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Abstract
The bead process introduced by Boutillier is a countable interlacing of the Sine2 point
processes. We construct the bead process for general Sineβ processes as an infinite
dimensional Markov chain whose transition mechanism is explicitly described. We
show that this process is the microscopic scaling limit in the bulk of the Hermite β

corner process introduced by Gorin and Shkolnikov, generalizing the process of the
minors of the Gaussian Unitary and Orthogonal Ensembles. In order to prove our
results, we use bounds on the variance of the point counting of the circular and the
Gaussian beta ensembles, proven in a companion paper (Najnudel and Virág in Some
estimates on the point counting of theCircular and theGaussianBeta Ensemble, 2019).

Mathematics Subject Classification 60B20 · 60J55 · 60F05 · 60J05
1 Introduction

In Boutillier [6], a remarkable family of point processes on R × Z, called bead pro-
cesses, and indexed by a parameter γ ∈ (−1, 1), has been defined. They enjoy the
following properties:

Interlacing The points of two consecutive lines interlace with each other.
Invariance The distribution of the point process is invariant and ergodic under

the natural action of R × Z by translation.
Parameters The expected number of points in any interval is proportional to its

length. Given that (0, 0) is in the process, the expected value of the
first positive point on line 1 is proportional to arccos γ .
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Gibbs property The distribution of any point X , given the other points, is uniform on
the interval which is allowed by the interlacing property.

It is an open problem whether these properties determine the point process uniquely.
Such uniqueness results exist for tilings, see Sheffield [17].

Existence was shown by Boutillier, who considers a determinantal process with an
explicit kernel. Its restriction to a line is the standard sine-kernel process. Thus the
above description proposes to be the purest probabilistic definition of the Gaudin–
Mehta sine kernel process limit of the bulk eigenvalues of the Gaussian Unitary
Ensemble (GUE).

Boutillier’s result relies on taking limits of tilings on the torus. Since then, works
startingwith Johansson andNordenstam [11] showed that the consecutiveminor eigen-
values of the Gaussian Unitary Ensemble also converge to the bead process, where the
tilt depends on the global location within the Wigner semicircle. These results have
been refined and generalized in Adler et al. [1]. However, the corresponding questions
remained open for other matrix ensembles, as the Gaussian Orthogonal Ensemble
(GOE), and the Gaussian Symplectic Ensemble (GSE):

• Is there a limit of the eigenvalue minor process?
• Is there a simple characterization as for β = 2?
• Can one derive formulas related to the distribution of beads?

One of themain goals of this paper is to answer these questions positively. The limiting
process is defined as an infinite-dimensionalMarkov chain, the transition fromone line
to the next being explicitly described. This transition can be viewed as a generalization
of the limit, when the dimension n goes to infinity, of the random reflection walk on
the unitary groupU (n). This walk is the unitary analogue of the random transposition
walk studied, for example, in Diaconis and Shahshahani [7], Berestycki and Durrett
[3] and Bormashenko [5].

Thenatural generalization of the transpositions to the setting of the orthogonal group
corresponds to the reflections. The orthogonal matrix corresponding to the reflection
across the plane with normal unit vector v is I − 2vv∗. To further generalize to the
unitary group, we proceed as follows: given a fixed unit complex number η and a unit
vector v, we define the complex reflection across v with angle arg(η) as the isometry
whose matrix is given by I + (η − 1)vv∗. The random reflection walk (Yk)k≥1 on the
unitary groupU (n) is then defined by Yk = X1 . . . Xk , where (X j ) j≥1 are independent
reflections for which v is chosen according to uniform measure on the complex unit
sphere, and η is fixed.

Note that since the multiplicative increments of the walk are invariant under conju-
gation by any group element, it follows that Ȳk , the conjugacy class of Yk , also follows
a randomwalk. This, of course, is given by the eigenvalues of Yk ; the transitionmecha-
nism can be computed as follows. Assuming that the eigenvalues u j of Ȳk are distinct,
the eigenvalues of Yk+1 are the solutions of

n−1∑

j=0

i
u j + z

u j − z
ρ j = i

1 + η

1 − η
(1)
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The bead process for beta ensembles 591

where for |z| = 1 the summands and the right-hand side are both real. The only
randomness is contained in the values ρ j , which have a Dirichlet joint distribution
with all parameters equal to 1. To summarize, in order to get the evolution of (Ȳk)k≥1,
we pick (ρ j )1≤ j≤n from Dirichlet distribution, form the rational function given by the
left-hand side of (1), and look at a particular level set to get the new eigenvalues.

This equation can be lifted to the real line. Let (λ j ) j∈Z be the (2πn)-periodic set of
λ ∈ R such that eiλ/n ∈ {u1, . . . , un}, and extend the sequence (ρ j )1≤ j≤n periodically
with period n to all integer indices. With z = eix/n , the left-hand side of (1) can be
written as

lim
�→∞

�∑

j=−�

2nρ j

λ j − x
.

and the level set of this at i(1 + η)/(1 − η) gives the lifting of the eigenvalues at the
next step. Recall that η is a complex number of modulus 1, related to the angles of the
complex reflections involved in the definition of the walk (Yk)k≥1. Notice now that
essentially the only role of n in the above process is given by the joint distribution
of the ρ-s. These are n-periodic and Dirichlet; clearly, as n → ∞ they converge,
after suitable renormalization, to independent exponential variables, giving naturally
an infinite-dimensional Markov chain.

In the present article, we prove the existence of thisMarkov chain and deduce a new
construction of the bead process. By replacing the exponential variables by gamma
variables with general parameter, we construct a natural generalization of the bead
process, indexed by a parameter β > 0. For β = 2, this process is the bead process
itself, and then it is the limit of the eigenvalues of the GUEminors when the dimension
goes to infinity. For β = 1, we show that we get the limit of the eigenvalues of the
GOE minors, for β = 4, we get the limit of the eigenvalues of the GSE minors, and
we generalize this result to all β > 0, by considering the Hermite β corners, defined
by Gorin and Shkolnikov [10], which can be informally viewed as the “eigenvalues
of GβE minors”.

The sequel of the present paper is organized as follows.
In Sect. 2, we give the statement of the most important results of the article, and

we refer to later propositions and theorems for the proofs. Our main results involve
technicalities which are also explained in the sequel of the article.

In Sect. 3, we detail the above discussion on the random reflection walk, and we
deduce a property of invariance for the law of the spectrum of a Haar-distributed
unitary matrix, for the transition given by the Eq. (1). We generalize this property to
circular beta ensembles for any β > 0.

In Sect. 4, we generalize the notion of Stieltjes transform to a class of infinite point
measures on the real line for which the series given by the usual definition is not
absolutely convergent.

In Sect. 5, we construct a family of Markov chains on a space of point measures,
for which the transition mechanism is obtained by taking a level set of the Stieltjes
transform defined in Sect. 4.

In Sect. 6, we show how the lifting of the unit circle on the real line defined above
connects the results of Sect. 3 to those of Sect. 5.
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592 J. Najnudel, B. Virág

In Sect. 7, we use some bound on the variance of the number of points of the circular
beta ensembles in an arc, in order to take the limit of the results in Sect. 6, when the
period of the point measure goes to infinity. We show a property of invariance enjoyed
by the determinantal sine-kernel process and its generalizations for all β > 0, for the
Markov chain defined in Sect. 5. From this Markov chain, we deduce the construction
of a stationary point process on R×Z, for which the points of a given line follow the
distribution of the Sineβ process introduced in Valkó and Virág [19].

In Sect. 8, we show, under some technical conditions, a property of continuity of
the Markov chain with respect to the initial point measure and the weights.

From this result, and from a bound, proven in a companion paper [15] on the
variance of the number of points of the Gaussian beta ensemble in intervals, we deduce
in Sect. 9 that the generalized bead process constructed in Sect. 7 appears as a limit
for the eigenvalues of the minors of Gaussian Ensembles for β ∈ {1, 2, 4}. The case
β = 2 corresponds to the GUE, for which the convergence to the bead process defined
by Boutillier [6] is already known from Adler et al. [1]. Combining our result with
[1] then implies that our Markov chain has necessarily the same distribution as the
bead process given in [6]. The case β = 1 gives the convergence of the renormalized
eigenvalues of the GOE minors, and the case β = 4 gives the convergence of the
renormalized eigenvalues of the GSE minors. For other values of β, we get a similar
result of convergence for the renormalized points of the Hermite β corner defined in
[10].

2 Statement of themain results

Our main result generalizes the bead process to any β > 0. We need the following
definitions.

• Let L be the family of all the discrete subsets L of R, unbounded from above and
from below, and such that for x → ∞, Card(L ∩ [0, x]) = O(x), and for fixed
a, b ∈ R, x → ∞,

Card(L ∩ [0, x + a]) − Card(L ∩ [−x + b, 0]) = O(x/ log2 x).

Weendow the spaceLwith theσ -algebra generated by themaps L 	→ Card(L∩B)

for all Borel sets B ⊂ R. We will use (λ j ) j∈Z as the unique increasing labeling of
L so that λ−1 < 0 ≤ λ0.

• Let 
 be the family of doubly infinite sequences (γ j ) j∈Z satisfying the following
assumptions: for k going to infinity,

k∑

j=0

γ j = ck + O(k/ log2 k) and
k∑

j=0

γ− j = ck + O(k/ log2 k),

where c > 0 is a constant. We endow 
 with the σ -algebra generated by the
coordinate maps γ j , j ∈ Z.
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The bead process for beta ensembles 593

Theorem 1 1. There exists a map D:L × 
 × R → L, defined by

D(L, (γ j ) j∈Z, h) =
⎧
⎨

⎩z ∈ R, lim
c→∞

∑

j∈Z,λ j∈L∩[−c,c]

γ j

λ j − z
= h

⎫
⎬

⎭ .

2. For any probability measure � on 
 × R and any initial condition X0 in L, we
can define a Markov chain by as follows: let Gk be independent samples from �,
and set

Xk+1 = D(Xk,Gk), k ≥ 0.

3. Assume that under� the ((β/4)γ j ) j∈Z are independent Gamma random variables
of shape parameterβ/2, and h is a deterministic real number. Let X0 be distributed
as the Sineβ -process.
Then Xk is a stationary Markov chain. The β-bead process on R×N0 with level
h is defined as the set

⋃

k≥0

(Xk × {k}).

The bead process onR×Z is the unique Z-shift-invariant extension of the process
on R × N0.

This theorem, which defines the β-bead process, is a consequence of results proven
later in the article. The fact that the map D is well-defined is obtained in Sect. 5, as a
consequence of a discussion on the existence and the regularity in z of the limit

lim
c→∞

∑

j∈Z,λ j∈L∩[−c,c]

γ j

λ j − z

which is made in Sect. 4, and which explains the technicalities involved in the def-
inition of L and 
. The invariance property of the distribution of the Sineβ process
for the Markov chain is proven in Theorem 13. An informal definition of the β-bead
process can be given as follows: a β-bead process is a countable family of Sineβ point
processes, such that each of them is obtained from the previous one by putting inde-
pendent Gamma(β/2) distributed weights on the points, and by taking a given level
set of the Stieltjes transform of the corresponding point measure. Notice that the point
measure here is infinite and that the series defining the Stietjes transform is not abso-
lutely convergent, which explains some of the technicalities involved in Theorem 1.
Notice that the properties of the Stieltjes transform imply that two consecutive Sineβ

point processes involved in a β-bead process interlace with each other.
We prove Theorem 13 by finite approximation. There is general beta version of

the eigenvalue evolution of the complex reflection random walk on unitary matrices.
It corresponds exactly to taking γi to be n-periodic with Dirichlet(β/2, . . . , β/2)
distribution in Theorem 1. The periodic lifting of the circular beta ensemble points
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594 J. Najnudel, B. Virág

to the real line is a stationary distribution for the corresponding Markov chain, see
Theorem 12. In Theorem 13, we show that as n → ∞, this sequence ofMarkov chains
converges, and we identify the β-bead process as its limit.

The bead process introduced by Boutillier is a determinantal process, with an
explicit kernel. In the present article, we do not study the question of the correla-
tions of the β-bead process: we expect that there are no simple general formulas, since
the problem of finding explicit formulas for the correlations of the Sineβ process is
already unsolved for general β > 0. It may be possible to find expressions involving
Pfaffians for the correlations of the β-bead process for β = 1 and β = 4.

Another natural question related to Theorem1 is the following: is the Sineβ distribu-
tion the unique invariant measure for theMarkov chain associated to i.i.d. independent
Gamma(β/2) weights and independent level h? Strictly speaking, the answer is neg-
ative since we can multiply the points of the Sineβ by a non-zero constant and still get
an invariant distribution for the Markov chain. If we restrict the discussion to point
processes on R for which the number of points in [0, x] and the number of points in
[−x, 0] are equivalent to x/2π when x goes to infinity, we do not know if the invari-
ant measure is unique. Symmetrically, one can also ask about the existence of other
measures � on 
 × R for which the Sineβ distribution is invariant for the Markov
chain.

The main property of the β-bead process is that it is the scaling limit of the Hermite
β corner process introduced by Gorin and Shkolnikov [10], see also [8, Proposition
4.3.2]. From Definition 1.1 of [10], we have, after taking t = 2/β:

Definition 2 Let n ≥ 1 be an integer. A Hermite β corner process with n levels is a
random set of reals (λ

(k)
j )1≤ j≤k≤n subject to the interlacing conditions λ

(k)
j ≤ λ

(k−1)
j ≤

λ
(k)
j+1 and such that the density of its probability distribution is given by

∏

i< j

(λ
(n)
j − λ

(n)
i )

n∏

j=1

e−βλ
(n)
j /4

n−1∏

k=1

∏

1≤i< j≤k

(λ
(k)
j − λ

(k)
i )2−β

×
k∏

a=1

k+1∏

b=1

|λ(k)
a − λ

(k+1)
b |(β/2)−1.

From [8, Proposition 4.3.2] (see Proposition 24) and the discussion above, we
deduce that the successive levels (λ(k))1≤k≤n of aHermiteβ corner process can be con-
structed as an inhomogeneous Markov chain whose transitions are explicitly written
in term of level sets of Stieltjes transforms. Similar Markov chains and representations
of eigenvalues of successive minors of randommatrices in terms of zeros of meromor-
phic functions can be found in the literature: for more detail, we refer to articles by
Gelfand and Naimark [9], Baryshnikov [2], Neretin [14], Okounkov and Reshetikhin
[16].

This constructions implies that one can define a Hermite β corner process
(λ

(k)
j )1≤ j≤k with infinitely many levels, in such a way that (λ(k)

j )1≤ j≤k≤n is a Hermite

β corner process with n levels for all n ≥ 1.Moreover, for each n ≥ 1 the nth level λ(n)

follows the Gaussian β Ensemble, i.e. its joint density, with respect to the Lebesgue
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The bead process for beta ensembles 595

measure, is proportional to

e−β
∑n

k=1 λ
(n)
k /4

∏

j<k

|λ(n)
j − λ

(n)
k |β.

This, up to a change in the normalization, is shown in [10]. As we explain in more
detail at the beginning of Sect. 9, the eigenvalues of the successive minors of a n × n
matrix following the Gaussian Orthogonal Ensemble (β = 1), the Gaussian Unitary
Ensemble (β = 2), or the Gaussian Symplectic Ensemble (β = 4), with a suitable
normalization, have the same law as the successive levels of aHermiteβ corner process
with n levels. If we take the minors of an infinite matrix, we get a Hermite β corner
with infinitely many levels. For this reason, for general β > 0, the Hermite β corner
process can be thought as the “eigenvalues of GβE minors”. In the present article,
we prove that the β-bead process is the microscopic scaling limit of the Hermite β

corner process. From now, if (�n)n≥1, � are locally finite measures on a measurable
subspace of Rp for some p ≥ 1 (e.g. R or R ×N0), we will say that �n converges to
� locally weakly if and only if for all continuous functions from R

p to R, compactly
supported,

∫

Rp

 d�n −→

n→∞

∫

Rp

 d�.

The precise statement of our result is then the following:

Theorem 3 Let us fix E ∈ (−2, 2). Let (λ
(k)
j )1≤ j≤k be a Hermite β corner process

with infinitely many levels. For n ≥ 1, we consider the point process onR×Z defined
as the set

Xn :=
{
(λ

(n+k)
j − E

√
n)
√
n(4 − E2), k), k ∈ Z ∩ [−n + 1,∞)

}
.

Then, the sum of Dirac measures at the points of Xn converges in law to the sum of
Dirac measures at the points of a β-bead process onR×Z, for the topology of locally
weak convergence of measures on R × Z, with a level h given by

h = − E√
4 − E2

.

If we restrict the point processes to R×N0, i.e. we take only points corresponding
to k ≥ 0, this statement corresponds to the first part of Theorem 26, the level k of the
point process Xn corresponding to the point process�

(k)
n . Once the result is proven for

point processes onR×N0, a suitable shift of n gives convergence of point processes on
R× (Z∩ [−m,∞)) for any fixed m ∈ Z, and then convergence of point processes on
R×Z since the test functions in the locallyweak convergence are compactly supported.
The second part of Theorem 26 gives the following property of compatibility:
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596 J. Najnudel, B. Virág

Theorem 4 For fixed h ∈ R, the β-bead process on R × Z for β = 2 and level h has
the same law as the bead process in the sense of [6], with parameter

γ = − h√
1 + h2

.

3 Random reflection chains on the unitary group

We start with a brief review of how multiplication by complex reflections changes
eigenvalues. Let U ∈ U (n) be a unitary matrix with distinct eigenvalues u1, . . . , un ,
and let v be a unit vector. Let a1, . . . , an be the coefficients of v in a basis of unit
eigenvectors ofU , and let ρ j = |a j |2 for 1 ≤ j ≤ n: the law of (ρ1, . . . , ρn) does not
depend on the choice of the eigenvector basis and the sum of these numbers is equal
to 1.

If η �= 1 is a complex number of modulus 1, the complex reflection with angle arg η

and vector v corresponds to the unitary matrix I + (η − 1)vv∗. If we multiply U by
this reflection, we get a new matrix whose eigenvalues u satisfy

0 = det
(
U (I + (η − 1)vv∗) − u

)
,

which can be rewritten as

0 = det(U − u) det
(
I + (η − 1)Uvv∗(U − u)

−1
)

when u is not an eigenvalue ofU . Now, the second argument is I plus a rank-1 matrix,
so its determinant equals 1 plus the trace of the rank-1 matrix. Thus the equation above
reduces to

0 = 1 + (η − 1)tr(Uvv∗(U − u)−1) = 1 + (η − 1)v∗((U − u)−1U )v.

Expanding U in the basis of its eigenvectors and eigenvalues u j , we get

1 = (1 − η)

n∑

j=1

ρ j
u j

u j − u

or, after a transformation,

n∑

j=1

iρ j
u j + u

u j − u
= i

1 + η

1 − η
. (2)

As u moves counterclockwise on the unit circle, and on each arc between two consec-
utive poles, the left-hand side of (2) is continuous and strictly increasing from −∞
to ∞. Hence, the matrix U (I + (η − 1)vv∗) has exactly one eigenvalue in each arc
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The bead process for beta ensembles 597

between eigenvalues of U : in other words, the eigenvalues of U (I + (η − 1)vv∗)
strictly interlace between those of U , and are given by the solutions u of the Eq. (2).

Consider the product of the unit sphere in C
n and R, and a distribution π on this

space which is invariant under permutations of the n coordinates of the sphere, and by
multiplication of each of these coordinates by complex numbers of modulus one. For
such a distribution, we can associate a Markov chain on unitary matrices as follows.
GivenU0, . . . ,Uk , we pick a sample ((a1, . . . , an), h) from π independently from the
past. Then,Uk+1 is defined as the product ofUk by the reflection with parameter η so
that h = i η+1

η−1 , and vector v =∑ a jϕ j , where (ϕ j )1≤ j≤n are unit eigenvectors of Uk

(from the assumption made on π , the law of v does not depend on the choice of the
phases of the eigenvectors (ϕ j )1≤ j≤n).

From the discussion above, it is straightforward that if Vk is the spectrum ofUk , then
(Vk)k≥0 forms a Markov process as well; its distribution depends on the coefficients
a j only through ρ j = |a j |2. The transition is given as follows: given Vj , (ρ j )1≤ j≤n

and h, Vj+1 is formed by the n solutions of (2).
When a is uniform on the unit complex sphere of C

n , and h is independent
of a, then (ρ j )1≤ j≤n has Dirichlet(1, . . . , 1) distribution, and the corresponding
reflection is independent of Uk . Thus the Markov chain reduces to a random walk:
Uj = U0R1 . . . Rk , where the reflections (Rk)k≥1 are independent.

It is immediate that the Haar measure on U (n) is invariant for this random walk.
One deduces that if (ρ j )1≤ j≤n follows a Dirichlet distribution with all parameters
equal to 1, if h (and then η) is independent of (ρ j )1≤ j≤n , if the points of V0 follow
the distribution of the eigenvalues of the CUE in dimension n, and if (Vk)k≥0 is the
Markov chain described above, then the law of Vk does not depends of k: the CUE
distribution is invariant for this Markov chain.

This invariance property can be generalized to other distributions π .
Indeed, as in Simon [18], one can associate to the point measure σ :=∑n

j=1 ρ jδu j

a so-called Schur function fσ , which is rational, and which can be defined by the
equation:

∫

U

i
v + u

v − u
dσ(v) = i

1 + u fσ (u)

1 − u fσ (u)
. (3)

Moreover, as explained in [18], by Geronimus theorem, we also have

fσ (u) = Rα0 ◦ Mu ◦ Rα1 ◦ Mu ◦ Rα2 ◦ · · · ◦ Rαn−2 ◦ Mu(αn−1),

where Mu denotes the multiplication by u, the (α j )0≤ j≤n−1 are the Verblunsky coef-
ficients associated to the orthogonal polynomials with respect to the measure σ , and
for all α ∈ D, Rα is the Möbius transformation given by

Rα(z) = α + z

1 + αz
.

By (3), we see that (2) is satisfied if and only if u fσ (u) = η, or equivalently,

Mη−1 ◦ Mu ◦ Rα0 ◦ Mu ◦ Rα1 ◦ · · · ◦ Mu(αn−1) = 1. (4)
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598 J. Najnudel, B. Virág

Now,Mη−1 andMu commute and for α ∈ D,Mη−1 ◦Rα = Rαη−1 ◦Mη−1 . One deduces
that (4) is equivalent to

Mu ◦ Rα0η−1 ◦ Mu ◦ Rα1η−1 ◦ · · · ◦ Mu(αn−1η
−1) = 1,

i.e. u fτ (u) = 1, where τ is the finitely supported probability measure whose Verblun-
sky coefficients are (α0η

−1, . . . , αn−1η
−1). Now, by the general construction of the

Schur functions, the equation u fτ (u) = 1 is satisfied if and only if u is a point
of the support of τ : in other words, this support is the set of solutions of (2). We
deduce that if the distribution π and the law of {u1, . . . , un} are chosen in such a
way that (α0η

−1, . . . , αn−1η
−1) has the same law as (α0, . . . , αn−1), then the law of

{u1, . . . , un} is invariant for the Markov chain described above. The precise statement
is the following:

Proposition 5 Letπ be a probability distribution on the product of the unit sphere ofCn

andR, under which the first component (a1, . . . , an) is independent of the second h =
i(1+η)/(1−η). We suppose that the law of (a1, . . . , an) is invariant by permutation of
the coordinates, and by their pointwise multiplication by complex numbers of modulus
1. Let P be a probability measure of the sets of n points {u1, . . . , un}, such that under
the product measure P ⊗ π , the sequence (α0, . . . , αn−1) of Verblunsky coefficients
associated to the measure

σ =
∑

1≤ j≤n

ρ jδu j =
∑

1≤ j≤n

|a j |2δu j .

has a lawwhich is invariant by multiplication by complex numbers of modulus 1. Then,
the measureP is invariant for theMarkov chain associated to π : more precisely, under
P ⊗ π , the law of the set of solutions of (2) is equal to P.

It is not obvious to find explicitly somemeasuresP andπ under which the law of the
Verblunsky coefficients is invariant by rotation. An important example is obtained by
considering the so-called circular beta ensembles. These ensembles are constructed as
follows: for some parameter β > 0, one defines a probability measure Pn,β on the sets
of n points on the unit circle, such that the corresponding n-point correlation function
rn,β is given, for z1, . . . zn ∈ U, by

rn,β(z1, . . . , zn) = Cn,β

∏

1≤ j<k≤n

|z j − zk |β,

where Cn,β > 0 is a normalization constant. Note that, for β = 2, one obtains the
distribution of the spectrum of a random n × n unitary matrix following the Haar
measure. Now, let πn,β be any distribution on the product of the unit sphere of Cn and
R, such that with the notation above, h is independent of (ρ0, . . . , ρn−1), which has a
Dirichlet distribution with all parameters equal to β/2. Then, under Pn,β ⊗ πn,β , the
distribution of the Verblunsky coefficients (α0, α1, . . . , αn−1) has been computed in
Killip and Nenciu [12]. One obtains the following:

• The coefficients α0, α1, . . . αn−1 are independent random variables.
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The bead process for beta ensembles 599

• The coefficient αn−1 is uniform on the unit circle.
• For j ∈ {0, 1, . . . , n − 2}, the law of α j has density (β/2)(n − j − 1)(1 −

|α j |2)(β/2)(n− j−1)−1 with respect to the uniform probability measure on the unit
disc: note that |α j |2 is then a beta variable of parameters 1 and β(n − j − 1)/2.

Therefore, the law of (α0, α1, . . . , αn−1) is invariant by rotation, and one deduces the
following result:

Proposition 6 The law of the circular beta ensemble is an invariant measure for the
Markov chain associated toπn,β .More precisely, underPn,β⊗πn,β , the set of solutions
of (2) follows the distribution Pn,β .

In the next sections, we will take a limit when n goes to infinity. For this purpose,
we need to consider point processes on the real line instead of the unit circle, and to
find an equivalent of the Eq. (2) in this setting.

4 Stieltjes transform for point measures

Let � be a σ -finite point measure on R, which can be written as follows:

� =
∑

λ∈L
γλδλ,

where L is a discrete subset of the real line, γλ > 0 for all λ ∈ L , and δλ is the Dirac
measure at λ. The usual definition of the Stieltjes transform applied to � gives, for
z ∈ C\{L}:

S�(z) =
∑

λ∈L

γλ

λ − z
. (5)

If the set L is finite, then S�(z) is well-defined as a rational function. If L is infinite
and if the right-hand side of (5) is absolutely convergent, then this equation is still
meaningful. The following result implies that under some technical assumptions, one
can define S� even if (5) does not apply directly:

Theorem 7 Assume that for all a, b ∈ R,�[0, x+a]−�[−x+b, 0] = O(x/ log2 x)
as x → ∞. Then, for all z ∈ C\{L}, there exists S�(z) ∈ C such that

∑

λ∈L∩[−c,c]

γλ

λ − z
−→
c→∞ S�(z).

The function S� defined in this way is meromorphic, with simple poles at the elements
of L, and the residue at λ ∈ L is equal to −γλ. The derivative of S� is given by

S′
�(z) =

∑

λ∈L

γλ

(λ − z)2
, (6)
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600 J. Najnudel, B. Virág

where the convergence of the series is uniform on compact sets of C\{L}. For all
pairs {λ1, λ2} of consecutive points in L, with λ1 < λ2, the function S� is a strictly
increasing bijection from (λ1, λ2) to R. Moreover, we have the following translation
invariance: if y ∈ R and � satisfies the conditions above, then so does its translation
� + y, and one has

S�+y(z + y) = S�(z)

for all z ∈ C\{L}.

Remark 8 The bound x/ log2 x is not optimal (any increasing function which is negli-
gible with respect to x and integrable against dx/x2 at infinity would work). However,
it will be sufficient for our purpose.

Proof Let c0 > 1, and z ∈ C such that |z| ≤ c0/2. For c > c0, we have:

∑

λ∈L∩([−c,−c0]∪[c0,c])

γλ

λ − z
=

∑

λ∈L∩[c0,c]
γλ

∫ ∞

λ

dμ

(μ − z)2

−
∑

λ∈L∩[−c,−c0]
γλ

∫ λ

−∞
dμ

(μ − z)2

=
∫ ∞

c0

�([c0, c∧μ])
(μ−z)2

dμ−
∫ −c0

−∞
�([(−c) ∨ μ,−c0])

(μ−z)2
dμ

=
∫ ∞

c0

(
�([c0, c ∧ μ])

(μ − z)2
− �([−(c ∧ μ),−c0])

(μ + z)2

)
dμ

=
∫ ∞

c0

�([c0, c ∧ μ]) − �([−(c ∧ μ),−c0])
μ2 dμ

+
∫ ∞

c0

(
(2zμ − z2)(�([c0, c ∧ μ]))

μ2(μ − z)2

+ (2zμ + z2)(�([−(c ∧ μ),−c0]))
μ2(μ + z)2

)
dμ.

Let F be an increasing function fromR+ toR∗+ := (0,∞), such that F(x) is equivalent
to x/ log2 x when x goes to infinity. By assumption, there exists C > 0 such that for
all x ≥ 0, |�([0, x]) − �([−x, 0])| ≤ CF(x), and then, for all μ ≥ c0,

|�([c0, c ∧ μ]) − �([−(c ∧ μ),−c0])|
≤ CF(c ∧ μ) + �([−c0, c0]) ≤

(
C + �([−c0, c0])

F(0)

)
F(μ).

Sinceμ 	→ F(μ)/μ2 is integrable at infinity, one obtains, by dominated convergence,
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∫ ∞

c0

�([c0, c ∧ μ]) − �([−(c ∧ μ),−c0])
μ2 dμ

−→
c→∞

∫ ∞

c0

�([c0, μ]) − �([−μ,−c0])
μ2 dμ,

where the limiting integral is absolutely convergent. Similarly, there exist C ′,C ′′ > 0
such that for all x ≥ 0, |�([0, x + 1]) − �([−x, 0])| ≤ C ′F(x) and |�([0, x]) −
�([−x − 1, 0])| ≤ C ′′F(x), which implies that

�((x, x + 1]) + �([−x − 1,−x)) ≤ |�([0, x + 1]) − �([−x, 0])|
+ |�([0, x]) − �([−x − 1, 0])|

≤ (C ′ + C ′′)F(x).

Hence, for all integers n ≥ 1,

�([−n, n]) = �({0}) +
n−1∑

k=0

(�((k, k + 1]) + �([−k − 1,−k))

≤ �({0}) + (C ′ + C ′′)
n−1∑

k=0

F(k) ≤ KnF(n − 1)

where K > 0 is a constant, and then for all x ≥ 0, �([−x, x]) ≤ K (1 + x)F(x),
which implies that for μ ≥ c0, �([−(c∧μ),−c0]) ≤ K (1+μ)F(μ) and �([c0, c∧
μ]) ≤ K (1 + μ)F(μ). Moreover, since |z| ≤ c0/2 ≤ μ/2, one has |μ − z| ≥ μ/2,
|μ + z| ≥ μ/2 and

∣∣∣∣
(2zμ − z2)

μ2(μ − z)2

∣∣∣∣+
∣∣∣∣
(2zμ + z2)

μ2(μ + z)2

∣∣∣∣ ≤ 2
2.5|z|μ

μ2(μ/2)2
= 20|z|/μ3 ≤ 10 c0/μ

3 (7)

Since μ 	→ (1 + μ)F(μ)/μ3 is integrable at infinity, one can again apply dominated
convergence and obtain that

∫ ∞

c0

(
(2zμ − z2)(�([c0, c ∧ μ]))

μ2(μ − z)2
+ (2zμ + z2)(�([−(c ∧ μ),−c0]))

μ2(μ + z)2

)
dμ

tends to

∫ ∞

c0

(
(2zμ − z2)(�([c0, μ]))

μ2(μ − z)2
+ (2zμ + z2)(�([−μ,−c0]))

μ2(μ + z)2

)
dμ
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602 J. Najnudel, B. Virág

when c goes to infinity. Therefore,

∑

λ∈L∩([−c,−c0]∪[c0,c])

γλ

λ − z
−→
c→∞

∫ ∞

c0

�([c0, μ]) − �([−μ,−c0])
μ2 dμ

+
∫ ∞

c0

(
(2zμ − z2)(�([c0, μ]))

μ2(μ − z)2
+ (2zμ + z2)(�([−μ,−c0]))

μ2(μ + z)2

)
dμ,

which proves the existence of the limit defining S�(z): explicitly, for z ∈ C\{L} and
for any c0 > 2|z| ∨ 1,

S�(z) =
∑

λ∈L∩(−c0,c0)

γλ

λ − z
+
∫ ∞

c0

�([c0, μ]) − �([−μ,−c0])
μ2 dμ

+
∫ ∞

c0

(
(2zμ − z2)(�([c0, μ]))

μ2(μ − z)2
+ (2zμ + z2)(�([−μ,−c0]))

μ2(μ + z)2

)
dμ.

(8)

For fixed c0 > 0, the first term of (8) is a rational function of z, the second term
of (8) does not depend on z, and by dominated convergence, the third term can be
differentiated in the integral ifwe restrict z to the set {|z| < c0/2}. Hence, the restriction
of S� to the set {|z| < c0/2} is meromorphic, with simple poles at points λ ∈ L ∩
(−c0/2, c0/2). Since c0 can be taken arbitrarily large, S� is in fact meromorphic on
C, with poles λ ∈ L , the pole λ having residue −γλ. The derivative S′

�(z) is given,
for any c0 > 2|z| ∨ 1, by:

S′
�(z) =

∑

λ∈L∩(−c0,c0)

γλ

(λ − z)2
+ 2

∫ ∞

c0

(
(�([c0, μ]))

(μ − z)3
+ (�([−μ,−c0]))

(μ + z)3

)
dμ.

=
∑

λ∈L∩(−c0,c0)

γλ

(λ − z)2
+
∫ ∞

c0

⎛

⎝
∑

λ∈L∩[c0,μ]
γλ

⎞

⎠ 2 dμ

(μ − z)3

+
∫ ∞

c0

⎛

⎝
∑

λ∈L∩[−μ,−c0]
γλ

⎞

⎠ 2 dμ

(μ + z)3

=
∑

λ∈L∩(−c0,c0)

γλ

(λ − z)2
+

∑

λ∈L∩[c0,∞)

γλ

∫ ∞

λ

2 dμ

(μ − z)3

+
∑

λ∈L∩(−∞,c0]
γλ

∫ ∞

−λ

2 dμ

(μ + z)3
,

which implies (6). Note that the implicit use of Fubini theorem in this computation is
correct since all the sums and integral involved are absolutely convergent.

Now, let K be a compact set of C\L , let d > 0 be the distance between K and L ,
and let A > 0 be the maximal modulus of the elements ofK. For all z ∈ K and λ ∈ L ,
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one has, for |λ| ≤ 2A + 1,

∣∣∣∣
γλ

(λ − z)2

∣∣∣∣ ≤
γλ

d2
≤ 1 + (2A + 1)2

d2
· γλ

1 + λ2

and for |λ| ≥ 2A + 1,

∣∣∣∣
γλ

(λ − z)2

∣∣∣∣ ≤
γλ

(|λ| − A)2
≤ 4γλ

λ2
≤ 8γλ

1 + λ2
.

Hence, in order to prove the uniform convergence of (6) on compact sets, it is sufficient
to check that

∑

λ∈L

γλ

1 + λ2
< ∞,

but this convergence is directly implied by the absolute convergence of the right-hand
side of (6) for any single value of z ∈ C\L (say, z = i), which has been proven before.

The formula (6) applied to z ∈ R implies immediately that for all pairs {λ1, λ2} of
consecutive points in L , with λ1 < λ2, the function S� is strictly increasing on the
interval (λ1, λ2). Moreover, one has for λ ∈ {λ1, λ2} and z → λ, Sλ(z) ∼ γλ/(λ− z),
which implies that S�(z) → −∞ for z → λ1 and z > λ1, and S�(z) → +∞ for
z → λ2 and z < λ2. We deduce that S� is a bijection from (λ1, λ2) to R.

It only remains to show the invariance by translation. If we fix y ∈ R, then for all
a, b ∈ R, and for x ≥ 0 large enough,

(� + y)([0, x + a]) − (� + y)([−x + b, 0])
= �([−y, x + a − y]) − �([−x + b − y,−y])
= �([0, x + a − y]) − �([−x + b − y, 0]) + O(�([−|y|, |y|]))
= O(x/ log2 x) + O(1) = O(x/ log2 x),

and the assumptions of Theorem 7 are satisfied. One has

� + y =
∑

λ∈L
γλδλ+y,

and then for all z ∈ C\L ,

S�+y(z + y) = lim
c→∞

∑

λ∈(L+y)∩[−c,c]

γλ−y

z + y − λ
= lim

c→∞
∑

λ∈L∩[−c−y,c−y]

γλ

z − λ
,

which is equal to S�(z), provided that we check that

∑

λ∈L∩[−c−y,c−y]

γλ

z − λ
−

∑

λ∈L∩[−c,c]

γλ

z − λ
−→
c→∞ 0,
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which is implied by

∑

λ∈L∩[−c−|y|,−c+|y|]

γλ

|z − λ| +
∑

λ∈L∩[c−|y|,c+|y|]

γλ

|z − λ| −→
c→∞ 0. (9)

Now, for c > |y| + |z| + 1, the left-hand side of (9) is smaller than or equal to

�([−c − |y|, −c + |y|]) + �([c − |y|, c + |y|])
c − |z|−|y|

≤ |�([0, c + |y|])−�([−c + |y| + 1, 0])|+|�([0, c − |y| − 1]) − �([−c − |y|, 0])|
c − |y| − |z| =O(1/ log2 c),

for c tending to infinity. ��
The assumption of Theorem 7 depends on the fact that the measure � is not too

far from being symmetric with respect to a given point on the real line. The next
proposition expresses this assumption in terms of the support L of � and the weights
(γλ)λ∈L . The following result gives a sufficient condition for Theorem 7:

Proposition 9 Consider the measure

� =
∑

j∈Z
γ jδλ j

where (λ j ) j∈Z is strictly increasing and neither bounded from above nor from below,
and γ j > 0. Let L be the set {λ j , j ∈ Z}. Assume that for some c > 0,

k∑

j=0

γ j = ck + O(k/ log2 k) and
k∑

j=0

γ− j = ck + O(k/ log2 k),

when k → ∞. If for x → ∞ one has Card(L ∩ [0, x]) = O(x) and for all a, b ∈ R,
Card(L ∩ [0, x + a]) −Card(L ∩ [−x + b, 0]) = O(x/ log2 x), then the assumptions
of Theorem 7 are satisfied.

Proof For y ∈ R, let N (y) (resp. N (y−)) be the largest index j such that λ j ≤ y
(resp. λ j < y). One has, for a, b ∈ R and for x large enough,

�([0, x + a]) =
N (x+a)∑

j=N (0−)+1

γ j and �([−x + b, 0]) =
N (0)∑

j=N ((−x+b)−)

γ j ,

which implies that for x → ∞ and then N (x + a) → ∞, N ((−x + b)−) → −∞:

�([0, x + a]) − �([−x + b, 0]) = c(N (x + a) − |N ((−x + b)−)|)
+ O

(
N (x + a)

log2(N (x + a))
+ |N ((−x + b)−)|

log2 |N ((−x + b)−)|
)

.
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Now, we have the following estimates:

N (x + a) = Card(L ∩ [0, x + a]) + O(1) = O(x + a)

+ O(1) = O(x),
N (x + a)

log2(N (x + a))
= O(x/ log2 x),

N (x + a) − |N ((−x + b)−)| = Card(L ∩ [0, x + a]) − Card(L ∩ [−x + b, 0])
+ O(1) = O(x/ log2 x), |N ((−x + b)−)| ≤ N (x + a) + |N (x + a)

− |N ((−x + b)−)|| ≤ O(x) + O(x/ log2 x) = O(x)

and

|N ((−x + b)−)|
log2 |N ((−x + b)−)| = O(x/ log2 x).

Putting all together gives:

�([0, x + a]) − �([−x + b, 0]) = O(x/ log2 x)

and then the assumptions of Theorem 7 are satisfied. ��
As written in the statement of Theorem 7, the function S� induces a bijection

between each interval (λ1, λ2), λ1 and λ2 being two consecutive points of L , and the
real line. It is then natural to study the inverse of this bijection, which should map each
element of R to a set of points interlacing with L . The precise statement we obtain is
the following:

Proposition 10 Let � be a measure, whose support L is neither bounded from above
nor from below, and satisfying the assumptions of Theorem 7. Then, for all h ∈ R, the
set S−1

� (h) of z ∈ C\{L} such that S�(z) = h is included in R, and interlaces with L,
i.e. it contains exactly one point in each open interval between two consecutive points
of L. Moreover, if � satisfies the assumptions of Proposition 9, then it is also the case
for the set L ′ := S−1

� (h), i.e. for x going to infinity, one has Card(L ′ ∩ [0, x]) = O(x)
and for all a, b ∈ R, Card(L ′ ∩ [0, x +a])−Card(L ′ ∩ [−x +b, 0]) = O(x/ log2 x).

Proof The interlacing property of points of S−1
� (h) ∩ R comes from the discussion

above, so the first part of the proposition is proven if we check that S�(z) /∈ R if
z /∈ R. Now, for all z ∈ C\L ,

� (S�(z)) = lim
c→∞

∑

λ∈L∩[−c,c]
�
(

γλ

λ − z

)
= lim

c→∞
∑

λ∈L∩[−c,c]

−γλ �(λ − z)

�2(λ − z) + �2(λ − z)

= lim
c→∞

∑

λ∈L∩[−c,c]

γλ�(z)

�2(λ − z) + �2(z)
.

If z /∈ R, each term of the last sum is nonzero and has the same sign as �(z). One
deduces that � (S�(z)) has the same properties, and then S�(z) /∈ R.
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Now, the interlacing property implies that for any finite interval I ,

|Card(L ′ ∩ I ) − Card(L ∩ I )| ≤ 2.

If � satisfies the assumptions of Proposition 9, then for a, b ∈ R and for x going to
infinity,

Card(L ′ ∩ [0, x]) = Card(L ∩ [0, x]) + O(1) = O(x) + O(1) = O(x)

and

Card(L ′ ∩ [0, x + a]) − Card(L ′ ∩ [−x + b, 0]) = Card(L ∩ [0, x + a])
− Card(L ∩ [−x + b, 0]) + O(1) = O(x/ log2 x).

��
Proposition 10 shows that the Stieltjes transform gives a way to construct a discrete

subset of R from another, provided that we get a family (γ j ) j∈Z of weights and a
parameter h ∈ R. In the next section, we use and randomize this procedure in order
to define a family of Markov chains satisfying some remarkable properties.

5 Stieltjes Markov chains

In order to put some randomness in the construction above, we need to define pre-
cisely a measurable space in which the point processes will be contained. The choice
considered here is the following:

• We defineL as the family of all the discrete subsets L ofR, unbounded from above
and from below, and satisfying the assumptions of Proposition 9, i.e. for x going
to infinity, Card(L ∩ [0, x]) = O(x) and for all a, b ∈ R, Card(L ∩ [0, x + a]) −
Card(L ∩ [−x + b, 0]) = O(x/ log2 x).

• We define, on L, the σ -algebra A generated by the maps L 	→ Card(L ∩ I ) for
all open, bounded intervals I ⊂ R, which is also the σ -algebra generated by the
maps L 	→ Card(L ∩ B) for all Borel sets B ⊂ R.

A similar choice of measurable space has to be made for the weights (γ j ) j∈Z:

• We define 
 as the family of doubly infinite sequences (γ j ) j∈Z satisfying the
assumptions of Proposition 9, i.e. for k going to infinity,

k∑

j=0

γ j = ck + O(k/ log2 k) and
k∑

j=0

γ− j = ck + O(k/ log2 k),

where c > 0 is a constant.
• We define, on 
, the σ -algebra C generated by the coordinate maps γ j , j ∈ Z.
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Let D be the map from L × 
 × R to L, defined by:

D(L, (γ j ) j∈Z, h) = S−1∑
j∈Z γ j δλ j

(h),

where λ j is the unique increasing labeling of L so that λ−1 < 0 ≤ λ0. Proposition 10
shows that this is indeed a map to L. It is easy to show that D is measurable. Now for
any probability measure � on 
 ×R, it naturally defines a Markov chain (Xk)k≥0 on
L. To get Xk+1 from Xk , just take a fresh sample Gk , independent of Xk and its past,
distributed according to the measure �, and set

Xk+1 = D(Xk,Gk).

By construction, (Xk)k≥0 is then a time-homogeneous Markov chain.
Clearly, if the distribution of X0 is invariant under translations of R, and the dis-

tribution of the ((γ j ) j∈Z, h) in Gk is invariant under translations of the indices j , it
follows that X1 also has a translation-invariant distribution. Here, the invariance of
((γ j ) j∈Z, h) by translation of the indices j is used because translating a set of points
in R can shift the labeling of the points (λ−1 < 0 ≤ λ0).

There are two important examples of probability measures � for which this con-
struction applies:

• Under �, (γ j ) j∈Z is a family of i.i.d, square-integrable random variables, and h
is independent of (γ j ) j∈Z.

• Under �, (γ j ) j∈Z is a family of random variables, n-periodic for some n ≥ 1,
such that (γ0, γ1, . . . , γn−1) = (γ1, . . . , γn−1, γ0) in law, and h is independent of
(γ j ) j∈Z.

The fact that (γ j ) j∈Z is almost surely in
 comes from the law of the iterated logarithm
in the first example, and directly from the periodicity in the second example.

6 Periodic Stieltjes Markov chains

Consider the case when

� =
∑

j∈Z
γ jδλ j

is invariant by translation by 2πn, and when there are n point masses in every interval
of length 2πn with total weight 2n. In this case, � can be thought as 2n times the
lifting of the measure

σ =
n−1∑

j=0

γ j

2n
δ
eiλ j /n
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on the unit circle U under a covering map. Moreover, with u = eiz/n the Stieltjes
transform of � can be expressed in terms of σ by

S�(z) =
n−1∑

j=0

i
γ j

2n

eiλ j /n + u

eiλ j /n − u
.

Indeed, periodicity implies that for z /∈ L , we have

S�(z) = lim
k→∞

kn−1∑

j=−kn

γ j

λ j − z
= lim

k→∞

n−1∑

j=0

γ j

(
k−1∑

�=−k

1

2πn� + λ j − z

)

=
n−1∑

j=0

γ j

(
lim
k→∞

k−1∑

�=−k

1

2πn� + λ j − z

)
= 1

2n

n−1∑

j=0

γ j cot

(
λ j − z

2n

)
.

Therefore, if we set ρ j := γ j/2n and u j = eiλ j /n , we can check thatD(L, (γn)n∈Z, h)

is the set of z ∈ R, such that eiz/n satisfies (2), for h = i(1 + η)/(1 − η).
This property shows that the lifting u 	→ {z ∈ R, eiz/n = u} from U to R defined

above transforms the Markov chain defined in Sect. 3 to the Markov chain defined in
Sect. 5. In particular, from Propositions 5 and 6, we deduce the following results:

Theorem 11 Let � be a probability measure on the space (
 ×R, C ⊗ B(R)), under
which the following holds, for some integer n ≥ 1:

• Almost surely under �, (γn)n∈Z is n-periodic, and
∑n−1

j=0 γ j = 2n.
• The sequence (γ j ) j∈Z is independent of h.

Let Q be a probability on (L,A) under which almost surely, the set L is (2nπ)-
periodic and contains exactly n points in the interval [0, 2πn): in this case, there
exists a sequence (u1, . . . , un) of elements of U, with increasing argument in [0, 2π),
and such that

L = {z ∈ R, eiz/n ∈ {u1, . . . , un}}.

Under the probability Q ⊗ π , one can define a random probability measure σ on the
unit circle by:

σ := 1

2n

n∑

j=1

γ jδu j .

Let us assume that the joint law of the Verblunsky coefficients (α0, . . . , αn−1) of σ is
invariant by rotation, i.e. for all u ∈ U,

(α0u, . . . αn−1u) = (α0, . . . , αn−1)

in distribution. Then, the probabilitymeasureQ is an invariantmeasure for theMarkov
chain associated to π .
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Theorem 12 Let β > 0, n ≥ 1, and let �n,β be a probability measure under which
the following holds almost surely:

• The sequence (γn)n∈Z is n-periodic.
• The tuple (γ0/2n, . . . , γn−1/2n) follows a Dirichlet distribution with all parame-
ters equal to β/2.

• The sequence (γ j ) j∈Z is independent of h.

Let Qn,β be the distribution of the set

{z ∈ R, eiz/n ∈ V },

where V is a subset of U following Pn,β , i.e. a circular beta ensemble with parameter
β. Then, Qn,β is an invariant measure for the Markov chain associated to �n,β .

In the next section, we will let n → ∞ and we will obtain a similar result in which
the variables (γn)n≥1 will be independent and identically distributed.

7 An invariant measure for independent gamma random variables

In Theorem 12, we have found an invariant measure onL, corresponding to a measure
�n,β under which the sequence (γ j ) j∈Z is periodic, each period forming a renormal-
ized Dirichlet distribution. For n ≥ 1 and β > 0 fixed, and under �n,β , the sequence
(γ j ) j∈Z can be written in function of a sequence (g j ) j∈Z of i.i.d Gamma variables
with parameter β/2, as follows:

γ j = 2ngk∑
−n/2<�≤n/2 g�

,

where−n/2 < k ≤ n/2 and k ≡ j modulo n. Here, a Gamma variable with parameter
θ > 0 is normalized in such a way that it has density x 	→ (
(θ))−1xθ−1e−x with
respect to the Lebesgue measure.

For β fixed, if we construct the sequence (γ j ) j∈Z for all values of n, starting with
the same sequence (g j ) j∈Z, we obtain, by the law of large numbers, that for all j ∈ Z,
γ j tends almost surely to 4g j/β when n goes to infinity. Hence, if we want to make
n → ∞ in Theorem 12, we should consider a measure �β under which (βγ j/4) j∈Z
is a sequence of i.i.d. Gamma random variables of parameter β/2.

On the other hand, for n going to infinity, the probability Qn,β converges to a
limiting measure Qβ , which is the distribution of the so-called Sineβ point process,
constructed in [13,19].

Therefore, taking the limit n → ∞ in Theorem 12 suggests the following result,
whose proof is given below:

Theorem 13 Let β > 0, and let�β be a probability measure under which the random
variables h and (γ j ) j∈Z are all independent, γ j being equal to 4/β times a gamma
random variable of parameter β/2. Then, the law Qβ of the Sineβ point process

123



610 J. Najnudel, B. Virág

is carried by the space L and it is an invariant measure for the Markov chain Xk

associated to �β .
Moreover, for the stationary Markov chains Xn,k defined of Theorem 12 with same

h, for every k, (Xn,0, . . . , Xn,k) converges in law to (X0, . . . , Xk) as n → ∞, for the
topology of locally weak convergence.

Remark 14 Since thevariables (γ j ) j∈Z are i.i.d. and square-integrable,wehave already
checked that the Markov chain associated to �β is well-defined, as soon as its initial
distribution is fixed and carried by L. A consequence of Proposition 16 below is that
the probability measureQβ is indeed carried by L, which means the following: if L is
the set of points corresponding to a Sineβ process, then L is unbounded from above
and from below, for x going to infinity, Card(L ∩ [0, x]) = O(x) and for all a, b ∈ R,
Card(L ∩ [0, x + a]) − Card(L ∩ [−x + b, 0]) = O(x/ log2 x).

In order to show the theorem just above, we will use the following results, proven
in [15]:

Proposition 15 Let L be a random set of points in R, whose distribution is Qn,β or
Qβ . Then, there exists C > 0, depending on β but not on n, such that for all x > 0,

E[(Card(L ∩ [0, x]) − x/2π)2] ≤ C log(2 + x)

and

E[(Card(L ∩ [−x, 0]) − x/2π)2] ≤ C log(2 + x).

Proposition 16 For n ≥ 1 integer, let Ln be a random set of points in R, whose
distribution is Qn,β . Let L∞ be a set of points whose distribution is Qβ , and let
α > 1/3. Then, there exists a tight family (Cn)n∈{1,2,3,...,∞} of random variables with
values in (0,∞), such that almost surely, for all n ∈ {1, 2, 3, . . . ,∞}, x ≥ 0,

|Card(Ln ∩ [0, x]) − x/2π | ≤ Cn(1 + x)α,

and

|Card(Ln ∩ [−x, 0]) − x/2π | ≤ Cn(1 + x)α.

Remark 17 For finite n ≥ 1, the periodicity of Ln implies that |Card(Ln ∩ [0, x]) −
x/2π | is almost surely boundedwhen x varies. Hence, the result above becomes trivial
for n finite if we allow the family (Cn)n∈{1,2,3,... } not to be tight. Moreover, we expect
that it remains true for any α > 0, and not only for α > 1/3.

Proof of Theorem 13 Let �β be a probability measure which satisfies the assumptions
of Theorem 13, and for n ≥ 1, let �n,β be a measure satisfying the assumptions of
Theorem 12, for the same value of β. We also assume that the law of h is the same
under �n,β and under �β (note that �n,β and �β are uniquely determined by this
law). By the discussion preceding the statement of Theorem 13, it is possible, by using
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a unique family (g j ) j∈Z of i.i.d. gamma variables with parameter β/2, to construct
some random sequences (γ j ) j∈Z and (γ n

j ) j∈Z (for all n ≥ 1) and an independent
real-valued random variable h, such that the following holds:

• ((γ j ) j∈Z, h) follows the law �β .
• For all n ≥ 1, ((γ n

j ) j∈Z, h) follows the law �n,β .
• For all j ∈ Z, γ n

j tends almost surely to γ j when n goes to infinity.

Now, for all n ≥ 1, let Ln be a point process following the distributionQn,β , and let L
be a point process following Qβ . We already know that Ln ∈ L almost surely. From
Proposition 16 under Qβ , we immediately deduce the weaker estimates Card(L ∩
[0, x]) = x/2π + O(x/ log2 x) and Card(L ∩ [−x, 0]) = x/2π + O(x/ log2 x) for
x going to infinity, which means that L ∈ L almost surely: Qβ is carried by L.

Moreover, by [13], the measure Qn,β tends to Qβ when n goes to infinity, in the
following sense: for all functions f from R to R+, C∞ and compactly supported, one
has

∑

x∈Ln

f (x) −→
n→∞

∑

x∈L
f (x) (10)

in distribution. By the Skorokhod representation theorem (see [4, Theorem 6.7]) one
can assume that the convergence (10) holds almost surely, and one can also suppose
that (Ln)n≥1 and L are independent of (γ n

j )n≥1, j∈Z, (γ j ) j∈Z and h.
For n ≥ 1, let (λnj ) j∈Z be the strictly increasing sequence containing each point of

Ln , λn0 being the smallest nonnegative point, and let (λ j ) j∈Z be the similar sequence
associated to L . One can check that the convergence (10) and the fact thatP[0 ∈ L] = 0
imply that for all j ∈ Z, λnj converges almost surely to λ j when n goes to infinity.
Indeed, for j ≥ 0 and ε ∈ (0, λ j/10), let us consider a test function f taking values
in [0, 1], equal to 1 on [ε, λ j ] and to 0 onR\[0, λ j + ε]. For ε small enough, L has no
point in [0, ε] and j +1 points in [0, λ j ], which implies that the sum of f at the points
of L is at least j + 1. Hence, the sum of f at the points of Ln is at least j + (1/2) for
n large enough, which implies that Ln has at least j + (1/2) points, and then at least
j + 1 points, in the interval [0, λ j + ε]. This implies λnj ≤ λ j + ε. Similarly, if we
take f in [0, 1], equal to 1 on [0, λ j −2ε] and to 0 onR\[−ε, λ j − ε], the sum of f at
points on L is at most j for ε small enough (because L has no point in [−ε, 0]), which
implies that the sum of f at points on Ln is at most j + (1/2) for n large enough, and
then Ln has at most j points in [0, λ j − 2ε], i.e. λnj ≥ λ j − 2ε. The case j < 0 can
be treated similarly.

Now, for all c > 0, z ∈ C\ (L ∪ (⋃n≥1 Ln
))
, let us take the following notation:

Sn,c(z) :=
∑

j∈Z

γ n
j

λnj − z
1|λnj |≤c, Sc(z) :=

∑

j∈Z

γ j

λ j − z
1|λ j |≤c,

SN (z) := lim
c→∞ SN ,c(z), S(z) := lim

c→∞ Sc(z).

Almost surely, all the points of L and Ln (n ≥ 1) are irrational. If this event occurs,
then for all c ∈ Q

∗+, there exists almost surely a randomfinite interval (possibly empty)
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Ic such that |λ j | ≤ c if and only if j ∈ Ic, and for all n ≥ 1 large enough, |λnj | ≤ c if
and only if j ∈ Ic. Hence, for all c ∈ Q

∗+, z ∈ Q, one has almost surely

Sn,c(z) =
∑

j∈Ic

γ n
j

λnj − z
, Sc(z) :=

∑

j∈Ic

γ j

λ j − z
,

if n is large enough. Since Ic is finite, γ n
j tends a.s. to γ j , and λnj tends a.s. to λ j when

n goes to infinity, one deduces that almost surely, for all c ∈ Q
∗+, z ∈ Q,

Sn,c(z) −→
n→∞ Sc(z). (11)

On the other hand, by (8), and by the fact that c and −c are a.s. not in L or in Ln , one
deduces that almost surely, for all c ∈ Q

∗+, z ∈ Q such that c > 2|z| ∨ 1, and for all
n ≥ 1,

Sn(z) − Sn,c(z) =
∫ ∞

c

�n([c, μ]) − �n([−μ,−c])
μ2 dμ

+
∫ ∞

c

(
(2zμ − z2)(�n([c, μ]))

μ2(μ − z)2
+ (2zμ + z2)(�n([−μ,−c]))

μ2(μ + z)2

)
dμ

and

S(z) − Sc(z) =
∫ ∞

c

�([c, μ]) − �([−μ,−c])
μ2 dμ

+
∫ ∞

c

(
(2zμ − z2)(�([c, μ]))

μ2(μ − z)2
+ (2zμ + z2)(�([−μ,−c]))

μ2(μ + z)2

)
dμ,

where �n :=∑ j∈Z γ n
j δλnj

and � :=∑ j∈Z γ jδλ j . If for any bounded interval I , one

defines �
(0)
n (I ) := �n(I ) − E[�n(I )] and �(0)(I ) := �(I ) − E[�(I )], one has by

(7), the triangle inequality, and the fact that E[�n(I )] is proportional to the Lebesgue
measure on I :

|Sn(z) − Sn,c(z)| ≤
∫ ∞

c

|�(0)
n ([c, μ])| + |�(0)

n ([−μ,−c])|
μ2 dμ

+
∫ ∞

c

20|z| dμ

μ3

[
C1μ + |�(0)

n ([c, μ])| + |�(0)
n ([−μ,−c])|

]

≤ C2(1 + |z|)
(
1

c
+
∫ ∞

c

|�(0)
n ([c, μ])|+|�(0)

n ([−μ,−c])|
μ2 dμ

)
,

where C1,C2 > 0 are universal constants. Since the distribution of Ln is invariant
by translation (recall that its points are the rescaled arguments of the circular beta
ensemble on the unit circle), one has

E[|�(0)
n ([c, μ])|] = E[|�(0)

n ([−μ,−c])|] = E[|�(0)
n ([0, μ − c])|]
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and

E[|Sn(z) − Sn,c(z)|] ≤ C3(1 + |z|)
(
1

c
+
∫ ∞

0

E[|�(0)
n ([0, ν])|]

(ν + c)2
dν

)
,

where C3 > 0 is a universal constant. Similarly,

E[|S(z) − Sc(z)|] ≤ C3(1 + |z|)
(
1

c
+
∫ ∞

0

E[|�(0)([0, ν])|]
(ν + c)2

dν

)
.

Now, from Proposition 15 under Qn,β and Qβ , one immediately deduces that

∫ ∞

0

E[|�(0)([0, ν])|] + supn≥1 E[|�(0)
n ([0, ν])|]

(1 + ν)2
dν < ∞. (12)

Hence, bydominated convergence, there exists a functionφ from [1,∞) toR∗+, tending
to zero at infinity, such that

E[|Sn(z) − Sn,c(z)|] ≤ (1 + |z|) φ(c)

and

E[|S(z) − Sc(z)|] ≤ (1 + |z|) φ(c).

We deduce that for all c ∈ Q
∗+, z ∈ Q such that c > 2|z| ∨ 1, n ≥ 1 and ε > 0,

P[|S(z) − Sn(z)| ≥ ε] ≤ P[|Sc(z) − Sn,c(z)| ≥ ε/3] + P[|S(z) − Sc(z)| ≥ ε/3]
+ P[|Sn(z) − Sn,c(z)| ≥ ε/3]

≤ P[|Sc(z) − Sn,c(z)| ≥ ε/3] + 6

ε
(1 + |z|) φ(c).

By the almost sure convergence (11), which implies the corresponding convergence
in probability, one deduces

lim sup
n→∞

P[|S(z) − Sn(z)| ≥ ε] ≤ 6

ε
(1 + |z|) φ(c).

Now, by taking z ∈ Q fixed, c ∈ Q going to infinity and then ε → 0, one deduces that
for all z ∈ Q,

Sn(z) −→
n→∞ S(z)
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in probability. By considering diagonal extraction of subsequences, one deduces that
there exists a strictly increasing sequence (nk)k≥1 of integers, such that almost surely,

Snk (z) −→
k→∞ S(z) (13)

for all z ∈ Q.
Now, for all j ∈ Z,n ≥ 1, letμn

j (resp.μ j ) be the uniquepoint ofD(Ln, (γ
n
j ) j∈Z, h)

(resp. D(L, (γ j ) j∈Z, h)) which lies in the interval (λnj , λ
n
j+1) (resp. (λ j , λ j+1)). Let

us fix j ∈ Z, ε > 0, and let us consider two random rational numbers q1 and q2 such
that almost surely,

(μ j − ε) ∨ λ j < q1 < μ j < q2 < (μ j + ε) ∧ λ j+1,

which implies that

S(q1) < h < S(q2).

By (13), one deduces that almost surely, for k large enough,

Snk (q1) < h < Snk (q2),

which implies that D(Lnk , (γ
nk
j ) j∈Z, h) has at least one point in the interval (q1, q2).

On the other hand, since λnj (resp. λ
n
j+1) tends a.s. to λ j (resp. λ j+1) when n goes to

infinity, one has almost surely, for k large enough,

λ
nk
j < q1 < q2 < λ

nk
j+1.

Hence, D(Lnk , (γ
nk
j ) j∈Z, h) has exactly one point in (q1, q2), and this point is neces-

sarily μ
nk
j . One deduces that almost surely, |μnk

j − μ j | ≤ ε for k large enough, which

implies, by taking ε → 0, that μ
nk
j converges almost surely to μ j when k goes to

infinity.
Now, let f be a function from R to R+, C∞ and compactly supported. Since L

is locally finite, there exists a.s. an integer j0 ≥ 1 such that the support of f is
included in (λ− j0 , λ j0), and then in (λ

nk− j0
, λ

nk
j0

) for k large enough, which implies that

f (μnk
j ) = f (μ j ) = 0 for | j | > j0. Hence, a.s., there exists j0, k0 ≥ 1, such that for

k ≥ k0,

∑

j∈Z
f (μnk

j ) =
∑

| j |≤ j0

f (μnk
j )

and

∑

j∈Z
f (μ j ) =

∑

| j |≤ j0

f (μ j ),
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which implies that

∑

j∈Z
f (μnk

j ) −→
k→∞

∑

j∈Z
f (μ j ), (14)

since f (μnk
j ) tends to f (μ j ) for each j ∈ {− j0,− j0 + 1, . . . , j0}.

The almost sure convergence (14) holds a fortiori in distribution, which implies
that the law of D(Lnk , (γ

nk
j ) j∈Z, h) tends to the law of D(L, (γ j ) j∈Z, h). On the

other hand, by Theorem 12, D(Lnk , (γ
nk
j ) j∈Z, h) has distribution Qnk ,β , and then

D(L, (γ j ) j∈Z, h) follows the limit of the distribution Qnk ,β for k tending to infinity,
i.e.Qβ . This shows the first part of Theorem 13, and the second part for k = 2; iterating
this argument shows the general k case. ��

8 Properties of continuity for the Stieltjes Markov chain

In the previous section, we have deduced the convergence of the Markov mechanism
associated to Qnk ,β towards the one corresponding to Qβ from the convergence of
Qnk ,β to Qβ itself, and the convergence of the associated weights. Later in the paper,
we will prove similar results related to the Gaussian ensembles, for which the situation
is more difficult to handle, in particular because of the lack of symmetry of the GβE at
themacroscopic scale, whenwe rescale around a non-zero point of the bulk.Moreover,
we will have to consider several steps of the Markov mechanism at the same time.
That is why we will need a more general result, giving a property of continuity of the
Markov mechanism described above, with respect to its initial data.

The main results of the present paper concern convergence in distribution of point
processes. In this section, we will assume properties of strong convergence, which can
be done with the help of Skorokhod’s representation theorem.

The notion of convergence of holomorphic functions usually considered is the
uniform convergence on compact sets. This notion cannot be directly applied to the
meromorphic functions involved here, because of the poles on the real line. That is why
wewill need an appropriate notion of uniform convergence of meromorphic functions.

More precisely, we say that a sequence ( fn)n≥1 of meromorphic functions on an
open set U ⊂ C converges uniformly to a function f from U to the Riemann sphere
C ∪ {∞} if and only if this convergence holds for the distance d on C ∪ {∞}, given
by

d(z1, z2) = |z2 − z1|√
(1 + |z1|2)(1 + |z2|2)

for z1, z2 �= ∞, and extended by continuity at ∞ (d corresponds to the distance of
the points on the Euclidean sphere, obtained via the inverse stereographic projection).
It is a classical result that the limiting function f should be meromorphic on U .
One deduces the following: if a sequence ( fn)n≥1 of meromorphic functions on C

converges to a function f from C to C∪ {∞}, uniformly on all bounded subsets of C,
then f is meromorphic on C. Moreover, the following lemma will be useful:
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Lemma 18 Let ( fn)n≥1 (resp. (gn)n≥1) be a sequence of meromorphic functions on
an open set U, uniformly convergent (for the distance d) to a function f (resp. g),
necessarily meromorphic. We assume that f and g have no common pole. Then the
sequence ( fn + gn)n≥1 of meromorphic functions tends uniformly to f + g on all the
compact sets of U.

Remark 19 The fact that f and g have no common pole is needed in general. Indeed, if
U is a neighborhood of 0, fn(z) = f (z) = −z−1, gn(z) = (z + n−1)−1, g(z) = z−1,
we check that fn and gn respectively tend to f and g, uniformly on compact sets of
U , for the distance d, but fn + gn does not uniformly converge to f + g = 0 in any
neighborhood of 0.

Proof Let K be a compact subset of U , let z1, z2, . . . , z p be the poles of f in K , and
z′1, z′2, . . . , z′q the poles of g in K . There exists a neighborhood V of {z1, z2, . . . , z p}
containing no pole of g, and a neighborhoodW of {z′1, z′2, . . . , z′p} containing no pole
of f . If A > 0 is fixed, one can assume the following (by restricting V and W if it is
needed):

• The infimum of | f | on V is larger than 2A+ 1 and also larger than the supremum
of 2|g| + 1 on V .

• The infimum of |g| onW is larger than 2A+ 1 and also larger than the supremum
of 2| f | + 1 on W .

By the assumption of uniform convergence, we deduce, for n large enough:

• The infimum of | fn| on V is larger than 2A and also larger than the supremum of
2|gn| on V .

• The infimum of |gn| on W is larger than 2A and also larger than the supremum of
2| fn| on W .

Now, for all z ∈ V and n large enough, one has

| fn(z) + gn(z)| ≥ | fn(z)| − |gn(z)| ≥ | fn(z)| − | fn(z)|
2

= | fn(z)|
2

≥ A.

and also

| f (z) + g(z)| ≥ A,

which implies

d( fn(z) + gn(z), f (z) + g(z)) ≤ 2/A.

Similarly, this inequality is true for z ∈ W . Moreover, there exists a compact set
L ⊂ K , containing no pole of f or g, and such that K is included in L ∪ V ∪ W .
Since the meromorphic functions f and g have no pole on the compact set L , they
are bounded on this set. Since ( fn)n≥1 (resp. (gn)n≥1) converges to f (resp. g) on L ,
uniformly for the distance d, and ( fn)n≥1 (resp. (gn)n≥1) is uniformly bounded, the
uniform convergence holds in fact for the usual distance. Hence, ( fn + gn)n≥1 tends
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uniformly to f + g on L for the usual distance, and a fortiori for d: by using the
previous bounded obtained in V and W , one deduces, since L , V and W cover K :

lim sup
n→∞

sup
z∈K

d( fn(z) + gn(z), f (z) + g(z)) ≤ 2/A.

Since we can choose A > 0 arbitrarily, we are done. ��
From this lemma, we deduce the following statement

Lemma 20 Let p ≥ 1, and let (λk)1≤k≤p, (λn,k)n≥1,1≤k≤p, (γk)1≤k≤p, (γn,k)n≥1,1≤k≤p

be some complex numbers such that all the λk’s are distincts, all the γk’s are nonzero,
and for all k ∈ {1, . . . , p},

λn,k −→
n→∞ λk

and

γn,k −→
n→∞ γk .

Then, one has, for n going to infinity, the convergence of the rational function

z 	→
p∑

k=1

γn,k

λn,k − z

towards the function

z 	→
p∑

k=1

γk

λk − z
,

uniformly on all the compact sets, for the distance d.

Proof Let us first prove the result for p = 1, which is implied by the following
convergence

γn,1

λn,1 − z
−→
n→∞

γ1

λ1 − z
,

uniformly on C for the distance d. Let us fix ε > 0. For n large enough, we have
|λn,1 − λ1| ≤ ε and |γn,1 − γ1| ≤ |γ1|/2. If these conditions are satisfied and if
|λ1 − z| ≤ 2ε, then

∣∣∣∣
γ1

λ1 − z

∣∣∣∣ ≥
|γ1|
2ε
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and

∣∣∣∣
γn,1

λn,1 − z

∣∣∣∣ ≥
|γ1|
6ε

,

since |γn,1| ≥ |γ1|/2 and

|λn,1 − z| ≤ |λ1 − z| + |λn,1 − λ1| ≤ 3ε.

Hence, there exists n0 ≥ 1, independent of z satisfying |λ1 − z| ≤ 2ε, such that for
n ≥ n0,

d

(
γ1

λ1 − z
,

γn,1

λn,1 − z

)
≤ d

(
γ1

λ1 − z
,∞
)

+ d

(
∞,

γn,1

λn,1 − z

)
≤ 2ε

|γ1| + 6ε

|γ1| = 8ε

|γ1| .

Similarly, there exists n1 ≥ 1 such that for all n ≥ n1 and for all z satisfying |λ1−z| ≥
2ε, one has:

|λn,1 − z| ≥ |λ1 − z| − |λn,1 − λ1| ≥ ε.

This implies:

∣∣∣∣
γ1

λ1 − z
− γn,1

λn,1 − z

∣∣∣∣ ≤
∣∣∣∣
γ1 − γn,1

λn,1 − z

∣∣∣∣+ |γ1|
∣∣∣∣

1

λ1 − z
− 1

λn,1 − z

∣∣∣∣

≤ |γ1 − γn,1|
ε

+ |γ1| |λ1 − λn,1|
(2ε)(ε)

.

Since this quantity does not depend on z and tends to zero at infinity, we deduce

sup
z∈C,|λ1−z|≥2ε

d

(
γ1

λ1 − z
,

γn,1

λn,1 − z

)
−→
n→∞ 0.

Since we know that

lim sup
n→∞

sup
z∈C,|λ1−z|≤2ε

d

(
γ1

λ1 − z
,

γn,1

λn,1 − z

)
≤ 8ε

|γ1| ,

we get

lim sup
n→∞

sup
z∈C

d

(
γ1

λ1 − z
,

γn,1

λn,1 − z

)
≤ 8ε

|γ1| .

Now, ε > 0 can be arbitrarily chosen, and then the lemma is proven for p = 1. For
p ≥ 2, let us deduce the result of the lemma, assuming that it is satisfied when p is
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replaced by p − 1. We define the meromorphic functions ( fn)n≥1, f , (gn)n≥1, g by
the formulas:

fn(z) =
p−1∑

k=1

γn,k

λn,k − z
,

f (z) =
p−1∑

k=1

γk

λk − z
,

gn(z) = γn,p

λn,p − z
,

g(z) = γp

λp − z
.

Let A > 0. By the induction hypothesis, we know that fn converges to f when n goes
to infinity, uniformly on the set {z ∈ C, |z| < 2A} and for the distance d. Similarly,
by the case p = 1 proven above, gn converges to g, uniformly on the same set (in
fact, uniformly onC) and for the same distance. Moreover, the functions f and g have
no common pole, since the numbers (λk)1≤k≤p are all distinct. We can then apply
Lemma 18 and deduce that fn + gn converges to f + g, uniformly on any compact
set of {z ∈ C, |z| < 2A}, for example {z ∈ C, |z| ≤ A}, and for the distance d. Since
A > 0 can be arbitrarily chosen, we are done. ��

We have now the ingredients needed to state the main result of this section. In
this theorem, we deal with finite and infinite sequences together. So we will think of
k 	→ λk as a function from Z → R ∪ {∅}, with the convention that summation and
other operations are only considered over the values that are different from ∅. We will
also assume that the value ∅ is taken exactly on the complement of an interval of Z.

The statement of the following result is long and technical, but as we will see in
the next section, it will be adapted to the problem we are interested in.

Theorem 21 Let (�n)n≥1 be a sequence of discrete simple point measures on R (i.e.
sums of Dirac masses at a locally finite set of points), converging to a simple point
measure �, locally weakly:

�n −→ �. (15)

Let Ln denote the support of �n, and L the support of �. We suppose that there exists
α ∈ (0, 1), a family (τ�)�≥0 of elements of R∗+, with τ� → 0 as � → ∞, such that for
all n ≥ 1, � ≥ 1, we have

∫

R

1(|λ| > �)

|λ|1+α
d�n(λ) ≤ τ� (16)

Moreover, assume that the limits

hn,� = lim
�′→∞

∫

R

1(� < |λ| < �′)
λ

d�n(λ) (17)
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exist, and so does the similar limit h� defined in terms of �. Assume further that for
some h ∈ R, the following equalities are well-defined and satisfied:

lim
�→∞ lim

n→∞ hn,� = h, lim
�→∞ h� = 0, (18)

when the limits are restricted to the condition: � /∈ L and −� /∈ L.
Further, let (γn,k)k∈Z be a strictly positive sequence. Suppose it satisfies

γn,k → γk > 0 (19)

for each k, as n → ∞. Also for some γ̄ , c > 0 and all n,m ≥ 1, we assume

∣∣∣∣∣

m−1∑

k=0

γn,k − γ̄m

∣∣∣∣∣ ≤ cmα′

∣∣∣∣∣

−1∑

k=−m

γn,k − γ̄m

∣∣∣∣∣ ≤ cmα′
(20)

with 0 < (1 + α)α′ < 1. Let λ∗ be a point outside L, and consider the weighted
version � of � where the kth point after λ∗ (for k ≤ 0, the (1− k)th point before λ∗)
has weight γk . For n large enough, one has also λ∗ /∈ Ln: define �n similarly. Then
the limit

Sn(z) = lim
�→∞

∫

[−�,�]
1

λ − z
d�n(λ)

exists for all z /∈ Ln, is meromorphic with simple poles at Ln, and converges, uniformly
on compactswith respect to thedistanced on theRiemann sphereC∪{∞}, to S(z)+γ̄ h,
where S is a meromorphic function with simple poles at L, such that for all z /∈ L,

S(z) = lim
�→∞

∫

[−�,�]
1

λ − z
d�(λ).

Moreover, for every h′ ∈ R, the sum of delta masses �′
n at S−1

n (h′ + γ̄ h) converges
locally weakly to the sum of delta masses �′ at S−1(h′), and (�′

n)n≥1, and �′
n, �′

satisfy assumptions equivalent to (15)–(18), i.e.

�′
n −→ �′, (21)
∫

R

1(|λ| > �)

|λ|1+α
d�′

n(λ) ≤ τ ′
� (22)

for a family (τ ′
�)�≥0 of elements of R∗+, with τ ′

� → 0 as � → ∞,

lim
�→∞ lim

n→∞ h′
n,� = h, lim

�→∞ h′
� = 0, (23)
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where

h′
n,� = lim

�′→∞

∫

R

1(� < |λ| < �′)
λ

d�′
n(λ), h′

� = lim
�′→∞

∫

R

1(� < |λ| < �′)
λ

d�′(λ)

(24)

and the limits in � and n are restricted to the condition: � /∈ L ′ and −� /∈ L ′, L ′ being
the support of �′.

Remark 22 After a suitable translation of �n and �, one can assume that 0 /∈ L and
then one can take λ∗ = 0. The choice of λ∗ does not change the structure of the
proof of the theorem: replacing λ∗ by 0 may slightly simplify its reading. In (18), the
condition � /∈ L , −� /∈ L ensures that the boundary terms in the integral defining hn,�

does not perturb the existence of the limit of hn,� when n → ∞. It may be possible
to avoid this technicality by considering upper and lower limits in n.

Proof We have to show the following:

• The existence of the limits defining Sn and S, and the fact that they are meromor-
phic, with simple poles at Ln and L , respectively.

• The convergence of Sn towards S + γ̄ h, uniformly in compacts, for the distance
d.

• The assumptions (21)–(24), which should be satisfied by �′
n and �′.

We will successively show these three statements: the most difficult one is the conver-
gence of Sn towards S + γ̄ h.

Existence and properties of the limits defining Sn and S: Let n ≥ 1, large enough in
order to ensure that λ∗ /∈ Ln , 1 < �0 < � ≤ ∞, and let z be a complex number with
modulus smaller than �0/2. Let kn,�0 be the smallest index k (if it exists) such that
λn,k > �0, where λn,k is (if it exists) the kth point of Ln after λ∗ for k ≥ 1, and the
(1− k)th point of Ln before λ∗ for k ≤ 0. Similarly, let Kn,� − 1 be the largest index
k (if it exists) such that λn,k ≤ �. For � = ∞ and Ln bounded from above, we get that
Kn,∞ − 1 is the largest index k (if it exists) such that λn,k exists, i.e. the index of the
largest point of Ln . For � = ∞ and Ln not bounded from above, we have Kn,∞ = ∞.
If for m ∈ Z,

�n,m := 1m≥0

m−1∑

k=0

γn,k − 1m<0

−1∑

k=m

γn,k − γ̄ m,

then, in the case where kn,�0 and Kn,� are well-defined and kn,�0 < Kn,�:

∫

(�0,�]
1

λ − z
d�n(λ)

=
∑

kn,�0≤k<Kn,�

γn,k

λn,k − z
= γ̄

∑

kn,�0≤k<Kn,�

1

λn,k − z
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+
∑

kn,�0≤k<Kn,�

�n,k+1 − �n,k

λn,k − z
= γ̄

⎛

⎝
∑

kn,�0≤k<Kn,�

1

λn,k − z

⎞

⎠+ �n,Kn,�

λn,Kn,�−1 − z

− �n,kn,�0

λn,kn,�0
− z

+
∑

kn,�0+1≤k<Kn,�

�n,k

(
1

λn,k−1 − z
− 1

λn,k − z

)
,

which implies

∫

(�0,�]
1

λ − z
d�n(λ) − γ̄

∫

(�0,�]
d�n(λ)

λ

= γ̄ z

⎛

⎝
∑

kn,�0≤k<Kn,�

1

λn,k(λn,k − z)

⎞

⎠+ �n,Kn,�

λn,Kn,�−1 − z

− �n,kn,�0

λn,kn,�0
− z

+
∑

kn,�0+1≤k<Kn,�

�n,k

(
λn,k − λn,k−1

(λn,k−1 − z)(λn,k − z)

)
.

Note that in case where kn,�0 or Kn,� is not well-defined, and in case where kn,�0 ≥
Kn,�, the left-hand side is zero, since Ln has no point in the interval (�0, �]. Let us now
check that for � going to infinity, this quantity converges, uniformly in {z ∈ C, |z| <

�0/2}, to the function Tn,�0 , holomorphic on this open set, and given by

Tn,�0(z) = γ̄ z

⎛

⎝
∑

k≥kn,�0

1

λn,k(λn,k − z)

⎞

⎠+ �n,Kn,∞
λn,Kn,∞−1 − z

− �n,kn,�0

λn,kn,�0
− z

+
∑

k≥kn,�0+1

�n,k

(
λn,k − λn,k−1

(λn,k−1 − z)(λn,k − z)

)
, (25)

if Ln has at least one point in (�0,∞), and Tn,�0(z) = 0 otherwise. In the formula
above, when Ln is not bounded from above, and then Kn,∞ = ∞, we let, by conven-
tion:

�n,Kn,∞
λn,Kn,∞−1 − z

:= 0.

In order to prove this convergence, it is sufficient to check, in the case Ln∩(�0,∞) �=
∅, the uniform convergence

�n,Kn,�

λn,Kn,�−1 − z
−→
�→∞

�n,Kn,∞
λn,Kn,∞−1 − z

,
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for |z| ≤ �0/2, and the fact that

sup
z∈C,|z|≤�0/2

⎛

⎜⎝
∑

k≥kn,�0

1

|λn,k ||λn,k − z| +
∑

k≥kn,�0+1

|�n,k |
( |λn,k − λn,k−1|

|λn,k−1 − z| |λn,k − z|
)
⎞

⎟⎠ < ∞. (26)

The first statement is immediate if Ln is bounded from above. If Ln is unbounded
from above, let us remark that for k ≥ kn,�0 , |z| ≤ �0/2, one has |λn,k − z| ≥ λn,k/2,
and then it is sufficient to show:

�n,Kn,�

λn,Kn,�−1
−→
�→∞ 0. (27)

Similarly, the statement (26) is implied by:

∑

k≥kn,�0

1

λ2n,k

+
∑

k≥kn,�0+1

|�n,k |(λn,k − λn,k−1)

λn,k−1 λn,k
< ∞. (28)

In order to prove (27), let us first use the majorization (16), which implies, for all
� > 2,

�n([2, �]) ≤ �1+α

∫ �

2

d�n(λ)

λ1+α
≤ �1+α

∫

R

1(|λ| > 1)

|λ|1+α
d�n(λ) ≤ τ1 �1+α,

and then

�n([λ∗, �]) ≤ τ �1+α

where

τ := τ1 + �n([λ∗ ∧ 2, 2]). (29)

We deduce, for k ≥ 1 large enough in order to insure that λn,k > 2,

k = �n([λ∗, λn,k]) ≤ τ λ1+α
n,k

and then

λn,k ≥ (k/τ)1/(1+α). (30)

By using (20), this inequality implies:

�n,k+1

λn,k
≤ c(k + 1)α

′
(k/τ)−1/(1+α),

which tends to zero when k goes to infinity, since α′ < 1/(1 + α) by assumption.
Therefore, we have (27).

123



624 J. Najnudel, B. Virág

Moreover, the left-hand side of (28) is given by

∫

R

1(|λ| > �0)

|λ|2 d�n(λ) +
∑

k≥kn,�0+1

|�n,k |
(

1

λn,k−1
− 1

λn,k

)

≤
∫

R

1(|λ| > �0)

|λ|1+α
d�n(λ) + c

∑

k≥kn,�0+1

|k|α′
(

1

λn,k−1
− 1

λn,k

)

≤ τ�0 + c

⎛

⎝ |kn,�0 + 1|α′

λn,kn,�0

+
∑

k≥kn,�0+1

(|k + 1|α′ − |k|α′
)

λn,k

⎞

⎠ .

If Ln is bounded from above, the finiteness of this quantity is obvious. Otherwise,
we know that for k large enough, (|k + 1|α′ − |k|α′

) is bounded by a constant times
kα′−1, and λk,n dominates k1/(1+α). Hence, it is sufficient to check the finiteness of
the following expression:

∞∑

k=1

kα′−1k−1/(1+α),

which is satisfied since by assumption,

α′ − 1 − 1

1 + α
< −1.

We have now proven:

∫

(�0,�]
1

λ − z
d�n(λ) − γ̄

∫

(�0,�]
d�n(λ)

λ
−→
�→∞ Tn,�0(z), (31)

uniformly on the set {z ∈ C, |z| < �0/2}, where the holomorphic function Tn,�0 is
given by the formula (25).

Similarly, there exists an holomorphic function Un,�0 on {z ∈ C, |z| < �0/2}, such
that uniformly on this set,

∫

[−�,−�0)

1

λ − z
d�n(λ) − γ̄

∫

[−�,−�0)

d�n(λ)

λ
−→
�→∞ Un,�0(z). (32)

The functionUn,�0 can be explicitly described by a formula similar to (25) (we omit the
detail of this formula). By combining (17), (31) and (32), one deduces the following
uniform convergence on {z ∈ C, |z| < �0/2}:

∫

[−�,�]\[−�0,�0]
1

λ − z
d�n(λ) −→

�→∞ Tn,�0(z) +Un,�0(z) + γ̄ hn,�0 .
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One deduces, by using Lemma 18, that

∫

[−�,�]
1

λ − z
d�n(λ) −→

�→∞ Tn,�0(z) +Un,�0(z) + γ̄ hn,�0

+
∫

[−�0,�0]
1

λ − z
d�n(λ) =: Sn,�0(z),

uniformly on any compact subset of {z ∈ C, |z| < �0/2}, for the distance d on
the Riemann sphere. One checks immediately that the poles of Sn,�0 with modulus
smaller than or equal to �0/2 are exactly the points of Ln satisfying the same condition.
Moreover, the convergence just above implies that for �1 > �0 > 1, the meromorphic
functions Sn,�0 and Sn,�1 coincide on {z ∈ C, |z| < �0/2}: hence, there exists a
meromorphic function Sn on C, such that for all �0 > 1, the restriction of Sn to
{z ∈ C, |z| < �0/2} is equal to Sn,�0 . The poles of Sn are exactly the points of Ln , and
one has, uniformly on all compact sets of C and for the distance d,

∫

[−�,�]
1

λ − z
d�n(λ) −→

�→∞ Sn(z).

In particular, the convergence holds pointwise for all z /∈ Ln .
In an exactly similar way, one can prove that uniformly on compact sets of C, for

the distance d,

∫

[−�,�]
1

λ − z
d�(λ) −→

�→∞ S(z)

where for all �0 > 1,

S(z) := T�0(z) +U�0(z) + γ̄ h�0 +
∫

[−�0,�0]
1

λ − z
d�(λ),

on the set {z ∈ C, |z| < �0/2}, T�0 andU�0 being defined by the same formulas as Tn,�0

andUn,�0 , except than one removes all the indices n. In order to show this convergence,
it is sufficient to check that the assumptions (16) and (20) are satisfied if the indices n
are removed. For (20), it is an immediate consequence of the convergence (19), since
the constant c does not depend on n. For (16), let us first observe that for all � > 1,
and for any continuous function 
 with compact support, such that for all λ ∈ R,


(λ) ≤ 1(|λ| > �)

|λ|1+α
,

one has for all n ≥ 1,

∫

R


(λ)d�n(λ) ≤
∫

R

1(|λ| > �)

|λ|1+α
d�n(λ) ≤ τ�.
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Since �n converges weakly to � when n goes to infinity, one deduces:

∫

R


(λ)d�(λ) ≤ τ�.

By taking 
 increasing to

λ 	→ 1(|λ| > �)/|λ|1+α,

one obtains
∫

R

1(|λ| > �)

|λ|1+α
d�(λ) ≤ τ�,

i.e. the equivalent of (16) for the measure �.

Convergence of Sn towards S + γ̄ h: Once the existence of the functions Sn and S
is ensured, it remains to prove the convergence of Sn towards S + γ̄ h, uniformly on
compact sets for the distance d. In order to check this convergence, it is sufficient to
prove that for all � > 1, there exists �0 > � such that uniformly on any compact set
of {z ∈ C, |z| < �0/2},

Tn,�0(z) +Un,�0(z) + γ̄ hn,�0 +
∫

[−�0,�0]
1

λ − z
d�n(λ)

−→
n→∞ T�0(z) +U�0(z) + γ̄ (h�0 + h) +

∫

[−�0,�0]
1

λ − z
d�(λ).

In fact, we will prove this convergence for any �0 > 2 such that �0 and −�0 are not in
L , and then not in Ln for n large enough. By Lemma 18, it is sufficient to check for
such an �0:

hn,�0 −→
n→∞ h�0 + h, (33)

∫

[−�0,�0]
1

λ − z
d�n(λ) −→

n→∞

∫

[−�0,�0]
1

λ − z
d�(λ), (34)

uniformly on {z ∈ C, |z| < �0/2} for the distance d,

Tn,�0(z) −→
n→∞ T�0(z), (35)

uniformly on {z ∈ C, |z| < �0/2}, and

Un,�0(z) −→
n→∞ U�0(z), (36)

also uniformly on {z ∈ C, |z| < �0/2}. Since the proof of (36) is exactly similar to
the proof of (35), we will omit it and we will then show successively (33)–(35). ��
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Proof of 33 For all �1 > �0 such that −�1 and �1 are not in L , one has

hn,�0 − hn,�1 =
∫

R

1(�0 < |λ| ≤ �1)

λ
d�n(λ)

and

h�0 − h�1 =
∫

R

1(�0 < |λ| ≤ �1)

λ
d�(λ).

Now, −�1,−�0, �0, �1 are not in the support of �, and since � is a discrete measure,
there is a neighborhood of {−�1,−�0, �0, �1} which does not charge �. One deduces
that there exist two functions
 and� fromR toR+, continuouswith compact support,
such that for all λ ∈ R,


(λ) ≤ 1(�0 < |λ| ≤ �1)

λ
≤ �(λ)

and
∫

R


(λ) d�(λ) = h�0 − h�1 =
∫

R

�(λ) d�(λ).

Since �n tends weakly to � when n goes to infinity, one deduces that

∫

R


(λ) d�n(λ) −→
n→∞

∫

R


(λ) d�(λ) = h�0 − h�1

and similarly,

∫

R

�(λ) d�n(λ) −→
n→∞ h�0 − h�1 .

By the squeeze theorem, one deduces

hn,�0 − hn,�1 =
∫

R

1(�0 < |λ| ≤ �1)

λ
d�n(λ) −→

n→∞ h�0 − h�1 .

Hence,

lim
n→∞hn,�0 − lim

n→∞hn,�1 = h�0 − h�1 .

where, by assumption, the two limits in the left-hand side are well-defined. By (18),
one deduces, by taking �1 → ∞,

lim
n→∞hn,�0 − h = h�0 ,

which proves (33). ��
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Proof of 34 Let us now check the following properties, available for all k ∈ Z:

• If λk is well-defined, then λn,k is well-defined for all n large enough and tends to
λk when n goes to infinity.

• If λk is not well-defined, then for all A > 0, there are finitely many indices n such
that λn,k is well-defined and in the interval [−A, A].

By symmetry, we can assume that k ≥ 1. We know that λ∗ is not in L , and then for
ε > 0 small enough,

L ∩ [λ∗ − 3ε, λ∗ + 3ε] = ∅, (37)

Let us fix ε > 0 satisfying this property. Since �n tends locally weakly to �, we
deduce that for n large enough,

Ln ∩ [λ∗ − 2ε, λ∗ + 2ε] = ∅, (38)

which implies that λk ≥ λ1 > λ∗ +2ε. Now, let
 and� be two continuous functions
with compact support, such that:

• For λ ≤ λ∗ − ε,


(λ) = �(λ) = 0.

• For λ∗ − ε ≤ λ ≤ λ∗ + ε,

0 ≤ 
(λ) = �(λ) ≤ 1.

• For λ∗ + ε ≤ λ ≤ λk − ε,


(λ) = �(λ) = 1

(recall that λ∗ + ε < λk − ε).
• For λk − ε ≤ λ ≤ λk ,

0 ≤ 
(λ) ≤ �(λ) = 1.

• For λk ≤ λ ≤ λk + ε,

0 = 
(λ) ≤ �(λ) ≤ 1.

• For λ ≥ λk + ε,


(λ) = �(λ) = 0.
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By using (37), we deduce

∫

R


(λ)d�(λ) ≤ �([λ∗ − ε, λk)) = �([λ∗, λk)) = k − 1

and
∫

R

�(λ)d�(λ) ≥ �([λ∗ + ε, λk]) = �([λ∗, λk]) = k.

Hence, for n large enough,

∫

R


(λ)d�n(λ) ≤ k − 1/2

and
∫

R

�(λ)d�n(λ) ≥ k − 1/2,

which implies

�n([λ∗, λk − ε)) = �n([λ∗ + ε, λk − ε)) ≤
∫

R


(λ)d�n(λ) ≤ k − 1/2

and

�n([λ∗, λk + ε)) = �n([λ∗ − ε, λk + ε]) ≥
∫

R

�(λ)d�n(λ) ≥ k − 1/2.

Therefore, for n large enough the point λn,k is well-defined and between λk − ε and
λk +ε. Since ε and be taken arbitrarily small, we have proven the convergence claimed
above in the case where λk is well-defined. If λk is not well-defined, let us choose
ε > 0 satisfying (37), and A > |λ∗|. Let 
 be a continuous function with compact
support, such that:

• For all λ ∈ R, 
(λ) ∈ [0, 1].
• For all λ ∈ [λ∗, A], 
(λ) = 1.
• For all λ /∈ (λ∗ − ε, A + ε), 
(λ) = 0.

Since λk is not well-defined,

∫

R


(λ)d�(λ) ≤ �([λ∗ − ε, A + ε]) = �([λ∗, A + ε]) ≤ �([λ∗,∞)) ≤ k − 1,

and then for n large enough,

�n([λ∗, A]) ≤
∫

R


(λ)d�n(λ) ≤ k − 1/2,
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which implies that λn,k cannot be well-defined and smaller than or equal to A. This
proves the second claim. Let us now go back to the proof of (34). If L∩[−�0, �0] = ∅,
then L ∩ [−�0 − ε, �0 + ε] = ∅ for some ε > 0. Hence, there exists a nonnegative,
continuous function with compact support
 such that
(λ) = 1 for all λ ∈ [−�0, �0],
and

∫

R


(λ)d�(λ) = 0,

which implies, for n large enough,

�([−�0, �0]) ≤
∫

R


(λ)d�n(λ) ≤ 1/2,

i.e. Ln∩[−�0, �0] = ∅. Hence, for n large enough, the two expressions involved in (34)
are identically zero. If L ∩ [−�0, �0] �= ∅, let k1 and k2 be the smallest and the largest
indices k such that λk ∈ (−�0, �0). Since λn,k1 and λn,k2 converge respectively to λk1
and λk2 when n goes to infinity, one has λn,k1 and λn,k2 in the interval (−�0, �0) for n
large enough. On the other hand, λk2+1 is either strictly larger than �0 (strictly because
by assumption, �0 /∈ L), or not well-defined. In both cases, there are only finitely
many indices n such that λn,k2+1 ≤ �0. Similarly, by using the fact that −�0 /∈ L , one
checks that there are finitely many indices n such that λn,k1−1 ≥ −�0. Hence, for n
large enough, the indices k such that λn,k ∈ [−�0, �0] are exactly the integers between
k1 and k2, which implies

∫

[−�0,�0]
1

λ − z
d�n(λ) =

k2∑

k=k1

γn,k

λn,k − z
,

whereas

∫

[−�0,�0]
1

λ − z
d�(λ) =

k2∑

k=k1

γk

λk − z
.

We have shown that for all k between k1 and k2, λn,k tends to λk when n goes to infinity
and by assumption, γn,k tends to γk . Moreover, the numbers λk are all distincts, and
by assumption, γk �= 0 for all k. Hence, one can apply Lemma 20 to deduce (34). ��
Proof of 35 If L ∩ (�0,∞) = ∅, this statement can be deduced from the following
convergences, uniformly on {z ∈ C, |z| < �0/2}:

1Ln∩(�0,∞) �=∅
∑

k≥kn,�0

1

λn,k(λn,k − z)
−→
n→∞ 0, (39)

1Ln∩(�0,∞) �=∅
�n,Kn,∞

λn,Kn,∞−1 − z
−→
n→∞ 0, (40)
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1Ln∩(�0,∞) �=∅
�n,kn,�0

λn,kn,�0
− z

−→
n→∞ 0 (41)

and

1Ln∩(�0,∞) �=∅
∑

k≥kn,�0+1

�n,k

(
λn,k − λn,k−1

(λn,k−1 − z)(λn,k − z)

)
−→
n→∞ 0. (42)

If L ∩ (�0,∞) �= ∅, then we have proven previously that λn,k�0
is well-defined for

n large enough and converges to λk�0
> �0 when n goes to infinity: in particular,

λn,k�0
> �0 for n large enough. Moreover, one of the two following cases occurs:

• If λk�0−1 is well-defined, then it is strictly smaller than �0 (strictly because �0 is,
by assumption, not in L), and then λn,k�0−1 is, for n large enough, well-defined
and strictly smaller than �0.

• If λk�0−1 is not well-defined, and if A > 0, then for n large enough, λn,k�0−1
is not well-defined or has an absolute value strictly greater than A. By taking
A = λk�0

+ 1, one deduces that for n large enough, λn,k�0−1 is not-well defined,
strictly smaller than −λk�0

− 1 or strictly larger than λk�0
+ 1. This last case is

impossible for n large enough, since λn,k�0−1 is smaller than λn,k�0
, which tends

to λk�0
. Hence, there are finitely many indices n such that λn,k�0−1 is well-defined

and larger than −λk�0
− 1, and a fortiori, larger than or equal to �0.

All this discussion implies easily that for n large enough, kn,�0 = k�0 , and then it is
sufficient to prove the uniform convergences on {z ∈ C, |z| < �0/2}:

∑

k≥k�0

1

λn,k(λn,k − z)
−→
n→∞

∑

k≥k�0

1

λk(λk − z)
, (43)

�n,k�0

λn,k�0
− z

−→
n→∞

�k�0

λk�0
− z

(44)

and

�n,Kn,∞
λn,Kn,∞−1 − z

+
∑

k≥k�0+1

�n,k

(
λn,k − λn,k−1

(λn,k−1 − z)(λn,k − z)

)

−→
n→∞

�K∞
λK∞−1 − z

+
∑

k≥k�0+1

�k

(
λk − λk−1

(λk−1 − z)(λk − z)

)
, (45)

with obvious notation.
Let us first prove (39). If L ∩ (�0,∞) = ∅, then L ∩ (�0 − ε,∞) = ∅ for some

ε > 0 (recall that �0 /∈ L). Hence, for all A > �0, and n large enough depending on
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A, Ln ∩ (�0, A] = ∅, which implies, for |z| ≤ �0/2,

∣∣∣∣∣∣
1Ln∩(�0,∞) �=∅

∑

k≥kn,�0

1

λn,k(λn,k − z)

∣∣∣∣∣∣
≤ 2

∫

R

1(λ > �0)

λ2
d�n(λ)

= 2
∫

R

1(λ > A)

λ2
d�n(λ)

≤ 2
∫

R

1(λ > A)

λ1+α
d�n(λ) ≤ 2τA.

By letting n → ∞ and then A → ∞, one deduces (39).
Let us prove (40) and (41). By using the estimates (29) and (30) proven above, one

deduces that for

τ̃ := τ1 + �([λ∗ ∧ 2, 2]) + sup
n≥1

�n([λ∗ ∧ 2, 2]),

one has, for any k ≥ 1,

λk ≥ (k/τ̃ )1/(1+α), (46)

if λk > 2, and uniformly in n,

λk,n ≥ (k/τ̃ )1/(1+α), (47)

if λk,n > 2. Now, let us assume that L ∩ (�0,∞) = ∅ and Ln ∩ (�0,∞) �= ∅. If n is
large enough, then for any index k such that λn,k > �0, one has also λn,k > λ∗ ∨ 2,
since L ∩ (�0 − ε, (λ∗ ∨ 2) + 1) = ∅ for some ε > 0, and �n → �. Hence, k ≥ 1
and (47) is satisfied. By using this inequality and (20), one deduces, for |z| ≤ �0/2,

∣∣∣∣1Ln∩(�0,∞) �=∅
�n,Kn,∞

λn,Kn,∞−1 − z

∣∣∣∣+
∣∣∣∣∣1Ln∩(�0,∞) �=∅

�n,kn,�0

λn,kn,�0
− z

∣∣∣∣∣

≤ sup
k≥1

2c(k + 1)α
′

(k/τ̃ )1/(1+α) ∨ λn,kn,�0

+ sup
k≥1

2ckα′

(k/τ̃ )1/(1+α) ∨ λn,kn,�0

≤ 4c(1 + 2α′
)(1 + τ̃ )1/(1+α) sup

k≥1

kα′

k1/(1+α) ∨ λn,kn,�0

= 4c(1 + 2α′
)(1 + τ̃ )1/(1+α) sup

k≥1

(k1/(1+α))α
′(1+α)

k1/(1+α) ∨ λn,kn,�0

≤ 4c(1 + 2α′
)(1 + τ̃ )1/(1+α) sup

k≥1
(k1/(1+α) ∨ λn,kn,�0

)α
′(1+α)−1

≤ 4c(1 + 2α′
)(1 + τ̃ )1/(1+α)λ

α′(1+α)−1
n,kn,�0

,
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where λn,kn,�0
is taken equal to ∞ for Ln ∩ (�0,∞) = ∅. Note that in the previous

computation, the last inequality is a consequence of the inequality α′(1+α)− 1 < 0.
Now, λn,kn,�0

tends to infinity with n, since for all A > �0, one has Ln ∩ (�0, A] = ∅
for n large enough. Hence, we get (40) and (41).

Moreover, in case where L ∩ (�0,∞) = ∅, Ln ∩ (�0,∞) �= ∅, n is large enough,
and |z| < �0/2, the left-hand side of (42) is smaller than or equal to:

4c
∑

k≥kn,�0+1

|k|α′
(

λn,k − λn,k−1

λn,k−1λn,k

)
= 4c

∑

k≥kn,�0+1

|k|α′
(

1

λn,k−1
− 1

λn,k

)

= 4c

⎛

⎝ |kn,�0 + 1|α′

λn,kn,�0

+
∑

k≥kn,�0+1

|k + 1|α′ − |k|α′

λn,k

⎞

⎠

≤ 4c

⎛

⎝ |kn,�0 + 1|α′

λn,kn,�0
∨ (|kn,�0 |/τ̃ )1/(1+α)

+
∑

k≥1

(k + 1)α
′ − kα′

λn,kn,�0
∨ (k/τ̃ )1/(1+α)

⎞

⎠ ,

when kn,�0 ≥ 1, which occurs for n large enough. The first term of the last quantity is
dominated by

(λn,kn,�0
∨ (kn,�0/τ̃ )1/(1+α))α

′(1+α)−1 ≤ (λn,kn,�0
)α

′(1+α)−1,

which tends to zero when n goes to infinity, since λn,kn,�0
goes to infinity and α′(1 +

α) − 1 < 0. Similarly,

∑

k≥1

(k + 1)α
′ − kα′

λn,kn,�0
∨ (k/τ̃ )1/(1+α)

−→
n→∞ 0,

by dominated convergence. Hence, we get (42).
We can now assume L ∩ (�0,∞) �= ∅ and it remains to prove (43)–(45).
For k ≥ k�0 , let us define λn,k and λk as ∞ if these numbers are not well-defined:

this does not change the quantities involved in (43). Moreover, for all k ≥ k�0 :

• If λk is well-defined as a finite quantity, then λn,k is also well-defined for n large
enough and tends to λk when n goes to infinity.

• If λk = ∞, then for all A > 0, and for n large enough, one has λn,k /∈ [−A, A].
Since for n large enough,

λn,k ≥ λn,k�0
> λk�0

− 1 > �0 − 1 > 0,

one has λn,k > A: in other words, λn,k tends to infinity with n.

We have just checked that with the convention made here, one has always λn,k con-
verging to λk when n goes to infinity, for all k ≥ k�0 . Hence, (43) is a consequence of
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the dominated convergence theorem and the majorization:

∑

k≥k�0

(λk ∧ inf
n≥n0

λn,k)
−2 < ∞,

for some n0 ≥ 1. Now, there exists n0 ≥ 1 such that for all n ≥ n0, one has kn,�0 = k�0 ,
and then for all k ≥ 1 ∨ k�0 , λk > �0 > 2, λn,k > 2 and k ≥ 1, which implies the
minorizations (46) and (47). Hence one gets (43), since

∑

k≥1

(k/τ̃ )−2/(1+α) < ∞.

Since (44) is easy to check, it remains to show (45), which can be rewritten as follows:

∑

k≥k�0+1

�n,k

(
1

λn,k−1 − z
− 1

λn,k − z

)
−→
n→∞

∑

k≥k�0+1

�k

(
1

λk−1 − z
− 1

λk − z

)
,

where for k ≥ Kn,∞ (resp. k ≥ K∞), one defines λk,n := ∞ (resp. λk := ∞). Note
that with this convention, λn,k tends to λk when n goes to infinity, for all k ≥ k�0 . Note
that each term of the left-hand side of this last convergence converges uniformly on
{z ∈ C, |z| < �0/2} towards the corresponding term in the right-hand side. Indeed,
for n large enough, for all k ≥ k�0 , for |z| < �0/2, and for λk , λn,k finite,

∣∣∣∣
1

λn,k − z
− 1

λk − z

∣∣∣∣ =
|λk − λn,k |

|λn,k − z||λk − z| ≤ 4|λk − λn,k |
λn,kλk

≤ 4

∣∣∣∣
1

λn,k
− 1

λk

∣∣∣∣ −→
n→∞ 0,

this convergence, uniform in z, being in fact also true if λn,k or λk is infinite. Hence,
one has, for all k′ > k�0 + 1, the uniform convergence:

∑

k�0+1≤k≤k′
�n,k

(
1

λn,k−1 − z
− 1

λn,k − z

)
−→
n→∞

∑

k�0+1≤k≤k′
�k

(
1

λk−1 − z
− 1

λk − z

)
,

Hence, it is sufficient to check, for n0 ≥ 1 such that kn,�0 = k�0 if n ≥ n0, that

sup
n≥n0,|z|<�0/2

∣∣∣∣∣
∑

k>k′
�n,k

(
1

λn,k−1 − z
− 1

λn,k − z

)∣∣∣∣∣ −→
k′→∞

0 (48)

and

sup
|z|<�0/2

∣∣∣∣∣
∑

k>k′
�k

(
1

λk−1 − z
− 1

λk − z

)∣∣∣∣∣ −→
k′→∞

0. (49)
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Now, for k′ ≥ 1 ∨ (k�0 + 1), n ≥ n0 and |z| < �0/2, one has

∣∣∣∣∣
∑

k>k′
�n,k

(
1

λn,k−1 − z
− 1

λn,k − z

)∣∣∣∣∣ ≤
∑

k>k′
|�n,k |

∣∣∣∣
1

λn,k−1 − z
− 1

λn,k − z

∣∣∣∣

≤ 4c
∑

k>k′
kα′
(

1

λn,k−1
− 1

λn,k

)

= 4c

(
(k′ + 1)α

′

λn,k′
+
∑

k>k′

(k + 1)α
′ − kα′

λn,k

)

≤ 4c

(
(k′ + 1)α

′

(k′/τ̃ )1/(1+α)
+
∑

k>k′

(k + 1)α
′ − kα′

(k/τ̃ )1/(1+α)

)

−→
k′→∞

0,

which proves (48). One shows (49) in an exactly similar way, which finishes the proof
of the convergence of Sn towards S + γ̄ h, uniformly on compact sets for the distance
d. ��
Proof of the formulas (21)–(24) By observing the sign of the imaginary parts�(Sn) and
�(S), we deduce that the sets �′

n and �′ are included in R. Moreover, the derivatives
S′
n and S′ are strictly positive, respectively on R\Ln and R\L , and all the left (resp.

right) limits of Sn and S at their poles are equal to +∞ (resp. −∞). We deduce that
the support of �′

n (resp. �
′) strictly interlaces with the points in Ln (resp. L).

The Eq. (21) is a direct consequence of the convergence of Sn towards S + γ̄ h,
as written in the statement of Theorem (21). More precisely, for two points a and b
(a < b) not in the support of�′ and such that �′((a, b)) = k, there exist real numbers
a = q0 < q1 < q2 < · · · < q2k < b = q2k+1 such that −∞ < S(q2 j−1) <

h′ < S(q2 j ) < ∞ for j ∈ {1, . . . , k}, which implies that these inequalities are also
satisfied for Sn − γ̄ h instead of S if n is large enough: one has �′

n((a, b)) ≥ k. On the
other hand, since the support of �′ has exactly one point on each interval [q2 j−1, q2 j ]
(1 ≤ j ≤ k) and no point on the intervals [q2 j , q2 j+1] (0 ≤ j ≤ k), one deduces that
S is bounded on the intervals [q2 j−1, q2 j ] and bounded away from h′ on the intervals
[q2 j , q2 j+1]. These properties remain true for Sn − γ̄ h if n is large enough, and one
easily deduces that �′

n((a, b)) ≤ k.
The properties (22)–(24) can be deduced from the property of interlacing. More

precisely, for � ≥ 1,

∫

R

1(λ > �)

λ1+α
d�′

n(λ) =
∑

λ∈L ′
n∩(�,∞)

1

λ1+α
,

where L ′
n is the support of�

′
n . By the interlacing property, if L

′
n ∩ (�,∞) is not empty

and if its smallest element is λ′ > �, then it is possible to define an injection between
(L ′

n ∩ (�,∞))\{λ′} and Ln ∩ (�,∞), such that the image of each point is smaller than
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this point. One deduces

∫

R

1(λ > �)

λ1+α
d�′

n(λ) ≤ 1

λ′ +
∑

λ∈Ln∩(�,∞)

1

λ1+α
≤ 1

�
+
∫

R

1(λ > �)

λ1+α
d�n(λ).

By looking similarly at the integral for λ < −�, one deduces

∫

R

1(|λ| > �)

|λ|1+α
d�′

n(λ) ≤ 2

�
+
∫

R

1(|λ| > �)

|λ|1+α
d�n(λ) ≤ 2

�
+ τ� −→

�→∞ 0,

which proves (22) for the measure �′
n .

By a similar argument, for �′′ > �′ > � ≥ 1,

∫

R

1(�′ ≤ λ < �′′)
λ

d�′
n(λ) ≤

∫

R

1(�′ ≤ λ < �′′)
λ

d�n(λ) + 1

�′ ,

and one has the similar inequalities obtained by exchanging�n and�′
n , and by chang-

ing the sign of λ. Hence,

∣∣∣∣
∫

R

1(�′ ≤ |λ| < �′′)
|λ| d�′

n(λ) −
∫

R

1(�′ ≤ |λ| < �′′)
|λ| d�n(λ)

∣∣∣∣ ≤
4

�′ .

This inequality and the existence of the limit hn,� for the measure �n implies that

lim sup
�′∧�′′→∞

∣∣∣∣
∫

R

1(� < |λ| < �′′)
|λ| d�′

n(λ) −
∫

R

1(� < |λ| < �′)
|λ| d�′

n(λ)

∣∣∣∣ = 0,

and then the limit h′
n,� given by (24) exists, and we get the existence of h

′
� in a similar

way. Moreover, for all � ≥ 1, one gets the majorization:

∣∣∣∣ lim
�′→∞

∫

R

1(� < |λ| < �′)
|λ| d�′

n(λ) − lim
�′→∞

∫

R

1(� < |λ| < �′)
|λ| d�n(λ)

∣∣∣∣ ≤
4

�
,

(50)

and a similar inequality without the index n. Hence, we have

|h′
n,� − hn,�| = O(�−1), |h′

� − h�| = O(�−1).

We then deduce (23) from (18) (with the same value of h), provided that we check the
existence of the limit of h′

n,� when n → ∞, which is involved in (23):

lim
n→∞ lim

�′→∞

∫

R

1(� < |λ| < �′)
|λ| d�′

n(λ) (51)
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for each � such that � and −� are not in the support of �′. Let us first assume that �

and −� are also not in the support of �. We have, for all �′′ > �,

lim
�′→∞

∫

R

1(� < |λ| < �′)
|λ| d�′

n(λ) =
∫

R

1(� < |λ| ≤ �′′)
|λ| d�′

n(λ)

+ lim
�′→∞

∫

R

1(�′′ < |λ| < �′)
|λ| d�′

n(λ),

(52)

and a similar equality with �′
n replaced by �n . Since � and −� are not in the support

of � or �′, the convergences of �n towards � and of �′
n towards �′ imply that the

lower and upper limits (when n goes to infinity) of the first term of (52) (both with �′
n

and with�n) differ by O(1/�′′). For the second term, the difference between the lower
and upper limits should change only by O(1/�′′) when we replace (52) by the same
equation with�n , thanks to (50). Hence, this observation is also true for the sum of the
two terms. On the other hand, the existence of the limit of hn,� when n goes to infinity
(for�n) implies that in (52) with�′

n replaced by�n , the difference between the upper
and lower limit is zero. Therefore, the difference is O(1/�′′) without replacement of
�′

n by �n : letting �′′ → 0 gives the existence of the limit (51) for −�, � not in the
support of � and �′. If −� or � is in the support of � (but not in the support of �′),
we observe that for some ε > 0 and n large enough, there is no point in the supports
of �′

n and �′ in the intervals ±� + (−ε, ε), which implies that the integral involved
in (51) does not change if we change � by less than ε. By suitably moving �, we can
then also avoid the support of �. ��

9 Convergence of Hermite corners towards the bead process

In this section, we consider, for all β > 0, the Gaussian β Ensemble, defined as a set
of n points (λ j )1≤ j≤n whose joint density, with respect to the Lebesgue measure is
proportional to

e−β
∑n

k=1 λk/4
∏

j<k

|λ j − λk |β.

We will use the following crucial estimate, proven in [15]:

Theorem 23 For −∞ ≤ �1 < �2 ≤ ∞, let N (�1,�2) be the number of points,
between �1 and �2, of a Gaussian beta ensemble with n points, and let Nsc(�1,�2)

be n times the measure of (�1,�2) with respect to the semi-circle distribution on the
interval [−2

√
n, 2

√
n]:

Nsc(�1,�2) := n

2π

∫ �2/
√
n

�1/
√
n

√
(4 − x2)+ dx .
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Then,

E[(N (�1,�2) − Nsc(�1,�2))
2] = O(log(2 + (

√
n(�2 − �1) ∧ n))).

Forβ ∈ {1, 2, 4}, theGaussianβ Ensemble can be represented by the eigenvalues of
real symmetric (forβ = 1), complexHermitian (forβ = 2), or quaternionicHermitian
(for β = 4) Gaussian matrices. The law of the entries of these matrices, corresponding
respectively to the Gaussian Orthogonal Ensemble, the Gaussian Unitary Ensemble
and the Gaussian Symplectic Ensemble, are given as follows:

• The diagonal entries are real-valued, centered, Gaussian with variance 2/β.
• The entries above the diagonal are real-valued for β = 1, complex-valued for

β = 2, quaternion-valued for β = 4, with independent parts, centered, Gaussian
with variance 1/β.

• All the entries involved in the previous items are independent.

By considering the top-left minors An of an infinite randommatrix A following the law
described just above, and their eigenvalues, we get a family of sets of points, the nth
set following the GβE of order n. Conditionally on the matrix An , whose eigenvalues
are denoted (λ1, . . . , λn), supposed to be distinct (this holds almost surely), the law
of the eigenvalues of An+1 can be deduced by diagonalizing An inside An+1, which
gives a matrix of the form

⎛

⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 g1
0 λ2 · · · 0 g2
...

...
. . .

...
...

0 0 · · · λn gn
g1 g2 · · · gn g

⎞

⎟⎟⎟⎟⎟⎠
,

where g1, . . . gn, g are independent, centered Gaussian, g being real-valued with vari-
ance 2/β, g1, . . . , gn being real-valued of variance 1 for β = 1, complex-valued
with independent real and imaginary parts of variance 1/2 for β = 2, quaternion-
valued with independent parts of variance 1/4 for β = 4. Expanding the characteristic
polynomial and dividing by the product of λ j − z for 1 ≤ j ≤ λn , we see that the
eigenvalues of An+1 are the solutions of the equation:

g − z −
n∑

j=1

|g j |2
λ j − z

= 0.

Hence, if for n ≥ 1, we consider the eigenvalues of the matrices (An+k)k≥0, we get
an inhomogeneous Markov chain defined as follows:

• The first set corresponds to the GβE with n points.
• Conditionally on the sets of points indexed by 0, 1, . . . , k, the set indexed by k
containing the distinct points λ1, . . . , λn+k , the set indexed by k + 1 contains the
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zeros of

g − z −
n+k∑

j=1

(2/β)γ j

λ j − z
,

g being centered, Gaussian of variance 2/β, γ j being a Gamma variable of param-
eter β/2, all these variables being independent.

Similar expressions of eigenvalues of successive minors of random matrices in terms
of zeros of meromorphic functions can be found in the literature: for more detail, we
refer to articles byGelfand andNaimark [9], Baryshnikov [2], Neretin [14], Okounkov
and Reshetikhin [16].

The Markov chain above can be generalized to all β > 0: this can be viewed as the
“eigenvalues of the GβE minors”. In fact, what we obtain is equivalent (with suitable
scaling) to the Hermite β corners introduced by Gorin and Shkolnikov [10]. This fact
is due to the following result, proven (up to scaling) in [8, Proposition 4.3.2]:

Proposition 24 The density of transition probability from the set (λ1, . . . , λn) to the
set (μ1, . . . , μn+1), subject to the interlacement property

μ1 < λ1 < μ2 < · · · < μn < λn < μn+1,

is proportional to

∏

1≤p<q≤n+1

(μq − μp)
∏

1≤p<q≤n

(λq − λp)
1−β

∏

1≤p≤n,1≤q≤n+1

|μq − λp|β/2−1e
− β

4

(∑
1≤q≤n+1 μ2

q−∑1≤p≤n λ2p

)

.

As explained in [10], the marginals of the Hermite β corner correspond to the
Gaussian β Ensemble, which implies the following:

Proposition 25 For all β > 0, the set of n + k points corresponding to the step k
of the Markov chain just above has the distribution of the Gaussian β Ensemble of
dimension n + k, if the initial distribution is the Gaussian β Ensemble of dimension
n. In particular, if we take n = 1, we get a coupling of the GβE in all dimensions.

Now, we show that a suitable scaling limit of this Markov chain is the β-bead
process introduced in the paper.

We choose E ∈ (−2, 2) (this corresponds to the bulk of the spectrum), n ≥ 1, and
we center the spectrum around the level E

√
n. The expected density of eigenvalues

around this level is approximated by
√
nρsc(E), where ρsc is the density of the semi-

circular distribution. In order to get an average spacing of 2π , we should then scale
the eigenvalues by a factor 2π

√
nρsc(E) = √n(4 − E2). For k ≥ 0, we then consider

the simple point measure �
(k)
n given by putting Dirac masses at the points (λ

(n,k)
j −

E
√
n)
√
n(4 − E2), where (λ

(n,k)
j )1≤ j≤n+k is the set of n + k points obtained at the
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step k of the Markov chain above. The sequence of measures �
(k)
n can be recovered

as follows:

• For k = 0, �
(0)
n corresponds to the point measure associated with the suitably

rescaled GβE point process, with n points.
• Conditionally on �

(k)
n , �(k+1)

n is obtained by taking the zeros of

− E√
4 − E2

+ g(k)

√
n(4 − E2)

− z

n(4 − E2)
−
∫

1

λ − z
d�(k)

n (λ),

where g(k) is a centeredGaussian variable of variance 2/β, and�
(k)
n is theweighted

version of �
(k)
n , the weights being i.i.d. with distribution corresponding to 2/β

times a Gamma variable of parameter β/2.

We are now able to prove the following result:

Theorem 26 The Markov chain (�
(k)
n )k≥0 converges in law to the Markov chain

defined in Theorem 13, for the topology of locally weak convergence of locally finite
measures on R × N0 (i.e. convergence of the integrals against continuous functions
with compact support), and for the level

h = − E√
4 − E2

.

For β = 2 and h ∈ R fixed, the law of the Markov chain of Theorem 13 corresponds
(after dividing the points by 2) to the bead process introduced by Boutillier, with
parameter

γ = − h√
1 + h2

,

if we take the notation of [6].

Proof By the result of Valkó and Virág, �
(0)
n converges in distribution to the Sineβ

point process.
Hence, the family, indexedbyn, of the distributions of (�(0)

n )n≥1, is tight in the space
of probability measures onM(R),M(R) being the space of locally finite measures on
the Borel sets of R, endowed with the topology of locally weak convergence. Hence,
for ε > 0, there exists (CK )K∈N such that with probability at least 1−ε, the number of
points in [−K , K ] of �

(0)
n is at most CK for all K ∈ N, independently of n. Since the

points of �
(k)
n interlace with those of �

(k−1)
n , the condition just above is satisfied with

�
(k)
n instead of �

(0)
n . Hence, the family, indexed by n, of the laws of (�

(k)
n )k≥0 is tight

in the space of probability measures onM(R×N0),M(R×N0) being the space of
locally finite measures on R × N0, again endowed with the topology of locally weak
convergence. Recall that this property of tightness means that for all ε > 0, there
exists a compact subset Kε of M(R × N0) such that the locally finite measure on
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R×N0 corresponding to�
(0)
n is inKε with probability at least 1−ε. For all ε > 0, the

compact setKε exists because we can find (CK ,k)K∈N,k∈N0 such that with probability

at least 1 − ε, �(k)
n has at most CK ,k points in the interval [−K , K ], for all k, K and

independently of n.
From the tightness and Prokhorov’s theorem, it is enough to prove that the law of

the Markov chain of Theorem 13 is the only possible limit for a subsequence of the
laws of (�

(k)
n )k≥1. Let us consider such a subsequence which converges in law. We

define the following random variable

Yn := sup
�≥0

(1 + �)−3/4(|�̃(0)
n ([0, �])| + |�̃(0)

n ([−�, 0])|)

where

�̃
(0)
n ([a, b]) := �

(0)
n ([a, b]) − Nsc

([
E

√
n + a√

n(4 − E2)
, E

√
n + b√

n(4 − E2)

])
,

for

Nsc(�1,�2) := n

2π

∫ �2/
√
n

�1/
√
n

√
(4 − x2)+dx .

The family (Yn)n≥0 is tight. Indeed, by Theorem 23,

E[(1 + �)−3/2(|�̃(0)
n ([0, �])|2 + |�̃(0)

n ([−�, 0])|2)]

= O

(
(1 + �)−3/2 log

(
2 + √

n
�√

n(4 − E2)

))
,

which shows that

E

[ ∞∑

�=0

(1 + �)−3/2(|�̃(0)
n ([0, �])| + |�̃(0)

n ([−�, 0])|)2
]

≤ CE,β ,

where CE,β < ∞ depends only on E and β (in particular, not on n). This implies that
(Yn)n≥1 is tight.

The point processes �
(k)
n , k ≥ 0, are constructed from �

(0)
n , and families γn,k,k′ of

weights, γn,k,k′ being the weight, involved in the construction of �
(k+1)
n , of the (k′)th

nonnegative point of �
(k)
n if k′ > 0, the (1 − k′)th negative point of �

(k)
n if k′ ≤ 0.

Notice that in this discussion, for all infinite families of real-valued random variables,
we can consider them as single random variables on RI for a suitable infinite set I : in
this case, the σ -algebra taken on RI is the Borel σ -algebra associated to the topology
of the pointwise convergence of the coordinates. All the variables γn,k,k′ are i.i.d.,
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distributed like 2/β times a Gamma variable of parameter β/2, and independent of
�

(0)
n . We can consider the variables

Zn,k = sup
m≥1

m−0.51

∣∣∣∣∣m −
m−1∑

k′=0

γn,k,k′

∣∣∣∣∣+ sup
m≥1

m−0.51

∣∣∣∣∣∣
m −

−1∑

k′=−m

γn,k,k′

∣∣∣∣∣∣
.

By classical tail estimates of the Gamma variables, or by the law of iterated logarithm,
Zn,k < ∞ almost surely, and since its law does not depend on n and k, (Zn,k)n≥1,k≥0
is a tight family of random variables.

Hence, (Zn := (Zn,k)k≥0)n≥1 is a tight family of random variables on R
N0 ,

endowed with the σ -algebra generated by the sets {(zk)k≥0, z0 ∈ A0, z1 ∈
A1, . . . , z p ∈ Ap} for p ≥ 0 and A j ∈ B(R).

Let us go back to our subsequence of (�
(k)
n )k≥0 which converges in law. If we join

(γn,k,k′)k≥0,k′∈Z, Yn and Zn , we still get a tight family of probability measures on a
suitable probability space. Hence, we can find a sub-subsequence for which the fam-
ily of random variables ((�

(k)
n )k≥0, (γn,k,k′)k≥0,k′∈Z,Yn, Zn) converges in law, and

a fortiori (�
(0)
n , (γn,k,k′)k≥0,k′∈Z,Yn, Zn) converges in law. We can now apply Sko-

rokhod representation theorem (see [4, Theorem 6.7]). Indeed, the random variables
take values in the product spaceM(R×N0) ×R

I for a suitable countable set I . The
space RI is separable since we consider the topology of pointwise convergence. The
space of probability measures on the separable metric spaceR×N0, endowed with the
topology of the weak convergence, is separable. We deduce that it is also the case for
the space of finite measures onR×N0, after multiplying the probability measures of a
dense sequence by all positive rational numbers. Since the finite measures on R×N0
are dense in the space of locally finite measures onR×N0, for the topology of locally
weak convergence (because the test functions have compact support), we deduce that
M(R × N0) is a separable space. By Skorokhod representation theorem, the family
of random variables (�

(0)
n , (γn,k,k′)k≥0,k′∈Z,Yn, Zn) has the same law as some family

(�
′(0)
n , (γ ′

n,k,k′)k≥0,k′∈Z,Y ′
n, Z

′
n) which converges almost surely along the same sub-

subsequence as the one for which the family ((�
(k)
n )k≥0, (γn,k,k′)k≥0,k′∈Z,Yn, Zn)

converges in law. Note that Y ′
n is function of �

′(0)
n and Z ′

n is function of the weights

γ ′
n,k,k′ . Since we know that �

′(0)
n converges in law to a Sineβ process, its almost sure

limit is a simple point measure.
From the boundedness of Y ′

n along our sub-subsequence, and by Proposition 16,

we deduce that the part of Theorem 21 concerning �
′(0)
n is satisfied, with

h = lim
�→∞ lim

n→∞hscn,�,

for

hscn,� =
∫

(−∞,−�]∪[�,∞)

1

λ
dNsc

(
E

√
n + λ√

n(4 − E2)

)
.
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Indeed, the convergence of �
′(0)
n to a Sineβ process �

′(0) gives (15). Moreover,

�
′(0)
n ([−�, �]) = O(1 + � + Y ′

n(1 + �)3/4) = O(Y ′
n(1 + �))

by the boundedness of the semi-circle density and the definition of Y ′
n . We easily

deduce (16) for any α ∈ (0, 1) (with τ� decaying like �−α). From now, we choose α

such that 0 < α < 49/51.
The integral involved in the definition of hn,� can bewritten as the sum of an integral

with respect to the semi-circle distribution and an integral with respect to d�̃
′(0)
n , where

�̃
′(0)
n is the signed measure involved in the definition of Y ′

n :

�̃
′(0)
n ([a, b]) := �

′(0)
n ([a, b]) − Nsc

([
E

√
n + a√

n(4 − E2)
, E

√
n + b√

n(4 − E2)

])
.

The integral with respect to the semi-circle distribution tends to hscn,� when �′ → ∞,
which itself tends to h when n → ∞ and then � → ∞. The integral with respect

to d�̃
′(0)
n can be transformed via an integration by part, as follows. If we restrict the

integral to λ > 0, we get

∫

R

1(� < λ < �′)
λ

d�̃
′(0)
n =

[
�̃

′(0)
n ([0, λ])

λ

](�′)−

�

−
∫ �′

�

�̃
′(0)
n ([0, λ])

λ2
dλ.

Since �̃
′(0)
n ([0, λ]) is dominated by (1 + λ)3/4 because of the boundedness of Y ′

n , we
can let �′ → ∞ and we get the limit

[
�̃

′(0)
n ([0, λ])

λ

]∞

�

−
∫ ∞

�

�̃
′(0)
n ([0, λ])

λ2
dλ.

From (15) and dominated convergence, due to the fact that Y ′
n is bounded along the

subsequence we consider, we get that the last expression converges to

[
�̃

′(0)([0, λ])
λ

]∞

�

−
∫ ∞

�

�̃
′(0)([0, λ])

λ2
dλ. (53)

when

�̃
′(0)[0, λ] = �

′(0)[0, λ] − lim
n→∞ Nsc

([
E

√
n, E

√
n + λ√

n(4 − E2)

])

= �
′(0)[0, λ] − λ

2π
.
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Notice that there is no problem of discontinuity for the bracket at �, because we take
limits for � outside the support of �

′(0). Now, it is clear that (53) tends to zero when
� → ∞. Similarly

∫

R

1(−�′ < λ < −�)

λ
d�̃

′(0)
n

tends to zero, after taking successive limits �′ → ∞, n → ∞, � → ∞. We then

deduce (17) and (18) for �
′(0)
n , by adding the limits of the integral with respect to the

semi-circle distribution and the integral with respect to d�̃
′(0)
n . For �

′(0), the method
is the same: we use Proposition 16 in order to estimate the point counting of the Sineβ

process, and we replace the semi-circle distribution by 1/2π times the Lebesgue
measure, which ensures the vanishing limit in (18).

We can now compute h explicitly. We have:

dNsc

(
E

√
n + λ√

n(4 − E2)

)
= n

2π
d

⎛

⎝
∫ E+

(
λ/(n

√
4−E2)

)

−∞

√
(4 − x2)+dx

⎞

⎠

= 1

2π
√
4 − E2

√[
4 −

(
E +

(
λ/(n

√
4 − E2)

))2]

+
dλ

If we do a change of variable λ = μn
√
4 − E2, we get

hscn,� =
∫

(−∞,−�/(n
√
4−E2)]∪[�/(n√

4−E2),∞)

1

2π
√
4 − E2

√
[4 − (E + μ)2]+ dμ

μ
.

Taking n → ∞, we get a quantity independent of �, given by

h = 1

2π
√
4 − E2

∫

R

√
(4 − y2)+

dy

y − E
,

the integral in the neighborhood of E being understood as a principal value. From the
value of the Stieltjes transform of the semi-circle law, we deduce

h = − E

2
√
4 − E2

.

From the boundedness of Z ′
n,0, we deduce that the part of Theorem 21 concerning the

weights is also satisfied for α′ = 0.51, since by the assumption 0 < α < 49/51 made
before, we have 0 < α′(1 + α) < 1.

Finally, in this theorem, it is almost surely possible to take λ∗ = 0, by the absolutely
continuity of the densities of the ensembles which are considered.

All the assumptions of the theorem are satisfied. If we denote by �
′(0)
n the mea-

sure constructed from �
′(0)
n and the weights γ ′

n,0,k′ (k′ ∈ Z), and �
′(0) the measure
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constructed from the a.s. limits of these points and weights, we deduce that for an
independent standard Gaussian variable g(0), the function

z 	→ − E√
4 − E2

−
∫

1

λ − z
d�

′(0)
n (λ),

and then also the function

z 	→ − E√
4 − E2

+ g(0)
√
n(4 − E2)

− z

n(4 − E2)
−
∫

1

λ − z
d�

′(0)
n (λ),

converges uniformly on compact sets, for the topology of the Riemann sphere given
in Theorem 21, to the function

z 	→ − E√
4 − E2

−
∫

1

λ − z
d�

′(0)(λ) − h = − E

2
√
4 − E2

−
∫

1

λ − z
d�

′(0)(λ).

As in the proof of Theorem 21, we deduce that the point process �
′(1)
n given by

− E√
4 − E2

+ g(0)
√
n(4 − E2)

− z

n(4 − E2)
−
∫

1

λ − z
d�

′(0)
n (λ) = 0,

locally weakly converges to the point process �
′(1) given by

lim
�→∞

∫

[−�,�]
1

λ − z
d�

′(0)(λ) = − E

2
√
4 − E2

.

The points of �
′(1)
n and satisfy the assumptions of Theorem 21, since they interlace

with those of�
′(0)
n . It is also the same for the weights γ ′

n,1,k′ (k′ ∈ Z), by the bounded-

ness of Z ′
n . We then deduce that for an independent Gaussian variable g(1), the point

process �
′(2)
n given by

− E√
4 − E2

+ g(1)
√
n(4 − E2)

− z

n(4 − E2)
−
∫

1

λ − z
d�

′(1)
n (λ) = 0

locally weakly converges to the process �
′(2) given by

lim
�→∞

∫

[−�,�]
1

λ − z
d�

′(1)(λ) = − E

2
√
4 − E2

,

where�
′(1)
n is given by�

′(0)
n and the weights γ ′

n,1,k′ and�
′(1) are given by their limits.

We can then iterate the construction, which gives a family of point processes�
′(k)
n (k ≥

0), converging to�
′(k). From thewaywe do this construction, we check that (�

′(k)
n )k≥0
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has the same law as (�
(k)
n )k≥0, and that �

′(k) has the same law as the generalized bead
process introduced in the present paper (with level lines at −E/2

√
4 − E2). Hence,

any subsequence of ((�
(k)
n )k≥0)n≥1 converging in law has a sub-subsequence tending

in law to the generalized bead process. By tightness, we deduce the convergence of the
whole sequence ((�

(k)
n )k≥0)n≥1. This gives the first part of the theorem, after doubling

the weights and the value of h. The second part is deduced by using the convergence
of the GUE minors towards the bead process introduced by Boutillier, proven in [1].
The factor 2 is due to the fact that the average density of points is 1/π in [6] and
1/2π here. The value of the parameter γ in [6] (a in [1]) corresponds to E/2 (the bulk
corresponds to the interval (−1, 1) in [1] and to (−2, 2) in the present paper). We then
have

h = − E√
4 − E2

= − γ√
1 − γ 2

,

and finally

γ = − h√
1 + h2

.
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