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Abstract: Automatic SpeechRecognition(ASR) systemshave improved greatly over the last three decades.
However, even with 98% reportedaccuracy, error correctionstill consumesa significantportion of usereffort
in text creationtasks. We reporton datacollectedduring a studyof threecommerciallyavailableASR systems
thatshow how initial usersof speechsystemstendto fixateonasinglestrategy for errorcorrection.This tendency
coupledwith applicationassumptionsabouthow error correctionfeatureswill be used,combineto make a very
frustrating,andunsatisfyinguserexperience.Weobservetwo distincterrorcorrectionpatterns:spiraldepth(Oviatt
& VanGent,1996) and cascades.In contrast,userswith more extensive experiencelearn to switch correction
strategiesmorequickly.
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1 Introduction

Recentannouncementsof speechsoftware focus on
the speed of using speech input. However, in
a recent study we found that users experienceda
great deal of difficulty correcting errors, and that
these difficulties had a strong influence on user
satisfaction (Karat et al., 1999). In our study
subjects used commercially available continuous
speechrecognition systemsto complete a set of
text creation tasks. Our focus was to compare
speechandkeyboardasinput modalitiesandmeasure
user performanceand satisfaction. One part of the
study (Initial Use) involved 24 userswho enrolled,
received training, carriedout practicetasks,andthen
completed a set of transcription and composition
tasks in a single session. In the other part of
the study (Extended Use), four researchersused
speech recognition to carry out real work tasks
over 10 sessionseachwith threespeechrecognition
softwareproducts.

What stood out, during both the execution
of the study and subsequentanalysis, was the
frequency andvarietyof errorcorrectionpatternsthat
were attempted,despitegenerallygood recognition.
Attempts to correct an error often set off a
cascade of additional errors, which then needed
to be corrected. We know that poor error
handling is a significant problem for the successful
commercializationof recognition-basedtechnologies
(Rhyne & Wolf, 1993),so understandingthe process
of error correctionwould be of great assistancefor
futuredesigns.

This paperdelvesdeeplyinto users’experiences
with error correction. User strategies for error
correctiondiffered betweenthe Initial and Extended
Use groups, pointing out important lessons for
developingdesktopspeechapplications. We present
data about user error correction strategies gleaned
primarily from the Initial Usesubjects.We compare
this with diagnosticdatafrom preliminaryanalysisof
theExtendedUsesubjects.
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We begin by providing somebackgroundabout
automaticspeechrecognition(ASR) systemsand the
role of error correction in them. Next, we outline
the systemswe studied,as well as the experimental
designand procedure. (This is reportedin depth in
Karat et al. (1999).) With this as foundation we
discussthe differencesin error correction between
the keyboardandmouseinterfacepeopleareusedto
and ASR systems. After briefly discussinghow we
codederrorswe presentour findingsaboutthe error
correctionpatternsthat usersdevelopedandcompare
them with preliminary data about the patternsthat
moreexperiencedusersdisplay. Finally, we conclude
with suggestionsfor the developmentof future ASR
systems.

2 Background
The last threedecadesof researchand development
of automaticspeechrecognition(ASR) technologyis
beginning to pay off. ASR systemstranslatespeech
input into characterstrings or commands,and the
last two yearshave seenthe introductionof several
commercialapplicationsfor dictationandnavigating
thedesktopwhich rely on ASR technologyfor input.

While ASR technologyhas come a long way,
there are somefundamentalfactors that distinguish
the use of speechas an input modality. First,
speechrecognitiontechnologyinvolveserrorsthatare
fundamentallydifferent from user errors with other
input techniques(Danis& Karat,1995). Whenusers
presskeys on a keyboard,they canfeel quite certain
of theresult.Whenuserssaywordsto anASR system,
they mayexperiencesystemerrors— errorsin which
the systemoutputdoesnot matchtheir input — that
they do not experiencewith other devices. Imagine
how userbehaviour might be different if keyboards
occasionallyentereda randomletter whenever you
typedthe‘a’ key. While thereis ongoingdevelopment
of speechrecognitiontechnologyaimedat lowering
error rates,we cannotexpect the sort of error free
systembehaviour we experiencewith keyboardsin
the near future. How we go from an acoustic
signalto someusefultranslationof thesignalremains
technically challenging, and error rates in the 1–
5%rangearethebestfor whichanyoneshouldhope.

Second, speech as an input modality for
computersis not as ‘natural’ as we might like to
think. Many of today’s computerusershave been
typing for quitesometime andreferto it asa ‘natural
experience’. In addition,it takestime andpracticeto
develop a new form of interaction(Karat, 1995; Lai
& Vergo, 1997). Speechuser interfaces(SUIs) will
evolve as we learn about problemsusersface with

currentdesignsandwork to remedythem. While the
systemsstudiedin this paperrepresentthe state-of-
the-artin largevocabularyspeechrecognitionsystems,
they still haveareasthatcouldstandimprovement.

3 Method

3.1 Systems

We investigated three commercially available ASR
systemsthat shippedas products in 1998. These
systems are IBM ViaVoice98 Executive, Dragon
Naturally SpeakingPreferred2.0, and L&H Voice
XpressPlus, referredto as IBM , Dragon and L&H
below. (Philips releasedtheir Free Speechsystem
during the courseof the studyandwasthereforenot
included.) All threeproductssharesomeimportant
features.First,they all recognizecontinuousspeechas
opposedto forcing theuserto speak‘discretely’ with
pausesbetweenwords.

Second, all are consideredmodelesssystems.
Eachapplicationhasintegratedcommandrecognition
into the dictation so that the user doesnot needto
explicitly identify an utteranceas text or command.
To do this the usermust learn a commandgrammar
(a list of specificcommandphrases),andsometimes
a keyword that is utteredto indicatewhat follows as
a command. In general,commandsmust be spoken
togetherasa phrase,without pausingbetweenwords,
in order to be recognized.Otherwise,the wordsare
treatedastext.

In principle, all three systems are speaker
independent. This meansthat the system should
recognizetext without specific training to a user’s
voice. However, we found the speaker independent
recognition performanceinsufficiently accuratefor
the purposesof our study. To improve recognition
performance,we hadall userscarry out the standard
speaker enrolment.During enrolment,the userreads
a predeterminedtext to the systemand the system
processesthe users’ speechto develop a speaker-
specificspeechmodel.

3.2 Experimental Procedure

Differentprocedureswereusedfor theInitial Useand
theExtendedUsesubjectsin thestudy. Althoughthe
Initial Usestudywasdesignedto allow for statistical
comparisonsbetweenthe threesystems,we reported
on generalpatternsobserved acrossthe systemsas
they are of more general interest to the design of
successfulASR systems(Karat et al., 1999). We
provideasynopsisof thedesignandprocedurehere.
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3.3
�

Initial Use

Twenty-four native English speakers, balancedfor
gender and with an age range from 20–55 years,
participatedaspaidvolunteers.ParticipantswereIBM
employees from a broad spectrumof occupational
backgrounds.

We assignedsubjectsto one of three speech
recognitionproducts: IBM , Dragon, or L&H. Each
subject performedtwo kinds of text creation tasks
using each of the input modalities. The order of
modality was varied, as was the task order within
eachmodality. All text wascreatedwith theassigned
product’sdictationapplication.Similar to Windows95
WordPadthey providedbasiceditingfunctionsbut did
not include advancedfunctions such as spelling or
grammarchecking.

Immediately before the speech tasks all
participants had a training session with the
experimenter. This sessionwas standardizedacross
the three systemsto cover basic areassuch as text
entry and correction. Each subjectdictateda body
of text supplied by the experimenter, composeda
brief document,learnedhow to correctmistakes,and
was given free time to explore the functions of the
system.During thetrainingsession,eachsubjectwas
shown how to make correctionsbothduringandafter
dictation.Subjectswerealsotaughtthedifferentways
to make corrections,includingtext selectionby voice,
re-dictation,anduseof applicationspecificcorrection
dialogues. Subjectswere not trained for keyboard-
mousetext creationtasks.

3.4 Extended Use

In contrast,the subjectsin the ExtendedUse study
were the four co-authors of this paper. Each
subject used each of the three speechrecognition
productsfor ten sessionsof approximatelyone-hour
duration;for 30 sessionsacrosstheproducts.During
seven of the ten sessionsthe subjectsused speech
recognitionsoftwareto carry out actualwork related
correspondence.The first, sixth and tenth sessions
wereusedfor benchmarktasks.Similar to Initial Use
subjects,we completedonetranscriptiontaskandone
emailcompositiontask.Weexpectedourperformance
to improve sothetaskswereconsiderablylongerthan
in theInitial Useexperimentto preventceilingeffects.
All sessionswere videotaped. In addition, after
completingat least 20 sessions,subjectscompleted
the samesetof transcriptiontasksusedin the Initial
Usestudy. We limit thepresentationof the resultsof
theExtendedUsephaseof thestudyto somegeneral
comparisonswith theInitial Usedata.

3.5 Analysis
For the Initial Use sessions, we performed a
detailed analysis of the videotapes of the text
creation tasks. This included coding of all of
the pertinentactionscarried out by subjectsin the
study. A taxonomy of approximately100 codes
was constructed. Over 6500 individual eventswere
codedfor 12 subjectscovering speechandkeyboard
text creationtasks(Halversonet al., 1999). Coding
included misrecognitionsof commands,along with
a rangeof usability and systemproblems. We paid
particularattentionto the interplay of text entry and
correctionsegmentsduringatask,aswell asstrategies
usedto make corrections. Becauseof the extensive
timerequiredto dothis,wecompletedthethisdetailed
analysisfor 12 of the 24 subjectsin the Initial Use
phaseof the study (four randomlyselectedsubjects
from eachof the threesystems,maintaininggender
balance). Our findings here are basedon detailed
datafrom those12 subjects.Additionally, we report
selecteddatafrom the four subjectsin the Extended
Use phase. Data from each of the three speech
recognitionsystemsarecollapsedtogether.

4 Results
Elsewherewecomparedtaskperformancebymodality
(Karat et al., 1999). For this study, we introduced
a measurethat allowed us to comparespeechand
keyboard input in terms of entry time. This
measure,corrected words per minute (CWPM) is
the numberof words in the final documentdivided
by the time the subject took to enter the text and
make corrections,and is equivalent to typing speed
reported as WPM. Speechinput took significantly
longer than keyboard and mousewhen corrections
were factoredinto throughput. Table 1 summarizes
the data for the transcription tasks by juxtaposing
speechandkeyboardmeasuresfor Initial Useaswell
ascomparisonsto ExtendedUseperformance.

Transcription Initial Use ExtendedUse

Speech Keyboard& Speech

mouse

CWPM 13.6 32.5 25.1

Time (min) 7.52 2.64 3.10

Table 1: Meancorrectedwordsperminuteandtimepertask
by entrymodalityandtasktype(n � 12).

After 20 sessionsExtendedUse subjects’mean
task time is beginning to approachthe task time for
keyboardandmouseinput. In addition, the measure
of correctedwordsperminuteis alsonearingtherate
associatedwith keyboardandmouseinteraction.
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We wantedto take a closer look at why. This
improvement,albeit after20 hoursof experience,led
us to look morecloselyat the effort going into error
correction.We beganby definingcorrectionepisodes
as an effort to correct one or more words through
actionsthat 1) identified the error, and 2) corrected
it. Thus, if a subjectselectedone or more words
usinga singleselectactionandretypedor re-dictated
their correction,we scoredthis asa singlecorrection
episode.Eachactiontakenduringanepisodecounted
asastep.In thepreviousexample,theepisodeconsists
of two steps— theselectactionandthere-dictation.

Identifyingepisodesandtheirstepsallowedusto
quantifyandcomparethenumberof episodesbetween
themodalitiesandbetweenInitial andExtendedUse.
Table2 summarizesthedatafor transcriptiontasks.

Transcription Initial Use ExtendedUse

Speech Keyboard& Speech

mouse

# Episodes 11.3 8.4 8.8

Steps/Episode 7.3 2.2 3.5

Table 2: Meannumberof correctionepisodesandstepsper
task by entry modality (n � 12 for Initial Use, n � 4 for
ExtendedUse).

Surprisingly, we found that the number of
episodeswasnotsignificantlydifferentbetweenInitial
UseandExtendedUse.However, thenumberof steps
per episodewas significantly reducedfor Extended
Usesubjects.Our impressionwasthat the patternof
whathappenedduringthecorrectionepisodewaswas
different.

To confirm this we further segmentedthe data
into correction‘primiti ves’. A primitive is definedas
whatever is necessaryto identify the error, get to it,
and act on it. The differencefrom our definition of
an episodeis that the stepsin a correctionprimitive
arenot necessarilysuccessful,thusrequiringmultiple
primitivesperepisode.In theexamplewe gave above
one episodedid equal one primitive. That is, 1)
the selectboth moved to and selectedthe error, and
2) the re-dictateactedon it. Becausethe re-dictate
was successful,this was the end of the correction.
However, in mostcasesthis wasnot so.

4.1 Inside a Correction Episode
In general,therearethreetypesof errors.First is when
theusermeansto doonethingandphysicallydoesthe
wrong thing. This is a direct error. On a keyboard
this is a typo — actually pressingone sequenceof
keys whenanotherwas intended. In speechonecan
mis-speakor stutter. In bothcases,thereis immediate

physical feedbackthat an error hasbeenmade. The
secondphenomenonthat canbe classifiedasa direct
error is whenyou changeyour mind. Whenyou first
write somethingyou mayintendto sayit oneway; on
rereadingyou decideto say it anotherway. While
no real error has beenmade,we call this an intent
error. For therestof thispaper, wewill notdistinguish
this kind of error from other direct errors,precisely
becausewe aremoreinterestedin how usersrecover
from errors.

The third type of error is one that appearsin
speechbut not keyboardmodality. Speechinduced
errors are fundamentally different than keyboard
errorsbecausethey areproducedby the operationof
thesystemnot theuser. Thus,we call this an indirect
error. When the speechenginemis-recognizeswhat
the usersaysthe output is a valid word. This means
that tools designedfor keyboardandmousesystems,
like spellcheckers,will not ‘catch theerror’, because
the word is properly spelled. This also meansthat
errorsaredifficult to detectduringproofreading.

Even with stellar speechengine accuracy this
kind of error will occur. For example,95% accuracy
means there will be 5 errors per 100 words (on
average). One hundredwords is roughly the length
of a paragraph,andfor an8 pagepaper, like this one
with approximately65 paragraphs,that’s 325 errors
that needto be corrected. Onceyou begin to create
additionalerrorsduringthecorrectionprocessthiscan
becometruly overwhelming.

4.2 Techniques and Strategies
During tasks in the keyboard modality users
predominately used a technique of deleting text
(usuallyby backspacingover it) andretyping(73%of
all corrections).Thealternatetechniquewasto select
the word to be correctedand type over it (27%).
Performancein the speech conditions was more
varied,asit includedoptionsnotavailablein keyboard
conditions. While there are parallels to keyboard
methodsof error correctionin ASR systemsthereare
alsoimportantdifferences.

An important distinction is the many ways the
user can get rid of a prior action. Systemshave
some combinationof two or three commandsthat
handle “undo what I just said” and “undo my last
action”. For example, SCRATCH THAT and UNDO.
(For the remainderof the paperwe will indicate a
commandby using all caps.) Some subtle issues
arisein speechinput becausewhat the userlast said
may be dictatedtext or a command. In most cases
SCRATCH THAT will cover both. In the case of
just dictatedtext SCRATCH THAT will deletethe last
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Basic Stages Keyboard/ Speech Examples
in a correction Mouse 2 step episode 3 step episode 5 step episode
episode example BEST CASE MOST COMMON Correction Dialog
Locate/move to Use mouse to move

and click to relocate
MOVE LEFT ONE
WORD

MOVE LEFT ONE
WORD

Select so can
operate

Keyboard select SELECT Kiss SELECT THAT SELECT THAT

Operate on-- Retype over Keep Keep CORRECT THAT

i.e. Correct SELECT three
CLICK OK

Figure 1: Actionsarerepresentedin regulartype. Spokenis in bold,commandareall capitalsandtext is in italics. This is an
exampleof changingthephrase“Kiss thedog” to theintended“keepthedog”.

word or phrasesaid. If the user had selectedtext
andwascorrectingit, SCRATCH THAT will deletethe
new text andrestorethepreviously selectedtext, still
selected. In somecasesif the userjust performeda
command,suchasa formattingcommand,SCRATCH
THAT will also undo the formatting. On the other
hand, UNDO is the method of choice if you’ve
just donean unintendedcommand,for exampleone
that deletesyour entire document,and you want to
recover quickly. Becausethe exact commandvaries
acrossproducts,we combinedtheseinto one code:
SCRUNDO, shortfor scratchplusundo.

Eachapplicationprovidesseveraldifferentways
to correcterrors.During trainingwe taughtusersfive
techniquesand had them practiceeachone. These
included:

1. undoing the immediatelyprevious action and
continuingdictation(SCRUNDO);

2. selectinga word by voice and re-dictatingthe
word (correctingby re-dictation);

3. selectinga word by voice, opening the error
correctiondialogue;and

(a) picking from an alternateslist of words
(not supportedby L&H);

(b) spellingtheword out loud;and

(c) typing in the correction in the dialogue
box.

We told them they could use any of these
techniquesat any time, as well as usekeyboardand
mouseto correctif desired. We did not suggestany
particulartechniquewasbetterthananother, nor did
wesuggestany strategies.(By strategy, wemeanboth
whattechniquesthey useto correctanerrorandwhen
they usethem.)

There are three main patterns of when an
error is corrected. Inline refers to correcting an
error immediatelyor almost as soon as it happens.
For example, typographicalerrors (typos) are often
correctedby immediatelybackspacingand retyping
theinformation.In contrast,somepeopledonotmake
correctionsas they go along. Ratherthey wait until
they have all their text on the pageand then take a
post-entryor proofreadingpass(or several)andmake
corrections.Finally, thesestrategiesarenot mutually
exclusivesoamixedstrategy, of in-line correctionand
thenaproofreadingpass,is possible.

While early speechrecognitionproductsvaried
in the strategies of error correction strategies that
they encouragedfor users,the systemsin the current
study all accommodatein-line correctionand post-
entrycorrectionequallywell. Earlier, discretespeech
systems,suchas IBM ’s VoiceType, encouragedusers
(in documentationandonlinehelp)to dictatefirst and
thenswitchto correctionmode,while DragonDictate
encouragedusers to make correctionsimmediately
after an error was dictated. Thesestrategies were
encouragedto accommodatesystem designs and
limitations,andnotbecauseof auserdrivenreason.

4.3 What We Expected and What We
Saw

Ideally, correction should be a straightforward
process. What we expect to see is a pattern of
detectingtheerror, locatingandselectingtheword to
be corrected,andthenmakingthe correction. Given
thevarietyof correctionmethodsin speechthis could
be at besta 2-stepprocess(select,re-dictate). This
is possiblebecausethe commandSELECT � word�
locatestheword andhighlightsit. (All threeproducts
have an algorithm that cycles through selectionsif
thereis morethanonein thedocument,althougheach
productmakesdifferentchoicesaboutwhichdirection
to searchfrom thecurrentcursorposition.) Usingthe
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correction� dialogue,it couldbea 4-stepprocess,or at
mosta 5-stepprocess(move, select,opencorrection
dialogue,choosefrom list, closedialogue).(Figure1
summarizessomecommonpatterns.)

While using the correction dialogue may take
more steps,it can be the least error prone because
the word doesnot needto be re-dictated. With the
correctinformation in the alternateslist the usercan
select the word, open the correction dialogue, and
pick the word — replacing the selectedword and
closing the dialogue— in just threesteps. Because
of thisefficiency wemightexpectto seethecorrection
dialogueusedfrequently. Instead,weseeit invokedin
only 8%of all correctionprimitives.

Instead,the most commoncorrectiontechnique
is to re-dictatetheincorrectword. Initial Usesubjects
chosethis technique40% of the time. This makes
sensewhenyou considertwo things. First, it is a two
stepprocess:Selecttheword andre-dictate.Second,
if thereis a problemthe usercan just undo the last
dictation and try again. This is a lot like typing
whereusershave gottenusedto typing, immediately
backspacingand retyping. However, there is a
significantproblemwith this technique.Oneproblem
is that the accuracy for re-dictation is considerably
lower thanfor initial dictation(47% averagedacross
all systems,vs. reportedaccuracy of 95%or better).

Thereis anotherproblemwith correction:when
speechis used,thereis still a chanceof error — not
only with re-dictation,but also with mis-recognition
of commands.In fact,22%of thecorrectionprimitives
wereaboutundoingtheeffectof incorrectcommands.
This is the tip of the iceberg however. When this
occurs we often see several errors, expanding a
correctionepisodeto asmany astwenty-fivestepswith
five or morecorrectionprimitives. In short,we seea
cascadeof errors.

While it might have been faster, none of the
subjectsanalysedswitchedto anall keyboardstrategy
for correction. (Only one subjectreliably integrated
keyboardandmousewith speechduringcorrection.)

In fact, subjectstendedto stay in the speech
modality much longer during a correction than we
expectedor was efficient. In later commentsthey
reported that they knew there must be a better
way to do it, and figured that integrating speech
with keyboard would be more efficient, but they
had no idea how to go about it. They may have
beenbiasedto correctingwith speechbecausethey
knew theexperimentwasto evaluatespeechsystems.
Nonetheless,their tenacitywasdespiteexperimenters’
instructionsto usekeyboardandmousewheneverthey
wished.

In sum, we see two distinct patterns. First,
Initial Use subjects’fixated on re-dictation,in spite
of reducedrecognitionaccuracy. This patternis what
Oviatt & VanGent(1996) refer to as spiral depths:
the numberof timesa subjectcontinuesto re-dictate
thesameword,despiteincorrectrecognition.Second,
acrossall systemscommandswere sometimesmis-
recognizedas either dictation or other commands.
Duringerrorcorrection,thesemis-recognitionscaused
a new error thatmustbecorrectedbeforetheoriginal
error can be dealt with. The result is a cascadeof
errorswhereapparentuserfrustrationincreasedwith
thedepth.

Thesetwo patterns— cascadesandspirals— and
how usershandlethem,arebehindthedifferencein the
numberof stepsin a correctionepisodeof Initial Use
andExtendedUse.

4.4 Spiral Depths of Re-dictation
Oviatt & van Gent designedtheir experiment to
understandthepotentialbenefitsof multi-modalinput
for error resolution. To this end, they simulated
the equivalent of serial mis-recognitionsto a spiral
depth of 6. They found, as we did, that “on the
first repetitionfollowing anerror, an initial no-switch
strategy, is evident in which users tend to repeat
the same lexical content within the same mode”
(p.207). On subsequentrepetitionsthey found an
increasing likelihood to switch either modality or
lexical expressionor both.

In ourstudy, a little over50%of thetimewesaw
subjectscontinueto re-dictateto a spiral depthof 3.
Onequarterof thetime they continuedto adepthof 4.
Slightly lessthanonequarterof thetime they gave up
afterlevel two. We rarelysaw changingto a synonym
in thecompositiontasks,which is theonly placethey
couldhavechangedthelexical expression.

Unlike Oviatt & van Gent we did not see an
increasinglikelihood to switch modalities with the
depth. Correcting with the keyboard, was equally
as likely as successfullyre-dictating the correction
or a switch to the correctiondialogue(which usually
maintainsmodality). Almost as likely was giving
up on the error completely. While a switch in
modalitydid resultin correctingtheerror, openingthe
correctiondialogueusuallymeantmorefrustration.

Unfortunately, thecorrectiondialoguesappearto
be designedwith the assumptionthat they will be
invoked first not last. Thus, by the time the user
invokesa correctiondialoguethe speech enginedata
has beenlost or discarded and the alternateslist is
empty!Onesubjectexplicitly reselectedthewordeach
time rather than undoing the previous action. Her
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re� wardwasfindingthealternateslist still full of words.
However, the majority of subjectsusedone of the
SCRUNDO commands,and as a result find it empty.
(One of the productsdoesnot provide an alternates
list in thecorrectiondialogue,sosubjectsinvokedthe
dialogueonly in orderto spell.)

4.5 Cascades of Errors
Five times more often than isolated spirals we
observed cascades.One quarterof thesecontained
embeddedspirals,within which othererrorsregularly
intervened. In thesespirals,the picturewasdifferent
than with the isolated spirals. Just under half of
theseendedin correctiondialogues,with a quarter
ending in successfulre-dictationsand another20%
werecorrectedon the keyboard. (Lessthan1% gave
up without correcting.)Correctingphrasessometimes
meanttwo embeddedspiralsin acascade.

What predominantlycharacterizescascadesis
what we might think of as“commandsgonewrong”.
These may be becausethe speech engine mis-
recognizeda command— eitherasanothercommand
or as dictation — or becausethe subject used the
wrong commandor said a commandin the wrong
way. In eachof thesecasesan additionalerror may
becreatedthatmustalsobecorrected.Error cascades
seemto have ‘depth’ similar to spirals,but arein fact
different.Toseethisweneedto lookataspecificerror.

Take the following case. The subjectis trying
to correctthe compositionhe hasjust dictated. (We
have diagrammedthis in Figure2. The top line is a
runningcommentaryof the‘plot’ of thecorrection.In
the diagram,moving acrossthe pageindicateslength
while moving down thepageindicateslevels.)

He begins by moving into position. The first
commandis successful,but the secondcommandis
mis-recognizedand insertedin the text as dictation.
His immediateresponseis analmostinvoluntaryback,
quickly cut off. This mis-speakis alsoinsertedin the
text andcreatesaseconderror. Then,trying to correct
that error, the commandis again mis-recognizedand
insertedin the text as dictation. He now has three
levelsseparatinghim from theactualcorrection.

To resetthe level he mustcorrecteachof these
errors.Becausetheseproductsall havemultiple levels
of undo,heusesthe“undowhatI just said” command
(symbolizedhereasSCRUNDO) repeatedlyto undothe
effectsof eachproblem.

Now he again tries to move ahead in the
document,andagain his commandis mis-recognized
asdictation.Againusingundo,heis finally successful
at the move and dictates the word he wants to
insert.

This example shows the difficulty subjectsget
into becauseof commandmis-recognitions. While
this exampleis many levels deep,mostcascadesare
only onelevel down but many morelong. Figure2 is
only 11 stepslong, while twice that numberwasnot
uncommon.

What we also seeis evidenceof subjects’lack
of knowledge about the commandsand lack of
facility using them. Commandmis-recognitionsare
dramaticbecausethey have unexpectedeffects,while
commandmisuseoften has no discernibleeffect at
all. Nonetheless,the effort, and stepsrequiredfor
the subject to recover from theseerrors is just as
significant.

5 Discussion
While we only present a detailed example from
one subject, thesepatternsare pervasive acrossthe
12 subjectsanalysed.Initial Usesubjectshave a lot
to contendwith — spirals, cascades,and cascades
with embeddedspirals. They createthesewith help
from the designof the speechproducts— and their
frustrationshows.

This is in contrast to the observed behaviour
of the ExtendedUse subjects. While we have not
completedan in-depth video analysis like that for
Initial Use we do have diagnosticevidenceof very
different behaviour. After 20 sessions,all four
ExtendedUsesubjectshave learnedtwo things.They
cut off re-dictation spirals at level 2 and they cut
cascadesvery quickly. They do both of theseby
switchingto differenttechniquesmorerapidly.

In the caseof mis-recognizedcommands,the
ExtendedUsesubjectsswitch modalities,usingtheir
facility with the keyboardand mouseto manipulate
text, makeselections,andclosedialogueboxes.These
two strategies appearto accountfor the significant
decreasein thenumberof stepsin acorrectionepisode
betweenInitial andExtendedUsesubjects.

In sum,theincreasingspeedandfacility of more
experiencedusersappearsrelatedto the patternsof
errorcorrectionexperiencedby first timeusers.While
designersof ASR systemshave developedcorrection
aids, like the correctiondialoguewith its alternates
list, users’ patternsof use often make it unusable.
Instead,novice userspredominantlyuseonemethod
of errorcorrection— stayingwith thespeechmodality
and re-dictatingthe sameword three or four times
beforeswitching techniques.This arisesbecauseof
reducedrecognitionaccuracy with re-dictation. The
result is a spiral. In addition, we saw a pattern
of cascadingerrors due to problems with using
commands.The primary culprit wasmis-recognized
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get to…...get to….get to…..recover ………………………………....get to….recover……….get to……correct
Forward
3 words

Forward
1 word

back Cancel
that

Cancel
that

Cancel
that

Cancel that Forward  1
word

Cancel that Forward  1
word

 That

Forward
3 words

first
word
one
word

back cancel
at

CANCEL

THAT

CANCEL

THAT

CANCEL THAT word one
word

CANCEL

THAT

FORWARD

1 WORD

that

V move V move V dic

C as 
D

C as 
D

Mis-
speak

SCRUNDO

SCRUNDO

SCRUNDO C as 
D

SCRUNDO

Figure 2: Diagramof cascade,showing levels,andlength.‘V’ is theabbreviationfor voice,while ‘C asD’ representscommand
mis-recognizedasdictation.Thefirst line is whatthesubjectis trying to do,thesecondline is whathesays,while thethird line
is whatis recognized.Recognizedcommandsarein caps.Text insertedinto thedocumentis in italic.

commands,althoughnotknowing theright command,
or beingableto sayit properlywasalsoa factor.

Basedon the observed errors there are some
design recommendationswe can suggest. First,
increase recognition accuracy for re-dictation.
Second,recognizenovice users’tendency to usethe
SCRATCH THAT (or comparable)command.In current
ASRsystemsthisappearsto discardinformationsaved
from the speechenginethat is necessaryto populate
the alternateslist in the correctiondialogue. Third,
recognizethat novices’ tendency to fixate on one
techniquemay meanthey stick with a strategy past
its optimum.Wesaw thisdespiteexplicit trainingona
varietyof techniques.This tendency contributesto the
spiralandcascadeerrorpatternsthatmarkInitial Use
errorcorrection.

Learning to do things differently takes a
significantamountof time. The snapshotwe have of
the ExtendedUsesubjectsafter 20 hoursshows that
theselessonsarebeinglearned.We will belooking in
moredepthat ExtendUsesessionsto seeexactly how
long it takesto learnto switchstrategiesquickly.
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