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THE BEARING CAPACITY OF FLOATING ICE PLATES
SUBJECTED TO STATIC OR QUASI-STATIC LOADS

A Critical Survey : :

by
Arpold D, Kerr

INTRODUCTION

Frozen lakes and rivers have been utilized since early times for transportation and storage
purposes. In Russia,'” in the absence of bridges, railroad tracks have been placed over frozen
rivers since about 1890. Floating ice plates have been increasingly utilized as airfields for the
landing of aircraft,' ®' ®® *** '* ag platforms for storage in logging operations,?* *** as platforms
for the construction of river structures,® "** as off-shore drilling platforms in the northern regions,®
and as aids in various other civilian and military operations.* The successful defense of Lenin-
grad during World War II was greatly facilitated by the ‘‘ice road’” over Lake Ladoga.'® The recent
oil discoveries in northern Alaska have increased the interest in the arctic ice cover for off-shore
drilling purposes. A rational utilization of floating ice plates for all these activities requires the-
knowledge of their bearing capacity when they are subjected to loads of short and long duration.
Such information is also needed for the design of icebreakers.*® *®

Field observations reveal that when a vehicle is small and relatively heavy it may break
through the ice plate immediately after placement. In such cases, the plate response may be con-
sidered elastic up until failure. For relatively light vehicles, the ice plate deforms elastically
at the instant of loading, but sustains the load. However, as time progresses, the ice plate con-
tinues to deform in creep, especially in the vicinity of the vehicle, and after a certain time inter-
val the vehicle may break through the ice.

In the past, numerous attempts have been made to determine the bearing capacity of floating
ice plates subjected to vertical loads. Particularly, since World War II, many papers containing
test data and related analyses have been published. However, in spite of these publications,

- there is as yet no reliable analytical method for predicting the bearing capacity of floating ice
plates subjected to static or dynamic loads. This is particularly the case for floating ice plates
reinforced by pressure ridges, a phenomenon often encountered in the Arctic,” ** for which not
even test data can be located in the literature. ‘

One of the main reasons for the lack of reliable methods for determining the breakthrough
loads of ice plates is the difficulties introduced by the fact that the lower surface of an ice
plate is always subjected to the melting temperature of about 0°C, at which the mechanical prop-
erties of ice vary drastically with small changes of temperature. Other difficulties are the depend-
ence of the mechanical properties of the ice plates upon the rate of freezing, the velocity of the

* Refs, 5, 17, 25, 40, 82, 120,



2 THE BEARING CAPACITY OF FLOATING ICE PLATES

water below the plate during the freezing process, the salinity of the water, ete. Discussions of
the mechanical properties of ice have recently been presented by Voitkovskii,*** Weeks and
Assur,'*”® ¥ Lavrov,” and Bogorodskii et al.*

- Another main reason is the lack of effective communication among the various investigators,
partly caused by the language barrier. This has resulted in the duplication of analyses and tests,
often rendered useless by the same shortcomings. Also, the introduction of incorrect solutions for
floating ice plates and their subsequent utilization for comparison w1th test data have not helped
in solving the problems under con81derat10n

The purpose of this report is to present a critical survey of the literature on the bearing
capacity of floating ice plates. First, the various analytical attempts to determine the bearing ca-
pacity are reviewed, grouped according to the used ‘‘failure criterion.’”” This is followed by a dis-
cussion of test data and their relation to the analytical results. The report concludes with a sys-
tematic summary of results, a discussion of observed shortcomings, and recommendations for needed
investigations. "It is hoped that this survey and summary of results will establish a sense of direc-
tion in the investigations and will contribute toward developing methods for determining the bearing
capacity of floating ice plates.

ANALOGY METHOD

The analogy method of predicting the bearing capacity of a floating ice plate subjected to
a static vertical load, discussed by Korunov,® * is based on the notion of the analogy of two
plates. Korunov assumed that the ice plates under consideration are homogeneous and isotropic
and that for two plates with thicknésses hy and h, the corresponding fallure moments My and Mp
in cylindrical bending are

hi?
S
L
p 2
W, = o2
2% ¢
Assuming that the failure stress o, for [the two plates is the same, it follows that
|
M. h.2 ‘ ! :
- | | @
2 : '
2 hy ‘

]
Cons1dermg the effect of two dlfferentlloads P, acting on the plate with thickness h, and P, act-
ing on the plate with thickness by, Korunov assumed that M 1s proportional to P, and obtamed
from eq 2 |
2 - f
P h :
1 1 | (3)

i |

. 2
P, hy

Equation 3 may be rewritten as follows

% Note that eq 3 was used, in 1938, by Moskatov (ref. 86, p. 51).
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Py = Ab® ' @

where A = F:? /h22. According to the above method, if an allowable load P, of an ice plate of thick-
ness hy, is known (from a test), then the allowable load P,1; of an ice plate of different thickness
may be computed if the oy values are the same for both plates. Thus, the coefficient A in eq 4 is
to be determined from a specific test.

Some shortcomings in the derivation of eq 4 were discussed by Lagutin and Shulman.” It
should also be noted that in a floating ice plate the bending stress distribution may not be linear
across the plate thickness®; therefore, eq 1 in the above derivations may not be admissible.
Nevertheless, because of its extreme simplicity and its agreement with various test results, eq 4
found wide popularity, as shown in the following table (valid for Pa11 in metric tons and h in
centimeters).

Source . Load : A

Korunov®

Peschanskii'** 0.01

Lebedev™

Zuboy's* | | 0.0166

Instructions of the Engineering Wheeled vehicles 0.0070

Committee of the Red Army** Tracked vehicles 0.0123

Lvsukhin®? Wheeled vehicles 0.0082
ysuxhin Tracked vehicles 0.0123

To demonstrate the use of eq 4 let us determine the necessary ice thickness for the crossing
of ariver by a truck weighing 36 metric tons, according to Korunov.*® Using eq 4 the necessary
ice thickness is

h = T00 /36 = 10 x 6 = 60 em.

Additional examples of the use of eq 4 were presented by Moskatov,®*® Lysukhin®? and Gusev.*
In otder to take into consideration the effects of temperature, the dimensions of load distri-

bution, and the salinity of ice, Zubov'** modified eq 4 as follows:

P, =KMsAK® . | : )

a

where K, M, and s are the corresponding correction coefficients. -Discussions of this extension
are presented in ref. 75 and 154..

Basing his work on field experience with fresh water ice, Korunov,” in 1956, modified eq4
by introducing a correction coefficient n which takes into consideration the condition of the ice
as follows: '

P, = %A h® in tons. ‘ (6)

In the above formula A = 0.01 and n is related to g, as follows:
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5 - op(kg/cm®)| 5 |12 (17|25 38
for T< -7°C.

! n 2.8|2.0(1.4]1.0] 06 T< 7

4 -
A graph of these values is given in Figure 1. This
oL graph may be represented by the equation
n
r 25
n ==,

2+ a,

- Substituting this into eq 6, we obtain for T < =7°C

| . L P . ! P .. = —1 h2 £

0 10 20 20 40 all = 3500 7" 10 fons

o, (kg/cm?2)

f N
Figure 1. Correction coefficientnas related or

to failure stress o, (Korunov™).
Py =04 arhz in kilograms.  (7)

o, values were stipulated by Korunov™ for five types of ice. Korunov™ also introduced another
correction coefficient for thaw temperatures.

METHOD BASED ON THE BENDING THEORY OF ELASTIC PLATES
AND THE CRITERION o, & o;

This method of predicting the bearmg capacity of a floating plate sub;ected to loads of short
duratlon consists of the followmg three steps:

1. Determination of the maximum stress Onax 1D the floating ice plate due to a given load, as-
suming that the ice plate is elastic. ‘

2. Determination of the load at which the first crack ocecurs P, utilizing the criterion

"max =91 _ o <)

- 3. Correlation of P with the breakthrough load P,. This step, d1sregarded by many investi-
gators, is needed because accordmg1 to field tests, for various plate geometries, the occurrence

of the first crack does not cause brea‘tkthmugh therefore, for these cases P, > P,

In the criterion in eq 8, o, is the ‘‘failure stress.’”’ It is-usually obtained by loadmg a floating

ice beam to failure and then computmg the largest bendmg stress at which it failed.. In the located
literature, oy, is-determined using the classma.l bending theory of thin elastic plates. These results

are reviewed in the followmg

The response of 2 hOmoge‘neous and isotropic elastic plate that rests on a 11qu1d and is sub-
jected to a static vertical load ¢ is described by the partial differential equanon

Dvtw+yw=g ©)
where

w(x, y) = plate deflection at *,y)
D = flexural rigidity of the plate
y = specific weight of the liquid.




THE BEARING CAPACITY OF FLOATING ICE PLATES 5

Figure 2. A floating ice plate subjected to a distributed
load ¢ over a circular area of radius a.

oo Solutions for the infinite plate subjected to a con-
} ~ centrated load P, and to a load uniformly distributed over
050k 7 a circular area, were presented by Hertz** in 1884. In
1929 Berpshtein® utilized this discussion for the deter-
040k - mination of the allowable load for an infinite ice plate.
¢ (a) : Using the criterion in eq 8, in-conjunction with the solu-
030k | tion for an infinite plate subjected to a uniform load over
a circular area, as shown in Figure 2, Bernshtein obtained
0.20} : _ 1 e \
P, = ————-—-3(1+V)C(a) ogh* _ (10a)
. o.t1or where )
e v = Poisson’s ratio for the plate material -
0 02 04 06 08 ‘Cla)= a given function of a = a/[. as shown in Fig-
a ure 3
Figure 3. C(a) vs.a graph.* a = radius of the cucular area subjected to the
‘ uniform load g = P/ ma? :
=07y :
D= EhS/[lz(l -v )]
i Onax = Ot 18 a valid criterion, then P, is the load intensity at which the plate cracks.

To demonstrate the use of eq 10a, Bernshtein computed the Omax due-to & railroad car weighing
24 tons for a 70-cm-thick ice plate as follows (ref. 8, para. 20); o

Assuming that E = 550,000 t/m* and » = %, he obtained )

f:\“/?: 11.50 m.”

He then-assumed that the ‘effect of the welght of the rallroad car. may be represented by a loa,d uni--
formly distributed over a circular area with radius a = 1.54 m.. Hence, a = a/l =-0,134. From Fig-
ure 3, it follows that C(a) = 0. 417 For the above values eq 10a yields .

24,000x3><§-><0.4-17 et
g = = 8,16 kg/em®.
max (70)2

* Thig is a modified graph. In the original"version.“ the C(a) presented is for P in tons, h-in meters, and o
in kilograms per square centimeter.
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The next step is to check whether o, < o,. Additional numerical analyses are given in ref. 8.
Other numerical examples, based on the Bernshtein solution, were presented by Volkov**® in 1940
and by Bregman and Proskuriakov (ref. 11, part IV, section 7) in 1943.

The determination of the load P, for a floatmg infinite plate based on eq 9, the criterion in
eq 8, and the assumption that the load q = P/(ra?) is distributed uniformly over a circular region
of radius 2 was also presented by Wyman'** in 1950, Kubo’® in 1958, and Savel’ev'?! in 1963. Wyman
obtained for the load P,; the equation '

P - "2 ..
e = 30 0kei‘a f (10b)

This is identical to eq 10a, noting that

kei (a)

mTa

Cla) = 11)

The determination of P,.. assuming that the uniform load is distributed over a square area with
sides b, was obtained by Golushkevich®’ in 1944. The derived expression yields loads that are
very close to those obtained from eq 10.

Solutions for an infinite plate were also presented by ‘Schleicher'®* in 1926, Korenev®® in 1954,
Korenev®® in 1960, and Korenev and Chernigovskaia®® in 1962,

A solution for the infinite plate subjected to a row of equidistant loads was presented by
Westergaard'® in 1923, in terms of a trigonometric series. Solutions to similar problems (periodic
load distribution), also in terms of trigonometric series, were presented by Lewe® in 1923, Miiller®”
in 1952, and P:emfﬂov“’0 %% in 1963 and .1964. Shekhter and Vinokurova'?” discussed related prob-
lems in 1936.

Since eq 9 is linear, it appears that when the plate is subjected to several loads, the method
of superposition should be used. This idea was demonstrated by Kerr®® in 1959 for the solution of
the floating ice plate subjected to a row of equidistant loads. A major advantage of this approach
is that the distribution of the loads on the floating plate may be arbitrary, whereas the use of
trigonometric series is suitable only when the loads act along straight lines, all loads along a line
are of the same intensity and distributipn and the distance between them is the same.

The analysis of floating ice plates for arbitrary load distributions may be greatly simplified
by utilizing influence surfaces.'*> Charts of such surfaces were presented by Pickett and Ray™'®
in 1951 for concrete pavements.  Influence surfaces for bending moments, more suitable for ice
plate problems, were presented by Palmer®® in 1971. Palmer’s charts could also be used for the
determination of load distributions on the plate that yield the largest possible bending moments.
An attempt to solve such a problem without influence surfaces was made in 1965 by Nevel and
Assur.’* They considered the problemlof the most unfavorable distribution of crowds on a floating
ice plate from the point of view of bea.rmg capamty. based on the criterion in eq 8. This problem
was recently analyzed by Palmer®® using mfluence surfaces.

Bernshtein’s® eq 10a is shown as the solid line in Figure 4. Shulman'*? in 1946 simplified
eq 10a by replacing the curve for 0.07 < a < 0.65 with a straight line described by the expression

. |
P, = 0.375 ar(hg + 7.8a]‘/1 h /*) | (12a)
cr E -
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2.0

05t

Figure 4. Pcr/af h? vs a.

Panfilov®’ in 1960 proposed the expression
P = 0.375(1 + 4.1a)o h® - » (12b)

based on the idea of a straight-line approximation_. Panfilov's approximation (eq 12b) is the same
as the one presented by Shulman,'** since for v = 0.3

J121-0%), i
418 p2 - 41 3AL-VIp2 2 745 Y B4, (13)
7 ‘ E

YEh
Panfilov’’ also proposed the following approximation:

P 2m o h2. , (14)

{
3(1 + v)(O 682 + 0. 019 - In a) : , . _

However, since this is not much s1mpler than the exact expresswn (eq 10a or 10b), its usefulness
is questionable.

In 1964, Panfilov®®* attempted to derive another approximate expression for P, assuming that
the deflections of a floating ice plate subjected to a concentrated force P may be expressed ap-
proximately as follows: . .

w(X, y) = W, exp ——-)l (# +y)](ein LX + CcOoS i\-x.)(sm ﬁ' + COS ﬂ) , | (15‘)
v ViEoOvEN v Ve
where
A = y7D. ' : - (16)
dFrom the equilibrium equation | |
4y T [ w dx dy. ' _ an
5 .
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Panfilov determined the only unknown, w,, as
P
WO T e 8
8vyD
Comparing t‘he‘resulting w(x, y) with the exact solution, and findirig that the agreefnent was relatively
close, Panfilov determined the bending moments, using the relations (ref. 142, p. 81)

(18)

: 2 2
M(x,y) = —D(ﬂ +.u€1)
ax*  gy®
(19)
: 2 2
My(x, y) = —D(?._lv +v i_“i)
ay? x®

and the approximate w(x, y) given in eq 15. For the bending moments under the load P, he obtained

Genp o eo

7MX(0’0) = My(o, 0) =
Equating 'this”'express'ion witrh'Mér = arhg/ﬁ, Panfilov obtained for v = Y% the expression

P, = o/h®, _ 7 (21)

At this point, note that the relative closeness of the approximate and exact deflections (in the
sense of comparing two graphs) does not imply that the second derivatives are also close. Thus,
for example, whereas the exact solution for the classical plate theory (used by Panfilov) yields
infinite moments under the concentrated load P,* Panfilov's approximate solution yields the finite
value shown in eq 20. This point may be demonstrated further by comparing the graphs for the
béﬁdin'g moment Mx(x, 0) based on eq 15 and on the exact solution. It may be shown that, although
the deflections are relatively elose, the bending moments based on eq 15 do not approximate
closely the actual bending moments, especially in the vicinity of the load.

" 'QOthér approximate solutions for the infinite plate were discussed by Korunov’ in 1967. As-
suming that Bernshtein’s® eq 10a is the|correct expression for predicting the bearing capacity,
Korunov proposed the empirical expression (for h in centimeters).

v . 7 B

P = i ah? in tons ,
er = 700 |
|
or rewritten
|
P_ = 60gh? in kilograms : (22)

Cer

and then showed that for special situations, it agrees with the results of eq 10a. *Noting that eq
22 is based on o, = 24 kg/cm’, it follows that

* To determine the stresses under the load, the correction derived by Westergaard (ref. 142, p. 279) may be
used.
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o, h
Figure 5. A comparison of approximations for P,, Figure 6. Semi-infinite plate with free edge
with exact graph. subjected to load P.
= 2.5a.

2
o¢h

-Note, that, according to eq 22, for a given oy, P, is proportional to the second term in eq 12a
or 12b, h , whereas eq 21, derived for a = 0, is proportlonal to the first term, h*, Note also the
difference between eq 7, suggested by Korunov, and eg 21, derived by Panfilov. A comparison of
various approximate expressions for PCr with the one based on eq 10a is shown in Figure 5.

It appears that, instead of deriving numerous approximate expressions for eq 10 that differ
substantlally from each other and are not much simpler than the exact expression,* first it must be
established whether eq 10 is suitable for predicting the bearing capacity of floatmg 1ce plates for
loads of short duration. This and related questions will be discussed later, :

Solutions for the floating semz-mfmzte plate with a free edge subjected to lateral loads were
presented by Westergaard®®* in 1923, Shapiro'? in 1943, and Golushkevich® in 1944, using Fourier
integral methods. Shapiro’s results were verified and extended by Nevel®? in 1965.

In 1950, Zylev,'®” using the criterion in eq 8 presented calculations of the bearing capacity of
a floating semi-infinite ice plate subjected along its free edge to vertical-and horizontal loads.. How-
ever, Zylev's approximate solution of eq 9 for the vertical load, recently. included.in & number of -pub-

lications,' °® is incorrect, as shown below.

For the semi-infinité plate shown in Figure 6, Zylev'*” assumed an approximate solution of '
the form ' ' .
w(x, y) = [cosh(ax) + T sinh (ax))f(y) L (23)

where

=1 forx <0
(24)

" I'=-1" forx>»0.-

]

Substituting eq 23 into differential eq 9 with g = 0, he obtained an ordinary differential equation of
fourth order for f(y). To determiné the four constants, he used two regularity conditions at infinity
and the conditions '

* A prospective user of eq 10 does not have to be familiar with Bessel functions if he utilizes the C{a) vs a
graph shown in Figure 3.
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My(x, 0) = 0 - (@5)

P =Zd fyw dx. | . (26)

—00

Note that, for the chosen deflection surface (eq 23), ow/dx is discontinuous along the y-axis,
which is not the case in an actual plate. The quantity 6%w/0x® is also discontinuous along the
y-axis; this implies that for the assumed deflection surface there exists a line load along the y-
axis. This is in contradiction to the assumed plate load shown in Figure 6. Furthermore, along
the free edge, where the largest stresses are anticipated, the boundary conditions for a free edge
are not satisfied. Therefore, the validity of Zylev's solution for the semi-infinite plate, even for

the determination of an approximate P, ., is questionable.

According to Zylev’s' results, the largest bending moment takes place at the point x = 0 and
y = 1.14 \/D. On the basis of this analysis :

-1 2
P, = 0.8Ar(1 e )" och 27
where
A= 228D - , " (28)
D
According to Shapiro's results, o, takes place under the load.  Utilizing criterion in eq 8, the

load at which the first crack occurs becomes
= S(a)afhg B 29)

whete S(a) for v = 0.36 is given in Figure 7.

In 1960, Panfilov®® compared the values of the load Pcr for the infinite plate as well as the

semi-infinite plate. The corresponding graphs are shown in Figure 7. This comparison shows that

Pc]r for the semi-infinite plate, according to Zylev'*” (dashed line), is much higher than P, accord-
ing to Shapiro'? and Golushkevich.” In 0 < b/ﬁ < 0.5, it is even higher than the P,, of the infinite
plate. In view of this comparison and the obvious errors contained in Zylev's SOlutIOI‘l it is sug-

gested that eq 27 should not be used fog the analysis of the semi-infinite plate with a free edge.

1.5
3.5 T T T
1.0F
P - -
:2 (Per) int. . 3.0
a RN LEA LU D
f (Pcr)semi inf. pl.
0.5 : ool \
i L | 1 . . 2.0 i 1 L
o} 0.2 0.9 b 0.6 0.8 1.0 05 - 1.0
. n B ) b/L
' Bn . ) :

Figure 7. Comparison of analytical results.®® Figure 8. (Pg)ins pl/(Pcr)s emi inf pl S b/,e.
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According to Panfilov,”® it follows from Figure 7 that for 0.07 < b/f < 1.0 .-

(P )mf pt = =2. 4'5(P r)

semi-inf pl

A more precise relationship is shown in Figure 8.

On the basis of the graph for the semi-infinite plate shown in Figure 7, Panfllov proposed
for the interval 0 07 < b/f <1 the following approximate expressmn

P = 0.16 (1+ 2.392)%:;2. o . o G0
Panfilov'®* attempted to derive an approximate expressxon for P,. for the problem shown in Figure
6, assummg that L ‘ - _

wix, y) = W, exp[—\/l_é(x +y)] (sin M + COS /}f)cosﬁz . , - 31

V2 V2 V2

However, the result obtained, similar in form to eq 21, is of questionable value. The objections
raised in connection with eq 21 also apply hefe. Note that the deflection surface (eq 31) does

not satisfy the differential eq 9 or the boundary conditions along the free edge, where the stresses
are determmed for comparison with criterion in eq 8.

The semi-infinite plate subjected to equidistant loads P along the free edge was analyzed by
Westergaard®® in 1923. Similar problems were solved by Panfilov'’* ¥ in 1963. The publications
of Shekhter and Vmokurova,“” and Korenev and Chernigovskaia®® also contain solutions to re-
lated problems. '

The solution for the semi-infinite plate, simply supported along the straight edge and sub-

jected at any point of the plate to a concentrated force P, as shown in Figure 9, was derived by
Kerr®™ in 1959. Using the method of images; the following exact closed form solution was obtained:

P A2

w(x, y) = Sk keil/\v(x—xo)é+ yz]—kei[hmg—“.. O (39)
” . -

Figure 9. Semi-infinite floating plate, simply sup-
ported along the straight edge and subjected to a
load P.
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In 1971, Palmer®® utilized this solution to ‘construct a number of influence surfaces for bend-
ing moments. .

A numerical solution for the semi-infinite plate, clamped along the edge and subjected to a
force P at a point on the plate, was presented by Korenev®® in 1960.

" An analysis of a floating in'finite'strip, free along both édges and subjected to a lateral load,
was presented by Shapiro'® in 1942, utilizing the Fourier integral method. Detailed results for
similar.problems were presented by Pa.nfxlov"’s 1 in 1966 and 1970.

The solution for a floating infinite strip, simply supported along both edges and subjected to
a concentrated force P at any point on the plate, was presented by Kerr® in 1959, utilizing the
method of images. The resulting deflection was given as a rapidly converging infinite series of
fundamental solutions for the infinite plate. Other solutions for this problem were presented by
Westergaard'®! in 1923, in terms of Fourier series and by Nevel’? in 1965 in terms of a Fourier in-
tegral. A solution for a similar problem was presented by Panfilov'*® in 1966, also using the
Fourier mtegral method.

The infinite strip, with clamped boundaries, was analyzed by Nevel’? in 1965 and by Panfilov?®®
in 1966, using Fourier integral methods. ’

In 1960, Kashtelian*® p’re_s‘ented calculations for the direct determination of Py [that is, by
eliminating step 3 (p. 4) in the above procedure] that are based on the observation that the carry-
ing capacity is reached when the wedges, which form initially, break off. However, Kashtelian's
solutlon for the wedge-shaped plate on which his calculations are based, is incorrect, as shown
in the followmg

_For the rectangular comer plate with free edges, shown
in Figure 10, Kashtelian assumed an approximate solution

~ w(x, ¥) = f expl-a(x+ ¥)] cos{ax)cos(ay) 33)

where o and f are unknown parameters. From the condition

yw dxdy (34)

. .
I

o%ﬁ 3

o=

Figure 10. A floating rectangular

comer plate with free edges sub- jKashtelian obtained

jected to load P at the corner, f

2
f:4-a P.

(35)
i oy

Then, utilizing the Bubnov-Galerkin n!lethod, for a one-term approximation he used

I
L

m‘* - » -  @6)
([&W+ )wdxdy 0: | 36

b
h

o0

and determined from it

YT , ‘ 67
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Thus, according to eq 35

-2 o | ‘_ @)

VyD

It should be noted that the above analysis contains an error; namely, because the assumed de-
flection expression (eq 33) does not satisfy the boundary conditions of zero moments and zero shear-
ing forces along the free boundary, eq 36 is not complete.. According to the principle of virtual dis-
placements, the proper Bubnov-Galerkin equation for a one-term approximation w = fwy(x, y) is

: 00 e % . L
(DV4W + kw)W1 dxdy + jMy(x, O)Wl' (x, O)dx _f Vy(x, O)W'l(x,‘ 0)dx + -
Y. o
0

o3
o1

A { M, 0, y)wl'g(O,‘y)dy —I V{0, y)WI(O, y)dy - Pw,(0,0) = 0 . . (39) 7
0 A _

where M, and M y are given in eq 19 and

rgxx T (2w

VX(O, y) = —D[W ;xyy]x-—-O
o (40)

Vy(x,O)‘ = —Dlw, +(2-1v)w

yyy ’ny] y=0"

Comparing the f value given in eq 38 with the corresponding values of the exact solution of an
infinite plate, f = P/(8/yD), and the (incorrect) approximate solution by Zylev**’ for a semi-infinite
plate, f = P/(2y/yD), Kashtelian,* without justification, generalized his solution for the rectangular
corner plate to a solution for a wedge of any opening angle ¢ (Fig. 11) by assuming that

le(g)zi | (@1)
2\¢/ \/yD |

an equation which satisfies eq 38 for ¢ = r/2 and the

—~

for= —

T T T T other two cases (¢ = 27 and ¢ = ) mentioned above..
Figure 11. Floating wedge shaped Utilizing criterion in eq 8, he then obtained for the *‘fail-
plate of opening angle ¢ subjected ure load’’ of a floating wedge plate of opening angle ¢ the

to load P at the tip. ., cexpression - ‘
P - ((—’S)2 L och®. o 42) .
7/ 0.966 B . T

Note that, according to field cbservations,** when ¢ < 120°% P_. = F;..-Thus, according to eq 42,

for a floating wedge with ¢.= #/2, as shown in Figure 10, the breakthrough lqad is. -

2 oo h?
P = (2} - = 0.2500, 1%
3) 0966

Observations in the field indicate that the. failure mechanism of a semi-infinite plate subjected
_to a force P at the free edge proceeds as follows. First, a radial crack forms, which starts under the
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Figure 12. Failure mechanism of a . Figure 13. Failure mechanism for a large floating
roatmg semi-infinite plate subjected plate subjected to a load P.
along the free edge to 2 load P. ‘ C E

load and propagates normal to the free boundary. This is followed by the formation of a circumfer-
ential crack that causes final failure, as shown in Figure 12. According to Kashtelian,* the failure
load for this case is equal to the failure load of two free floating wedges, each of openmg angle

b = /2
P, = 2 0.2590;h% = 0.5180,h%. (43)

In a similar way, Kashtelian*® determined the P for an infinite plate. Assuming that n is the
number of radial crac;ks and that the n formed wedges are all of equal opening angle, i.e., b, = 2n/n,
as shown in Figure 13, the following expression for the failure load results:

2 2
Pf = 0(2—” -1-) a¢h = i o b2,
n o/ go66 nx0.966 !

Noting that n = 2rr/q,’>n, this expression may also be written as
P, = 2.08( Bloy h® (44)
) n

where qS is the opening angle of the formed wedges. Note that, with decreasing ¢, the load P
in eq 44 decreases and that the above approach does not take into consideration the effect of the

wedge-in moments along the cracks.

Kashtélian showed that the results of 150 tests on floating ice plates agree closely with the
bearing capacity values based on eq 43 and 44 In view of the errors discussed above, however,
this agreement is not convineing.

An approximate solution for the quarter plate with free edges loaded at the apex Was also pre-
sented by Westergaard®®? in 1948;. : o

An exact close form solution for the guarter plate simply su p_po“rt'ed, along the edges and sub-
jected at any point of the plate to a concentrated force P was presented by Kerr™ in 1959, using
the method of images. |

The response of a narrow infinite wedge resting on a liquid base, as a beam'prob'lem is des-

cribed by an ordinary differential equation with a variable coefficient. This equation was solved
by Dieudonee™* in 1957 by means of the Laplace method of integration. Nevel® in 1958 solved it
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using the method of Frobenius. Nevel's solution
consisted of a sum of four infinite series which
were evaluated and are presented as graphs in
ref. 90. An approximate solution for large values
of x, was presented by Hetényi.*?

An early atteinpt to determine the carrying
capacity of a floating ice plate, utilizing a float-

oo o~ ,., T~ ing wedge solution, was described by Papkovich'?
\i _ _ . in 1945. In this analysis it was assumed that the
wedge response is governed by a modified bending
Figure 14, Wedge shaped plate subjected theory of beams (Fig. 14) by stating the base
to a load P = gb. parameter as ‘
Kx) = y(b + 2xtg ‘755) : - 45)

and the flexural rigidity EI as

; . .
El(x) = —E0° (b +2xtg fé) ‘ ’ (46)
12(1-13) 2

\ : :
where y is the specific weight of the liquid. The term (1 - vg) was apparently included to get
plate action for the wedge. The deflection was assumed in the form

w(x) = 4 e~ cos(Ax) ' “n

2 ‘
Al k(X_)_ =.‘4/3y(1—v ) : (48)
AE[(X) EhS
and the unknown constant A was determined by minimizing the total potential energy. Substituting
the determined

where

4 _aep | (49)
ooz |

into eq 47 yields the deflection

W(X) = ———— o~ AX cos(A;). ' N g ‘ (50)

The bending moment is

_ 0 |
M(x) = —Eli—“i =-EI(x) 24 A2 g')‘x cos(Ax)

dx?
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and the stresses in the upper and lower fibers were obtained as

otx) = 2 MO Eh a2 omdx ocin.
W(X) 1_V2‘ !

From the condition do/dx = 0, the position of the largest stress, x = rr/(4)\) was determined.  Sub-
stituting this value into the above .equation, it follows that

o = 019 AAth.‘-- : SR S G
1__1/2 . B : e _ .

Utilizing the failure criterion ineq 8, 0. =0y, it follows from eq 51, using eq 48 and 49, that

(o) |
2 ;

Noting eq 48, the above expression for the failure load of a wedge of opening angle qS may also be
written as ‘ ‘

R e .

Pointing out that an ice plate breaks up under the weight of an icebreaker intb wedges and that F‘f
in eq 53 is of the form '

5/4
Po= A h% An7"" | (54)

Papkovich suggested that eq 54 be utilized for the determination of an empirical exbression for
the breakthrough load of an ice plate by determining the parameters Al and A2 from field test data.

* Although eq 53 is only an approximation (for example, the corresponding bending moment at '
x = 0 is £ 0), its dependence upon h is identical with that of expressions in egq 12a and 12b for the
infinite plate and eq 30 for the semi-infinite plate, respectively. Even the term bi/y /E appears in
the proper place. This observation will be of 1mportance in the discussion of test data presented
in ref. 98. ,
-F‘or, solutions to other-plate _prroblem:‘s, whose response 1s governed by differential eq 9, refer-
ence is made to the books by. Schleicher,l123 Shekhter and Vinokurova,'” Korenev,® °* and Korenev
and Chernigovskaia®®; to the survey- articles by Korenev®® ** and Saivel’ev”"’ and to the literature

on.the analysis of highway and airport pavements.

When a'floating ice plate"'seals the {iquid base, in addition to the buoyancy pressure kw(x, y),
the liquid- exerts & uniform pressure p"’ on the plate. In such cases, an additional condition has to
be imposed on the solution to reflect this situation. The unknown p* is determined from this"

condition. :
If the assumption that the liquid is sealed and incompressible is justified, then th_i_s addi-
tional condition is :
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ffraa-o L T

A

where the integration extends 0vér_ the domain of the plate A.

Floating plates subjected to condition expressed in eq 55 were ‘analyzed by Kerr™ * and
Nevel.’* Kerr and Becker®* solved plate problems by assuming that the sealed liquid is compres-
sible. They showed that the effect of the sealed liquid depends not only upon its relative com-
pressibility but also upon the sealed volume: the larger the sealed volume, the smaller the seal-
ability effect. This result suggests that the use of eq 55 for the analysis of an ice plate that
covers a river or a lake, ds suggested recently by Mahrenholtz,*® is not justified. '

The analyses reviewed in this section are based on eq 9, the differential equation for a homo-
geneous and isotropic thin elastic plate. In an actual floating ice plate, the ‘material parameters
vary across the thickness of the plate, hence, the floating ice plate is’ nonhomogéneous. " This
variation is very pronounced in sea ice plates as well as in a plate whose upper surface is sub-
Jected to very low air temperatures.

An early attempt to take into consideration the variation of Young's modulus E (ref 11, p. 73)
is incorrect because the investigators did not take into consideration that when E vanes across
the plate thlckness the resultmg stress dlstrlbunon is not linear.

Accordmg to recent analyses by Newman and Forray,’® Assur and Panfllov, when Young ]
modulus E varies with the plate thickness h, and Poisson’s ratio v is assumed to be constant eq 9
is still valid if the flexural rigidity is

h=zg .
. f g E(z)dz : . . - (56)
;Zo ' ’ ' ! ' ’ : '

p. 1

B R

and the position of the reference plane is determined from the condition -

herg . RS ,
f._ 2E(zyz - 0. - . S N 0N
=z : ' ' S A

For the utilization of the available solutions of eq 9 also for nonhomogeneous plates with
E = E(2), it had to be shown that, except for eq-56, the corresponding boundary conditions are the
same as those for homogeneous plates.” This was done recently by Kerr'and Palmer,*s who sys-
tematically formulated this problem utilizing Ham11ton s principle in con]unctlon with the three
dimensional theory-of elasticity. . Kerr.and Palmer*® ‘also showed’ that even though the plane sec- -
tion hypothe51s is assumed, the resulting bending stress distributions are not- lmear -across. the N
plate thickness. An example is given in F‘:gure 15. This fmdmg suggests. that the well known -
stress equation : ‘

6M

max.

max
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Figure 15. ‘Stress distribution Figure 16. Deflection vs time

" in the plate for a given E(z). curves for a floating ice plate and
: Co fixed loads.

utilized by various investigators in conjunction with the criterion in eq 8, or for the determination
of the failure stress o, from tests on floating ice beams, may not be applicable in general.

It vshould be noted that highly concentrated loads often cause punch-through failures; for such
situations, that is, for very small «, the above methods may not be suitable and a different approach
may have to be utilized to determine the breakthrough load.

METHOD BASED ON VISCOELASTIC THEORIES

It was observed in the field that for loads that do not cause an instantaneous breakthrough
the ice plate deforms at first elastically and then, with progressing time, continues to deform in
creep, especially in the vicinity of the load. Two characteristic deflection-vs-time curves for
fixed loads P are shown in Figure 16. Curve I represents the case when, after a time, the rates
of deformation diminish and the ice plate and load come to a standstill. This curve corresponds to
a safe load for any length of time under consideration. Curve II represents the case when, after a
time, the rates of deformation increase and at time ¢, the load breaks through. Thus, the load that
corresponds to curve 11 is safe for time t < t;, but then it has to be moved to another location to
prevent breakthrough. The above field observations suggest that for an analytical determination

of breakthrough loads which do not ca,useI immediate failure a viscoelastic analysis must be

conducted. !
|

It appears that the small deformationl theory of plates may be sufficient for plates which fol-
low curve I. However, the analysis of plfites which respond according to curve II is more compli-
cated because in the vicinity of the load, a region of prime interest, the small deflection theory
may not be valid for t approaching ¢,. Also, as the plate deflections increase, the plate may start
to crack — a phenomenon not predicted by the usual theories of viscoelastic continua. To predict
cracking, a separate failure or crack criterion must be used. Also, after the first crack takes
place the analysis gets even more involved because of the introduction of additional, often irreg-

ular, plate boundaries.
For an analytical determination of a “‘safe’” load P < P, and a “‘time to failure™ t,, it is de-

sirable to have one viscoelastic theory for floating ice plates which for time t = 0 yield the elastic
response and for t >0 yield responses according to curve [ or I, depending upon the load and the
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material parameters of the ice (which in turn depend upon the temperature distribution, salinity,
etc.). This theory should be supplemented by a crack or failure criterion valid for the elastic and
viscoelastic range. The elastic theory in conjunction with the crack criterion o, = o, discussed
above could, if proven correct, be a special case of such a general theory

Another failure criterion was proposed by Zubov'™ in 1942 and by Kobeko et al.* in 1946. On
the basis of their test data, they concluded that for loads of short or long duration, a floating ice
plate fails under the load when a certain deflection w, is reached; that is, when

v —w. - 69

According to Kobeko et al.,* for this criterion it does not mat-
ter whether the plate deflections are purely elastic or visco-
elastic, as shown in Figure 17. The criterion in eq 58 was
also adopted by Savel’ev (ref. 121, p. 438) in 1963 for the
study of the effect of temperature and salinity on the carrying
capacity of a floating ice cover.

In 1961, Panfilov™® proposed the_ above criterion for float-

o Tr{‘“ 12 . ing ice plates that are cracked in the dished area. His justifi-
Time cation was that in the dished area water begins to flood the
Figure 17. Illustration of the upper surface of the plate, with a resulting loss-of base pres-
failure criterion based on plate' sure in this area. It may be added that the flooding of the
deflections. -~ upper surface near the load also raises the temperature of the

“upper layers of the plate to about 0°C, thus decreasing the
strength of the ice in the area of high stresses.

From experiments on floating ice plates, with plate thlcknesses h from 1 to 6 cm and tempera-
tures from ~3°C to -8.5°C, Panfﬂov“ found that :

we = 2.2/F | - - 9

where w, and h are given in centlmeters In this connection it is of interest to note that usmg

criterion w, . = W, in conjunction with eq 59 and the solution for an infinite (uncracked) elastlc

plate sub;ected to a concentrated load P

Pnax = (0, 0) = P

8yD

it follows that

Py

= 2.2V

8/yD
or
[176 ]! ' (60}
12(1-23) ; T

Thus, accordmg to the criterion in eq 59 the brea.kthrough load P; is propomonal to hz. It may also
be of interest to note that if the largest deflection of the plate under consideration is expressed by

the equation
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' P
W.‘ =
liﬂ&x' ‘ /——yD -

where €is a coeffmlent then a P expressmn of the form shown in eq 54 corresponds to the
Crlterlon

Wf"a\/lb_+:/§__ - R o (Gi)

where a and S are coeff1c1ents

" Test data are needed to.establish whether the failure criterion in eq 58 and its spe01al forms
-in eq 59 or 61 are.indeed valid for elastic as well as viscoelastic deformations.

In the early attempts to take time effects into consideration for floating ice plates, one ap-
proach utilized the solutions for elastic bending and tried to fit the experimental data by modify-
ing the elastic constants (ref. 11, p. 53). In another approach, the elastic results were multiplied
by a time factor (1 + atB) where t is time and « and 8 are constants to be determined from experi-
mental data (ref. 6, eq 177). However, these approaches have no rational foundation and their re-
sults are of questionable value

Another early approach was based on Zubov's hypothesis, which states that deflections of
ice plates, especially at comparatively high temperatures, are caused mainly by vertical shearing
forces (ref. 154, p. 49). To verify Zubov’s assumption, Zvolinskii'*® analyzed a plate resting on
4 liquid, assuming that the deformations are entirely due to shearing action and that for creep de-
formations the material obeys Newton's law of viscosity. Although the resulting differential equa-
tion was relatively simple, because of the prescribed initial conditions the obtained solution was
rather involved: Zvolinskii (ref. 156, p. 21) stated: ‘‘In this formula the result is not self evident,
and analyzing it does not help us to visualize the picture of the phenomenon

Zvolinskii used, for the initial condition, the elastic deflection surface caused by shear only.
However, according to some experiments, shortly after the load is placed the deflection surface
. agrees closely with the elastic deflection surface due to bending (ref. 8, Fig. 18). Also, since
the elastic deflections are relatively small, the effect of assuming that the elastic deformations
are zero seems to be negligible compar‘ed with the introduced error of assummg shear as :the only
force responsible for creep deformations. This assumption was made by Kerr,*® who attempted to
\ simplify Zvolinskii’s analysis in order to study the characteristic features of the creep deforma-
tions based on Zubov’s'** hypothesis.

~ Recorded observations of the effect of static loads on the deformation of floating ice fields
showed (F'ig. 16) that in some cases ttlle rates of deflection decreased after the load was placed
and-after a certain time interval the plate came to a standstill (ref. 8, p. 48; ref. 154, p. 146),
-whereas. in other cases the rates of deflectlon increased until the plate collapsed under the load.
-The- observed decreasing and mcreasmg rates of deflection should result from a general formula-
tion of the problem. . However, because of the simplifying assumptions made it was necessary®
to incorporate it by setting up two separate formulations for the decreasing and increasing rates
of deformatlon Although some of the results obtained did agree with deflection expressmns given
by Zubov (ref 154, p.'24; ref. 155, p. 148), because of the various assumptions made, the result-
ing analysis is not conclusxve for the determination of breakthrough loads.

The assumpnon that the predommant deformations of a floating ice plate are caused by
shearmg forces was. also made by Krylov™ in 1948 :
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The intense development of the linear theory of viscoelasticity after World War I1 also affected
the formulation of ice plate problems. In 1944, Golushkevich® presented an analysis assuming
that ice behaves elastically for volumetric. deformations and viscoelastically for deviatoric defor-
mations. His formulation was based on the linear bending theory of plates, linear constitutive
equatmns and the assumption that the material parameters do not vary across the plate thickness.
The equations obtained were linear. The special case of an incompressible material was analyzed

in detail.

A general formulation for viscoelastic plates, based on the linea‘rfbending theory of plates and
the assumption that the constitutive equation is a linear relation of differential operators, was pre-
sented by Freudenthal®? in 1958. The utilization of this equation foi floating ice plates was dis-
cussed by Kheishin® in 1964. As a special case, Kheishin analyzed an infinite ice plate sub-
jected to a concentrated load P, assuming that the ice is incompressible for.volumetric deformations
and that it responds like a Maxwell body for deviatoric deformations. A similar problem, when the
load is distributed uniformly over a circular area, was analyzed in 1966 by Nevel,”* who also pre-
sented graphs and a comparison with the results of a test. In 1970, IAkunin®® presented solitions
for various load distributions, assuming that the ice responds like a four element model, that is, a
series combination of a Maxwell and Kelvin model. In the above analyses, except for the paper by
[Akunin, it was assumed that the material parameters are constant throughout the plate.

As discussed before, in an actual floating ice cover the materlal parameters vary with depth.
In-an attempt to take this into consideration, IAkunin®® derived an approximate formulation for a
varying modulus of elastlclty and coefficient of viscosity, and solved the formulation for a variety
of load distributions. He found that, as in the elastic case, the variation of material pararheters
across the plate thickness has a profound effect upon the stresses in the ice cover.

A viscoelastic analysis of the ice cover based on Reissner’s theory of plates, which considers
the effect of bending as well as shearing forces upon the deformations, was presented in 1967 and
1968 by Garbaccio.®® Garbaccio assumed that the ice responds like 'a series combination of a Max-
well and Kelvin model and that the material parameters are constant throughout the.ice plate.

In 1961, Panfilov,*® citing shortcomings of linear theories, derived a differential equation for
floating ice plates, based on the linear bending theory of plates and the nonlinear viscoelastic con-
stitutive equations proposed by Voitkovskii.*** *** Additional derivations, along the same line, were
presented in 1970 by Panfilov,'! who, however gave no solutions to the denved dlfferentlal equation.

‘ In 1962, Cutliffe et al.,* using a nonlinear
1.0 ’ o T ' ’ constlcumve equatmn made an attempt to analyze
the time-dependent stresses of an icé cover.

o8 The linear’ bendmg theory and a nonlinear

constltutlve equatxon were also used by Gar-

| bace]o’3 to analyze icé plate’problems. Gar-
baccio attempted to-obtain an approximate solu-

» tion' of the resulting nonlinear f ormulatlon by a

o6rF ~

0.4
hnearlzatmn techmque TR
o2k P _' ' R - In the absence of reha.ble analyses for pre-
) [ o dlctmg the’ bearmg capacny of ice plates sub-
i . Ly . i Jected to loads. of long duratlon Panfllov,
0 ’ 2 3 4 5 51961, constructed from field test data the graph

: ' ¢ (hn) o

Fxgure 18. Breakthrough loads. vs breakthrough

time for a floating ice cover subjected to loads
of loeng duration,

‘shown in Figure 18. In,F‘.lgure 18, t is the time
period between placement of the load -and break-
through, Pg(0) is the magnitude of the load
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just sufficient to break through immediately after placement on the plate (at tr ='0), as discussed

in the previous section,;* and F,(ty) is the load that breaks through after atime t,. From the graph
shown, it follows that Py(t;) < Py0) for £, > 0. Thus, for example, a load that has to park safely on
the ice plate for 6 hours should bé smaller than 0.4 Py(0}, where P;(0) is determined from a separate.
analysis. To represent analytically the graph shown in Figure 18, Panfilov proposed the expression

Pyt _ 1
PO} 1.4+.0.75V;.

(62)

where ¢, is in hours. Solving this e‘quation, the “‘safe’’ storage time is obtained as the time that
‘ is smaller than

B(O) - B3 '
N o o , (63)
£ 10.75 B(0) - o ‘

A graph similar to the one shown in Figure 18 was presented and discussed, also-in 1961, by
Assur.?

Korunov’? in 1968 pointed out that eq 62 was obtained from tests on ice plates under specific
conditions. He then proposed the following modification of eq 63; :

P(0) - P(t.)]3 ~ ,
te = [r—”)J K ‘ (64)
0.75 B (O |

where K and n are correction coefficients which take into consideration the shape of the load and
the outside temperature. ‘ :

In 1970, other expressions of the type shown in eq 62 were presented and discussed by Pan-
filov.*'* A related discussion is presented in ref. 43. ' -

METHODS BASED ON THE YIELD LINE THEORY OR LIMIT ANALYSIS

- The yield line theory was utilized for the analysis of continuously supported plates by
Jotiansen®” in 1947 and by Bernell” in 1952, Persson''! used it in 1948 for the analysis of a
floating ice plate. Assuming that the yield line moment per unit length is M, Persson obtained
for-the case shown in Figure 2 :

N . ,4‘”, E . -
P, = - M. (65)
E Lan)(1-0.62%3 0 - L

Using a similar a.bprbdcﬁ, in 1961 _Aséur_’ pr_l‘esen'ted for the breakthrough load the expression

P - —2T_u, § 6
| ¢

* In the previous section, it is denoted for brevity's sake as Py
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The method of limit analysis was utilized by Meyerhof® in 1960 for the analysis of the bear-
ing capacity of floating ice plates. Assum:’gng 1) that the ice plate is thin, rigid and ideally plas-

tic, 2) that it can, without cracking, resist a full plastic moment M o»-and 3) that the ice obeys the
Tresca yield condition, Meyerhof obtained for the case shown in Figure 2 :

P = 3.3nm (1 +-;-a)M0 0.05 <a < 1.0, 67)

Assuming that the floating ice plate before failure is cracked radially into numerous wedges, Meyer-
hof obtained for the same case '

: ¥4

P = My 0.2 <a < L0. (68)

1-<a

In an extensive discussion of Meyerhof's: paper,* Hopkins questionéd the degree of realism
in approximating the mechanical behavior of ice as that of a rigid, perfectly plastic material. In
the same discussion, Wood as well as Hopkins questioned the use of the Tresca yield condition.

Recently, Coon and Mohaghegh®® also analyzed the floating ice plate by using the limit analy-
sis method but assumed that the ice obeys Coulomb’s law. For the problem shown in Figure 2,
they obtained ‘

P = 2n(2.3 + 2.9a)My. (69)

Additional results and discussions were presented by Coon and Mohaghegh'® and Meyerhof.** Re-
lated results were published by Korenev®' in 1955 and Serebrianyi'** in 1980.

It should be noted that the often used expression for the limit bending moment M, = aoh2/4 is
based on a stress distribution of 'a homogeneous plate, as shown in Figure 19a, whereas because
of the thermal gradient in-the plate, the distribution of limit stresses,'** assuming that a full plas-
tic moment does exist, could be as shown in Figure 19b. Also, the assumption that the ice plate

can, without cracking, resist a full plastic moment M o Mmay not
oy - .be realistic, since its formation was not-observed in the field.
— When using the yield line theory, it may be more realistic to work
{ N é with cracks instead of yield lines, and wedge-in moments instead
s of the plastic moment M, especially along the radial cracks.

}7 J A comparison of the various P, expressions presented above
= with P formula (eq 10a) given by Bernshtein® is shown in Figure

0 20. For comparison, it was assumed that oy = o and that M, =

: e}
: ogh®/4. Note that a different number in the demoninator of My,
‘ ’ shifts only vertically a plotted graph. ALl P;/(o,h?) versus a
b' % |
; = .

graphs obtained using plasticity methods show the same charac-
teristics and may be represented by a straight line, as done in
eq 12a or 12b.

)

Figure 19. Limit stress dis-

tributions. a. Homogeneous

plate. b, Nonhomogeneous
plate. :
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Figure 20. A comparison of Py expressions
-with P, formula (in eq 10a).

COMPARISON OF ANALYTICAL AND TEST RESULTS

General Remarks

The me_é:hanic_al properties of ice vary drastically in the vicinity of the melting (or freezing)
temperature of about 0°C. Because the lower surface of a floating ice plate is usually af the melt-
‘ing temperature, the plate response is obviously affected by it. This effect is especially severe
when the upper surface is also subjected to near 0°C temperatures, because then the temperature
throughout the plate is approaching the melting temperature. :

0% o ' v ‘ To demonstrate the temperature variations with
1 =5

time, consider a floating ice plate subjected for a long
time to an air temperature of ~10°C. Assume that at
time t = O the air temperature rises to -1°C; the cor-

'’ responding temperature distributions for different times
are shown in Figure 21. Although the temperatures at
the top and bottom surfaces are constant for t >0, the
temperatures throughout the plate vary with time. Hence,
if two identical tests are performed before a thermal
steady state is established, the results may differ, de-
pending upon the time (after the temperature rise) a par-

" ticular test-is'conducted. . i .

Figure 21. Temperature distributions
in a floating ice plate for different
times 0 <t <oo. -

A similar situation takes place in the floating test beams used for the determination of the
failure stress o,, hecause after a beam is cut out from the ice the side walls come in contact with
the rising water and the outside air.

Another thermal problem may arise in a test when an ice cover in the fie}ld is loaded by pump-
ing water into a large tank that rests directly on the cover, for then the bottom of the tank, which
is made of metal or canvas, rests on the ice, and the upper surface of the ice plate in the contact
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region is subjected to near 0°C temperatures. This type of loading usually causes a change in the
stress distribution and a lowering of the strength of the ice in the area where failure usually starts,
thus affecting the test results. - ' :

These and related questions, such as the effect of a sharp drop of the air temperature, the
rate of loading, and the penetration of wateér through the ice plate during loading, have to be con-
sidered when the test data of floating ice plates are correlated with the analytical results, In the
following, various test results are discussed and correlated with analyses presented above.

Effect of Bending and Shearing: Forces on Deflection of an Ice Cover

As shown in the previous sections, an analytical determination of the breakthrough load uti-
lizes a formulation for the ice cover. In order to simplify the necessary analyses, such a formula-
tion contains a number of assumptions. It is essential that the assumptions made be justified,
from a physical point of view, since otherwise the analytmal results may have no relevance to the
actual problem under consideration.

One such assumption, included in the derivation of differential eq 9, states that a straight
line, normal to the reference plane, remains straight and normal to the deformed plane (sometimes
denoted as the Kirchhoff hypothesis)., Physically, this kinematic assumption implies that the de-
flections are caused by bending stresses only and that the effect of shearing forces is negligible.
This assumption, discussed at length in books on the strength of materials, has been proven to be
justified for the elastic response of slender heams and thin plates made of a variety of materials.

On the other hand, basing his view on field observations, Zubov**® in 1945 suggested that the
deflections of an ice cover are mainly cdused by shearing. forces, and hence the effect of bending
apon the deflections is negligible. '

Because the resulting equatlons are used for the analytical determmatlon of B (for additional
examples, see ref. 102), it is essential to determine whether Kirchhoff's or Zubov's assumption is
to be used for the formulation of ice cover problems. In this connection, note that thie plate de-
flections due to a load g, which is distributed over a circular area, according to eq 9, are'?

w,(r) = qo [1 + ker’ (a)ber()\r) - kei (a)beﬂ)\r)] 0<rga
- yla ,
. 70)
wg(r) = q_f[ber’ (aYker(An) - bei{(a)kei(()\r)] a<rges ’
Y .

where A = {‘/ﬂb, whereas the differential equation for an ice plate, according to Zubov’s" hypothe-
sis, is . . ‘ )

GhgPw=-yw = —q . ' T o B (4]
where G is the sheéring modulus and: the correspondihg deflections are
wi®) =3[ - @K (@] - Osrga L
‘ O ()

”v'v;u)':g Wl @Ky agfge o
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Flgure 22, Comparison of plate deflection curves based on

bending and shear theories.
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. Figure 23. Comparison of ice plate deflections
due to loads of short duration at -15°C <T < -7°C.*
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Flgure 24. Companson of ice piate deflections due to
Ioads of short duration at 0°C.**!

where [, I and K, are Bessel funcnons and « =1y /(Gh . To show the different nature of
the deflecuon curves based on these two assumptions, eq 70 and 72 were evaluated numerically
for h = 10 cm, v = 0.3, and E = 10,500 kg/cm?. For a/h = 1 and 5, the corresponding value of G
was determined using the condition that the largest deflections W(O) for both theories are equal.
The results are shown m Figure 22.

Note that the response of an ice cover according to Zubov**® is identical to the response of
the shear layer in the Pasternak foundation.**
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As early as 1929, Bernshtein® compared the deflections of an ice field on the Volga River sub-
jected to loads of short duration, at air temperatures of -15°C < T < ~7°C, with corresponding re-
sults based on eq 9. This comparison is shown in Figure 23. Since the agreement is very close,
it was concluded that the use of eq 9, and hence Kirchhoff’s hypothesis, is justified for the formu-
lation of ice plate problems subjected to loads of short duration.

In 1968, Shmatkov'*! compared test data of an ice plate on Lake Baikal subjected to:a vertical
load of short duration but at air temperatures of about 0°C with analytical results based on eq 9
and 71. This comparison is given in Figure 24. On the basis of these data, Shmatkov concluded
that at air temperatures of about 0°C the deformations are mainly caused by shearing forces.

This conclusion raises a serious question about the effect of the air temperature upon the
range of validity of eq 9 and 71 for the formulation of ice covers. A comparative study involving
more test data, especially at air temperatures near 0°C, is urgently needed to clarify this important
question. In these tests, a special effort should be made to separate the elastic from the nonelastic
deformations. It may also be advisable to note the difference between the crystallographic structure
of an ice cover formed over a lake in which the water is essentially at rest and that over a river in
which the water moves at a certain velocity, and the effect of a different crystallographic structure
upon the mechanical properties of an ice cover.

Determination of F(0)

Test results and their relationship to the allowable load given by the analogy method were -
discussed by Kliucharev and Iziumov®” in 1943 and-by Kobeko et al.® in 1946. In 1960, Gold**
compared eq 4 with the field results of the Canadian pulp and paper industry. The conclusion
from this comparison was that the formula given in eq 4 is not sufficient for the determination of
failure loads since the presence of cracks, thermal stresses and natural variation in effective
thickness is not considered. Another reason could be that the failure load P, is not proportional
to h® but may be a more complicated function of h, as indicated by eq 10 and 12. Additional re-
sults were presented by Gold*® in 1971,

Fresh Water Lce ) ' ‘ In order to establish which of the various
{6)Yd=10 cm; (B 2x2cm; (#)5x5cm () 10xICcem. . i

Salt Water Tce ($=5%.) fOl:mu%as for P, and Pf(o? .ObtamEd using the
(a)2x2cm; (#} x5 ems (¥)OxI0cm. criterion o, . = oy are suitable for predieting

: 1 $210 %o) : . N

S st ox o (9 0410 e, the carrying capacity of a floating plate sub-

2.5 - jected to loads of short duration, in the follow-
ing the analytically obtained P;(0) values are
compared with corresponding results from tests

conducted on floating ice plates.

2.0

Since the analyses are based on an elastic
~ theory, only the results of tests with very short
~ loading times to failure are of interest. Such
- tests were receﬁtly» conducted by Panfilov®® in

the laboratory as-well as in the field. The lab-

05~ - - oratory tests were conducted at =10°C. The

' ' floating plate was loaded by means of stamps
L L ' - of the dimensions shown in-Figure 25. The

0 2 04 -0& 08 10 load for each test was placed statically at

_b : rates which caused breakthrough within 5 to
% 20 sec. In addition to the failure loads Py,

. loads at which the first radial crack occurred

Figure 25, Laborétory test results for infinite
plates.*®
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P, were recorded. The laboratory tests were conducted with fresh and salt water ice. The ice
Plate thickness varied from 7 to 30 mm. The field tests were conducted on thicker ice plates. The
ice plate was loaded by placing metal water tanks on a structure which in turn rested on the ice
plate and simulated the contours of wheel loads. The ice strength oy was determined from floating
cantilever tests with the load acting downwards. Additional details are contained in ref. 98.

The results of 56 laboratory tests for the infinite plate are shown in Figure 25.
|

The failures followed the usual pattern: first, the formation of radial cracks that emanated
from the region under the load; then, the formation of circumferential cracks, at which time the load
broke through the plate.

In F‘]gure 25, Curve I 1s the P /(afb ) according to the analyses by Bernshtem, Golushkevmh 37

and Wyman.'** Curve II is proposed by Panfilov’® as representing the test data and is described
by the equation

’ N
P les.10s2.
ofh'? £

This equation was obtained 'by an averaging process. The test data show a scatter in a relatively
narrow band.

Before proceeding with the discussion of these
test results, in the following a different concept for
the evaluation of ice plate tests is introduced. This
is necessary because averaging curves, such as
curve TI, are not suitable for most engineering pur-

l;’f
o h? poses.
From an engineering point of view, there is a
Safe Loads need to determine safe loads, at which an object
: may move or park briefly on a floating ice plate,
or breakthrough loads, for the design of ice break-
ys_ : ers, at which the plate definitely collapses. These
. ‘ r o loads may be obtained by introducing into the re-
Figure 26. [llustration of new concept sults of field tests an upper envelope U and a lower
for evaluating breakthrough loads from envelope L, as shown in Figure 26. It is reasonable
test data. , © to expect that the area under envelope L contains

1. safe loads and the area above envelope U the
breakthmugh Ioads The area between the envelopes is the region of the test failure loads and
nothing definite can be said about it with respect to safety or breakthrough. Thus, only the re-
gions above curve U and below curve L are’ of interest and the test results are needed to separate

these two regions.

‘For the test data of infinite plates shown in Figure 25, the upper envelope U may be repre-
sented by the equanon :
) 154112 |
tha U - E

and the lower envelope L by the equation
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P .
t b
— ) -10+122.
Ry

L
o)y,

) Therefore, if the bounds shown in Figure 25 should prove reproducible by other investigators, a
safe load (for loads of short duration and T' = ~10°C) could be determined from the condition

P< (1.0 +1.2 )afnﬂ . . BN
4ﬂD 7)/

where o, is obtained from a floating cantilever beam test loaded downward. -

According to test data shown in Figure 25
test) ‘ '
(Pf )L = 2P,. | » (74)

Note, however, that the o, values for these two cases are usually not the same.

Panfilov®® observed that, if P, is the load at which the first crack takes place, then

2 .
test ~ test
Pcfs ~ Eaes X (75)

From the above two equations, it then follows that
test ~
Pcr =

P.. (76)

Ccr

[SCR N

A proper analysis should yield that P, is equal to PX%5%. Possible reasons that this is not so in
eq 76 are: 1) The o values used in Figure 25 are those obtained by loading the cantilever beam
downward, whereas for the determination of P, the tensile stresses that crack the plate are in the
lower fibers of the plate where ¢, is smaller because of the higher temperatures; 2) The stress
distribution is not linear across the plate thickness and the stresses in the upper fibers are lar-
ger than those in the bottom fibers, whereas the analyses and test evaluation are based on a linear
distribution with equal stresses at the top and bottom fibers; and 3) The criterion o, = 0, may not
be valid. '

According to analytical results by Kashtelian,*® for an.infinite plate that cracks into five-
wedges (¢, = 2n/5) ‘
P, ¢
L _2082>08
arh?’ om
!

and when plates crack into six wedges (qﬁ»n =n/3)

P
1 ~on.
crfh2

Thus, according to this analysis, P, values are obtained which are far below the test data pre-
sented in Figure 25. )
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Also compare the graphs presented in Figure
20 with the test data of Figure 25. Note that the
upper graphs in Figure 20 are based on My = 00h2/4
and that they may be shifted toward the test data
by choosing a larger number in the denominator of
Mg.

The test results for a semi-infinite plate
subjected to an edge load, as shown in Figure 6,
are presented in Figure 27. The failures followed
the usual pattern: first, the formation of a crack,
which emanates under the load and is normal to
the free boundary; then the formation of a circum-
ferential crack at which the two wedges break off.

" In Figure 27, Curve I is the P, according to
the analyses of Shapiro**” and Golushkevich.¥’

Curve II was proposed by Panfilov’® as represent-
ing the test data, which show a scatter in a rela-

tively narrow band. It is described by the equation

Figure 27. Results for semi-infinite plate,”®
{Symbols as in Fig. 25.)

P

2
ofh

:&%+&%%

It can be easily verified that the upper envelope U is described by the equation

( P ) = 0.58 + 0.27
U

b
£

orhg
and the lower envelope L by the equation . “\\
N
( P) - 0.35+0.392. | \\
ofhz L £ i

Hence, if the bounds shown in Figure 27 sholuld prove to be reproducible by other investigators, a

safe load for the crossing of a long gap in a|floating plate (a bridge between two semi-infinite
plates) could be determined from the condition
|

P<@%+aw b)ﬁq. 3

VD/y

On the other hand, the breakthrough load for a semi-infinite plate, often needed for the design
of icebreakers, should satisfy the condition

P> (0‘58 +0.27

b
) Ufhz
NID/ y
where o, is determined from a floating cantilever test loaded downward.

According to the test-data shown in Figure 27, for 0.1< b/ < 1.0
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PT.ESt ~
( f )L ~ 16 Pcr' on
Panfilov observed that also for the semi-infinite plate

test ~ 2 pt .
piost = 3 prest, (78)

From eq 77 and 78, it then follows that
test __ '
qus =1.1P,. (79)

In view of the three possible shortcomings listed in the discussion of the infinite plate, this
agreement is very close.

Panfilov's test results for the infinite and semi-infinite plate show that

Ptest) -~ test i
( U Jinf plate 27 i semi-inf plate (80)

This contradicts the experimental findings reported by Kashtelian (ref. 48, p. 33). Equation 80
indicates that the effect of the wedge-in moments is not negligible if one attempts to compute P
analytically from wedge solutions. Without the wedge-in moments, F; of the infinite plate would
be equal to twice the Py of the semi-infinite plate. In this connection, note the corresponding re-
lationship obtained analytically and shown in Figure 8.

According to Kashtelian,* for the observed wedge formation, for a semi-infinite plate
¢ = n/2 and hence S

2
.Pcr/(afh ) = 0.518

a value which agrees with the test data shown in Figure 27 for a < 0.4.

Other test data for loads of short duration were obtained by IAkunin;** however, these results
were not available for review.

Determination of Py(t)

Early test results for ice covers subjected to loads of long duration were reported in refs.
6, 8, 45, 58 and 59. More recent test results were presented by Sundberg-Falkenmark,'” Franken-
stein,™ Panfilov,” '°° '!! Stevens and Tizzard,'* and JAkunin.** Although some writers compared -
their test data with analytical results and found satisfactory agreement for certain situations, a
systematic study of available test data, supplemented with new test results, is needed to estab-
lish, first the proper plate theory for ice covers which will predict the deflections as a function of
- time, and then a failure criterion for the determination of P;(t) and t,.

In connection with the above studies it may also be useful to note the test results presented
by Black,” Brunk,'* Butiagin,* Frankenstein,* Gold et al.,* Korzhavin and Butiagin,®” and
Shishov,'* as well as the discussions by Assur,? Dykins,** IAkunin,** Pister,*"’
sion in ref. 140.

and the discus-

. Determination of o,

For the analytical determination of Pf(()), the value o, is needed. It is determined ‘usually
from a beam cut out from an ice plate and tested in situ. A detailed description of such tests
was given by Butiagin (ref. 16, section IV), A cantilever test beam is shown in Figure 28.
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Figure 28. Cantilever test beam for the determination of oy

Other test data were presented by Brown,'? Frankenstein,? ** Sokolnikov,*** Tabata et al.,'
Tauriainen,'” and Weeks and Anderson.’” Related questions were discussed by Butiagin,®
Frankenstein,*' Kerr and Palmer,*® Lavrov,”” " Peschanskii,''* Savel’ev,*?* Smirnov,*** and Weeks
and Assur.'”

Ir order to establish a standard procedure for the determination of oy, it should be of interest
also to determine the effect of the rate of loading upon Op 48 well as to clarify why Franken-
stein,” ?° using the test setup shown in Figure 28, found that the determined o, value was higher
when P acted upwards, whereas Butiagin, using the same setup, reported that, according to his
test results, the O¢ value was higher when P acted downwards.

SUMMARY AND RECOMMENDATIONS

When utilizing a floating ice plate for storage purposes or as a pavement for moving vehicles,
there is a need to know the magnitude of the breakthrough load Pf(t) and the corresponding time to
failure t;. Until now, there has been no general theory in the literature suitable for the prediction
of Pr(t). The majority of papers on the bearing capacity of ice plates have dealt with the deter-
mination of P,(0), that is, the load which is just sufficient to break through the ice immediately
after it is placed on the ice cover. Only a few papers. have dealt with the determination of P (t).
The procedures for the determmatlon of Pf(O) and Pf(t) are summanzed in the followmg

‘ .

v 1Pl(0) ' P(t)

Based on elasticity analyses | Based on plasticity analyses

Analogy method'DétEﬁnination of] Direct d:étermin'- Determination | Determination of] Use of a viscod
for determina- |P, based on ation of 'P,(0) by} of P, (0} using | P(0) using limit | elastic theory

tion of P, ;.. ' elasticity theory | analyzing the | yield line load theory. in conjunction
of plates and cri- | cracked plate. |theory. v with a failure
terion o =0, [Use of elasticity criterion.

Then correlation |theory and cri-

of P, and P(0).|terion o, =o;.

Attempts to determine P/(0) are based on elasticity as well as placticity theories:
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The foundations of the analog method, which utilizes relationships of an elasticity analysis,
are ‘questionable. Thus, the results obtained with this method, although very simple, should be
used with caution. In this connection, note the position of eq 7 in Figure 25 as compared with
some findings by Gold.** **

Another approach is based on the elasticity theory of plates. In this procedure, for the given
load the maximum stress in the plate O nax 1S determined first, then eq'8, o, =ay, is usedio deter-
mine P, a load which is just sufficient to cause the first crack. Since, according to field tests for
infinite and semi-infinite plates, Py(0) > P, an empirical relation between P, and P(0) is needed for
the determination of P,(0). Equation 74, which is based on data by l?’a.nf:lov,“”3 if proven to be gen-
erally valid, could be used as such an empirical relation for the infinite plate. In this procedure, o

is determined from a floating ice beam that fails in tension in the bottom region of the cross section.

In still another approach, the empirical relation is eliminated and P, (0) is determined directly,
by using the elasticity theoty for the analysis of the cracked ice plate, which consists of wedges
that emanate from the loaded region and the assumption that P,(0) is reached when the wedges break
off. Equation 8 i$ also utilized as the crack criterion. The value for o is obtained from a floating
ice beam that fails in tension in the upper region of the cross section.

The pubhcatlons that follow either of these two approaches contain several quesmonable as-
sumptions; for example, although in a floating ice plate the material parameters, especially E,
usually vary throughout the thickness, the expression valid for a linear distribution of bending
stresses is used exclusively for the determination of the maximum stress in the plate. Also, the
use of above equations for the determination of op from a beam test may not be justified.®

An_othe_r questionable practice is the utilization of eq 8 as the failure criterion. Equation 8 is
the well known maximum stress criterion.* ** It implies that the failure stress o is not affected
by any other stresses at the point of failure. Tests have shown that eq 8 is applicable to a variety
of brittle materials when not subjected to hydrostatic compression. Although many publications
dealing with the bearing capacity of floating ice plates utilize eq 8, not a single publication could
be located which describes test results that prove, or disprove, the validity of this criterion for
floating ice plates. This situation is very unsatisfactory, since o  in plates is usually biaxial,
whereas the o, value is determined from a test with uniaxial bending stress..In 1970, Panfilov'*®
suggested the criterion

— oy < 0y (81)
which is the two-dimensional version of the well known maximum strain criterion. How,ever,/ Pan-
filov!®® did not offer sufficient experimental data to justify the use of this criterion either. In the
literature on the mechanics of materials, several other failure criteria are described that may or may
not be suitable for floating ice plates. For an early discussion related to plates on a Winkler base,
the reader is referred to section 9 of ref. 123. It appears that first it has to be established whether
the simple criterion in eq 8, which is also applicable for materials with different ' values for ten-
sion and compression, is valid for floating ice plates subjected to vertical and in-plane loads.

An additional shortcommg of the publications that analyze the cracked plate is that the investi-
gators neglect the wedge-in moments in the radial cracks. This does not seem to be permigsible,
in view of the tests by Panfilov,” who found that Py(0) of an mflmte plate is larger than 2Pf(0)
for a semi-infinite plate.

The approaches for the determination of Pf(O) that are based on plasticity theories utilize the
yield line or limit load analysis. For a discussion of a possible shortcoming of these two analyses,
the reader is referred to the listed references. Note that the yield line theory is conceptually related
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to the approach discussed above, which analyzes the cracked plate. ‘In this connection, it may be
more realistic to work with cracks instead of yield lines and wedge-in moments:instead of plastic
moments, especially along the radial cracks. 5

In view of the variations of ice properties in an actual ice cover and their effect upon F(0),
it may be advisable from a practical point of view to use the concept presented in Figure 26. Its
theoretical justification is that the straight-line upper or lower bounds of Py (0) are of the form

Py
= A+ Ba

2
op h

which relates the concept to the various analyses discussed above. This approach, if restricted to
straight-line bounds, is essentially the same as the one discussed by Papkovich,®'? except for the
introduction of the notion of upper and lower bounds for Pf(O). Also, note the similarity of the trend
of the graphs and test data shown in Figures 4, 20 and 25. ’

The experimental data for P,(0) presented by Panfilov®® (Fig. 25 and 27) show little scatter.
More test data are needed to establish whether the P, values for other ice plates, tested under dif-
ferent conditions, fall in the same range.

The analytical determination of Pf (t) has received much less attention than the determination .
of P (0). It is reasonable to assume that the necessary formulation consists of a viscoelastic plate
theory and a failure criterion. Thus, it is essential first to establish the range of validity of a
simple formulation consisting of a linear viscoelastic plate theory (a bending theory, a shear theory,
or a combination of both effects) in conjunction with a failure criterion of the type expressed in
eq b8. ' ‘

Until reliable analytical methods are developed for predicting P, (¢} and t,, from a practical
point of view, it appears advisable to establish whether the empirical relation expressed in eq 62

or a similar expression, as proposed by Assur,? is generally valid. The test results needed for this
purpose are also necessary for formulating the proper failure criterion as well as for establishing
the validity of a chosen viscoelastic plate theory.
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