, estimates of the confusibility of 

words are derived empirically by measuring identification of words in noise. This allows them to 

derive an estimate of the probability that listeners will respond with a given word, given a 

particular phoneme sequence as input. Using the Luce (1959) choice rule, the product of these 

probabilities and word frequency is then used to derive an estimate of the activation of each word. 

As already noted, the Luce choice rule and Bayes’ theorem have a similar form. Luce and Pisoni 

found that NAM was a better predictor of lexical decision latency than was log frequency. 

Interestingly, in contrast to the standard finding with visual lexical decision, the effect of 

neighborhood density in their study was inhibitory.  This difference between visual and spoken 

word recognition could well be attributable to the serial nature of speech processing. However, 

setting aside the fact that it is a model of spoken rather than visual word recognition, NAM has two 

main limitations. The first is that it only gives a single static estimate of word activation at one 

point in time, and does not simulate RT directly. The second is that both lexical decision and 

identification are modelled in exactly the same way.  

 

 

Discussion 

The present paper has developed a model of word recognition based on a rational analysis of the 

tasks of visual word identification and lexical decision. The rational analysis rests on some very 

simple assumptions about the nature of lexical representations of word form, and the kind of input 
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available to a recognizer. In fact, the assumptions are so general that exactly the same principles 

could be used to model recognition of other stimuli such as faces or objects, and a similar pattern of 

results should emerge. Words are assumed to be represented as points in a multidimensional space. 

Input is assumed to accumulate over time by sampling from a noisy distribution centered on the 

point in space corresponding to the string of letters presented to the recognizer. These assumptions 

then entirely determine the behavior of an ideal observer performing word identification or lexical 

decision. The Bayesian Reader was shown to simulate some of the most important empirical 

findings in the literature on visual word recognition. The recognizer produces a logarithmic 

function relating word frequency to recognition time, and accounts for the different patterns of 

orthographic neighborhood effects seen in identification and lexical decision tasks. 

 

The major achievement of the Bayesian Reader is that it explains why a recognition system should 

be influenced by word frequency and neighborhood density. As noted in the Introduction, although 

existing models can simulate the effects of word frequency, what they fail to do is offer an 

explanation of why there should be an effect of word frequency at all. Similarly, while some 

models can simulate the change in the neighborhood density effect between identification and 

lexical decision tasks, only the Bayesian Reader explains why it is that performance in these tasks 

should differ in this way. 

 

The rational analysis approach adopted here started by developing an analysis of the task, which 

effectively involves construction of what (Marr, 1982) terms a "computational theory". A 

computational theory concerns itself with the nature of the computations that must be performed to 

carry out the task of interest, and does not necessarily make any claims about human behavior.  

In contrast, the starting point for most psychological models of visual word recognition is the 

choice of a mechanism, such as search, logogens, or interactive activation networks. Having 
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selected a mechanism, the model is then modified as required to make it fit the data.  This is 

exemplified quite clearly in the development of MROM. By beginning with an interactive 

activation network that produces inhibitory effects of neighborhood density, Granger and Jacobs 

(1996) were forced to modify their model by adding extra decision criteria that would make it 

consistent with fact that density effects are facilitatory in lexical decision. These moves enable the 

model to simulate the data but, unlike the Bayesian Reader, they don't explain why the pattern of 

neighborhood effects should vary according to the task. The accounts of word frequency offered by 

most theories suffer from a similar problem. As was argued in the Introduction, sensitivity to word 

frequency generally emerges as a consequence of some arbitrary or maladaptive property of the 

recognition system.  For example, frequency effects might be due to frequency dependent 

recognition thresholds or resting levels, as in the logogen model or interactive-activation models. 

However, thresholds could equally well be set to produce a reverse frequency effect. If frequency 

effects are a consequence of learning in connectionist networks, as suggested by Monsell (1991), 

then they are an unfortunate side effect of an inefficient learning mechanism. In contrast, according 

to the Bayesian account offered here, sensitivity to word frequency is an entirely beneficial and 

adaptive property of the recognition system. 

 

One of the most important features of the Bayesian Reader is that its behavior follows entirely from 

the requirement to make optimal decisions based on the available information. Given the initial 

assumptions, and a specification of the decision to be made, there is only one way the model can 

behave. The model has not been influenced or changed in any way by consideration of the data. 

Although it may seem strange to extol the virtues of a model that has not been influenced by the 

data, the strength of this approach is that it offers an explanation for why people behave the way 

they do.  To the extent that people behave in line with the predictions of the Bayesian Reader, this 

suggests that people are recognising words in an optimal manner. The explanation for why people 



 Bayesian Reader                                                                                                                                                              73 

are sensitive to word frequency and neighborhood density is therefore that this is exactly how they 

should behave if they are to perform recognition optimally. 
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Footnotes 

1. See Geisler & Kersten (2002) , for a brief introduction to the concept of the ideal observer, or 

Geisler (2003),  for a slightly more formal treatment. 

2. The program used to run the simulations (Windows version only) is available to download from 

http://www.mrc-cbu.cam.ac.uk/~dennis/BayesianReader 

3. CELEX frequencies were obtained by collapsing over all occurrences of each orthographic 

form in the CELEX database. 

4. Under some circumstances it would also be possible perform lexical decision by assuming that 

the lexicon contained a single ‘nonword’ for which  f(I|nonword) had the same small value 

regardless of the perceptual input. A lexical decision response could be based on the 

corresponding P(nonword|I). If the input is a non-word, all f(I|Wi) will approach zero, and 

P(nonword|I) will therefore approach 1.0. If the input is a word, f(I|nonword) will be small 

relative to the sum of P(Wi|input) x P(Wi), and P(nonword|I) will approach zero.  

http://www.mrc-cbu.cam.ac.uk/~dennis/BayesianReader
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Appendix A 

 

Calculation of word probabilities in the Bayesian Reader 

 

Representation of words 

In the representations used in the simulations reported here, each word is represented by a vector of 

26 L, where L is the number of letters in the word. In the sub-vectors corresponding to each letter 

one coordinate is set to 1 and the remainder to 0. Each word vector therefore corresponds to a point 

in multidimensional perceptual space. 

 

Note that, in principle, the coordinates of the vector can take any real value and can be altered to 

reflect, for example, letter similarity. 

 

The input letter-string is also represented by a vector of the same form. The input vector therefore 

also corresponds to a point in perceptual space. 

 

Sampling

Each sample presented to the model is derived by adding zero-mean Gaussian noise, with 

standard-deviation σ, to each coordinate of the vector corresponding to the input letter string. After 

each new sample st is received, the mean µ of the sample vectors is updated. This is simply 

calculated by computing the average value of the sample vectors for each coordinate. 

 

The standard error of the mean (SEM) is then computed. The SEM is calculated on the basis of the 

distance between the location of each sample vector and the location of the mean of the sample 

vectors. Distance between two vectors (the sample mean µ and a sample vector st) is given by  



 Bayesian Reader                                                                                                                                                              93 

 

 

 

( )2

1
(16)

i n

t t i ti
i

d s sµ µ
=

=

= − = −∑
 

where  µ is the vector corresponding to the mean, and st is the sample vector and n is the number of 

coordinates of the vector (number of dimensions/features) which, in the present case is 26 L. 

 

The SEM is calculated in the usual way, where SEM is  
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where N is the sample size.  
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Calculating the likelihood of each word: 
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The likelihood of each word is then calculated on the basis of the distance, DI = ||µ - Wi || between 

each word and the mean of the input sample. The likelihood, f(µ|Wi), is then given by 

 

Note that as all the calculations are based on likelihood ratios, the first term of equation (19) can be 

ignored, as it is common to all likelihoods, giving: 
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This, in conjunction with word frequency (P(Wx)), provides the values used to compute P(Wx|µ)  

for every word, 
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where m is the number of words in the lexicon. Equation 21 is equivalent to Equation 8 in the main 

text. 

 

In lexical decision the same equations govern the calculation of nonword probabilities. When the 

task is identification, a response is generated when P(W|I) for one word exceeds the specified 

response threshold. 
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Appendix B 

 

Calculation of Background Nonwords 

 

The likelihood or probability of background nonwords can be calculated, or approximated, in 

different ways, depending on the nature of the input representations.  The current simulations take 

advantage of the fact that, given the form of the letter representations used, all letter strings must 

fall at one of a set of discrete distances from the closest letter string to the mean, as determined by 

the number of letters they share with that string. For any given letter string there will be 

background nonwords that differ by one letter, by two letters, and so on up to the length of the 

letter string. For any word or letter string of a given length we can calculate how many other letter 

strings can be constructed that differ by 1, 2 or more letters.  For example, for 4-letter strings the 

figures are 100, 3750, 62500 and 390625, for 1, 2, 3 and 4 letters. We also know how far these 

letter strings are from a given letter-string. These distances are 1.41, 2.0, 2.45 and 2.83 respectively 

(i.e. √2, √4, √6, √8).  So, for any input I, we can use this information to estimate the contribution of 

the background nonwords to P(I| a nonword), and hence calculate P(a word | I), as in Equation 8. 

Note that the frequency of the virtual nonword is still set to be the same as the average word 

frequency, and the full set of background nonwords plus the virtual nonword are set to have the 

same total frequency as the words. That is, overall, both the words and the nonwords have a 

summed probability of 0.5. The relevant calculations are shown in Equations 22-25. 
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Where m is the number of words in the lexicon, 26 is the number of letters in the alphabet, L is the 

word length, Di is the distance from the input mean of nonwords differing by i letters, and Ni is the 

number of nonwords at that distance. As already noted, this simple model of background nonwords 

takes no account of factors such as whether or not nonwords might be pronounceable. Also, all 

regions of space have the same nonword density, regardless of how many words are in that region. 

In fact, because the number of possible letter strings is so much greater than the number of actual 

words, no correction is made for the fact that some very small proportion of possible strings will 

correspond to words. Furthermore, because the distances to background nonwords are measured 

relative to the input, there is no guarantee that they will correspond exactly to real letter strings. 

Although it is possible to develop a more elaborate model of background nonwords, the method 

described here does what is required to roughly balance the overall word and nonword probabilities 

early in processing when there is still ambiguity in the input. Indeed, simulations using slightly 

different models of background nonwords produce the same pattern of results. When the SEM is 

large, probabilities will now be influenced both by words that are some way away from the input 

word, and also by distant nonwords. If a very high probability threshold is used, it makes little 

difference whether the background words are included. With high thresholds, only words and 

nonwords very close to the input have any influence on the probabilities. The addition of the 

background nonwords adds hardly anything to the computational complexity of the model as it only 
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adds one term for each letter in the input string. Most of the computation still involves calculation 

of word probabilities. 

 

If words are recognized via letter representations (as in Pelli et al., 2003), the background 

likelihood can be calculated in a different way. P(I|W) is given by the product of  P(I|letter) for 

each letter in the word. An estimate of the likelihood of the background nonwords can then be 

based on . This is effectively the summed likelihood of each string of letters 

that is not one of the words. The virtual nonword itself is simply the most likely sequence of letters 

that is not a word (this is similar  to setting ND to a distance corresponding to a letter).  A version 

of the model using an intermediate letter level has been implemented and produces results very 

similar to the simulations reported here. 

∑
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The procedure used for letters illustrates that, even when not using a letter level,  the influence of 

background nonwords can be estimated by working in the domain of probabilities rather than 

likelihoods. In the same way that the probability of all letter strings must sum to 1, the area under 

the pdf of the normal distribution (as in Figure 1) must also sum to 1. Combined with the 

assumption that no nonword can be closer than ND to the nearest word, this provides another way 

of obtaining an approximate correction for background nonwords. If the distribution is centered on 

the word closest to the mean, there is a slice 2 x ND wide in the center of the pdf that cannot 

contain a nonword. With a large SEM this slice will correspond to only a small proportion of the 

total probability. If the input is a word, and the SEM is very small, this slice will encompass the 

entire pdf. The contribution of background nonwords will therefore be proportional to the area in 

the tails of the normal distribution beyond +/- ND, which depends only on the SEM. It would also 
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be possible to take this further and subtract out an estimate of the probability of the words derived 

from their likelihoods. 
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Figure Captions 

Figure 1 

Figure 1 shows the input distributions centered on two words at times early and late in processing. 

The figure is based on the assumption that there is a lexicon of only two words, and that they vary 

on a single perceptual dimension. Each curve represents the probability density function of  ƒ(I|Wi) 

for a given SEM. Calculations are based on likelihoods, that is, on the heights of the probability 

density function of each word at the point corresponding to the mean of the input distribution. The 

lower two curves correspond to a time early in processing where the SEM is large. The ratio of the 

heights of these two curves at the position corresponding to the mean of the input distribution is 

close to one, indicating that both words have similar probabilities. For the upper curves, 

corresponding to later in processing, the SEM is much smaller. As P(input|word 2) is now almost 

zero, P(word 1| input) will be close to 1.0. Note that, at any given time, the pdfs for all words are 

the same as they are all determined by the SEM of the input distribution. 

 

Figure 2 

Possible network implementation of the Bayesian Reader. Not all connections shown. See text for 

details. 

 

 

Figure 3 

Simulation of the effect of word-frequency in word identification. Model RT (in samples) is plotted 

against log word frequency. The figure also shows the regression line for RT against log frequency. 

This line accounts for 99% of the variance. 
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Figure 4 

Simulation of the effect of word-frequency in lexical decision. Model RT (in samples) is plotted 

against log word frequency. The figure also shows the regression line for RT against log frequency. 

This line accounts for 99% of the variance. 

 

Figure 5 

Illustration of areas of high- and low neighborhood density in perceptual space. Each dot represents 

a word, and ‘High’ and ‘Low’ correspond to the centers of input distributions in high and low 

density areas of lexical space respectively. 

 

Figure 6 a-c 

Data and simulations of Forster and Shen showing data (in Milliseconds) and simulated lexical 

decision times to words and nonwords as a function of number of neighbors. Panel a shows the 

data, Panel b shows simulated RT with a response threshold of 0.95, and Panel c shows simulations 

with a threshold of 0.75. 
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Figure 1 
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Figure 2. 
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Figure 3  
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Figure 4  
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Figure 5 
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Figure 6 a-c 
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Table 1  

RT 1.0

Log freq -0.60 1.0

Rank freq -0.63 -0.89 1.0

N -0.11 0.10 -0.10 1.0

Model (0.99) 0.61 -0.99 0.91 -0.14

Model (0.95) 0.56 -0.89 0.82 -0.25

RT Log freq Rank N

 

 

Table 1. 

Correlations of model with data from Balota, Cortese and Pilotti (1999).  Correlations are based on 

1215  4-letter words  Model correlations are shown with thresholds of both 0.99 and 0.95. 
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Table 2. Andrews (1989) Experiment 1 

 

 

 

 

  

 

 

 

 

 

  Data  Model  Adjusted Model 

  High N Low N  High N Low N  High N Low N 

High F  602 608  371 404  597 613 

Low F  693 733  570 651  693 732 

 

 

Table 2 shows mean lexical decision latencies (in Milliseconds) from Experiment 1 of Andrews 

(1989) (Data), the unadjusted results of the model simulations (Model), and the model output fitted 

to the data by regressing the model against the data. 
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Table 3. Andrews (1992) Experiment 1 

 

 

  Data  Model  Adjusted Model 

  High N Low N  High N Low N  High N Low N 

High F  586 570  323 326  577 578 

Low F  714 757  602 698  712 759 

 

 

Table 3 shows mean lexical decision latencies from Experiment 1 of Andrews 1992 (Data), the 

unadjusted results of the model simulations (Model), and the model output fitted to the data by 

regressing the model against the data. 
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Table 4 

Simulation of identification times (raw model) for the items from Andrews (1989), Experiment 1. 

  

   Model  

   High N Low N  

High F   586 419  

Low F   889 643  
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 Table 5. Simulations of Siakaluk, Sears and Lupker (2002), Experiment 1 

 

 

Source of data 1A 1B 1C 1D Raw 
Model 

Adjusted 
Model 

Condition       

hf largeN hfN 476 521 541 564 353 478 
hf smallN hfN 481 519 543 552 360 479 
hf largeN no hfN 480 519 542 568 360 479 
hf smallN no hfN 486 525 544 557 372 482 
lf largeN hfN 494 548 579 602 457 502 
lf smallN hfN 507 564 598 600 472 505 
lf largeN no hfN 509 562 593 609 485 508 
lf smallN no hfN 517 575 613 615 524 517 

 

Table 5. 

Lexical decision data (in Milliseconds) from experiments 1A-1D of Siakaluk et al. (2002), along 

with model simulations. The table shows both Raw Model output (in samples) and Adjusted Model 

output where the model has been fttted to the data from 1A.   

Note. 

Hf: high frequency word, lf: low frequency word, largeN: large neighborhood, smallN: small 

neighborhood, hfN: high frequency neighbor. 

 

 

 

 

 

 



 Bayesian Reader                                                                                                                                                              112 

 

Table 6. Simulations of Siakaluk, Sears and Lupker (2002), Experiment 2 

 

 

Experiment Condition Data Model 

smallN no hfN 561 524 
2A 

smallN one hfN 545 473 

largeN no hfN 603 492 
2B 

largeN one hfN 588 470 

 

 

Table 6 

Mean lexical decision latencies (in Milliseconds) and model simulations (samples) for the data 

from Siakaluk,  Sears and Lupker (2002) Experiment 2A (small N words) and Experiment 2B 

(large N words). Note that the Model RTs here represent the raw output of the model, and that 2A 

and 2B used different participants. 

 

 

 

 

 

 

 

 

 
 


