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By adding minute concentrations of a high-molecular-weight polymer, liquid jets or
bridges collapsing under the action of surface tension develop a characteristic shape of
uniform threads connecting spherical fluid drops. In this paper, high-precision meas-
urements of this beads-on-string structure are combined with a theoretical analysis
of the limiting case of large polymer relaxation times and high polymer extensibilities,
for which the evolution can be divided into two distinct regimes. For times smaller
than the polymer relaxation time over which the beads-on-string structure develops,
we give a simplified local description, which still retains the essential physics of the
problem. At times much larger than the relaxation time, we show that the solution
consists of exponentially thinning threads connecting almost spherical drops. Both
experiment and theoretical analysis of a one-dimensional model equation reveal a
self-similar structure of the corner where a thread is attached to the neighbouring
drops.

1. Introduction
Understanding the behaviour of polymeric free-surface flows is of enormous impor-

tance for a wide variety of applications in the chemical processing, food and consumer
products industries. Operations such as ink jet printing, spraying of fertilisers, paint-
levelling, misting, bottle filling and roll coating are all controlled by interactions
between the non-Newtonian stresses in the bulk and capillary stresses at the defor-
mable free surface. Long-chained macromolecules are also ubiquitous in biological
fluids, and significantly affect the corresponding free-surface dynamics. If one places
a small drop of saliva between two fingers and pulls them apart, the resulting liquid
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bridge does not collapse, but an extremely fine thread remains for several seconds.
The lifetime of this bridge is intimately connected to the molecular weight and
conformation of the proteins (mucins) and hormones in the saliva. Measurement
of filament lifetimes in biofluids such as mucus or saliva can be used as a fertility
indicator (Kopito & Kosasky 1979).

1.1. Capillary thinning rheometry

A number of recent studies have promulgated the idea of using the capillarity-
induced thinning of a liquid filament as a rheometric device for quantifying the
properties of complex fluids in predominantly extensional flows (Bazilevsky, Entov &
Rozhkov 1990; Stelter et al. 2000; Tripathi, Whittingstall & McKinley 2000). A typical
configuration is shown in figure 1. A cylindrical liquid bridge of the fluid to be tested is
initially formed between two coaxial cylindrical plates. In the present experiment, the
test fluid is an ideal elastic fluid consisting of a dilute solution of monodisperse high-
molecular-weight polystyrene dissolved in a viscous solvent. Details of the rheological
characterization of the test fluid are provided in the Appendix. A step uniaxial strain
is imposed on the bridge to extend it beyond the static (Plateau) stability limit. The
liquid filament subsequently undergoes a capillary-thinning process toward a final
breakup event. The no-slip boundary condition at the endplates retards the radial
flow near the endplates and thus imposes a well-defined initial axial perturbation or
‘neck’ on the liquid column which controls the location of the subsequent necking
process. The time evolution in the local filament radius is monitored optically using
either a laser micrometer or high-speed video-imaging.

To convert such measurements of filament evolution into an extensional viscosity
it is necessary to understand the balance of forces acting on the fluid filament. The
slenderness of the fluid thread induced by the step strain means that a one-dimensional
approximation to the equations can be useful in the analysis. Entov & Hinch (1997)
provide a detailed discussion of the evolution of a perfectly cylindrical thread of
viscoelastic fluid undergoing capillary-driven thinning and breakup. Their analysis
shows that there can be a lengthy intermediate regime in which inertial, viscous and
gravitational forces are all negligible and elastic and capillary forces balance. Capillary
pressure drives the thinning process whilst fluid viscoelasticity resists the necking of
the fluid thread. To prevent the molecules from relaxing the radius must continuously
decrease in time at a rate that is directly related to the characteristic relaxation rate
of the polymer solution. In this regime the local extension rate in the neck is constant
and the radius of the filament decreases exponentially in time. Measurement of this
rate of thinning thus enables a direct determination of the characteristic relaxation
time of the viscoelastic fluid. Such observations have been found to be in quantitative
agreement with data obtained in extensional rheometers (Anna & McKinley 2001).
The extensional flow in the thread also results in a net tensile force in the filament
which has, to date, been neglected. In the present work we determine this elastic
tension in a self-consistent mnner, by matching the cylindrical profile of the thinning
thread to the hemispherical endcaps. This reveals a new self-similar solution in the
corner region formed by the thread and the endcaps, whose characteristic length scale
is proportional to the thread radius.

A local elasto-capillary balance has also been observed in other experimental con-
figurations including the breakup of forced polymeric jets (Christanti & Walker 2002)
and gravity-driven drop formation in viscoelastic polymer solutions (Amarouchene
et al. 2001; Cooper-White et al. 2002). On close examination of a thinning viscoelastic
jet, a string of tiny droplets can often be distinguished. This ‘beads on a string’
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Figure 1. Experimental images of a collapsing liquid bridge of polymer solution in a viscous
solvent (plate radius R0 = 3 mm, distance 13.8 mm). This state was obtained by rapidly
stretching the liquid bridge from an initial gap of 3 mm width, which was completely filled
with fluid. The surface tension is γ = 37mNm−1, the density ρ = 1026 kgm−3. The solvent and
polymeric contributions to the viscosity are ηs = 65.2 Pa s and ηp = 9.8 Pa s, respectively, the

polymer time scale is λ= 8.1 s. Relative to the capillary time scale τ =
√

ρR3
0/γ this results in

a Deborah number of De= 296.
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Figure 2. High-speed video-image of a jet of dilute (0.01 wt%) aqueous polyacrylamide
solution (surface tension γ = 62 mN m−1) undergoing capillary thinning. The sharp-edged jet
orifice is at the left of the image (radius R0 = 0.30 mm) and the free jet velocity is 30 cm s−1.
The polymeric contribution to the viscosity is ηp =0.0119 Pa s, and the polymer time scale is
found to be λ= 0.012 s. This corresponds to a Deborah number of De= 18.2.

phenomenon was first described in Goldin et al. (1969), and has been reproduced
in numerical simulations by Bousfield et al. (1986). A representative image of this
viscoelastic jet breakup process is shown in figure 2. The jet consists of a series
of cylindrical ligaments connecting spherical beads. As the jet is convected from
left to right, fluid is forced by capillarity from the thinning ligaments into the
spherical droplets. Most analytical studies of this structure have been performed using
simplifying assumptions about the slenderness of the liquid jet, see Yarin (1993) for a
review. However, despite a considerable number of studies (see e.g. Goren & Gottlieb
1982; Entov & Yarin 1984; Bousfield et al. 1986; Forest & Wang 1990; Shipman,
Denn & Keunings 1991; Larson 1992; Renardy 1994, 1995; Chang, Demekhin &
Kalaidin 1999) a full analytical description of the beads-on-string phenomenon is still
lacking, even in the context of one-dimensional models.

1.2. One-dimensional viscoelastic models

In this paper we seek a self-similar solution that encompasses the elasto-capillary
balance documented in experimental observations of liquid bridges, pinching drops
and thinning jets. We follow the spirit of some of the earlier work by employing
two simplifying assumptions. First, we will consider the simplest canonical model for
a dilute polymer solution, the so-called Oldroyd-B model (e.g. Bird, Armstrong &
Hassager 1987), which can be derived from kinetic theory by treating a dilute
solution of polymer chains as a suspension of non-interacting Hookean dumbbells.
The simplifications resulting from such a description mean that the polymer solution
exhibits a single relaxation time λ, and that the chains are infinitely stretchable. The
one-dimensional analysis of Entov & Hinch (1997) considered the more general case
of a relaxation modulus G(t) comprising a discrete spectrum of relaxation times
(corresponding to a non-interacting suspension of dumbbells with different spring
constants). As we note in the Appendix, incorporating their analysis with the Zimm
relaxation spectrum measured for dilute solutions results in a rate of stretching
in the liquid thread that is rapidly dominated by the dumbbells with the longest
time constant. All of the other modes relax and do not contribute to the dominant
balance, so the approximation of a single relaxation time is not considered to be
too limiting. Furthermore, a number of recent experimental studies (e.g. Spiegelberg,
Ables & McKinley 1996; Amarouchene et al. 2001; Anna & McKinley 2001) have
utilized model dilute polymer solutions which are indeed described very well by a
single time scale over a wide range of extensions.

The additional assumption of infinite extensibility is bound to break down, even for
very long polymers, as the ends of the chain diverge exponentially in an extensional
flow. In fact, it has been shown by Renardy (1994) for the model to be treated in this
paper (and neglecting inertia) that a thread can never break up in finite time. Entov
& Hinch (1997) consider the finitely extensible nonlinear elastic dumbbell (or FENE)
model and show that for highly extensible molecules (as characterized by large values
of the FENE extensibility parameter b > 103) there is a long intermediate elastic
regime (which may extend for times of 10λ–20λ) in which neither the initial response
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of the solvent nor the finite length of the molecules is important and the chains
indeed extend effectively as infinitely extensible dumbbells with a single characteristic
relaxation time. This has also been verified experimentally using a homologous
series of polystyrene test fluids with solutes of increasing molecular weight (Anna &
McKinley 2001). In the present study, we therefore do not consider the final stages of
breakup where the finite length of the polymers begins to affect the necking process.
This final asymptotic regime has been considered for the FENE model by Entov &
Hinch (1997), and more recently for the Giesekus model by Fontelos & Li (2004).
In each case the extensional viscosity of the fluid is bounded and the filament radius
ultimately decreases linearly in time. The initial onset of this regime can also be
observed in the very last stages of the experimental measurements when the thread
radius has reduced to O(1–10 µm); however we do not include these data in our
comparison between theory and experimental observation.

The second simplifying assumption is that we are treating the flow inside the fluid
thread as effectively one-dimensional (e.g. Forest & Wang 1990). This is consistent as
long as the shape of the liquid column remains slender, i.e. the characteristic radial
variations are small compared to the variation in the axial direction. This assumption
is problematic near the ends of the fluid drops in the beads-on-string structure.
Following Eggers & Dupont (1994), we hope to at least partially deal with this problem
by keeping the full expression for the mean curvature in the Laplace pressure, which
drives the breakup. This makes spherical drops exact static solutions of the equations,
and ensures that at least the surface tension terms are correctly accounted for.

We are left with a model that treats the liquid column as a set of one-dimensional
continuum equations for the fluid flow coupled with equations describing the state
of stress of the polymer chains in solution. A typical experimental situation would
be that of a jet ejected from a nozzle, or a liquid bridge held between two circular
endplates. In all of the following, we will choose the initial bridge or jet radius R0

as a unit of length, and the corresponding capillary time τ = (ρR3
0/γ )1/2 as the unit

of time, where γ is the surface tension and ρ the density of the fluid. If R0 ≈ 1 mm,
τ is about 4 ms for a water-based solvent. Note that for a high-viscosity fluid (also
treated in this paper) other time scales, such as the viscous scale τη = ηR0/γ arising
from a balance of surface tension and viscosity, might be more appropriate. However,
to avoid confusion we will consistently use the inertial–capillary time scale.

There still remain three independent dimensionless parameters in the problem. The
time scale λ of the polymer is conventionally called a Deborah number, De, when
made dimensionless with the characteristic time scale of the system. In the present
study we thus have De= λ/τ . Note that the Deborah number is ‘intrinsic’ to the fluid
thread because it is defined entirely in terms of material and geometric parameters. It
does not contain the rate of stretching in the fluid, since the flow is not forced but is
free to select its own rate of stretching, which may be spatially and/or temporally
inhomogeneous. The other two dimensionless parameters represent the relative con-
tributions of viscous stresses from the solvent and the polymer. There are a number
of possible representations for these parameters. The total dynamical viscosity for a
dilute polymer solution characterized by the Oldroyd-B model is given by η0 = ηs +ηp

and the relative importance of viscous effects can thus be characterized by the
Ohnesorge number Oh= η0/

√
ργR0 (von Ohnesorge 1936) and the solvent viscosity

ratio S = ηs/η0. An alternative representation which we use below is to separate the
relative dimensionless contributions of the kinematic viscosity νs = OhS of the solvent,
and the polymeric contribution to the viscosity νp = Oh(1 − S). All these material
constants have been made dimensionless using R0, γ and τ as the characteristic
scales.
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1.3. The elasto-capillary limit

It is very difficult to describe the complexity contained in this three-dimensional
parameter space in full generality, so in the following we will restrict ourselves to
the case of large De � 1, implying that the non-Newtonian polymer contribution is
significant at all times. Physically this means that De is much larger than the initial
time scale of the liquid bridge’s evolution, which is set by the linear stability of the
fluid thread. At low viscosities, Oh= νs + νp < 1, this time scale is O(1) by virtue of
the chosen time scale for non-dimensionalization. By contrast, for fluids with large
viscosities it is set by τη = τ/Oh, and we thus require De/Oh � 1. Note that with the
present scaling, 1/Oh2 is the ratio of the external length scale R0 and the intrinsic
scale of the fluid, �ν = η2/(γρ).

In the early elastic time regime, t � 1 � De, there is no significant decay of polymer
stretching. The fluid thus responds as a neo-Hookean elastic material. This allows the
effect of the polymers to be written as a local contribution to the pressure, given in
terms of the interface shape (i.e. the local accumulated strain) alone. The parameter
determining the magnitude of this contribution is the dimensionless elastic modulus
of the material G = νp/De, which is (up to universal constants) proportional to the
polymer concentration. Depending on the viscosity, the dynamics of the thinning
bridge in this regime can be quite complex. In particular, for low viscosities, capillary
waves can travel along threads and rebound off drops (Li & Fontelos 2003). Threads
are also shown to support elastic waves.

For De � t � 1, as polymers become sufficiently stretched to counter surface tension
forces, the simplified, local system of equations converges to a stationary solution,
maintained by the stress in the polymers with no possibility of relaxation. This
stationary solution, originally found by Entov & Yarin (1984), already exhibits the
beads-on-string structure, but with a thread of radius hthread = (G/2)1/3 to be computed
in § 3.2. The transition of the initial evolution to the ‘quasi-static’ region thus occurs
approximately when this radius is reached. The term ‘quasi-static’ refers to the fact
that the solution can only be regarded as stationary on time scales much smaller than
the polymer relaxation time.

Indeed, to proceed beyond this stage one has to take the viscoelastic relaxation of
the polymer chains into account. The structure of the solution is that of cylindrical
filaments which thin at an exponential rate exp(−t/3De) as a result of the local balance
between elasticity and capillarity. The filaments connect an arbitrary distribution of
droplets, which approach a static, spherical shape. A similarity solution describes
the crossover between the cylindrical thread and the neighbouring droplet. Toward
the thread, the solution asymptotes toward a constant thickness; in the direction of the
drop it matches onto the spherical shape of the drop.

Our paper is organized as follows. In the next section we develop and motivate
the lubrication equations to be used for the remainder of this paper. A numerical
simulation illustrates the regimes to be analysed below. The third section is devoted to
the study of the neo-Hookean regime, where polymer relaxation can be neglected. The
resulting local description of the polymer stresses is tested numerically and then used
to compute the asymptotic thread radius. The fourth section deals with the long-time
regime at finite De for which exponential thinning of threads is observed. After giving
a qualitative description of the shape and flow inside the thread, we introduce a
similarity description valid in the corner where a cylindrical thread meets a spherical
drop. If De is large enough to make only elastic and surface contributions relevant, we
can compute all but one of the free parameters of the solution. This last parameter,
the thread radius, can be estimated by matching to the early-time regime. The
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numerical results are compared with experimental observations using a dilute solution
of monodisperse polystyrene which is well-described by the Oldroyd-B constitutive
model. Measurements of the evolution in the mid-filament radius and the evolution
of the spatial profile of the filament are well-described by the theory. In the final
section we discuss work that remains to be done within the framework of the present
model, as well as perspectives for inclusion of other effects that lie beyond it.

2. Model and simulation
2.1. One-dimensional equations

In this paper we confine ourselves to the study of a simplified version of the Oldroyd-
B model for polymeric liquids, assuming that the radius h(z, t) of the liquid column
varies slowly. Thus the variation of hydrodynamic variables inside the column is
also small, and we can confine ourselves to the leading-order approximation in an
expansion in the radius. For example, v(z, t) below is the axial velocity at the centre
of the jet. A derivation of the relevant equations has been given in Forest & Wang
(1990), so we just give the final result and briefly discuss its physical significance:

∂h2
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where hz indicates the partial derivative ∂h/∂z.
Equation (2.1) expresses volume conservation, (2.2) is the momentum balance

equation in the one-dimensional approximation. The first term on the right of (2.2)
is the gradient of the Laplace pressure, given in (2.3), which is the main driving
force. The rationale behind keeping the full curvature term (2.3) in the leading-order
lubrication equations has been discussed in detail in Eggers (1997). Its inclusion
guarantees that static spherical drops are a solution of the equations, so the drops
seen in figure 2 can be described in the framework of our lubrication equations.

The second term on the right of (2.2) is the Newtonian contribution to the viscosity,
multiplied by the dimensionless viscosity νs of the solvent. Finally the last term is the
polymeric contribution; σzz and σrr are the diagonal terms of the extra-stress tensor,
with evolution equations given by equations (2.4) and (2.5). The other components of
the polymeric stress tensor do not enter at leading order. It is convenient to write all
terms on the right-hand side of (2.2) in the same form, by rewriting the gradient of
the mean curvature κ as (Entov & Yarin 1984)

∂κ

∂z
= − 1

h2
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Notice that K has almost the same form as κ , but with the sign in front of the second
term reversed. Using (2.6), equation (2.2) can finally be rewritten such that the inertial
terms on the left are balanced by gradients of the tensile force T in the thread:

∂v

∂t
+ v

∂v

∂z
=

1

πh2

∂T

∂t
=

1

h2

∂

∂z

[
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)]
. (2.8)

The sign of the surface tension contributions to the total tensile force T can be
understood by noting that the tension is composed of ‘bulk’ stresses exerted over
the cross-sectional area of the fluid thread, πh2[−p +2νs∂v/∂z+σzz], and a line force
exerted around the perimeter, 2πh(1 + h2

z)
−1/2. The stress boundary condition on the

free surface gives
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h
(
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+
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1 + h2

z

)3/2
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where the continuity equation has been used to eliminate the radial velocity gradient
in favour of the axial velocity gradient ∂v/∂z. Combining these expressions gives the
result in (2.8).

For very viscous fluids the inertial terms on the left of (2.8) are negligible, and
the terms in parentheses equal a (generally time-dependent) constant. Alternatively,
if velocity gradients ∂v/∂z are small so that the convected derivative terms in (2.4)
and (2.5) can be neglected, then these equations describe an additional Newtonian
contribution νp to the total steady-state shear viscosity ν = νs + νp . The presence of
polymers also results in fluid viscoelasticity which is represented by the relaxation
terms σij /De on the right of (2.4) and (2.5). Finally a crucial term for the physics
of the following is the first term on the right of (2.4) and (2.5), which describes
the interaction of the polymer with the flow. In an extensional flow ∂v/∂z is
positive, so the stress in the axial direction grows as the dumbbells modelling the
polymeric contribution to the stress are stretched, while it decays in the radial
direction.

2.2. Beads on a string

We are now in a position to study the behaviour of the model for various initial
conditions and to compare to experiment. First, we simulate the evolution of a long,
initially unstretched cylinder of fluid. For our simulations we have used a numerical
code analogous to the one developed earlier by Eggers & Dupont (1994) and Eggers
(1997) for Newtonian flows. It is fully implicit and uses adaptive regridding of the
numerical mesh to resolve fully the fine structure of the flow. This is crucial to be able
to describe some of the last stages of thread formation to be investigated in detail in
§ 4. We found that the demands on the solution of the implicit equations are much
greater than in the Newtonian case, owing to a larger range of time scales in the flow.
In general, several iterations of a Newton scheme were necessary for convergence,
and significant restrictions had to be put on the time step. To further test for possible
problems inherent in our numerical scheme, another explicit code was also developed
independently. In addition, all fields were represented on a uniform grid, as opposed
to the staggered grid of the implicit code. One stability condition for an explicit
method is that the time steps 
t must be less than the viscous diffusion time h2/ν.
The explicit method performed quite well except for the highest viscosities, where the
time step imposed by the stability condition became prohibitively small.

Figures 3 and 4 give an idea of the typical behaviour of a liquid filament in the
absence of gravity, described by (2.1)–(2.5). The parameters were chosen to be identical



The beads-on-string structure of viscoelastic threads 291

–2

0

2

0 5  10  15  20  25

(a)

(b)

(c)

(d)

(e)

(f)

–2

0

2

0 5  10  15  20  25

–2

0

2

0 5  10  15  20  25

–2

0

2

0 5  10  15  20  25

–2

0

2

0 5  10  15  20  25

–2

0

2

0 5  10  15  20  25

Figure 3. A typical series of profiles with periodic boundary conditions and period L = 4π.
The dimensionless parameters are νs = 0.79, νp =2.37, and De= 94.9. A sinusoidal perturbation
of amplitude 0.05 was added in order to make the filament collapse. After the rapid formation
of the beads-on-string structure, one observes the slow thinning of the thread. The relative
dimensionless times of each profile are (a) 0, (b) 31.6, (c) 158.1, (d) 316.2, (e) 632.5 and (f ) 948.7.
The left-hand side of the graph (full lines) was produced using the explicit code, the right-hand
side using the implicit code with staggered grid.

to those of figure 2 in Chang et al. (1999); that is in the present scaling, νs = 0.79,
νp =2.37, and De =94.9, and the amplitude of the initial sinusoidal perturbation is
0.05. The results are quite insensitive to the choice of this amplitude, except that, for
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Figure 4. The minimum radius corresponding to the profiles shown in figure 3, obtained from
the explicit code. One clearly observes a rapid initial motion, which persists until the polymers
are appreciably stretched, followed by an exponential thinning at a (dimensionless) rate of
1/(3De). Most of the initial motion is well-described by linear theory, giving hmin = 1−A exp(ωt),
where A = 0.05 and ω = 0.109. The crosses are the result of our implicit code, which produced
the right-hand side of figure 3.

smaller disturbance amplitudes (as in figure 1 of Li & Fontelos 2003), the disturbance
takes longer to grow to an appreciable size. The left and right hand parts of figure 3
were produced with the explicit and implicit codes, respectively. Even a blow-up of the
corner region at the latest time, where the radius of the filament has fallen below 10−2,
does not reveal a significant difference between the results of the two simulations.
The same quality of agreement is born out by a comparison of the minimum radius,
figure 4.

In figure 4 the minimum radius is initially seen to decrease quite rapidly. Most of
this initial motion is described quite well by linear theory (see Chang et al. 1999).
At around t = 30 (corresponding to the formation of a filament in figure 3b), the
motion crosses over to a slow exponential decay of the thread radius. This crossover
occurs when the elastic stresses which build up in the deforming liquid bridge become
dominant and a local elasto-capillary balance is established. The slope drawn on
figure 4 corresponds to the theoretical prediction of § 4. During the exponential
thinning, fluid is expelled from the thread into the surrounding beads, which become
increasingly spherical.

Structures very similar to figure 3 are shown in the experiment of figure 2 and have
also been observed by Goldin et al. (1969), Bazilevskii et al. (1981), and Christanti &
Walker (2001) for the decay of a liquid jet of polymer solution ejected from a nozzle.
Good agreement between a numerical simulation of a one-dimensional model very
similar to ours and the experiments of Bazilevskii et al. (1981) has been reported
by Yarin (1993, p. 85). However, it is very difficult in practice to produce liquid
cylinders without stretching the polymers, since there is considerable shear inside
the capillary tube and the nozzle. On the other hand, the shear flow inside the
capillary is very difficult to model in the framework of the present one-dimensional
description. Furthermore, each bead and ligament shown in figure 2 corresponds to
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a ‘snapshot’ at a different elapsed convective time 
t̃ = Lperiod/vjet . Therefore, to
compare quantitatively to experiments, we prefer to use a setup that allows for a
more quantitative description of the stretching history of the fluid column.

2.3. Liquid bridge

We now turn to the capillary thinning and breakup of a liquid bridge that has been
subject to a very rapid initial stretching. During this extensional step-strain process
(which typically lasts 0.05 s) hardly any polymer relaxation takes place and, provided
that the initial aspect ratio is not too small, the exact temporal profile in which
the plates are pulled apart is not very important. In fact, the initial stretching is
well-described by a simple model neglecting any spatial structure (Anna & McKinley
2001). However, the simulation within the one-dimensional model is somewhat subtle,
owing to a difficulty in imposing the boundary conditions at the endplates. Namely, the
no-slip boundary condition enforces a vanishing tangential velocity at the endplate,
and consequently ∂v/∂z = 0, while this is not true in the one-dimensional model.
Since the stretch rate ∂v/∂z is in fact large over most of the bridge, this creates a
thin boundary layer of fully three-dimensional flow near the endplates. Failure to
correctly implement this boundary layer leads to a detachment of the interface from
the ends within the lubrication model. Following Stokes, Tuck & Schwartz (2000), we
have avoided this problem by introducing a supplementary viscosity which strongly
increases near the ends. This position-dependent viscosity has been constructed by
matching to a three-dimensional squeeze flow near a solid wall. The effective ‘freezing’
of the fluid prevents any lateral slip along the bounding wall.

When the initial aspect ratio of the liquid bridge is small Λ0 = L0/R0 � 1 there is
an additional consequence of the no-slip boundary condition. Numerical simulations
show that there is an additional stretching of material elements near the free surface
associated with the strong radial inflow and this can introduce a radial variation in
the elastic stress near the centreplane of the filament (Harlen 1996). This additional
elastic stress can be incorporated into a slender filament theory if desired; for example
by assuming a specific power law form for the radial variation in the axial polymeric
stress (Kolte & Szabo 1999). However, numerical simulations (Yao & McKinley 1998)
show that this effect is negligible for liquid bridges with O(1) aspect ratios as used in
the present work and we do not consider it further.

Figures 5 and 6 allow a direct comparison between simulation and experiment. The
first digitized profile in figure 5 is taken just after cessation of stretching; after that a
profile is shown every 10 s. Theory and experiment show good agreement in all the
basic features of the flow, such as the sagging under gravity and the formation of the
thread. Two subtle differences can be seen: first, the time scale of the simulation is
off by about 20 %, so 9 experimental profiles are shown but only 7 theoretical ones,
at which point about the same minimum thread radius is reached. This discrepancy,
also seen in figure 6, is quite acceptable considering that no adjustable parameters
were introduced. Most of the difference stems from the early-time development when
two-dimensional effects may be significant (Harlen 1996; Yao & McKinley 1998),
whereas the asymptotic slope of both simulation and experiment agrees well with the
theoretical prediction.

The behaviour of hmin at early times is markedly different from that of a free jet, as
discussed in detail in Anna & McKinley (2001). The rapid early decrease of hmin seen
in figure 4 is absent, since stresses are already large owing to the initial stretching
of the liquid bridge. On the contrary, some of this initial stress has to relax before
further thinning can start, as seen in the plateau for the earliest times. Evidently
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Figure 5. A comparison between experimental profiles (left), obtained from digitizing the
images of figure 1 and corresponding simulations (right), including the initial stretching and
gravity (acting downward). The time difference between two consecutive images is 10 s. The
reduced variables corresponding to the experimental parameters are νs = 193.2, νp = 29.04, and
De= 296. Note that there are more profiles from the simulation to reach approximately the
same thread radius, corresponding to a slight overestimation of the experimental time scale.
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Figure 6. The logarithm of the normalized minimum radius corresponding to the experimental
and theoretical profiles of figure 5. The short thick line is the theoretical prediction for the
slope −1/(3De).

there are some subtle features of the experimental relaxation processes which are not
modelled correctly by our single-mode Oldroyd-B model. The initial stretch is also
responsible for the absence of drops (‘beads’) in the middle of the thread that formed
on the free jet, cf. figure 3. The reason is that the initial stretch is uniform, and this
uniformity is conserved by the exponential stretching regime.
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The second difference between the experimental and theoretical profiles of figure 5
is that at the same minimum thread radius the corner between the thread and drops
at the end is sharper. We will return to this when we discuss the structure of the
corner region in detail in § 4.2.

3. Early-time asymptotics
3.1. Local description

In this section we exploit the fact (Entov & Yarin 1984; Fontelos 2003) that for early
times t � De the non-Newtonian contribution to the stress behaves like that of a
neo-Hookean elastic solid, and can be expressed directly through the profile shape
h(z). The elastic modulus of the material is related to the model parameters by

G = νp/De. (3.1)

With the present scaling this is the same as the elasto-capillary number introduced in
Anna & McKinley (2001), which can also be written as G = Oh(1 − S)/De.

Using Lagrangian coordinates, Fontelos (2003) shows that the polymeric stress ap-
pearing in (2.8) can be written as

h2(σzz − σrr ) = G(1/h2 − h4) + O(t/De), (3.2)

where we used that throughout this paper R0 = 1. The exact form of the correction
terms can be found in Fontelos (2003). Thus in the neo-Hookean limit the equation
for the velocity is

∂v

∂t
+ v

∂v

∂z
=

1

h2

∂

∂z

(
h2K + 3νsh

2 ∂v

∂z
+ G(1/h2 − h4)

)
, (3.3)

where K is defined in (2.6).
As a numerical test of the quality of the local approximation, we performed two

simulations similar to that of figure 3, but for two different Deborah numbers. Figure 7
shows the evolution of the interface profile at different times for De = 94.9, νp = 2.37
(left column), and De= 9490, νp =237 (right column). The full lines are the solution
of equations (2.1)–(2.5), while the dashed ones were obtained by replacing (2.2) by
(3.3). For the simulation corresponding to moderate Deborah number, the time t of
panel (b) is of the same order as the relaxation time De, so the solution of the full
equations and that of the local approximation begin to differ starting from panel (c).
On the other hand, for the case of large Deborah number, t � De, throughout the
simulation the agreement of the two solutions is excellent.

Throughout the process of filament formation, we find almost perfect agreement
with the local model provided De � t . Thus the local approximation is an extremely
useful tool to investigate the early-time dynamics t < De and the formation of the basic
beads-on-string structure. We will therefore study the stationary filament solutions
of the local model in the following subsection. After the filament has formed, the
neo-Hookean elastic response of the local model leads to a stationary profile, while
the effects of fluid viscoelasticity captured by the full equations leads to the filament
continuing to thin exponentially in time.

At low viscosities, Oh < 1, the initial evolution can be considerably more
complicated, but is still fully described by the local equations if De is sufficiently
large. This is due to inertial effects also being important; so as the thread is formed,
fluid may rebound from the drops, and an additional ‘secondary’ drop forms in the
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Figure 7. Comparison of interface profiles with period L =20 and νs = 0.79 between the full
equations (full) and the local approximation (dotted lines): left column De= 94.9 and νp = 2.37,
and right column De= 9490 and νp =237. The relative times for each profile are (a) 31.6,
(b) 79.1, (c) 158.1, (d) 316.2 and (e) 474.3. Evidently, for t � De the agreement is excellent
(right column).

middle of the filament. This is also seen in experimental observations of jet breakup
(Christanti & Walker 2001) and drop pinch-off (Cooper-White et al. 2002).

3.2. Static solutions

In the neo-Hookean limit considered here, De → ∞, the elastic stresses never relax,
so at long times surface tension is balanced by permanent elastic stresses to form a
stationary solution. Integrating (3.3) while dropping inertial terms, one finds

h2K + G(1/h2 − h4) = T , (3.4)

where T is the unknown tension in the string. Apart from the appropriate boundary
conditions on h, (3.4) has to be solved with the constraint of volume conservation

π

∫ L

0

h2 = V, (3.5)

which only serves to set the size of the fluid drops.
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Figure 8. A schematic of a thread connected to a drop. The origin z =0 is placed at the end
of the spherical drop.

In particular, (3.4) allows solutions with constant h

hthread + G/h2
thread = T , (3.6)

where we have assumed a constant initial radius R0 = 1, and dropped the contribution
from the radial stress, since hthread is expected to be small. The solutions of equation
(3.6) correspond to the thin cylindrical thread of constant radius shown schematically
in figure 8. Indeed, from the balance (3.6) one concludes that both T and hthread scale
like G1/3, which is small for large De. The thread has to be matched to an almost
circular drop, as first done by Entov & Yarin (1984), and illustrated in figure 8.

In the drop region the radius h is of order one and in (3.4) one can neglect the
tension T and the terms multiplied by G in the limit we are interested in. Thus one is
left with the contribution from surface tension alone, and the solution is a spherical
drop (region (c) of figure 8),

h(z) = R
√

1 − (1 + z/R)2. (3.7)

Here R is the radius of the drop. Since in the asymptotic limit there is very little fluid
inside the thread, R is set by the volume constraint (3.5).

To determine hthread , one needs the value of the constant T , which requires matching
the thread (region (a) in figure 8) to the drop (region (c)). One can avoid considering
the connecting region (b) by computing a first integral of (3.4), multiplying the
equation by hz/h3 and using

∂

∂z

(
1

h
(
1 + h2

z

)1/2

)
= − hz

h2
(
1 + h2

z

)1/2
− hzhzz

h
(
1 + h2

z

)3/2
. (3.8)

This gives

1

h
(
1 + h2

z

)1/2
+

G

4h4
+

Gh2

2
=

T

2h2
+

1

R
, (3.9)

where the constant of integration 1/R is essentially half the Laplace pressure inside
the spherical drop (remembering that the coefficient of surface tension has been
normalized to one). Indeed, evaluating (3.9) on top of the drop, where hz is zero,
one finds R ≈ R, since T goes to zero in the limit of vanishing G. In the thread hz

vanishes as well, giving

1/hthread + G/
(
4h4

thread

)
= T/

(
2h2

thread

)
+ 1/R, (3.10)
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again dropping radial contributions which are very small in the thread. In deriving
(3.10) we have also assumed that (3.4) is valid everywhere, including the drop,
the cylindrical thread and the corner region. If additional terms beyond the one-
dimensional approximation are important in the corner region this will affect the
value of R.

Remembering our previous estimate hthread ∝ T ∝ G1/3, the constant 1/R is
subdominant in (3.10), and thus combining (3.10) with (3.6), we find

hthread =

(
G

2

)1/3

. (3.11)

For the parameters of figure 7 (right column), we find hthread = 0.232 from (3.11), to be
compared with the observed value of hmin =0.253. The quality of the approximation
quickly improves as the scale separation between thread thickness and drop size
becomes even more complete.

4. Late-time asymptotics
4.1. Thread thinning

The formation of threads described in the previous section is a result of the interplay
of surface tension and elastic forces. On times longer than De however the string
tension gradually relaxes, and the thread thins at an exponential rate β . This rate
is easily determined from a balance of surface tension and elastic forces in (2.2),
assuming a spatially constant profile (e.g. Bazilevskii et al. 1981; Renardy 1995;
Entov & Hinch 1997)

h(z, t) = h0 exp(−βt). (4.1)

From volume conservation (2.1) one finds that the extension rate ∂v/∂z = 2β in the
thread is constant. The exponential growth of the axial stress σzz is described by (2.4),
and assuming a spatially constant σzz one immediately finds σzz(z, t) = σ0 exp[(4β −
1/De)t]. The radial stress σrr decreases exponentially and does not figure in the
balance. Remembering that capillary pressure is balanced with σzz in (2.2) and
rewriting the pressure gradient according to (2.6) one finds

h + h2σzz = T (t), (4.2)

for the tension T (t) in the string, performing one spatial integration. For the balance
(4.2) to be consistent σzz must grow like 1/h, and thus β = 1/(3De), implying that the
tension itself decays like

T = a1 exp[−t/(3De)], (4.3)

and

σzz(z, t) = σ0 exp(t/De). (4.4)

The fact that β = 1/(3De) means that the thinning rate of the thread given by (4.1) is
directly related to the time scale of the polymer, providing a convenient experimental
probe. Furthermore the tensile force T in the thinning thread is not identically zero
as assumed in earlier work (Entov & Hinch 1997) but in fact decays at the same rate
as the radius.

To obtain a clearer physical picture, we plot in figure 9 the thread radius, normalized
by the exponential factor � = exp[−t/3De], the velocity in the thread, and �σzz for a
number of different times during the thinning. As predicted, h(z) and σ (z) are very
nearly constant over the thread, and they collapse nicely as anticipated by the above
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Figure 9. Profiles of the radius, the velocity, and the axial stress, normalized by their values
in the thread, in the regime of exponential thinning. The parameters are De= 3164 and
νs = νp = 95.6. The extension rate inside the thread is 2/(3De).

scaling laws. Furthermore, the extension rate ∂v/∂z has the constant positive value
2β inside the thread, expressing the fact that fluid is expelled from it. In response, the
stress σzz grows to large positive values, so both contributions on the left-hand side
of (4.2) are always positive. This means that the tension T (which we will compute
below explicitly in the limit of large De) has to be kept in (4.2) for a consistent
balance. For large De this makes the stress twice as large as determined in earlier
work (e.g. Bazilevskii et al. 1981; Entov & Hinch 1997; Anna & McKinley 2001),
where the tension was not considered.

Since the total length L of the thread is a constant quantity, the maximum value
of the velocity

vmax ≈ L

3De
(4.5)
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behaves like the inverse of the Deborah number, and is thus small in the limit that
is the chief focus of this paper. A number of experiments (e.g. Bazilevskii et al.
1997; Stelter et al. 2000; Anna & McKinley 2001) have confirmed the prediction
(4.1). In particular in Anna & McKinley (2001) the relaxation time was determined
independently, and the thinning rate was found to conform with the prediction
β = 1/(3De). At both ends of the thread, the velocity and the stress fall to zero very
sharply, and the profile merges onto a static drop with radius R. Next we will focus
on this transition region, whose scale is set by � = exp(−t/3De).

4.2. The corner region

According to the scalings found in the previous subsection, which imply the existence
of a small length scale � = exp(−t/3De), it is natural to look for solutions of (2.1)–(2.2)
of the form

h(z, t) = �h(z, t),

v(z, t) = v(z, t),

σzz(z, t) = �−1σ zz(z, t),

⎫⎬
⎭ (4.6)

where z = �−1(z − z0). The origin z0 must asymptotically lie in the similarity region. A
convenient choice is the position of the extremum of the velocity in the limit � → 0.
Since σrr is exponentially small inside the thread, it can be left out of our analysis.
Thus the equations for h, v, and σ zz are

2�h ḣ − 2�

3De
(h

2 − zh h
′
) + [vh

2
]′ = 0,

h
2
(

�2v̇ +
�2z

3De
v′ + �v v′

)
= [h

2
K{h} + h

2
(3νsv

′ + σ zz)]
′,

�σ̇ zz +
�

3De
(σ zz + z σ ′

zz) + v3

[
σ zz

v2

]′

=
�

De
(2νpv′ − σ zz),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.7)

where the prime refers to differentiation with respect to the similarity variable z

and the overdot indicates differentiation with respect to time. Towards the thread our
scaling ensures that h, v, and σ zz tend toward the constants h0, v0, and σ0, respectively,
as z → ∞. (Without loss of generality, we assume that the thread is to the right of
the transition region.) The length scale � becomes exponentially small for t → ∞
and for any finite z, terms proportional to � or �2 may be dropped. Looking for
time-independent solutions of (4.7) and integrating once, we find

vh
2
= v0h

2
0,

h
2
K{h} + h

2
(3νsv

′ + σ zz) = h0 + h2
0σ0,

σ zz/v
2 = σ0/v

2
0 .

⎫⎪⎪⎬
⎪⎪⎭ (4.8)

Eliminating v and σ zz, we end up with

h
2
K{h} + h

2
(−a2h

′
/h

3
+ a3/h

4
) = a1, (4.9)

where a1 =h0 + h2
0σ0, a2 = 6νsv0h

2
0, and a3 = σ0h

4
0. In our analysis of (4.9), we confine

ourselves to the limit of very large De, for which typical velocities are small, according

to (4.5). Thus the contribution −a2h
′
/h in (4.9), which comes from the viscous stress,

can be neglected. Dropping this term makes (4.9) equivalent to (3.6), so our previous
asymptotic analysis can be applied to calculate the minimum thread radius. Just as in
§ 3, the dominant balance inside the drop is 0 = K{h} =K{h}, which is the equation
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Figure 10. A comparison of our similarity theory for large De (dashed line) with rescaled
profiles from a numerical simulation with parameters as in figure 9, at log10(hmin) =
−1.5, −2, −2.5, and −3. The dashed line was obtained from integrating (4.11), with h0 = 0.1275.

for a static drop described by (3.7). Thus (4.9) is valid not only in the self-similar
region described by (4.6), but all the way into the drop. Using the results of § 3, we
find

σ0 = 2/h0, a1 = 3h0. (4.10)

These expressions can be combined with (4.4) to evaluate the exponential growth
in the extensional stress, once the amplitude h0 of the thread radius is determined.
The thread radius (and thus h0) is readily measurable by optical means, thus giving
experimental access to the growth in the polymeric stress, which is difficult to obtain
by other means. Below we also provide an estimate of h0 by matching (4.1) to
the initial thinning of the jet. Renardy (1995) also computes the constant a1, but
without resolving the self-similar corner region, as we do. He does not include the
full curvature in his description, and is thus unable to describe the drop. Instead, the
transition to the drop is described as a shock, and the estimate for a1 becomes 3/2h0,
half of the value we find.

In the limit of small thread radius the first integral of (4.9), analogous to (3.9), is

h
′
= −

[
4(h/h0)

2

(3 − (h0/h)2)2
− 1

]1/2

. (4.11)

As in the previous section we are assuming here that our slender filament equations
apply uniformly in the bead, the cylindrical filament and the matching region.

Integrating (4.11) with initial radius h = h0 (plus an arbitrarily small perturbation)
one finds the universal profile shape of h(z). In figure 10 we show the corner region
of the numerically computed profiles presented in the top panel of figure 9, rescaled
according to (4.6) (solid lines). Using the value of h0 = 0.1275 read off from figure
9, the dashed line is obtained by integrating (4.11). As t grows, the rescaled profiles
converge nicely to the theoretical prediction.

Finally, we compare our theoretical results to experiments. To that end, high-
resolution images of experimental profiles were taken by focusing a video microscope
on the corner region. Figure 11 shows a sequence of digitized images of the upper
corner, which becomes increasingly sharp as the thread thins. To test our similarity
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Figure 11. An experimental closeup of the upper corner of the liquid bridge. The configuration
is the same as shown in figure 1; however the images are acquired and digitized using a
long-working-distance vid microscope. The time interval between two consecutive profiles
is 2 s.
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Figure 12. The last 9 experimental profiles (corresponding to figure 3), taken in time
intervals of 0.5 s, with both axes rescaled by the minimum thread radius.

theory, the profiles corresponding to the latest stages of pinching were rescaled using
the minimum thread radius for both axes. As shown in figure 12, the experimental
profiles converge nicely onto a master curve, in much the same way as the computed
profiles of figure 10 do. However, the experimental profiles turn out to be sharper than
theory predicts, a fact we attribute to the failure of the one-dimensional equations
underlying our theory. This point is discussed in more detail below.
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The constant h0 is the only remaining adjustable parameter for the description of
the corner region. In the case of the free jet, cf. § 2.2, it can in fact also be estimated
in the limit that the relaxation time De of the polymer is much larger than the time
tfil needed to form the primary filament. Namely, equating the thread thickness (3.11)
given by the local theory of § 3 with hmin = h0 exp(−tfil/3De) one finds

h0 = exp(tfil/(3De))
(

1
2
G

)1/3
.

Thus in the limit that De is much larger than tfil one simply has

hmin(t) =
(

1
2
G

)1/3
exp(−t/3De), (4.12)

which is smaller by a factor of 2−1/3 than the result given in Bazilevskii et al.
(1997) and Entov & Hinch (1997), which do not take into account the tension in
the string. Fitting a straight line to the exponential thinning regime of figure 4, we
obtain h0 = 0.247, in excellent agreement with the theoretical prediction of (4.12),
h0 = (G/2)1/3 = 0.232.

5. Discussion
By confining ourselves to the simplest possible model for a dilute polymer solution,

we have reached in the present paper a rather complete description of the formation
and subsequent development of the beads-on-string structure. Some details, of course,
remain to be elaborated.

At low viscosities or high surface tension, Oh � 1 � De, Li & Fontelos (2003)
show that a complex succession of beads may be generated owing to inertial effects.
Namely, originating from the drop, a capillary–elastic wave propagates along the neck
to form a thin thread of uniform thickness. At places where the wavefronts meet,
smaller satellite drops form. After a sequence of drops has formed, these drops are
subject to possible merging, or draining processes.

A superficially similar, yet physically quite distinct, phenomenon has been described
in Chang et al. (1999) and named ‘recoil’. By this the authors refer to the instability
of exponentially thinning threads of constant thickness, originating from the drop. As
a result, a secondary, thinner thread forms on the primary one. We never found any
indication of secondary filament formation after an exponentially thinning thread was
formed, either in simulation or in experiments with highly viscous polymer solutions.
We also repeated the simulations of Chang et al. (1999) for the same parameter
values, using both our explicit and implicit codes. In our simulations, the primary
thread continued to thin, without any indication of secondary thread formation. It
would be interesting in the future to investigate the possibility of instabilities being
generated by noise of finite amplitude.

As indicated above, the velocity in the corner region is proportional to 1/De, thus
in the limit of large De viscous effects drop out and only capillary and elastic forces
remain. In the presence of viscous forces, equation (4.9) can be applied for any finite
value of the similarity variable z. However, we have not yet succeeded in matching the
solution described by (4.9) with the stationary drop in the general case. The reason
is that whilst in the similarity region close to the corner (between the thread and the
drop) everything can be described by the thread profile h alone, this is no longer
possible in the transition region toward the stationary drop. Instead, the coupled
system involving the drop shape, the velocity field, and the stress has to be treated.
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Indeed, even in the limit of large De where matching can be achieved using h alone,
analytical computation of v and σzz is far from trivial.

A result of the present similarity description is that for very long times the drop
develops into a perfect sphere, while the thread radius shrinks to zero. This means
that the profile at the point where the thread meets the drop develops into a right
angle. Unfortunately, the fact that the slope of the profile becomes increasingly large
in the corner means that the lubrication equations, used throughout this paper, are
no longer valid. However, a preliminary investigation suggests that in fact the full
three-dimensional, axisymmetric Oldroyd-B equation leads to the same self-similar
scaling as the lubrication model (Eggers, Fontelos & Li 2005). The resulting similarity
equations are, however, much more complicated, and require numerical methods to
solve. We are currently developing a boundary integral method to treat the similarity
equations, whose solution we hope to compare to experiment (Eggers et al. 2005).

Finally, there are myriad effects associated with departures from the Oldroyd-B
model, some of which have already been incorporated into the description of thread
thinning. For example, the effect of the finite extensibility of a real polymer chain will
change the dynamics, since it bounds the maximum elastic stress that can be exerted
by the polymer chain (Entov & Hinch 1997). This is modelled theoretically by the
presence of nonlinear terms in the constitutive equation for the polymeric stresses,
which limit their growth. Thus, whereas the exponential thinning described in this
paper would formally lead to breakup only in infinite time, a real polymer thread
does in fact break. Experimental observations of the departure from the exponential
law are found for example in Bazilevskii et al. (1997) and Anna & McKinley (2001).
The theory in Bazilevskii et al. (1997) differs from the conventional one in that the
degradation of polymers cause the departure from the exponential law.

A number of different nonlinear constitutive equations which bound the maximum
polymeric stress have been proposed, and Renardy (2001, 2002) has considered the
asymptotics of a number of different models. A key feature of these analyses is
that the thread is predicted to break in finite time when the maximum elastic stress,
arising from affine deformation, can no longer balance the capillary pressure γ /h̃min.
For dilute polymer solutions in particular, the nonlinear form of the force–extension
curve close to full extension is well-established both experimentally and theoretically
(Shaqfeh et al. 2004). Analysis of extensional flow of finitely extensible nonlinear
elastic (FENE) dumbbells results in a maximum (dimensionless) polymeric stress of
order σzz,max ≈ (2De)Gb∂v/∂z where b =3NK is the finite extensibility parameter,
which is proportional to the number of Kuhn steps or links (NK ) in the polymer
chain. In the elasto-capillary necking regime we obtain (2De)∂v/∂z = 2/3 (cf. figure 9);
a naive balance thus suggests that we require Gb > 2/3 for elastic effects to be able to
grow sufficiently large to balance capillary stresses. A rigorous balance is substantially
more complex (Entov & Hinch 1997) and requires a consideration of the initial
polymeric stress in the filament and the additional strain accumulated by the fluid
in the transient process of the polymeric stress growing to the saturation value
σzz,max . Numerical calculations show that the time to breakup depends on the specific
functional form of the chosen constitutive model (Harlen 1996; Yao & McKinley
1998; Fontelos & Li 2004).

Other, more elaborate versions of the FENE model have also been developed
(Lhuillier 2001; Ghosh et al. 2002) which attempt to capture additional features of
the internal dynamics of the rapid stretching process for long flexible chains. As
the concentration of dissolved polymer chains is increased, entanglement effects also
dramatically modify the extensional rheology of the viscoelastic fluid. However,
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recent experiments have shown that an exponential period of capillary-induced
thinning, followed by finite-time breakup still occurs (Bhattacharjee et al. 2003).
A significant benefit of the present experimental configuration and accompanying
analytical description is precisely that the characteristics of the final breakup process
sensitively depend on the nonlinear description of the test fluid that is used. Thus
analysis of the capillary thinning and breakup of polymer solutions provides a
promising testing ground to better understand some of the important nonlinear
features of viscoelastic constitutive equations at large strains.
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portion of this work. Daniel Bonn contributed a careful reading of the manuscript
and very useful discussions. The authors are indebted to John Hinch for helping
improve the presentation substantially.

Appendix. Rheological characterization of viscoelastic test fluids
The viscoelastic solution used for the capillary breakup experiments in figures 1, 5,

and 11 consists of a dilute solution (c = 0.050 wt%; c/c∗ = 0.44) of a polystyrene
standard (molar mass Mw =2.0 × 106 g mol−1, Mw/Mn =1.03, Pressure Chemical)
dissolved in oligomeric styrene (Piccolastic A5 Resin, Hercules). This is an example
of the class of fluids identified as ‘Boger fluids’. The polymer was dissolved directly
in the oligomeric resin, and the fluid was gently rolled for 2 months to ensure a
homogeneous mixture. The shear and extensional rheology of this ideal elastic fluid
was also studied in detail in Anna et al. (2001), in which it was identified by the
acronym ‘SM1’. It should be noted that the zero-shear-rate viscosity and longest
relaxation time have increased since the fluid was originally characterized four years
ago. This is common in such fluids due to the slow and irreversible polymerization
of the oligomeric solvent by residual catalyst and/or UV light.

The low-viscosity polymer solution in figure 2 was prepared by dissolving 0.01 wt %
linear polyacrylamide (Praestol 2540, Stockhausen) with a reported molar mass
Mw = 14.0 × 106 g mol−1 in deionized water. Using the reported degree of hydrolysis
for this polyacrylamide grade (40 %) with a repeat unit mass of 71.4 g mol−1 and a
coil expansion coefficient of C∞ = 12.9 we compute the critical overlap concentration
for this fluid to be approximately c∗ = 0.0134 wt%. The test fluid is thus in the
dilute regime with c/c∗ = 0.75. The fluid was shaken gently for 1 week to ensure a
homogeneous mixture.

The rheology of both fluids in both steady and dynamic shear flows was
characterized using a TA Instruments AR1000N cone-and-plate rheometer. The
longest relaxation time λ and solvent and polymer contributions to the viscosity
(ηs and ηp = η0 − ηs) were obtained by fitting the linear viscoelastic moduli G′(ω) and
G′′(ω) to the predictions of the Rouse–Zimm model for dilute solutions:

G′ =
cNAkBT

Mw

Nm∑
i=1

(λiω)2

1 + (λiω)2
, (A 1)

G′′ = ηsω +
cNAkBT

Mw

Nm∑
i=1

λiω

1 + (λiω)2
. (A 2)



306 C. Clasen, J. Eggers, M. A. Fontelos, J. Li and G. H. McKinley

The spectrum of relaxation times, λi are related to the longest (Zimm) relaxation
time (denoted in the manuscript by λ) by a recursion relationship of the form

λi = λ/i2+σ̃ for i = 2, . . . , Nm (A 3)

where σ̃ is a measure of the hydrodynamic interaction between the segments
of the polymer chain and the surrounding solvent. This parameter is related to
the hydrodynamic interaction parameter h∗ of the Zimm model by a correlation
originally published by Thurston (Bird et al. 1987). Varying the hydrodynamic
interaction parameter in the range 0 � h∗ � 0.25 allows better agreement between
the experimental and fitted curves at intermediate angular frequencies ω; for further
details see Anna et al. (2001). The zero-shear-rate viscosity is obtained from (A 2) by
taking the limit of G′′/ω as ω → 0, and the polymer contribution to the viscosity is
given by

ηp =
cNAkBT

Mw

Nm∑
i=1

λi . (A 4)

The number of modes, Nm, can be varied depending on the resolution of the
viscoelastic spectrum of the polymer solution that is desired. The Hookean dumbbell
corresponds to Nm =1.

Detailed experiments on polystyrene solutions (Amelar et al. 1991) show that the
molecular mass associated with a single spring is 5 000 − 10 000 g mol−1; suggesting
that for the polystyrene used in the present study Nm ≈ 200. In practice, given the
rapid decay of the higher relaxation modes given by (A 3) and the range of frequencies
over which the linear viscoelastic moduli can be obtained, we find 9 � Nm � 15 is
sufficient. Using equations (A 1)–(A 4) we determined the model values reported in
the captions of figures 1 and 2.

If we now consider the effect of a discrete spectrum on capillary-thinning
experiments, we find that the local rate of stretching in the cylindrical thread arising
from the elastocapillary balance is sufficiently weak (in dimensional form ε̇ = 2/(3λ)),
that all higher modal contributions to the stress (of the form of eqs. (2.3), (2.4)) decay
away rapidly. They do not contribute significantly to the total elastic stress because
the convective derivative terms that signify stretching for the higher modes are of the
form (2De)v′/i2+σ̃ , which all decay rapidly for i > 1.

The capillary break-up experiments were carried out using a CaBER-1 extensional
rheometer (Cambridge Polymer Group). The images presented in figures 1 and 3
were recorded with a CCD-videocamera (Pulnix TM1) and a digital video recorder.
For the digitised close-up in figure 3, the camera was equipped with a long-working
distance microscope extension (K2, Infinity Optical). All experiments were conducted
at T = 25 ◦C.
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