
Best
Available

Copy

.,

WVII1 .. >■ II. .11 ■■•III UP II. Ill 11« MU I ■!I»PWWWPS«wp"wp»p|i i II IHillUJJIilllüpi mtnm^immmi^mm«iiytti«t mii^m'i.v^t*.' ■in (UKN i

AD/A-003 599

THE BCPL REFERENCE MANUAL

Martin Richards, et al

Massachusetts Institute of Technology

I

r
Prepared for:

Office of Naval Research
Advanced Research Projects Agency

Decemher 1974

DISTRIBUTED BY:

im
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

in\wmm ii — ir i Bmmtmtmlmtlimttm
■

~mmmmmmmmmmm>m ——-«— i i aiingp qmi^iv II ■■ II i ,-wi.« ww 1 ■■ ' '■«^

BIBLIOGRAPHIC DA'A
SHEET

1. Ki port No.

MAC rR-i4i

3. Kwipi

Am^M? i 4. ! H M UK! suhl it I

The BCPL Reference Manual

7. VmhiMi- i

RirharHw, Martin, A. Rvans, Jr., and '.*. F. Mahee

December 1974

8* 1 \ r 1 or in m ,■ 1 V ,• .in t .'.i i ! 'ii l\.

No. MAC TR-141

9. Performing Or^.tTii/.anon Namr .ind AJdn-ss

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

12. Sponsocing UrgMication Nunc .mJ Addtesi

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

10. I'[..' , ! l.i k \i,.ft I nil \.

ll.i niiir.i. ! ^ i.iiii So,

NOO014-7O-A-O362-OOO6

13. I >i'i ot Hi port ,v !'< n .:
. oieiev : Inter im

Scientific Report

14.

nt ir» Ni'ios Nv'H

:':. ',.-• .u:>

BCPL is a language which in readable and easy to learn, as well as admitting of

an efficient compiler capable of generating efficient code. It is made self

consistent and easy to define accurately by an underlying structure based on a simple

idealized object machine. The treatment of data types is unusual and it allows the

power and convenience of a language with dynamically varying types and yet the

efficiency of FORTRAN. BCPL has been used successfully to implement a number of

languages and has proved to be a useful tool for conplier writing. The BCPL compiler

itself is written in BCPL and has been designed tu be easy to transfer to other

machines; it has already been transferred to more than ten different systems.
I\vumt'nt An.il\-is. 17o. IVscnpturs

I7b- ' :> Open-Eixtrd IVrms

17c. (OSATI I wld/Group

Rapfodu(«d bv

NATIONAL TECHNICAL
INFORMATION SERVICE

US D«partmenl of Commarce
SpnfigMd. VA. 22151

D D C
ntfEffiEDnJEln
W m si i?75 I

JlkisEinrE
D

PRICES SUBJECT TO CHANGE
18. availability Statement

(Vroved for Public Release;

distribution Unlimited

19. Si C urity ' l.ls^ (Thi«
Hi pott I

_„ INC lAfäüiSü
20. Security ' taxx (Thr

1 \' 1. VSSIIIF.I)

21.

Ä

Itlls FORM MAY BE REPRODU(IH

tLA0lJAl

- mm^^mtmmmm

WPW^^^^^^-^^^WW <«p^ipnpnipppp«mpp^wimömpii iii-i HUIKIIIIIPIIMI ii uiriji.iiwn m^mm^^^^^^^mm n ■■■■■ ■ inniiinu

The BCPL Reterence Manual

by

Martin Richards

revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

^D D C
1

ThlS -sea., was .upportea i; gj.t b, ^^^-.«•.^"«nTh!^

-

pjm U iiwinmiiii^uni <j pm , l-^p^n||pipmMpp|pp|p|p^«>rvnnwii> IM nniwiiiiiii MJI|IIIIII .IIIIIIIII i nun ««mmpniwi i IIIMII

The BCPL Reference Manual

The BCPL Reference Manual

by

Martin Xirhardr

revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

EC
as adm
code.
underly
treatme
convoni
e f f i c i o
number
wrIting
jesiane
transfe

PL is a la
itting of
It is made
ing struc
nt of data
ence of
ncy of FOR
of languag

The B
d to be ea
rred to mo

nguage which
an efficient
self consis

ture based o
types \e

a language w
TRAN. BCPL
es and has p
CPL compile
sy to transf
re than ten

Abstract

is readab
compiler

tent and e
n a simple
unusual a
ith dynami
has been u
roved to b
r itself
er to othe
di fferent

le and
capable
asy to
ideali

nd it
cally v
sed sue
e a use
is writ
r machi
systems

easy to
of gen

define
zed obj
allows

arying
cessful
tul to
ten in
n e s; it

lear
erati
accur
ect m

the
types
ly to
ol f
BCPL
has

n, a
ng ef
ately
achin

pow
and
impl

or c
and h
alrea

s well
ficient
by an

e. The
er and
yet the
^..nent a
ompiler
as been
dy been

j

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N90fl4-7i-A-0362-0006.

.il-

^^maarn —*m oaMMMMBIIMII ■ k

■"■- ' " nmmn
•'•■■ —'" •-"■'■" ' '- ■ '

The 3CPL Reference Manual

TABLE OF CONTENTS

Section

1.0 Introduction
1.1 Implementation Guides

2.0
2.1
2.2
2,
2
2
2
2
2

3,
3,
3,
i

3,
3
3
3
3

2.
2.
3
3.
3.
3.
4
4.
4.

4.
4.
4
4
4
4
4,
4,
4,
4,
4,
4,
4,
4,
4.
4,

4.0
4.1

4.4

Hardware Representations and Syntax
Canonical BCPu
Formal Syntax

1 Syntactic Notation
2 The Canonical Syntax of BCPL
Hardware Representations

1 Names and System Words
2 Section Brackets
3 Equivalent Representations of Canonical Symbols
Preprocessor Conventions

1 Section Brackets
2 Automatic Insertion of SEMICOLON
3 Automatic Insertion of DO
4 Comments
5 The Get Directive

Fundamental Concepts of BCPL
The Object Machine
Variables, Manifest Constants, and Address Constants
Lvalues and Modes of Evaluation
Simple Assignment
The Lv Operator
The Rv Operator
The Vector Operator
Data Types

Expressions
Primary Expressions

Names
Numbers
String Constants
Character Constants
Truth Values
Nil
Bracketted Expressions
Result Blocks
Lv Expressions

0 Rv Expressions
1 Vector Expressions
2 Table and List Expressions
3 Vector Applications
4 function Applications
Arithmetic Expressions
Relational Expressions
Shift Expressions

.1

.2

.3

.4

.5

.6

.7
,8
.9
.1
.1
.1
.1
.1

Page

1
1

3
3
5
5
5
7
7
7
8
8
8
8
9
9

10

11
11
12
12
13
14
15
16
18

21
22
22
23
23
24
24
25
25
25
26
26
26
27
28
28
28
30
31

- iii-

mmmm -^

^mmmommtm**^™**'*""""" '****mmmmmim.^*^*^mmi min. IP i H mi^m*mr^*m**~'<«-wm<>«>Mmmim>' i 1.1 mil

The BCPL Reference Manual

TABLE OF CONTENTS

Section Page

4.5 Logical Expressions
4.6 Conditional Expressions
4.7 Constant Expressions
4.3 Expression lists

5.0 Commands
5.1 Simple Assignment Commands
5.2 Assignment Commands
5.3 Routine Commands
5.4 Labelled Commands
5.5 Goto Commands
5.6 If Commands
5.7 While Commands
5.8 Test Commands
5.9 Repeat Commands
5.10 For Commands
5.11 Loop, Break, and Endcase Commands
5.12 Finish Commands
5.13 Return Commands
5.14 Resultis Commands
5.15 Switchon Commands
5.16 Call Commands
5.17 Blocks

31
32
33
33

35
35
35
36
36
3"
37
38
38
39
39
40
41
41
42
4:
43
43

6.0 Definitions and Declarations
6.1 Scope and Scope Rules
5.2 Extent and Space Allocation
6.3 Let Declarations
6.3.1 Simple Variable Definitions
6.3.2 Function and Routine Definitions
6.4 Manifest Declarations
6.5 Static Declarations
6.6 Global Declarations
6.7 External Declarations

Ret erences

45
45
45
47
4"
4€
31
51
51
52

5 3

- iv -

I1MIHI—■—«MIHMIIII - - -■ ■ -^ - - -

n«lwilVM!n*ni»fw^«Hwn!miiI!'■m«i»»w«i^nWPPnapvi>"4V> "i>>"""mmr—i^mmn^Mim ■pdPlfMlppi iia.iuiii«iiiipiMi.ii N im

l.e) Introduction

The BCPL Roterence Manual

fiCPL (Basic CPL) is a general purpose programming language which
is particularly suitable for large nonnumerical problems in which
machine independence is important. It was originally designed as a
tool tor compiler writing and has, so far, been usea in at least three
compilers. BCPL is currently implemented and running on the Honeywell
635 under GECOS III, on the Honeywell 645 and 6180 under Multics, on
the IB.'. 360 under OS and CP/CMS, on the TX-2 at Lincoln Laboratory, on
the CDC 6400, on the Univac 1108, and on the DEC PDP-9. Thert are
alsc DCPL compilers on the KDF 9 at Oxford and on Atlas 2 at
Cambridge. Other implementations are under construction.

BCPL is related to CPL (Combined Programming Language (1, 2)) and
;eveloped using experience gained from work on a CPL compiler.

The BCPL compiler is written
easy transfer to any other machine
dependent parts of the compile
small proportion (about l/5th) of
for a new implementatio-',. Thi
generator, which is entirely objec
the command interface, which is
In addition to modifying the compi
write the interface with the
includes several hundred lines of
BCPL routines.

in BCPL and is design
Where possible the

r have been separated
the compiler needs to
s part consists mos
t-machine dependent,
entirely operating-sy
ler, it is necessary
new operating syste
assembly language and

ed tor fairly
implementation
out, so only a
be rewritten

tly of the code
There is also
stem dependent.
to design and
m; this usual!'
ten or twenty

The cost of transferring BCPL to a new machine is usually between
and 5 man months.

1.1 Implementation Guides

This reference manual describes the BCPL language abstracted froir,
any particular implementation. For each implementation there should
be a specific implementation guide (possibly several documents) to
describe in detail:

(1) The representation of a BCPL program in the particular
character sec, and other source file conventions such as
ignoring columns 73-80 in card images. There should be a
complete list of canonical symbols and their machine
representations.

(2) The form and meaning of constructs left to the
implementation. This includes the get directi"e, the
external declaration, the call command, an^ finish, JE well
"as possibly other constructs.

(3) The maximum lengths of names, section bracket tags, numbers
and st/ingconstants, and the maximum number of cases in a

- 1 -

!„_--
' ■ ■ —"- - - ' **^

■ ■ I IM Mil III! Ill ■"«"|'"| * i**^*—~mmmmm*rw ■ ' ■ i» i ■ i i ■«^■n^

The BCPL Reference Manual

(4)

(5)

(6)

(7)

(8)

(9)

(1Ü)

BWitchODi o£ elements in a table, of arguments to a function
or routine. There may also be restrictions on the length
and complexity of a program, on the depth of recursion, on
the length of a single stack frame, and the number of global
cells.

The library. This consisls of a number of routines written
in BCPL or assembly language which can be called by ordinary
BCt-L calls. Usually a declar rtion for the library routines
will be made available on-line in a form suitable for
inclusion by the get directive.

How a BCPL program la invoked t.om the command language or
from another compiler language.

How to invoke the compiler. Also its options, input and
output tiles, temporary files, storage requirements, side
effects, etc.

All the error messages or codes that can be generated by the
compiler or run-time routines.

Extensions or restrictions in the canonical language. All
departures from the standard BCPL described in this manual
should be documented.

Possibly
represent

Several sample programs.

some description of the object program,
representation of strings, format of stack frame, etc.

- 2 -

._,___,__,, '• —*^.-**~—~u~-*~***~—
■

- -•" . i ^mw »■.in.i jupiumKmMa ^PPW^^Wl

The BCPL Reference Manual

2.0 Hardware Representations and Syntax

Since BCPL is implemented on many machines having different
hardware character sets, it is useful to separate the machine
dependent hardware representation of a BCPL program from the canonical
syntax of the language. Th? details of the hardware representation
provided for any implementation can be found in the corresponding
implementation guide. In this chapter we give the machine independent
canonical syntax of BCPL and provicie guide lines on which any hardware
representation should be based.

A BCPL program can be thought of as a stream of canonical symbols
laid out on a p^ge. The canonical symbols are the basic words,
operators and symbols of the language and they are the terminal
symbols of the canonical syntax. Some canonical symbols are given
below:

let and "PS*^* 36 < while

The symbols of a program are chosen from a finite set of tokens
along with the following unbounded sets:

<name>
<number>
<stringconst>
<chaL'const>
<sectbra>
<sectket>

As the representations of the tokens may differ in different
implementations because of character set limitations, this manual uses
a canonical BCPL defined in the next section.

2.1 Canonical BCPL

The following are each a single canonical symbol with an
associated character string part:

<name> A name is a single lower-case letter or a
capital letter followed by any number of letters
and digits. For example: i Abe TaxRate V3

•'number > A number consists of one or more decimal digits;
other forms are described in section 4.1.2.

^stringconst> A string constant consists of any number of
string characters contained between two double
quotes ("). An escape convention is described
in section 4.1.3. For example: "abc"

- 3 -

PIBi»Pfprp^»WWJil||)|i>-MiJJ««w^"«W'!'""'"WW|W minjwijwpi^iBUppw"^! ■ ii""i '."'■'■,"" ..>,._,...»

The BCPL Reference Manual

<charconst> A character constant is a single string
character enclosed between two single quotes
('). The same escape convention described in
section 4.1.3 applies also to character
constants. For example: 'p' '"'

<sectbra> A left section bracket consists of $(
by any number of letters and digitr.
For example: $($ (Trans $(1

followed

<sectket> A right section bracket consists of $;
by any number of letters and digits.
For example: $) $)xyz

followed

These are all the other canonical symbols:

and be break
% call case default

endcase external false finish
for global

if so
goto
into

if
if not Tit
list logand logor loop
Ishift Iv manifest nil
not or rem rep
repeat repeatuntil repeatwhi le resultis
return rshift rv static
switchon table test to
true unless until valot
vec while

+ .+ _ • — * .*

/ ./ = • ~ * ./
< .< > .> < .<
> .>

'(' ?
->

[

—

• 1 !

Throughout this manual syntax and programming examples will be
given in the representation defined in this section.

- 4 -

MM ' ■■ - -

»BPW^WWHWR'^^^UI II UPI HU i...»iii.iiii nimmmm^mmimimmm^mm'^^i^rmmm^ii vi\w •r^^mtm

The BCPL Reference Manual

2.2 Formal Syntax

2.2.1 Syntactic Notation

The syntax given in this manual is Backus Naur Form with the
tollowing extensions:

(1) Some common syntactic categories are not surrounded by
meta-1inguistic brackets.

(2) The symbols { and } are used to indicate zero or more
repetitions of the bracketted entity, lor example:

E (, E} means E, E I E, E, E etc

The syntax given in the next section is ambiguous and is simply
intended to list all the syntactic constructions available. The
ambiguities are resolved later in the manual.

2.2.2 The Canonical Syntax of BCPL

E ::= <name> | <stringconst> I <charconst> I <number>
| true I false I nil | (E) I valot <block>
| Tv~E i rv E I E (<arg list>) I E ! E I E [E)
| E <diadic op> E I <monadic op> E I E -> E, E
I vec <constant expression> | table <constant list^
I TTst <E list>

<diadic op> : : = | .* I / I ./ I rem I +
I .- ^ | .^ I < I .< I > I .>

Ishift I rshift I logand I logor
.<

<monadic op> ::= + I .+1 - I .- ! not

<E lilt> ::= <E rep> {, <E rep>}

<E rep> ::= E 1 E rep <constant expreEsion>

<arg 1ist> ::= <E list> I <empty>

<constant expression> ::= E

-.constant li8t> ::= <constant rep> (, <constant rep>)

<constant rep> ::= <constant expression>
| <constant expression> rep <constant expression>

C ::= <E list> := <E list> I E { <arg list>)
| goto E I <name> : C I resultis E
| if E do C I unless E do C I while E do C I until E do C
I "repeat | C repeatuntll E I C repeatwhile E

- 5 -

mm tänamm a ■

pH» i ii' iii iiaiipn ■nwi^ipwppwi^"^' " ii ■ii«jii,i«m «upi ^^W»«IP^»W

»•«•

The BCPL Reference Manual

loop I break I return I finish I endcase
test E tFirTC or C I test E ifso C ifnot C
Yö7-<name> = E to E do C
For <name> = E to E by <constant expression> do C
i^Ttchon E into <block> I case <constant expression>: C
case <c6nstant expression> to <constant expressions C
"HeTault: C I call I (<arg-Tist>) I <block> I <einpty>

D ::= <naine> (<FPL>) = E I <name> (<FPL>) be C
I <name list> = <E list>

<FPL> ::= <name list> I <enipty>

<name list> •. := <name> I, <name>}

<block> ::= $(<block body> $)

<block body> :

<block item> :

<declaration>

= <block item> [} <block item>

= C I <declaration>

= let D {and D}
| manifest <decl boay> I global <decl body>
| external <decl body> I static <decl body>

<decl body> ::= $(<C def> {; <C def> $)

<C def> ::= <name> : <constant expression>
I <name> = <constant expression>

<progra.o ::= <block body>

- 6 -

i^*——— ■■ - ■ - i ■—

—•——"■^-"■'•' Mjip » unppüipii ■■ mm • m '••• Tn«'*>~wmiv!<n^

The BCPL Reference Manual

2'3 Hardware Representations

Since the hardware cnaracter sets used for differenf
implementations differ, it Unpractical to give only an outline of the
hardware conventions which a/ common to most versions of BCPL

2.3.1 Names and System Wor

System words are sconces of letters used to denote i
symbols for which there are no suitable graphics. The set of reserved

le't ^s^and5 '* .^^^on dependent. Names are alsfcompoLd S
rvnn^ ^ glt! and may be COln*d and used by the programmer to
denote variables and constants within his program. if the available

sjnta^^calirdis^icl!5 Sman ^^ *** ^ "^ *** "»" -"

(1)
(2)

tor character sets with capital and small letters:

A system word is any sequence of two or more small letters
A name is either '
(a) a single small leider
(b) a capital letter followed by any sequence of letters

digits and possibly oMner suitable characters (e.g.
• #) -

For character sets with only capital letters:

(1) An identifier is a capital letter folJowod by any
sequence of letters, digits and possibly other suitable
characters (e.g. . |]

(2) A name is an identifier which is not a system wcrd

way, perhaps by

F_LET, S_LET, F_LÜGOH. S_LOGOR

2.3.2 Section Brackets

The preferred representation of a left section bracket consists
^llowoH ? by zero or more letters, digits, and other characters
allowed In names. A right section bracket consists of } followed bv

this ^.nn'? iV'llt d^itS' ^^ AS the SYrnb0lS { anQ ' are ^° ^ this manual as meta-1inguistic brackets, section brackets in tne
SulfclMl f examPlef.are represented using an alternate form also
suitable for more limited character sets.

 - ^i

■ • I ■" -" " ^"'"-■- ■■li^wwiiiii^m!» i.i ■■»•■ ^"■^^^ m.'1 »wipiu.Hii»»! ■VPmVpnUlllHUI l IP4!

The BCPL Reference Manual

2.3.3 Equivalent Representations of Canonical Symbolb

Several canonical symbols have alternate representations for
clarity and compatibility. Thus b^ may be represented as step, and do
may be represented as then. Many symbols ordinarily represented by
non-alphabetic cnaracters may also be represented by system words.
For example, = may be represented as ec|.

2.4 Preprocessor Conventions

Several functions which the compiler performs before syntactic
analysis to improve readability and as a convenience to the programmer
are collectively called preprocessor conventions.

2.4.1 Section Brackets

Section brackets are used to bracket blocks and commands. To
aid the readability of programs, section brackets may be tago-i with
any sequence of characters »nich may occur in identifiers. A closing
section bracket matches an earlier open section bracket with the same
tag and any outstanding sectiors will be closed automatically. For
example:

$ (1 until i=0 do
R (i)
i := i + 1)1

is equivalent to:

$(1 until i=0 do
$(2 R (i)

i := i + 1 1)2 1)1

2.4.2 Automatic Insertion of SEMICOLON

The canonical symbol SEMICOLON is inserted by the compiler
between pairs of items if they appeared on different lines and if the
first was from the set of items which may end a command or definition,
namely:

loop break return finish endcase repeat true false nil
<name> <numb'-r> <str ingconst"> <cHarconst> <sectket>) J

and the second is from the set of items which ma^ start a command or
declaration, namely:

test for j_f unless until while goto resultis call
switchörT case default endcase "loop EreaTc return
finish vaTöT" rv Tv true raise table list (+ - not

- 8 -

■ - -

Mipuiwii:..pi^npp>«m^w^~v>iip<i >" uinipwpiCTWPiwpvmtpii. " mi-wmjmmmrm* mf^mmmn^mi^^mm^^m^*

The BCPL Reference Manual

<name> <numbeo <stringconst> <charconst> <sectbra>
global manifest static external let

For example, the following two programs are equivalent:

x := x + 1
if x > y do y ;= 0
R (x)

x := x + 1;
if x > y do y := 0;
R (x)

2.4.3 Autoi.-atic Insertion of DO

The canonical symbol DO is inserted by the compiler between
pairs of items if they appeared on the same Une and if the first is
from the set of items which may end an expression, namely:

true false nil <name> <number> <stringconst>
<charconst> <sectket>) 1

and the seco-id is fron, the set of items which must start a command,
namely:

test for if unless until while goto resultis case
defauxt endcase loop break return finish switchon call

For example:

unless 0 < T £ Tmax resultis true
if x=0 goto L

is equivalent to:

i-nless 0 £ T £ Tmax do resultis true
if x=0 do goto L

2.4.4 Comments

User's comments may be included in a program between a doubxe
slash '//' and the end of the line. Example:

let R () be // this is a routine which refills Symb
|(fo7~i = 1 to 200 do // do it 200 times

Readch (INPUI, Iv SymbÜ) $) // read a char

- 9 -

— a^jtmm J

m -*" "-"'■ ■•■" ■ ■"'

The BCPL Reference Manual

2.4.5 The Get Directive

A directive of the form

get <specifier>

may occur anywhere in a BCPL program; it directs the compiler to
replace the characters of the directive by the text in the file
referred to by the specifier. The syntactic form of the specifier is
implementation dependent but will usually be a string constant.

- 10 -

M MMMMM - - —— ■ ■'-- " -"- ---

illllliailil l ill nn mini , ^m~mmm mmmmuu wmift^fmmrm

I'he BCPL Reference Manual

3.8 Funaamental Concepts of BCPL

3.1 The Object Machine

BCPL has a simple underlying semartic structure which is built
around an idealized object machine. This method of design was chosen
in order to make BCPL easy to define accurately and to facilitate the
machine independence which is one of the fundamental aims of the
language.

The most important feature of the object machine is its store,
which is represented diagrammatically in Figure 1.

A (n) A (n + 1 :n+2) A (n+3

Figure 1 - The Machine's Store

It consists of a set of consecutive boxes (or storage cells) uniquely
identified by arbitrary addresses. Some addressing function, A,
places the consecutive integers in one-to-one correspondence with the
addresses of consecutive cells. As is seen later, this property is
important.

Lach storage cell holds a binary pattern called an Rvalue (or
Right hand value). All storage cells are of the same size and the
length of Rvalues is a constant of the implementation which is usually
between 24 and 36 bits. An Rvalue is the only kind of object which
can be manipulated directly in BCPL and the value of every variable
äna expression in the language will always be an Rvalue.

Rvalues are us
Tany different kir
large number of bas
order to help the
objects. In partic
which operate on
integers. One can
interpret their o
and concert the res
may thin« of them a
and just happen t
approach is close
programmer has dir
the binary represen
and he would b

ed by the programmer to model abstract objects ot
ds, such as truth values, strings and functions. A
ic operations on Rvalues have been providea in
progranmer model the transformation of his abstract
ular, there are the usual arithmetic operations
Rvalues in such a way that they closely model

either think of these operations as ones which
perands as integers, perform the integer arithmetic
ult back into the Rvalue form, or alternatively one
s operations which work directly on bit patterns
o be useful for representing integers. This latter
r to the BCPL philosophy. Although the BCPL
ect access to the bits of an Rvalue, the details ot
tation used to represent integers are not defined
e losing machine independence if he performed

- 11 -

mmm wsMmmm

(■JHMKIIWI, ■■■
, »""" """"ll 'H'"' I"—l"^li^Ul I II

The BCPL Reference Manuctl

nonnumerical operations on Rvalues he knows to represent integers.

18
is
is

An operation of fundamental importance in the object machine
that of Indirection. This operation has one operanJ which
interpreted as an address and it locates ehe storage cell which
labelled by this address. This operation is assumed to be efficient
and, as is seen later, the programmer may invoke it from within BCPL
using the rv operator.

3.2 Variables, Manifest Constants, and Address Constants

either with storage
is defined to be

cells or
name

Names in BCPL are associated
directly with Rvalues. A variable in BCPL
which has been associated with a storage cell. It has a value which
is the Rvalue contained in the cell and it is called a variable since
this Rvalue may be changed by an assignment command during execi may
Variables are introduced by
command, formal parameter
declarations.

simple variable definitions, the tot
lists, and the static and global

A manifest constant is a name which is directly associated with a
constant Rvalue; this association takes place at compile time and

the same throughout execution. Manifest constants are remains
There are many introduced only by the manifest declaration.

situations where manifest constants can be used to improve readability
at no cost in run time efficiency.

An address constant is defined to be a name which is directly
associated with an Rvalue representing in some way an address. The-
Rvalue cannot be determined until "load time" (just before execution)
.md remains the same during execution. Address constants cannot be
used in constant expressions, wh^ch must be evaluated at compile time.
Labels, the external declaration, and routine and function definitions
introduce address constants.

3.3 Lvalues and Modes of Evaluation

As previously stated each storage cell is labelled by an address;
this adaress is called thr Lvalue (or Left hand value) of
Since a variable is associated with a storage cell, it must
associated with an Lvalue and one can usefully represent a
diagrammatically as in Figure 2.

also
v a r i;

be
ble

- 12 -

■ ■ "' — IHM I «■im,« 'mtmmm^mmmmmmm—r l«»Pll ' ^^BHUPWWIBIPIPWI

The BCPL Reference Manual

Name

f
LVALUE

Storage Cell

RVALUE

Figure 2 - The Form of a Variable

thP ^!oln the machine an Lvalue is represented by a bit pattern of

variable are called Lmode and Rmode evaluation respectively The dca
ot mode of evaluation is useful sinr^ it annlll. Ir.
general and can be used to clarl y tne semant^s of th^^5510"5 in

command and other features In the'language ^ assi^ment

-: • ■l Sim£l< Assignment

The syntactic form ot a simple assignment command is:

El :- E2

where El and E2 are expressions. Loosely, the meanmo of ►h.

evaluated 1„ diLe^t w^s\\dCih:nceth?L^%r^ee%\0ssSiL1caationE2int:
he two modes of evaluation. The expression El to the le t of the -

is evaluated in Lmode to yield the Lvalue of
right hand side E2 is evaluated some storage cell and the

contents ot tne sterbe cell I. then t^.^ 1° '[ll* T.Zl^'^
II shown diagrammatically in Figure 3. «vaiue. This rrocess

Identical
bit patterrTs"

El :

I Lmode
1 evaluation
f

Lvalue

V
Lvalue

E2

I Rmode
I evaluation
f

Rvalue

Storage cell

I The Rvalue is placed
< +__ in tne cel2

Figure 3 - The Process ot Assianrppnt-

- 13

mmmm MHOMte ■MHMMMftMMteM« ■■■MB

|pippflwm«nWM<*i •|IJI"».^"IIIIP il I !■ IIP^^WBHappp^^BIBH^i^n^wlMl.iK1) "'W"""'"»1 I""-'" "I1 ,J K i* »a ai|

The BCPL Reference Manual

The only expressions which may meaningfully appear on the left
hand side of an assignment a-e those which are associated with storage
cells; they are called Ltype expressions.

The terms Lvalue and Rvalue derive from
assignment command and were first used by
reference manual [2].

consideration of the
Strachey in the CFL

3.5 The Lv Operator

As previously stated an Lvalue is represented by a bit pattern
which is the same size as an Rvalue. The lv expression provides the
facility of accessing the Lvalue of a storage cell.

The syntactic form of an lv expression is:

lv E

where E is an Ltype expression. The evaluation process is shown in
Figure 4.

lv

Rvalue <•

| Lmode
| evaluation
f

Lvalue

| Identical
I bit patterns
I

Figure 4 - The Evaluation of an lv Expression

Lmode to yield an Lvalue and the
this Lvalue. Intuitively, lv x

The operand is evaluated in
result is a bit pattern identical to
is the address in memory of the variable x. The lv operator is
exceptional in that it is the only expression operator to invoke Lmode
evaluation, and indeed in all other contexts, except
;ide of the assignment, expressions are evaluated in

the
Rmode

left hand

- 14 -

^_
• - -

1 ■' ■■" m«.m-*»\mimit^- ■«^PPi *!immmm*^^wm**n'^*r~
r
**' • i

The BCPL Retecence Manual

3.6 The Pv Operator

The £v Operator is important in BCPL since it proviaes the
underlying mechanism for manipulating vectors and data structures; it;
operation is one uf taking the contents (or Rvalue) ot a storage cell
whose address (or Lvalue) is given.

The syntactic torm of an rv expression is as follows:

r v E

and its process of evaluation is shown diagrammatically in Figure ri.

rv E

Rvaluo

I Rmode
I evaluation
f

Rvalue
A

i Identical
I jjit patterns

Lvalue

Figure 5 - The Evaluation of an rv Expression

The operand is evaluated in Rmode and then the storage cell whose
Lvalue is the identical bit pattern is found. If the rv expression Ll
being evaluated in Rmode, then the contents of the cell-is the result;
it is also meaningful to evaluate it in Lmode, in which case the
Lvalue of the cell is the result. An rv expression is thus an Ltype
expression and so may appear on the left hand side of an assignment
command, as in:

rv p ;= t

and one can deduce that this command will update the storage cell
pointed to by p with the Rvalue of t. Thus

rv 111 := 2

sets location 100 to zero

- 15 -

f^w— mtmm^W**'^**

The BCPL Reference Manual

i.1 The Vector Operator

The vector-application operator (represented here by
advantage of the consecutive arrangement of storage cells,
the n'th successor to a given cell, as shown in Figure 6.

!) takes
It finds

f
-->Rval

1 1
1 1

ue
f

Rval
1
1

ue

Bit pa ttern

Identical
bit patterns

I

Lvalue

I
Identical
bit patterns

I
f

Lvalue

Figure 6 - An Interpretation of V 1 3

The diagram above shows a possible interpretation of the
expression V!3. Some adjacent storage cells are shown and the left
hand one has an Lvalue which is the same bit pattern as the Rvalue of
V. The cell at the right is the third successor of the one on the
left. In terms of the addressing function A, if V = A (n) then the
Lvalue of the cell on the right is A (n+3). Thus tne expression:

accurately models a vector application, since, as i varies trom zero
to three, the expression refers to the different elements of the set
of four cells pointed to by V. V can be thought of as the vector and
i as the integer subscript.

A vector application is an Ltype expression; in Lmode evaluation
it yields the address of the designated cell, and in Rmode evaluation
it yields the contents.

Figure 7 shows how a vector application can be thought of as a
data structure select operation. The variable Xpart acts as a namoo

- 16 -

^^M

•w*—- ■■ "IM

The BCPL Reference Manual

selector applied to the data structure V.
commonly used to define structure selectors of this kind

Manifest constants aro

V

Xpart

3

The eel] referred
to by VIXpart

Figure 7 - An Interpretation of V 1 Xpart

By letting the elements of structures themselves be structures it
is possible to construct compound data structures of arbitrary
complexity. Figure 8 shows a structure composed of integers
pointer s.

y
and

— >

•> I 36 I
I I
I —4 > \-^T

I I I
.—+— 1 1 0

1 I I ___rrrrr f—

T3 I
I

— > T-1

Figure 8 - A Structure of Integers ana Pointers

- 17 -

The BCPL Reference Manual

3.8 Data Types

The unusual way in which BCPL treats data types is fundamental to
it! design and thus some discussion of types is in order her. . It is

useful to introduce two classes:

(a) conceptual types
(b) internal types

kind of abstract The conceptual type of an expression is the
unect the proarammer had in mind when he wrote the expression It
-^aht be for instance, a time in milliseconds, a weight in grams, a

' to tränst feet per second to miles per hour, or it mignt tunction of course,
it is

oe a data structure representing a parse tree. It
impossible to enumerate all the possible conceptual types and
eaSallv impossible to provide for all of them individually within a

The usual practice when designing a language is
ccnceptual types a few basic ones and provide a

with an adequate set

programming language,
to selec-. from the
quitable internal representation together

internal type refers to any one of these
be Hill t^anHhe iT.nWol ""alHhe conceptual types can

^lled^etrectively using the internal types A few of th^int.tn.l
types provided in a typical language, •> .h as CPL, are listed below

real
intege
Tabe !■

Integer function
(real , boolean) vector

Mucn of the flavor of BCPL is the result of ^•con.clou« design
aecltlon to provide only one internal type, namely: the bit Pattern
or Rvalue). In order to allow the programmer to model any conceptual
t?pe I large set of useful primitive operations he» been provided.
For inetance, the ordinary arithmetic operators +, -, * and / have
bSen defined tor Rvalues in such a way as to model the integer
Derations directly. The six standard relational operators have been
elned and a complete se^ of bit manipulating operations provideo
f.^dition, there a^e some stranger pattern ^P-tions^whicn

operations provided are
. icient and'they have not been overdefined. For instance,

Se effect Of adding a number to a label, or a vector to a tunction is
not defined even though it is possible for a programm.

provide ways of representing functions, iat
seen, vectors and structures. All th«

to cause it to

take place.

The most important effects of designing
can be summarized as follows:

a language in this way

I There is no need tor type declarations in the language,
since the type of every variable is already known,
helps to make programs concise and also simplifies sucn

- 18 -

MMMBM^M

The BCPL Reference Manual

linguistic problems as the handlinq of actual parameters
anc separate compilation.

It gives BCPL much of the power of a language with
dynamically varying types and /et retains the efficiency
of a language (like FORTRAN [3]) with manifest types; for
although the internal type of an expression is always
known by the compiler, its conceptual type can never
and, indeed, it may deoend on the values of
within the expression. For

i

be
var iables

instance, the conceptual type
of V!i may depend on the value of i. One should note
tnat, in languages (such as ALGOL [4] and CPL) where the
elements of vectors must all have the same tvpe, one needs
some other linguistic device in order to' handle more
general data structures.

Since there is only one internal type there can be no
automatic type checking and it is possible to write
nonsensical programs which the compiler will translate
without complaint. This disadvantaqe is hopefully
outweighed by the simplicity, power and efficiency that
this treatment of types makes possible.

- 19 -

- -■■

The BCPL Reference Manual

4.0 Expressions

All BCPL expressions are described in this section. They are
grouped into syntactic classes of decreasing binding power as follows:

(a) Primary expressions.

These are the most binding and most primitive expressions. They

are:

Names, numbers, truth values, string constants,
character constants, nil, oracketted expressions,
result blocks, Iv expressions, rv expressions, vec
expressions, table ana list expressions, vector
applications and function applications.

(b) Arithmetic expressions.

These expressions provide the standard integer and floating point
— ations of multiplication, division, remainder, addition and
subtraction They are less binding than the primary expressions.

\c Relational expressions

A relational expression takes integer or floating point arguments
and yields a boolean value depending on the truth of the relation.

(d) Shift expressions.

The shift operations allow one to shift a bit pattern to the left
or right by a specified number of places.

(e) Logical expressions.

These expressions allow one to manipulate bits of an Rvalue
directly. They may be used in conjunction with the shift operators to
pack and unpack data. The standard BCPL representations of tr_ue ana
falsa are chosen so that the logical operators may also be used on

boolean data.

(f) Conditional expressions.

A conditional expression allows for conditional evaluation of one

of two expressions.

This section ends with descriptions of <constant expression> and
<E li»t> although they are not syntactic subcategories of expressions.

- 21 -

Preceding page blank

uam

The BCPL Reference Manual

4.1 Primary Expressions

All the primary expressions are described in this section.

4.1.1 Nairies

Syntactic form:

A name is a canonical symbol of BCPL und its hardware
representation is implementation dependent. If there are sufficient
Hardware characters available it consists of any sequence of letters.
iicjits and underlines starting with a capital letter. A single small
letter mav also be used as a name.

Examples

Semant ics;

H3 Tax cat« F
List4 StackP

A name may be associated directly with an Rvalue by means of a
rnanifest declaration or by a label declaration, function or routine
definition, or external declaration, or it may be associated with a
storage cell "to form a variable using any other kind of declaration.
A variable, manifest constant, or address constant can be referred to
by its name throughout the scope of its declaration (see section 6.0
on scopes and extents of definitions).

A manifest constant or address constant can only be evaluated
In Hmode and its result is the Rvalue which was associated with it by
its declaration.

it
A variable is the association

may be represented as follows:
of a name with a storage cell and

Name

Lmode evaluation

Lvalue

Rmode evaluation

It may be eva' jated in Lmode to yield the Lvalue of the storage cell,
or it may bo evaluated in Rmode to yield the contents of the cell; in
either case the result is a bit pattern of standard Rvalue length.

- 22 -

The BCPL Reference Manual

4.1.2 Numbers

Syntactic form: <digit> ::= 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
<number> ::= <digit> {<digit>}

I 8 <digit> {<digit>}
I <digit> {<digit>) . l<digit>}

Examples: 132 43179 8377 3.14159 4.

Semantics:

A number is an Rtype expression and may only be evaluated in
kmode. The symbol 8 introduces an octal constant whose Rvalue is the
right justified bit pattern specified by the sequence of octal digits.
A decimal number is a sequence of digits not preceded by 8; its Rvalue
is a bit pattern representing the integer in a way which depends on
the implementation. A floating point number is a sequence of digits
with a decimal point embedded or at the end. The Rvalue is
iTplementation dependent.

Some implementations may admit of other number forms, such a?.
nexadecimal.

4.1.3 String Constants

Syntactic form: " {<string character>} "

A string constant is a canonical symbol of BCPL and its
hardware representation is implementation dependent. Where possible
it is a sequence of characters enclosed in double quotes ("). The
asterisk (*) is used as an escape character with the following
conventions:

*n represents newline
*s represents space
*b represents backspace
*t represents tab
*" represents
* ' represents
** represents *

Some implementations may admit additional escapes in strings.

Examples: "End of test" " = " ,•*,",

"*n*tTRA*tLl*n

Semantics:

The Rvalue of a string constant is a pointer to a set of
consecutive stoiage cells containing the lengt1. and characters of the
string in some packed form. The number of b'.ts per character and the

- 23 -

i

'~'*M**^—h— ' _ „«■■^^^—i^ ->.W,-..-..l....-

The BCPL Reference Manual

4.1.6 Mil

Syntactic torm: nil

Example: let x = nil

Semantics:

The k/alue ot ni1 is undefined. Its purpose is to avoid
initializing a newly def ined cell. In the example, the dynamic
variable x is defined without an initial value.

4.1.7 Bracketted Expressions

Syntactic form: (E)

Examples

Semantics:

T rem ((x-y)/(x+y) + 2/z)
(B -> A, B) ! (i+1)

Parentheses may enclose any expression without changing its
mode of evaluation or its value. Their sole purpose is to specify
grouping.

4.1.8 Result Blocks

Syntactic form: valof <block>

Example: valof ${ for i=l to n do
±t_ P (i , x) resultis f also

resulTis true $)

Semantics;

A result block is a form of BCPL expression in which :ommand8
can be executed before the value of the expression is found. It is
evaluated by executing the block until a resultis statement is
encountered; this causes execution of the block to cease and the
Rvalue of the expression in the resultis command is the result. See
section 5.14.

- 25 -

mmmm WTA - -- - -

The BCPL Rcterence Manual

4.1.9 Ly Expression?

Syntactic form

Examples:

Iv b
wHere E is a primary expression

Readch (INPUT, Iv Ch)
U := Iv V! i

Semantics:

The Kvalue ot an Iv expression is the bit pattern obtained by
evaluating the operand (which must bo an Ltype expression) in Lmode.
See the discussion'of left and right hand values in section 3.3, and
ot the Iv operator in section 3.5.

4.1.11) Rv Expressions

Syntactic form

Example:

rv E
wHere E is a primary expression

rv x := rv (f (i) + 2)

Semantics:

An rv expression is an Ltype expression and may be evaluated
to yield either an f,value or an Rvalue. It is evaluated by evaluating
its operand in Kmode to yield a bit pattern which is interpreted as
the Lvalue of a storage cell. In Lmode evaluation this bit pattern is
the result, but for Rmode evaluation the contents ot the storage cell

the result. The rv expression is described further in section 3.6. i :

4.1.11 Vector Expressions

Syntactic form: vec <constant expression>

Examples: let v ■ vec 100
Word := vec Vmax / 4

Semantics:

Let the value of the constant expression be n. Then the
Rvalue of the vector expression is the address (Lvalue) of the first
worj of a block of storage n f 1 words long. Thus there is both a
zerc'th word and an n'th word.

The storage is dynamic in class and is newly allocated by each
evaluation of the expression. It remains allocated for as long as
execution is dynamically between the reference and the end of the
function or routine body, or the end ot the smallest enclosing scope
ot any dynamic variable declaration. In the first example above, the

- 26 -

mm

The BCPL Reference Manual

4.1.13 Vector Applications

Syntactic form: El ! E2 El [E3]

LI 3nd E2 are primary expressions and E3 is any expression.
The operator is left associative and thus

x ! y ! z means (x ! y) ! Z

Examples: V ! (i+1) := V ! i + p ! Xpart

case SEQ: Trans (x(H2])
Trans (x(H31)
return

Semantics:

The expression E11E2 is defined to take the Rvalue ot tne
(E2)'th successor to the cell whose Lvalue is El. Its purpose is
explained in section 3.7.

The expression El [E2] is equivalent to El!(E2).

4.1.14 Function Applications

Syntactic form: E0 (<E list>) | E0 ()

E0 is a primary expression and the <E list> may contain any
<_x press ions.

Lxamples: f (x)
H (1, 2*t,
(x=0 -> t, P3)(1, "IT", y+2)
Nextparam ()

Semantics:

The evaluation of a function application is explained in

sec rtion 6.3.2.

4.2 Arithmetic Expressions

Syntactic form: E * E I E / E I E rem E i
E + E | E - E |
+ E | - E |
E .* E I E ./ E I
F, .+ E | E .- E I
.+ E I .- E

The operators * / rem .* and ./ are equally binding and associate

- 28 -

■IIIIIIIBIIII1MI

The BCPL Reference Manual

4.3 Relational Expressions

Syntactic form E <relop> E (<relop> E} where
<rc-lop> ::= ■ | ft \ < | >| < |

• ■ I .!< I .< i •> I .< I .>

The relational operators are just less binding than
arithmetic operators.

th<

Examples: i f 0 £ x < y goto L
A ! i := f (x) = g (x)
x .= 0.0 -> 0.0 , y ./ x

Semantics:

For a simple relational expression defined by

E <relop> E

the operands are evaluated in Rmode; the Rvalues obtainej are then
interpreted as integers or floating point numbers according to the
operator and if the particular relation is true then the result of the
expression is true, otherwise the result is false. An extended
relation such as

El ^relop 1> E2 ^relop 2> E3

is equivalent to the following expression:

(El <relop 1> E2) logand (E2 <relop 2> E3)

However, the number ot times E2 is evaluated is undefined.

The correspondence between the operators and their meanings is
liven below.

Meaning
Integer Floating Point
Operator üpe r ator

. .=

* .^
■ .<
> .>
< .<
> .>

equal to
not equal to
less than
greater than
less than or equal to
greater than or equal to

- 30 -

The BCPL Reference Manual

4.4 Shift Expressions

Syntactic form: E] Ishift E2 I El rshift £2

E2 is any relational, arithmetic, or primarv expression and El is

)pe
to the left.

Examples let P It) = t!3 rshift 10 logand 8377
Ishift Bytesize logor Ch = x

hana ^^-te^^^fat-^tiy rfbi? ^^^ ^ --
one as an integer to indicate the number of places to shift.

than the number of bits in an Rvalue.

4.5 Logical Expressions

Syntactic form: not E
"TT logand E I E logor E

| E = E I E=/ E

The operator not is mo
binding power, there are:

st binding; then, in decreasing order of

logand , logor , =,=/

All the logical operator, are less binding than the shilt operators.

Examples: f^Hogor v-» resultrs f(t)
~:= x logänd 8773077 logor y logand 87700

Semantics:

The operands of all the logical operators are interpreted as
patterns of ones and zeros.

bit

- 31 -

MftAMAMH^H - ---

'

nth bits
of ocerands

both ones
both zeros
otherwise

The BCPL Reference Manual

Operator
logand logor

1 1

1

1
1
I

id

I
1

The operators logand and logor are interpreted differently when
an expression is being evaluated to control conditional execution,
specifically in the if, while, test, and repeatwhile commands and the
conditional expression. In most implementations one operand is
evaluated first and if its value determines the result the other
operand is not evaluated. This occurs when one operand of logand is
false or when one operand of logor is true.

4.6 Conditional Expressions

Syntactic form: El -> E2, E3

El, E2 and E3 may be any logical expressions or expressions of
greater binding power. E2 and E3 may in addition be conditional
expressions. Thus:

and

Example

Bl -> x, 82 -> y, z means
Bl -> B2 -> x, y, z means

Bl -> x, {B2 -> y, z)
Bl -> (B2 -> x, y) , z

let f (x) = x < 0 -> 0,
x > 10 -> 10,
x

Semantics:

The Rvalue of a conditional expression is obtained by evaluating
either E2 or E3 in Rmode depending on whether the value of El is true
or false.

true -> E2, E3 means E2
false -> E2, E3 means E3

It the value of El is neither true or false the result of the
conditional expression is undefined.

A conditional expression is an Ltype expression if both its
alternatives are Ltype expressions.

- 32 -

" ■ ■

"he BCPL Reference Manual

4.7 Constant Expressions

Syntactic form: <constant expression> ::= E

Example: 36 + 3 * Table_size

Semantics:

A constant expression is one wnose Rvalue can be determined at
compile time. It may be a number, a truth value, a character
constant, a manifest constant, or a bracketted, relational, shift,
logical, or conditional expression composed of constant expressions.

Constant expressions are used in
(a) case labels
(b) vector expressions
(c) manifest, static, global, and external declarations

and (d) tables.

Expression lists

Syntactic form:

Examples:

Semantics:

<E list> ::- <E rep> {, <E rep>)
<E rep^ ::= E I E rep <constant expression-»

let T = table 0 rep 10 // Array ot zeros.
a, b, c := a + 1, b + 1, c + 1
R (a, b, c rep 4)

Lists of expressions are useful in several contexts, such as
argument lists and assignment commands. They are purely a syntactic
feature.

eouivalent to

E0 rep n

E0, E0, ... E0

wnere the number ot E0 terms is given by the value of n. Thus rep is
merely a notation to avoid repetitive typing.

- 33 -

^m^m^^

The BCPL Reference Manual

5.0 Commands

5.1 Simple Assignment Commands

Syntactic form: El := E2

Examples: x := 1
V ! i := U ! i + W ! i

Semanrics:

The assignment operation has already been discussed in section
3.4. El rrust be an Ltype expression and it is evaluated in Lmoae to
yield an Lvalue, and E2 is evaluated in Rmode to yield an Rvalue. The
contents of the storage cell leferred to by the Lvalue is then
replaced by the Rvalue.

An Ltype expression may be of one of the following tour kinds:

(a) A name referring to a storage cell.
(b) An r_v expression.
|C) A vector application.
(d) A conditional expression whose alternatives are both

Ltype expressions.

5.2 Assignment Commands

Syntactic form: <E list; = <E list>

The.-e must be the same number of expressions in the list on the
right of the := as there are on the left.

[Jxample:

Semantics:

x, VIi := 1, Uli + W!i

The assignment command is semantically equivalent to a seouence
of simple assignment commands. The general form

LI, L2, ... Ln :^ Rl, R2, ... Rn

is equivalent to the following set of simple assignments:

LI
L2

Ln

■ Rl

■ R2

■ Rn

Preceding page blank
- 35 -

-- - - --*--' ■-■■ ■■-■■
J--

The BCPL Reference Manual

iho order ot execution of the assignments is not defined and may not
be relied on. Note that the assignment:

x, y := y, x

will not interchange the values of x and y. The main advantage of the
general assignment command is the syntactic one of eliminating the
need for section brackets in certain circumstances. For instance the
following command

_i_f x = y do $ (V!3 := 0
B := true $)

fiay be written

if x « y do Vi3, B f tt true

Since the order of evaluation is not defined, some commands are
strictly incorrect. For example, the command:

Symb!i, i := Rch (), i + 1

rr.ay have different effects in different implementations.

5.3 Routine Commands

Syntactic form: E0 {<E list>) I E0 ()

E0 is any primary expression and the <E list> may contain any
expressions.

Examples R (x)
Compjump (x!H2, false, L)
(C ! i) ()

Semant ics:

The execution of a routine application is explained in detail in
section 6.3.2.

b. 4 Labelled Commands

Syntactic form: <name> : C

Examples: Next: Rch ()
L: Chkind := Kind (Ch)

Semantics:

A labelled comtiand is a form of declaration which associates the

- 36 -

 -a^nataaM MMW ■■■ I i- - ——..*.-^-.^-

The BCPL Reference Manual

name directly with the Rvalue representing the location ot the
command. The scope of the name is the smallest textually enclosing
routine or function body.

The Rvalue of a label may be the operand of a goto command, as
described in the next section. For an explanation of tne term scope
see section 6.1.

5.5 Goto Commands

Syntactic form:

Examples:

Semantics:

goto E
where E is any expression.

goto Next
goto S ! i
goto x = 0 -> Error, Tvec!x

E is evaluated to yield an Rvalue, and then execution jumps to
the commana whose label has the same value. The point where execution
is resumed must be at the same activation level as that of tne goto
command, oi , in otner words, the label and the goto commana must both
oe in the same function or routine body. The effect of violating this
rule is usually chaos.

As a general rule, it is a good policy to try to miniirxze the
number of labels in a program as '.his will tena to improve its
readability.

If Commands

Syntactic form

Examples:

if E do C
unless E do C

_i_f x = 0 do x := Iw
unless SymIJ=S_CüMMA do Report (30)
unless S ! i = W ! i resultis ialse

Note the automatic insertion of do by the compiler in tne tnira
example. See section 2.4.3.

Semantics:

The command if E do C is executed by evaluating E to yield a
truth value (see section 4.5). If the result :s :alse execution is
complete, it the result is true the command C is executed, and it the
result is neither true nor false the effect is undefined.

The command unless E do C is equival3nt to it not (E) do C.

- 37 -

^MM-H ^—__—__-_. i ata 11 MIM n

The BCPL Reference Manual

5.7 while Commands

Syntactic torm

Examples:

while L do C
until E do C

while N > SSP do LoadT (S_LÜCAL, SSP)
until T T i ■ • do T !■ T"l I

Semantics:

The command while E do C is equivalent to:

c|Oto L
H : C
L : _i£ E goto M

where L and M are identifiers which do not occur elsewhere in the
program.

The command until E do C is equivalent to while not (E) do C.

5.8 Test Commands

Syntactic form:

Example:

test E then C or C
test E ifso C TTnot C

test 2*n > (CaseK ! n - CaseK ! l)/2 + 7
then Lswitch (1, n, D)
or Bswitch (1, n, D)

Semantics:

The command test E then Cl 0£ C2 is equivalent to:

if not (E) goto L
Cl
goto M

L : Cl
M :

where L ana N are identifiers which are not used elsewhere in the
program.

The command test E ifso Cl ifnot C2 is equivalent to test E then
1 or C2. The ifso and ifnot clauses may be interchanged.

- 3B -

mmm ■ ■M—I—Mil II

The BCPL Reference Manual

5'9 Repeat Commanäs

Syntactic term:

Examples

Semanticsi

C repeatwhile E
C repeatun il E
C repeat

Rch() repeatuntil Ch ■ '*n'
${ WP := WP + 1

S 1 WP :- Ch
Rch () $) cepeatwhile 'A' < Ch < 'Z

The repeat commands are defined in terms of other eouivalent
commands, p.s follows: w"i«i tquivaient

C repeatwhile E is equivalent to L: C; it E goto L
C repeatuntil E is equivalent to C repeitwhilTTot (E)
L repeat is equivalent to C repeatwhili trUe

where L is an identifier which if not used elsewhere in the proqr

5.10 For Commands

program,

Syntactic form: for <name> = E to E do C
To? <name> = E to E by <constant> do C

ExamPle: tor i = 0 to 122 do V ! j ,« j

Semantics:

forms:^6 ^ COmmand Can be defined by the following equivalent

for N = El to E2 by E3 do C

is equivalent to

$(let N, ^ = El, E2
while N £ Z do

${ C ~
N := N + E3 $) $)

if E3 is positive, or

${ let N, Z = El, E2
while N > Z do

$(C
N := N + E3 $) $)

if E3 is negative. (The value of E3 is known at compile ti mo .) Z is

39 -

mm MMMMMMi - — — -i—^..-^

The BCPL Reference Manual

an identifier not used elsewhere in the program. Also:

for N = El to E2 do C

is equivalent to

tor N=EltoE2byldoC

The to ana by clauses may be interchanged. Note that the initial
valu-and e^ limit expressions El and E2 are evaluated ^ °'^- "
rr.ust be a constant expression so that its sign is known at compile

time.

5.11 Loop, Break, and Endcase Commands

Syntactic form:

Examples

loop
break
endcase

for i = 1 to v!0 do
$(Tet x = v!i

if x ■ 0 loop

break
LI:

$)
L2:

switchon Op into
 $ (case SWITCHON;

case SEQ:

Transswitch (x
endcase
Trans (x!l)
Trans (x! 2)
endcase

L3:
$)

at

Semantics:

Execution of the break command causes a jump to the point jutt
ter the smallest textually enclosing loop, introduced by one of the

followim key words:

until, while, repeat, repeatwhile, repeatuntU and for.

In the example, this is the point labelled L2.

The loop command causes a jump to the end of the body of the
smallest enclosing loop, so that the end condition is tested and the

- 40 -

r^taaaa .■<n—.-. ■■ -

The BCPL Reference Manual

loop repeated as required. In the example, this is the P^t l«belUd
LI. Ii a for loop the loop command also causes the index to oe
incrementedTefoie the test is made (as usual).

The endcase command causes a jump to the point just after the
liest textually enclosing switchon block. In the third example, sma

this is the point labelled L3

5.12 Finish Commands

Syntactic form:

Examp] e:

finish

if Reportcount > Reportmax do
— $(Writes ('*nToo many errors*n)

Endwrite (OUTPUT)
finish $)

Semantics:

The finish command causes execution of the program to cease in
m orderly manner. Its exact effect is implementation dependent.

5.13 Return Commands

Syntactic form:

Example:

return

let MapB (F, x) be
$ (1 if x = 0 return

IT x!Hl ■ 5 COHMA do
$(MapB (F, x!H3)

F 'x!H2)
return $)

F (x) $)1

Semantics:

The return command causes the execution of the smallest
nclos ng routine body to cease and so control return« to the point
üSt Iftir the routine call that invoked the current activation of the

e
3
body.

- 41 -

IM^MM -

The BCPL Reterence Manual

5.14 Resultis Commands

Syntactic form:

Examnle:

resultis E

valof $(for i = 0 to n do
i f V! i~7 Ü! fresultis false

resuTTis true $)

Semantics:

The execution of the command resultis E causes the execution of
the smallest enclosing result block to cease and yield the value which
is the Rvalue of E.

5.1- Switchon Commands

Syntactic form: switchon E into <block>
where the block contains labels of the form
case <constant>:

Exampl e:

case <constant> t£ <constant>:
or default:

let Trans (x) be
$11 it K » 1 return

switchon x ! Hi into
T(default: Report (100); return

case S LET:

endcase

case S_SEQ: Trans (x ! H2)
Trans (x ! H3)
endcase $) 1

Semant ics:

The expression after switchon is evaluated to yield an Rvalue
ana then, it a case label exists which has a case constant of the same
value then execution jumps to that point, otherwise it tnere is a
default label execution resumes there. If the switch has no default
label anci if no case constant matches the switch expression tner. the
ettect is undefined.

The case label

case El to E2:

is equivalent to

case El: case El + 1: case El + 2: ... case E2:

- 42 -

•M^i' WM ^^^^^■fefeuJMM

The BCPL Reference Manual

where E2 must not be less than El.

Note that the names S_LET and S_SEQ in the example above must
have been declared to be manifest constants.

The switch is implemented by any one of a number of methods
(e.g. direct switch, sequential search, hash table, binary tree)
depending on the number and range of the case constants.

5.16 Call Commands

Syntactic form

Example :

Semantics:

call E0 (<E list>) I call E0 ()

call Terminate (Name char 32, Iv Code fixed

5.17 Blocks

Syntactic form:

<block item>
<block body>
<block>

= C ! sdeclar3tion>
= <block item> 1; <block item>}
■ $(<block body> $}

Example $(let List2 (x, y) = valof
$(let P = Newvec (1)

P ! 0, P ! 1 := x,
resultis P $)

finish $)

Semantics:

A block body consists of a sequence of intermixed commands and
declarations. It is executed by executing the declarations and
commands in sequence.

The names declared by the declarations are local to the block
and the dynamic storage cells allocated only remain in existence as
long as execution is dynamically within the block. For a detailed
discussion of scopes and extents see sections 6.1 and 6.2.

- 43 -

The BCPL Reference Manual

6.0 Definitions and Declarations

Before a name may be used in a BCPL program it must be declared
by the programmer in order to specify its scope, extent and, possibly,
its initial value.

6.1 Scope and Scope Rules

The SCOPE of a name N
which N refers to the same
constant. The scope of a

is the textual region of program throughout
variable, manifest constant, or address
name depends on its declaration as follow?:

(a) A formal parameter list of a function or routine
definition declares a list of names whose scope is the
body of the function or routine defined.

(b) A name labelling a command is a form of declaration and
it declares a name whose scope is the smallest enclosing
routine or function body.

(C) A let declaration declares a name or set of name^ whose
scope is the declaration itself and all succeeding
commands and declarations within the smallest enclosing
Dlock body. A let declaration at the outer level of a
program includes the rest of the program in its scope.

(d A manifest. external, global, or static declaration
names whose scope is all succeeding

the smallest enclosing
declaresa setof
commands and declarations within
block body cr program.

(e) The scope of the control variable of a for
body of the command.

command is the

It two variables have identical scopes then they must have
distinct names and so, for instance, the names in a formal parameter
list and the labels in the routine body must all be different.

6 . 2 Extent and Space Allocation

The EXTENT of a variable is the time through which it exists and
has a storage cell (with its associated Lvalue). Throughout the
extent of a variable it remains associated with the same storage cell
and so the Lvalue remains constant; however, the contents ol the cell
(or Rvalue) may be replaced by the execution of an assignment command.
In BCPL, variables can be divided into two classes:

Preceding page blank
- 45 -

mm^m

The BCPL Reference Manual

(a) Static variables
These are variables whose extents last as long as the
program is running. The storage cell of a static
variable is allocated prior to execution and continues to
exist until the program has finished or longer.

(b) Dynamic variables
The extent of a dynaiuic variable starts when its
declaration is executed and continues until execution
leaves its scope. Dynamic variables are useful when one
needs some working space for a short period (perhaps
during the execution of a routine) and it is too wasteful
to use static storage. Dynamic variables are
particularly useful when using functions and routines
recursively.

The class of a variable depends only on its declaration. Static-
variables are declared by

static declarations,
and global declarations.

Dynamic variables ;!re declared by

simple variable definitions,
tor commands,

and formal parameters.

During the execution of a program there are three separate areas
of storage in which variable! may reside; these are:

(a) the global vector,
(b) the stack,
(c) miscellaneous static cells.

The global vector provides a facility rather similar to COMMON in
FORTRAN and is used as a means of communication between separately
complied segments of program. The programmer may use a global
declaration to associate nar,e.> with particular cells in the global
vector.

The stack is needed tor the implementation of recursion and is
used to hold dynamic variables (such as vectors and function
arguments) and anonymous results needed during the evaluation of
expressions.

The miscellaneous static cells hold non-global static variables
which are local to the segment in which they are declared.

Function and routine definitions, labels, and
external declarations do not Introduce variables.

the manifest

- 46 -

mmmm ■MMMMMi

The BCPL Reference Manual

6.3 Let Declarations

Syntactic form:

Example:

let D {and D}
wTTere D denotes a definition

let x, y = 0, 1
in3 £ (t) - 2*t - 1
and ItermV ■ vec 22

Semant ics:

A let declaration may occur in a block body or at the outet level
of a program and may be used to declare simple variables, functions
and routines. The scope of the names declared is the textual region
of program consisting of the let declaration itself and the succeeding
declarations and commands of the block. At the outer level of a
program a let declaration may only^ declare ^functions
The definitions between are at the same level and are
effectively executed simultaneously, and by this means „rrrk
declaration may be
functions and routines,

the ands
tai

used to declare a set of mutually recursive

The various kinds of basic definitions are described below.

6.3.1 Simple Variable Definitions

Syntactic form: <name> {, <name>} = <E list>

All the names must be distinct and the number of names on the
left of the = must be the same as the number of expressions on the
r .ght of the =.

Example let x = 1
and y, z --- t (t) + 3, A!H2
and v ■ vec 50

Semantics:

In the general form

Ml, N2, ... Nn = El, E2, . En

dynamic data items with names Nl, N2, ... Nn are first declared but jyn_.
not initialized, then the assignment command

Nl, N2, . .. Nn := El, E2, .

is executed.

En

47 -

- -— — -- •

The BCPL Reference Marual

E0

RV lue

<-

V
N

6a,

6b

{ El,
I
1 <- -
i
f

Rvalue
I
I <- -

T

I

I
t

Rvalue
I
I <- -
I
I

"—f~|
I ..

En)
I
| <

1
V

Rvalue
I
I <

Evaluate the
arguments in Hmode.

Place the Rvalues in
n new consecutive
storage cells.

Find the function or
routine corresponding
to the Rvalue of E0.

Associate the formal
parameters with the
storage cells from
left to right.

(Nl, N2,
= E

be C

Evaluate or execute the body of the function or
routine in the environment of the definition
extended by the new variables.

For a routine call return to the point just after
the call.

For a function application, yield as result the
Rvalue of the body of the function.

Figure 9 - The Process of Calling a Function or Routine

The number of formal parameters need not equal the number of
tual parameters and so it is possible to define a vanadic routine. actual pa

Consider:

let R (a, b, c, d, e, f) be
$ (let v = lv a

- - - - v!tf
 v!3
 $)

R (4, 32, -14, 63)

- 49 -

mmm MMaaaBMa^Ha

The BCPL Ref'?rer.ce Manual

Within the body of R, the variable v may be thought of as a vector
whose elements are the arguments of the call, nd thus in this exampJe
v!0 equals 4 and v!3 equals 63.

Note that the parameters of a BCPL call are passed by value;
however, it is still possible to achieve the effect of a call by
reference using the lv and r_v operators. Consider:

lot S (x, y) be ry x := y
Tel A, B = 0,"!
S (ly A, B)

The effect of the call for S is to assign the current value of B
(namely 1) to the variable pointed to by _lv A (namely A), thus after
the call A has value 1.

All functions and routines may be defined and used recursively.

There is one important restriction on functions and routines
which has been imposed in order to achieve a very efficient recursive
call. This restriction is as follows:

Every name which is used in the body of a function or
routine but which is not declared there must be a
manifest constant or address constant or static
variable (see section 6.2).

In terms of the implementation, this restriction states that
either the Rvalue or the Lvalue of every free variable of a function
or routine is known prior co execution (but not necessarily at compile
time) .

Note that the following program is illegal:

let a, b = 1, 2
lot f (x)=a*x+b

However, it may be corrected as follows:

static $ (a
let f (x)

ll b - 2 $;
a*x + b

but this is not necessarily equivalent - e.g., if a or b is updated.

- 50 -

MM

The BCPL Reference Manual

6.4 Manifest Declarations

Syntactic form:

Examples:

manifest $(<decl item> {; <decl itein>} $)
where <decl item> ::= <name> = <constant>

manifest $(Hl=0; H2=l; H3=2 $)
manifest $(S_LET=7 4
 S_SEO=7 3

S COMMA=38 $)

Semantics:

A manifest declaration associates Rvalues directly with the
declared names; the association takes place at compile time and cannot
thereafter be changed. The names so declared are not variables and
may not appear in a left hand context. Any constant expression may be
used.

o.5 Static Declarations

Syntactic Form:

Example:

static $(<decl item> {; <decl item>} $)
where" <decl item> ::= <name> = <constantp

static ? (P = 0; Q = 0
Reportmax = 10 $)

bomantics:

A static declarat declares a set of static vaiiables (see
section 6.2) whose init ilues are given. Both the allocation of
storage cells and the initialization are performed pno to execution
of the program. Thus the initialization is performed onlv once. Any
constant expression may be used.

6,6 Global Declarations

Syntactic form:

Examples:

global $(<decl item> (; <decl item>) $)
where <decl item> ::= <name> : ^constant>

global $(Charcode:127; Option:128 $)
global $(Rdblockbody:140; Rdblock:141
 Rexp:144; Rdef:145; Hcom:146 $)

Semant ics;

A global declaration declares variables whose storage cells are
in the global vector (see section 6.2). The main purpose 0* the
global vector is to provide a means of communication between

Each name in a qlobai
expression whose value

separately compiled segments of program. 1
declaration is associated with a constani

- 51 -

■

1 ■■« ""■ ll1
■■" " i *mnw^m^mnmmm*mm—^~^"' ■ i i ■■ i i

The BCPL Reference Manual

specifies which storage cell in the global vector belongs to the name.
The samp global storage cell may be associated with variables in many
separate segments and hence may be used to pass values from one
segment to another.

6.7 External Declarations

Syntactic form

Example:

Semantics:

external $(<decl item> {; <decl item>} $)
where <decl item> ::= <name> = <constant>

external $(Initiate = "hcs $initiate,
$)

The external declaration defines a set of names directly
associated with Rvalues representing routines and functions in other
separately compiled programs. The constant expression in the
declaration is implementation dependent but will usually be a string
constant representing the name of an "external reference".

this
rule:

The external declaration can also be used to make routines in
program known to other programs, as a result of the following

If a function or routine definition occurs within
the scope of an external declaration with the same
name, then the function or routine is defined as
an "external symbol" with the name derived from
the external declaration.

The connection between an external reference
corresponding external symbol will be made by a loader
binder) sometime before or during execution, the details depending on
the operating system.

and the
(1 inker ,

For example, the following segment will define an external
function.

external $(P ■ "f$F" $)
l_ct F (g ,x) = g (x) + g (-x)

The following program fragment is a segment which uses the function
defined in the last example.

F ■ "f$F"
Write = "library$Write"

external

ST

$)
let G (t) -t*t+t+3
for i ■ 0 to li do Write (F (G, i))

- 52 -

k^sa ■ --

ii« •'•"•immi^mmimmmmmm'mm mm^^^m\\i it m u m in«.»»! i ivmrtm*^mim*mm**f MU.WW'W^^^™»—«^—^'^wpp-^d

References

The BCPL Reference Manual

[1] Barren, D. W,
et al

[2] Strachey, C.

[3] IBM Reference Manual

[4] Naur, P.
(ed)

"The Main Features of CPL"
The Computer Journal, Vol. 6,
1963, p. 134.

"CPL Working Papers"
Cambridge University Mathematical
Laboratory and London Institute of
Computer Science (1965)

709/7094 FORTRAN Programming System,
Form C28-6054-2

"Revised Report on the Algorithmic
Language ALGOL 60"
The Computer Journal, Vol. 5,
January 1963, p. 349

53 -

MHIfeHiHtMM

